Social Authentication: Harder than it Looks

This appears to be:

- Hyoungshick Kim
- John Tang
- Ross Anderson
How personal is this knowledge?
Social Authentication on Facebook

• Facebook began using additional measures to authenticate users in novel locations

• If you usually log in from London, but the system sees someone trying to log in to your account from Cape Town, it will show you a few pictures of your friends and ask you to name a selected person in each photo

• Facebook called this feature “social authentication”
An Example
Main Observations (1)

• We set out to formally quantify the guessing probability through quantitative analysis of real social network structures
• We found that being able to recognise friends is not in general enough for authentication if the threat model includes other friends
• Community-based challenge selection can significantly reduce the insider threat; when a user's friends are divided into well-separated communities, we can select one or more recognition subjects from each.
I Know Him!

But so do many other people.
Friends or frenemies?

• If you’re doing something embarrassing, then from whom do you need privacy?
• If you’re a celeb, everyone – but the rest of us only have to worry about a few hundred friends
• So: if someone who can recognise a random subset of k of my friends can attack me, to whom am I vulnerable?
• We calculate the attack possibility from such users (your friends, or friends of friends)
Given k challenge images of friends chosen at random, the impersonation attack probability for user u can be calculated as:

$$\text{Adv}_\mathcal{R}(u, k, \rho) \geq \max_{a \in A_u} \left\{ \min\{k, |f_u|\} \prod_{i=1}^{\min\{k, |f_u|\}} \frac{|f_{ua}| - (i - 1)}{|f_u| - (i - 1)} \cdot \rho \right\}$$

where f_{ua} is the intersection of f_u and $\{f_a \cup a\}$

A_u is the set of users who share mutual friends with u.
Real Datasets

Table 1. Summary of datasets used. $\langle d \rangle$ and n_{cc} represent the “average number of friends” and the “number of connected components”, respectively. The sub-networks of universities are highly connected compared to those of regions.

| Network | Type | $|U|$ | $|E|$ | $\langle d \rangle$ | n_{cc} |
|-----------------------|---------|--------|--------|----------------------|----------|
| Columbia | University | 15,441 | 620,075| 80.32 | 16 |
| Harvard | University | 18,273 | 1,061,722| 116.21 | 22 |
| Stanford | University | 15,043 | 944,846| 125.62 | 18 |
| Yale | University | 10,456 | 634,529| 121.37 | 4 |
| Monterey Bay | Region | 26,701 | 251,249| 18.82 | 1 |
| Russia | Region | 116,987| 429,589| 7.34 | 3 |
| Santa Barbara (SB) | Region | 43,539 | 632,158| 29.04 | 1 |

We display histograms of the vulnerability of users in each sub-network.
Histogram of Attack Advantage

When the number of challenge images is 1,

many people are vulnerable to impersonation.

Even for 5 challenge images,

some people can be impersonated with probability 100%.
Who is the most vulnerable?

Some people can still be impersonated with probability 100%. Who?
Social authentication is not effective for users with only a few friends

Correlation between number of friends and attack advantage
Social authentication is not effective for users with a high clustering coefficient.

Clustering coefficients vs attack advantage

The clustering coefficient of node u measures the probability that its neighbours are each others’ neighbours too.
Community-based selection is better

If user u’s friends split into two communities, we can cut the risk by selecting friends’ photos from different groups.
With 3 challenge images

Table 2. The average number of communities for each user’s friends.

<table>
<thead>
<tr>
<th>Community</th>
<th>Columbia</th>
<th>Harvard</th>
<th>Stanford</th>
<th>Yale</th>
<th>Monterey</th>
<th>Russia</th>
<th>Santa</th>
</tr>
</thead>
</table>
Main Observations (2)

• Facebook’s social authentication is an extension of the idea of CAPTCHAs. So it shares their problems
• Many users display tagged photos, and Facebook provides APIs to get images with Facebook ID
• The best performing face-recognition algorithms achieve about 65% accuracy using 60,000 facial images of 500 users
• Acquisti et al. did an attack using a larger database of images taken from Facebook profiles only, across the CMU campus (accuracy was about one third)
Current selection criteria

• Facebook used to use any pictures on your friends’ albums
• Recently they have started screening photos with face detection software to improve usability
• For the same reason, Facebook selects friends who communicate frequently with the user they wish to authenticate
Remaining usability issues...
Bad Example (1)
Bad Example (2)
Discussion with Facebook

• After this paper was accepted, Facebook’s security team got a copy
• Claimed: they knew it was weak against your jilted former lover; and you can log in easily from friends’ machines as a matter of policy
• Argued: local police and courts are the proper remedy for the ‘insider’ threat
• Also: sure, anyone can use it for targeted attacks (not seen much – Indonesian attacks on casinos)
• What this system did was to kill industrial scale phishing, which used to be a bother. Spammers now use malware instead
Conclusion

• Facebook implemented a new security system based on social CAPTCHAs for people who log in from remote machines
• This may have provided some reassurance of privacy to ordinary users like us...
• But it’s not doing security for me – it’s doing security for them
• As service firms get ever larger, is this the way of the future?