DigiTally: Piloting Offline Payments for Phones

Khaled Baqer Cambridge

Collaborators: Ross Anderson, Jeunese Adrienne Payne, Lorna Mutegi, and Joseph Sevilla

The mobile money revolution

SOUPS, Santa Clara, 13 July 2017

Mobile money achievements

- Brought banking services to hundreds of millions who didn't have them
- Built mechanisms for direct payments and remittances; store of value; personal safety; transaction history; access to credit
- Provided direct channel for government payments
- Connected lots of people to the online world

What are the remaining challenges?

- Extend payments to areas with no mobile service (mountains, deserts, islands)
- Make service still work when network service intermittent (congestion, power cuts)
- Cut network charges / transaction fees
- Establish standards and interoperability for international remittances

The DigiTally project

- The Gates Foundation asked for ideas to increase merchant use of mobile money
- We talked to operators and users in several countries: issues were network access and costs
- So: how can you do a payment between two phones when there's no GSM signal?
- It's easy with two smartphones, but what about basic handsets (feature phones)?

Busia (near Lake Victoria)

SOUPS, Santa Clara, 13 July 2017

Busia county offices (near Lake Victoria)

DigiTally overview

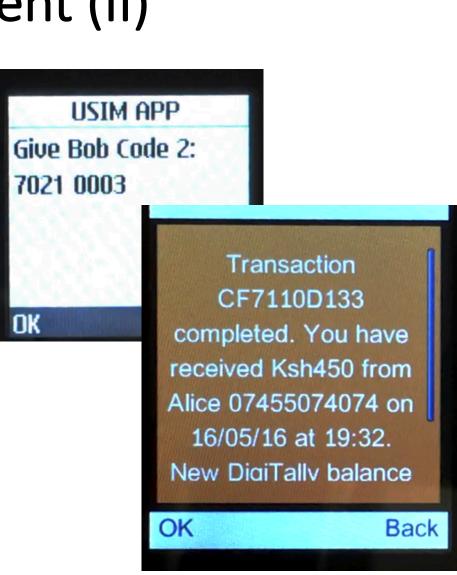
- DigiTally is a prototype system we've built to do research on offline mobile payments
- Address financial inclusion challenges in developing countries
- It works by copying short authentication codes from one phone to another
- It can also be implemented in SIM toolkit or as a smartphone app

Overlay SIMs

- Tamper-resistant SIM
- Sticks on top of the regular SIM
- Bypasses the mobile network operator
- Independent secure device, like SE in NFC
- Can be used to compute authorization codes, just as in EMV

DigiTally design

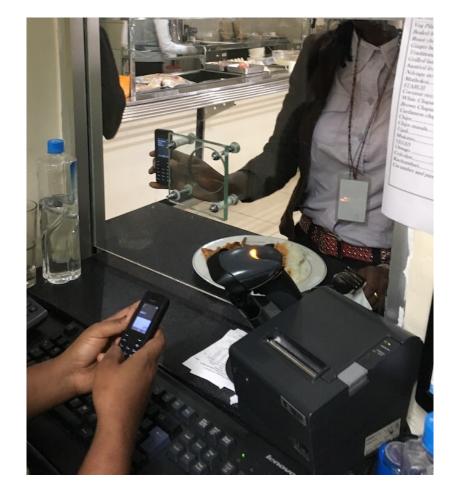
- Work in existing environments
- Do not require/introduce unfamiliar hardware
- Minimize assumption about constrained devices
- Focus on feature phones
- Mimic existing mobile payment systems
- Work seamlessly alongside any existing SIM card


DigiTally payment (I)

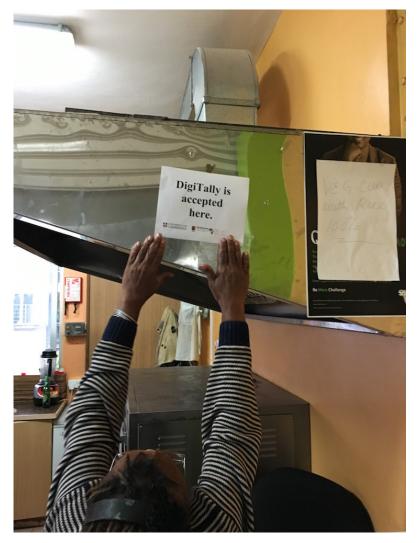
- Bob enters the amount, "Ksh 450" on his phone
- It shows an 8-digit authorization request, say "8972 0307" which he reads to Alice
- She taps "Ksh 450" and "8972 0307" on her phone
- If they agree on the two phone numbers and the amount, then Alice's phone proceeds to the next stage

