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Abstract

Security engineers have been fighting with C compilers
for years. A careful programmer would test for null pointer
dereferencing or division by zero; but the compiler would
fail to understand, and optimize the test away. Modern
compilers now have dedicated options to mitigate this.

But when a programmer tries to control side effects of
code, such as to make a cryptographic algorithm execute
in constant time, the problem remains. Programmers devise
complex tricks to obscure their intentions, but compiler
writers find ever smarter ways to optimize code. A com-
piler upgrade can suddenly and without warning open a
timing channel in previously secure code. This arms race
is pointless and has to stop.

We argue that we must stop fighting the compiler, and
instead make it our ally. As a starting point, we analyze
the ways in which compiler optimization breaks implicit
properties of crypto code; and add guarantees for two of
these properties in Clang/LLVM.

Our work explores what is actually involved in con-
trolling side effects on modern CPUs with a standard
toolchain. Similar techniques can and should be applied to
other security properties; achieving intentions by compiler
commands or annotations makes them explicit, so we can
reason about them. It is already understood that explicitness
is essential for cryptographic protocol security and for
compiler performance; it is essential for language security
too. We therefore argue that this should be only the first
step in a sustained engineering effort.

1. Introduction

The C language has been used for over 40 years for
many of the most critical software components, from oper-
ating system kernels to cryptographic libraries. Yet writing
reliable, stable, and secure C code remains challenging.
Defects can be introduced not just by the programmer
directly, but also by the compiler if it makes different
assumptions.

The C standard [1] is explicit about Unspecified Be-
havior, Implementation-defined Behavior, and Undefined
Behavior (UB), which have generated a large body of work,
and which a programmer can now control through compiler
flags and options (Section 2 on the following page).

However, programmers sometimes have goals or im-
plicit assumptions that they cannot express to compilers,

and which lead to subtle failures. Implicit assumptions try
to control side effects of source code; but the C standard
is concerned only with effects that are visible within the
C abstract machine, not about how those effects are gener-
ated. Providing explicit control for implicit assumptions is
challenging.

There is a long list of implicit properties that would
benefit from explicit controls (Section 3 on page 5). For
example, cryptographic code has to run in constant time,
to forestall timing attacks [2–7]. Unfortunately, there is
no way to express this in C, so cryptographers resort to
coding tricks instead – which a compiler can frustrate by
optimizing away code that seems to do no “useful” work
(Section 2 on the following page). And while a clever coder
may outwit today’s compiler, tomorrow’s can quietly open
the code to attack.

We already have notable extensions for optimiz-
ing performance including the restrict keyword to
inform alias analysis, explicit alignment and padding
attributes (__attribute__ ((aligned (N))) and
__attribute__ ((packed))), and gcc’s vector at-
tributes to enable SIMD instructions. Just as better com-
munication between programmers and compilers has led to
faster software, better communication with security engi-
neers should lead to better security.

We argue that we must stop fighting the compiler, and
instead we must make it our ally. We need a sustained
engineering effort to provide explicit compiler support for
the implicit side effects of code. Modern compiler IRs
differ, but the core requirements for implementing such
features are present in gcc, Open64, and so on.

As examples, we implement constant-time selection
and register/stack erasure in Clang/LLVM (Section 4 on
page 6). We demonstrate that given the right levels of
abstraction, programmers can express implicit assumptions
with improvements in security, speed and code readability.

In this work, we contribute the following:
• We present the problem of implicit invariants: these

are increasingly important in security engineering, yet
remain a fundamental problem in the toolchain.

• We give examples of implicit invariants that would
benefit from explicit controls, with concrete examples
from the realm of cryptography.

• We treat the examples of constant-time selection and
secret erasure in detail. They are achieved unreliably
through implicit, ad-hoc mechanisms today. By adding
support directly into the Clang/LLVM framework, we
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demonstrate the benefit of making implicit invariants
explicit in C programs.

• We make our code available at [8, 9].

2. Compiler vs. Developer

2.1. Explicit Invariants

C was designed to be an efficient low-level program-
ming language, to be portable across architectures, and to
enable advanced compiler optimizations. To achieve this
goal, it defines an abstract target machine, close enough to
real machines to allow compilers to generate fast code, yet
far enough to be general. In the process, it leaves certain
properties “undefined”; their behavior may vary, although
they should be consistent across one implementation.

Unspecified Behavior (USB) is where the standard
“provides two or more possibilities and imposes no fur-
ther requirements on which is chosen in any instance. An
example of unspecified behavior is the order in which the
arguments to a function are evaluated” [1]. A programmer
should avoid using such code as it may behave differently
on different platforms, or even when compiled with differ-
ent toolchains on the same platform.

Implementation-defined Behavior (IDB) deals with
“unspecified behavior where each implementation docu-
ments how the choice is made” [1]. Examples include the
propagation of the high-order bit when a signed integer
is shifted right, the size of types, the result of a zero-
length malloc() (NULL or a unique pointer). Certain
such behaviors, such as struct layouts, are defined by the
ABI and so are stable over a long time (but not between
platforms) whereas others may change when the compiler
is updated. gcc provides details in its manual [10].

