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Bouncing droplet experiments

Experiments intrigued the world over the last 10 years
Analogue of phenomena in quantum mechanics

Growing body of papers in Nature, JFM, Phys. Rev. Lett.

We offer a consistent explanation
Experimental analogue of the electromagnetic force
Analogue of Schrödinger’s equation

http://www.youtube.com/watch?v=W9yWv5dqSKk
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Modern design of the apparatus

Vibration 
exciter

Oil

Droplet of same oilD

Air can’t squeeze out from underneath the droplet quickly enough
lubricates horizontal motion

Shallow region D is a recent innovation to absorb energy
Can now use low viscosity oils (until droplet starts to evaporate)
Viscosity relatively unimportant for the phenomena of interest
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The bouncing motion

Simple bouncing

Most phenomena of interest at double period

        c         d         e         f         a         b

Numerical simulation at
a/g = 3.5 cos(ωt)
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Monochromatic wave field near a droplet

A propagating wave is a sum of two standing waves

cos(kx − ωt) = cos(kx) cos(ωt) + sin(kx) sin(ωt)

A B

The vertical shaking amplifies A and reduces its wave speed
A interacts with the droplet and determines its motion

The vertical shaking drains energy out of B and increases its speed
B can contribute to the waves further from the droplet

Standard to neglect B
Standing Bessel function solution to the wave equation

h = cos(ωt) J0

(ωr
c

)
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Photograph of the wave field (‘ghost droplet’)

Droplet coalesces and ‘dies’ in (b)
Energy can’t escape (band gap)
Standing Bessel function solution to wave equation
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Deflection from boundary of dish

We blew up a stroboscopic photo (Protière 2006) and measured it
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Motion towards boundary

Motion away from boundary

Force is inverse square near the boundary, 1
2mv2 = 1

2mv2
o − K/r

Angle of incidence 6= angle of reflection
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Inverse square force

Carl Bjerknes predicted the inverse square force in 1875 and
demonstrated it experimentally in 1880.

Pistons create pressure waves

Bubbles pulsate

Measured an inverse square force
In-phase pulsations attract
Antiphase pulsations repel
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Degassing oils

The secondary Bjerknes force is used for degassing oils by applying
ultrasonic vibration

Bubbles pulsate in phase with one another, attract and merge
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Origin of the secondary Bjerknes force

BB A

In-phase pulsations
Greater average flow speed near A
Reduced Bernoulli pressure
Force of attraction

Droplets repelled from boundary because image droplet is antiphase.
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Magnitude of the secondary Bjerknes force (1)

Secondary Bjerknes force is average over a cycle

Q
1

Q
2

Flow speed from 1

U =
Q1

4πr2

Momentum ingested by 2

dp
dt

= ρUQ2 = −ρQ1Q2

4πr2
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Magnitude of the secondary Bjerknes force (2)

Our calculation for the resonant case where maximum speed ∼ c

Secondary Bjerknes force

F = α
b̄ c
r2

α ∼ 1

b̄ =
mc2

ω

Compare force between electrons

F = α
~c
r2

α ≈ 1
137.036

~ =
mc2

ω

The fine structure constant of the secondary Bjerknes force is two
orders of magnitude larger than for an electron

b̄ is an analogue of Planck’s reduced constant
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Walker speed
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Two ways to calculate the field of a walker

Conventional approach
Each bounce excites a standing Bessel function
solution to the wave equation, which decays
slowly due to absorption at the boundary and
band gap effects. Simulate in a computer.

Symmetry approach
Bessel function f (x , y , t) obeys wave equation.
The wave equation is symmetric under Lorentz
transformation, so that f (x ′, y ′, t ′) is another
solution, where

x ′ = γ(x − vt)
t ′ = γ

(
t − vx

c2

)
γ = 1√

1− v2

c2

A second-order scale symmetry is also involved. Decay is slow because of parametric effects.
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Increase forcing acceleration

        c         d         e         f         a         b
T

Greater amplitude (dotted)
The droplet lands later in the cycle
The walker velocity increases

Robert Brady and Ross Anderson Droplets Cambridge, June 2014 19 / 39



We re-plot the original (2005) experimental results

TLanding time T

Acoustic Lorentz factor
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Prediction

The wave equation is symmetric under Lorentz transformation

The experimental measurements suggest the wave field has the same
symmetry

So we predict the inverse square secondary Bjerknes force must also
be symmetric under acoustic Lorentz transformation
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Borrow calculation from electromagnetism

“Inverse square force + Lorentz symmetry = Maxwell’s equations”

-

-

-

-

Coulomb force repels Coulomb force repels
Magnetic force attracts

In this geometry, magnetic force = v2

c2× Coulomb force

So total force reduced by factor 1− v2

c2
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Experimental test
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Motion towards boundary