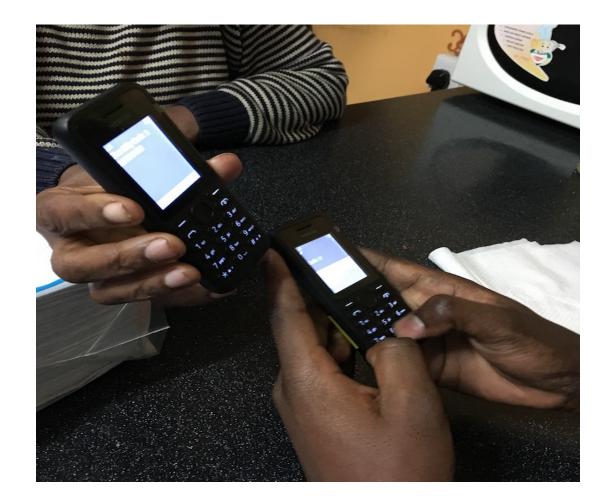
DigiTally payment (II)

- Alice's phone displays an 8-digit authorization response, say "7021 0003", which she reads to Bob
- He taps in the code
- If it's correct, his phone displays "Ksh 450 received" with a log of the transaction (Alice gets a similar log)


Preliminary study (I)

- Collaborate with Strathmore University (Nairobi, Kenya)
- 19 participants at Strathmore University
- Duration: 5 days
- Loaded balance for student phones with Ksh 2000 (about \$19.50)
- Three outlets: Coffee shop (one till, quiet), Bookshop (two tills, bursty traffic), Cafeteria (five tills, madly busy at mealtimes)


Bookshop


Cafeteria

The coffee shop

SOUPS, Santa Clara, 13 July 2017

Preliminary study (II)

- Data collected:
 - Error rates (code-entry errors, and wrong PIN input)
 - Number of transactions
 - Number of attempts to unlock the SIM
 - Total amounts for all transactions (spent and received)
 - Transaction duration times

Results (students)

$Code_1 \text{ errors}$	$Code_2$ errors	Total code errors	Average time (seconds)
0	8~(26.7%)	8 (26.7%)	30.9
9~(32.1%)	0	9~(32.1%)	24.4
2(11.1%)	8~(44.4%)	10~(55.6%)	28.1
9 (40.9%)	1 (4.6%)	10~(45.5%)	44.9
1 (3.5%)	0	1 (3.5%)	24.2
0	1 (3.9%)	1 (3.9%)	54.3
1 (3.9%)	0	1 (3.9%)	50.9
5 (17.9%)	0	5(17.9%)	32.4
0	4 (40.0%)	4 (40.0%)	28.8
0	0	0	37.1
0	0	0	42.1
5(22.7%)	0	5(22.7%)	38.9

Results (merchants)

$Code_1 \text{ errors}$	$Code_2 \text{ errors}$	Total code errors	Average time (seconds)
0	4 (6.8%)	4~(6.8%)	40
0	6 (9.8%)	6 (9.8%)	43.9
0	4 (6.8%)	4~(6.8%)	69.8

Results (System Usability Scale)

- All participants: the average SUS score for DigiTally was 78.8 ('Good'; 'B+' grade)
- Eight participants gave the equivalent of an 'A+' grade
- Merchant participants: the average SUS score was 71.4 ('Good'; 'C+' grade)
- Student participants: the average SUS score was 83.1 ('Excellent'; 'A' grade)

Final remarks

- Our goal was to investigate usability problems for offline payments, and user requirements for development projects
- DigiTally participants' experience was generally positive (perceived security, speed, deterministic, no network req.)
- Research direction: rethink (reintroduce) resilience in critical systems, learn from delay-tolerant networks (DTNs), etc.
- Focus on the 'bottom billion' and the effects of unreliable networks and constrained tech on security and usability

Q&A Khaled Baqer firstname.lastname@cl.cam.ac.uk https://www.cl.cam.ac.uk/~kabhb2/