Undefined Behavior (UB) arises “upon use of a non-
portable or erroneous program construct, of erroneous data,
or of indeterminately valued objects, for which this Inter-
national Standard imposes no requirements” [1]. UBs are
for behaviors difficult to statically prove and expensive to
dynamically check: e.g. pointers are not null when deref-
erenced (branch on every load/store is expensive); memory
accesses are all in-bounds (fat pointers are expensive, as
are the checks); and memory is not accessed after it is
free()’d (garbage collection is expensive). What happens
to UBs “ranges from ignoring the situation completely
with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic
of the environment (with or without the issuance of a diag-
nostic message), to terminating a translation or execution
(with the issuance of a diagnostic message).”

More importantly, the results need not be consistent
across the entire code, and this enables advanced compiler
optimizations on a case-by-case basis. The speedup comes
at the expense of bugs because the results are inconsistent
across the code and often counter-intuitive for program-
mers [11]. Programmers tend to use UBs unintentionally,
and this leads to subtle security problems in practice.
For example, divisions by zero are considered UB, so a
compiler can assume the divisor is always non-zero (Chap-
ter 6.5.5). This means code that checks the value of the

divisor prior to a division can be removed by a compiler –
we refer the reader to Wang et al. [12] for details.

2.1.1. Explicit Control Options. USBs, IDBs, and UBs
are explicit in the C standard, and have generated a large
body of work [11–17]. As a result, programmers can often
control a compiler’s explicit assumptions by means of
compiler flags and options. We list some of them next.
• Signed integer overflows do not wrap around on all

architectures. So the C standard leaves signed integer
overflows as UB. Because this can be counter-intuitive,
the -fwrapv option has been added to gcc to assume
signed integer wraparound for addition, subtraction, and
multiplication. This is used to compile the Linux kernel.

• Pointer arithmetic never wraps around according to the C
standard: so the -fno-strict-overflow option was
added to gcc to assume pointer arithmetic wraparound.
This is also necessary to compile the Linux kernel [18].

• Null pointer dereference is also an explicit UB, so
a compiler can remove a program’s check: this led
to a critical vulnerability in SELinux [19]. An option
called -fno-delete-null-pointer-checks was
created to assume unsafe null pointer dereferences. This
is also used to compile the Linux kernel.

• Pointer casts are often used by programmers to reinter-
pret a given object with a different type: this is called
type-punning. But the C standard has strict, explicit
rules about this: it says that pointers of different types
cannot alias. In practice, this can lead to the reordering
of read/writes and cause issues [12]. An option called
-fno-strict-aliasing was created to remove this
explicit assumption. This is used to compile the Linux
kernel.

• Uninitialized read is considered UB, so a compiler
may remove code that computes data from uninitial-
ized memory. But uninitialized memory could be used
as an additional source of entropy, albeit weak, to a
pseudorandom number generator (PRNG). Removing the
code would therefore disable the PRNG altogether. Code
removal caused by an uninitialized read was reported in
FreeBSD’s PRNG [12]. In the Debian OpenSSH fiasco,
someone explicitly removed an uninitialized read, dra-
matically reducing the amount of entropy used in ssh
key generation for several years [20].

2.2. Implicit Invariants

As well as these explicit assumptions, there are many
implicit invariants or assumptions with which programmers
want to endow their code, yet which are not captured by
the C standard and current compiler options. Unlike explicit
invariants, implicit invariants attempt to control side effects
of the code (e.g. timing or memory access pattern). But be-
cause side effects were purposely left out of the C standard,
developers cannot express these invariants today. Yet, in
the realm of cryptography, such invariants are crucial; and
cryptographers have been struggling with them for years.
Controlling side effects of code is paramount to cryptosys-
tems. For example, it has been known for over twenty
years that the time of execution must be indistinguishable
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1 u i n t 3 2 t s e l e c t u 3 2 ( boo l b , u i n t 3 2 t x , u i n t 3 2 t
y )

2 {
3 r e t u r n b ? x : y ;
4 }

Listing 1: Naive selection of x or y.

for any key used by a cryptographic algorithm. Failure to
maintain time indistuishability has led to key or plaintext
recovery time and time again. This may be exploited not
just by malicious code running on the same machine as the
sensitive code, whether in smartphones [21] or virtualized
cloud environments [22–26]; but also sometimes remotely,
by protocol counterparties or by wiretappers [27–29]. Yet
it is still not possible to control such side effects in modern
C compilers today. So it is particularly difficult to control
them at the source code level, as we describe next.