Motion away from boundary

Droplet moves faster parallel to the boundary after reflection
And we see a reduced force corresponding to v ∼ 0.5c
Consistent with our prediction of an analogue of the magnetic force
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Prediction for a rotating droplet pair

Rotating droplet pair
Interaction with image in the boundary

Static forces cancel (droplets are
antiphase)
Magnetic-like attraction remains
Predict fine structure constant ∼ 1/20
Couder observed droplet pair ‘hopscotch’

Visualising the mechanism

Flow field – Bessel function J1

Rotates around the centre
Attracted to image in boundary, like
two vortices
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Experimental results

Y Couder, E Fort ‘Single-Particle Diffraction and Interference at a Macroscopic Scale’ PRL 97 154101 (2006)
A Eddi, E Fort, F Moisi, Y Couder ‘Unpredictable tunneling of a classical wave-particle association’ PRL 102, 240401 (2009)
E Fort et al ‘Path-memory induced quantization of classical orbits’ PNAS 107 41 17515-17520 (2010)

Robert Brady and Ross Anderson Droplets Cambridge, June 2014 27 / 39



Moving wave field

Factorise the field of a droplet

Stationary droplet h = ψ χ
ψ = R cos(−ωot)
χ = J0

(
ωor
c

)
Lorentz transform

where

ψ = R cos(−ωot ′)
= R cos(kx − ωt)

k = γωo
c2 vx

ω = γωo

Wavelength
(de Broglie!)

λ = 2π
k = b

p

b = 2πmc2

ω

b is the same analogue of the Planck constant which we saw in the
inverse square force
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Single-slit diffraction

ψ modulates the amplitude of the wave field
Can be likened to the modulation of a carrier wave
Wavelength visible in photograph, matches diffraction pattern
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Klein-Gordon and Schödinger equations

ψ = R cos(ωot) obeys

∂2ψ

∂t2 = −ω2
oψ

But the motion has Lorentz symmetry
so we need a Lorentz covariant equation, which is

∂2ψ

∂t2 − c2∇2ψ = ω2
oψ

Klein-Gordon equation

Schrödinger equation is a low-velocity approximation to this equation
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Motivation

We predicted that the secondary Bjerknes force obeys Maxwell’s
equations with an acoustic value for c

Experiments on the magnetic analogue support this prediciton

Maxwell’s equations have solutions in the form of polarised
propagating waves

Have such waves ever been observed in a fluid?
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Transverse waves in a fluid

1957 - Lev Landau predicted transverse waves in superfluid helium,
leading to many experiments since (but complicated maths)

Prior to 1957, many scientists thought them impossible in a fluid.

Here is a much simpler model of transverse sound:

Longitudinal   +    Shear     =   Transverse
     wave                flow     component
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Transverse water waves (Michael Berry 1980)

Observed water waves going past
a vortex
Waves induce flows in ±x
direction
Interact with the shear flow
Component in the ±y direction
Analogue of Aharonov-Bohm
effect

Called a ‘phase vortex’. Associated features:
More wavelengths above the centre than below it (waves travel
faster with the flow)
Berry showed it has angular momentum

Same phenomenon (but less photogenic) in sound waves near a
vortex in 3D
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Polarised propagating waves

What happens if we modulate the amplitude of the waves in Berry’s
experiment?

Works just like radio modulation
Modulation has real and imaginary components and obeys the
wave equation
Angular momentum oscillates at the same frequency
Behaves like a polarised propagating wave!
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CHSH measurements

Properties of a polarised wave in a fluid

Observable quantity Wave Pre-existing shear flows
Frequency X
Wavelengh X
Polarisation X

Just like the signal in a radio transmission
polarisation is a property of the carrier wave, not the signal

CHSH measurements
In 1969, John Clauser, Michael Horne, Abner Shimony and
Richard Holt assumed the contrary for light waves
Assumed all properties ‘carried by and localised within’ a photon
Measurements showed their assumptions were false
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Further work

Similar results in three dimensions in superfluid helium

Isotropic model of transverse sound based on Euler’s equation
Analogues of Maxwell and Schrödinger both apply to rotons

Possible explanation for absorption spectra measured in second sound
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Conclusions

Open problem for the last 10 years: why do bouncing droplets behave
like quantum mechanical particles?

We’ve found an elegant explanation!
Lorentz covariant oscillating phenomena
Experimental analogue of the electromagnetic interaction
Analogue of Schrödinger’s equation too

Our model points to fascinating further problems in superfluids and
even the foundations of quantum mechanics

See arxiv 1401.4356 or email us for draft of superfluid work
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