2.2.1. Constant-Time Selection. Something as simple as
selecting between two variables x and y, based on a secret
selection bit b in constant time, is rigged with pitfalls.
Naively, the selection function could be written as in List-
ing 1. But we risk the generated code containing a jump. In
fact, if we compile this code for x86 with gcc and Clang
with options -m32 -march=i386, the generated code
contains a jump regardless of the optimization used. Be-
cause of branch prediction, pipeline stalls and/or attacker-
controlled cache evictions, the execution time may depend
on whether x or y is returned, leaking the secret bit b:
this is called a timing side channel vulnerability. Cryptog-
raphers must therefore come up with ingenious ways to get
a compiler to respect implicit invariants. The usual idea is
to write obfuscated code to outwit the compiler, hoping it
will not spot the trick and optimize it away. Unfortunately
this is not always reliable in practice.

TABLE 1: Constant-timeness of generated code for
ct_select_u32 with boolean condition bool b for
different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 7
-O2 3 3 3 7 7 3 3 7
-O3 3 3 3 7 7 3 3 7

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 7 3 7
-O2 3 3 7 7 7 7 7 7
-O3 3 3 7 7 7 7 7 7

Attempts at constant-time coding are presented in List-
ing 2. The source code of ct_select_u32() is care-
fully designed to contain no branch. This sort of obfuscated
code is used in smartcard implementations and in widely-
used cryptographic libraries. We tested each of the four ver-
sions (annotated VERSION 1 to VERSION 4 in Listing 2)
by compiling them with options -m32 -march=i386 for
clang-3.0, clang-3.3, clang-3.9 and for different
optimization levels -O1, -O2, -O3. We then looked at

1 i n t c t i s n o n z e r o u 3 2 ( u i n t 3 2 t x ) {
2 r e t u r n ( x|−x )>>31;
3 }
4 u i n t 3 2 t c t mask u32 ( u i n t 3 2 t b i t ) {
5 r e t u r n −( u i n t 3 2 t ) c t i s n o n z e r o u 3 2 ( b i t ) ;
6 }
7 u i n t 3 2 t c t s e l e c t u 3 2 ( u i n t 3 2 t x , u i n t 3 2 t y ,

boo l b i t /∗ ={0 ,1} ∗ / ) {
8 / / VERSION 1
9 u i n t 3 2 t m = ct mask u32 ( b i t ) ;

10 r e t u r n ( x&m) | ( y&˜m) ;
11

12 / / VERSION 2 . Same as VERSION 1 b u t w i t h o u t
13 / / u s i n g m u l t i p l e f u n c t i o n s
14 u i n t 3 2 t m = −( u i n t 3 2 t ) ( ( x|−x )>>31) ;
15 r e t u r n ( x&m) | ( y&˜m) ;
16

17 / / VERSION 3
18 s i g n e d b = 1− b i t ;
19 r e t u r n ( x∗ b i t ) | ( y∗b ) ;
20

21 / / VERSION 4
22 s i g n e d b = 0 − b i t ;
23 r e t u r n ( x&b ) | ( y&˜b ) ;
24

25 }

Listing 2: Constant-time selection of x or y.

TABLE 2: Constant-timeness of generated code for
ct_select_u32 with integer condition uint32_t b
for different Clang versions. 3indicates the code generated is
branchless; 7indicates the opposite.

VERSION 1 VERSION 2 VERSION 3 VERSION 4
inlined library inlined library inlined library inlined library

C
la

ng
3
.0 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 3 3 7 3 3 3
-O3 3 3 3 3 7 3 3 3

C
la

ng
3
.3 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

C
la

ng
3
.9 -O0 3 3 3 3 3 3 3 3

-O1 3 3 3 3 3 3 3 3
-O2 3 3 7 3 7 3 7 3
-O3 3 3 7 3 7 3 7 3

the code generated for each version of the function 1) in
a shared library, and 2) when inlined in the caller (e.g.
typically the case if the function is defined and called in
the same module).

We present the findings in TABLE 1. First, not all
optimization levels generate constant-time code: the com-
piler sometimes introduces a jump (refer to Listing 3 on
the following page for output). We also note that as the
compiler version increases (Clang 3.0, 3.3 and 3.9), more
implementations become insecure (i.e. non-constant time):
this is because compilers become better at spotting and
optimizing new idioms. This is a real problem because
code that is secure today may acquire a timing channel
tomorrow. More interestingly, we observe differences if we
use a single function (VERSION 2) or split its code into
several smaller functions (VERSION 1). For more tradi-
tional C code, this is never a problem; but when considering
side effects, even the smallest of changes can matter. There
are also noticable differences in shared libraries vs. inlined
code. Again, this is highly unpredictable and hard for a
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developer to control.
One rule of thumb to further reduce the likelihood of

compiler-introduced branches is to remove the use of con-
ditional (i.e. bool) in order to obfuscate the condition bit. In
the function declaration, this means replacing bool bit
with an integer uint32_t bit. We found that although
this improves constant-timeness of generated code, it is
still not sufficient (TABLE 2 on the previous page) if the
function is called with a bool as parameter (which the
compiler implicitly casts to an integer).

So an extra layer of obfuscation used by cryptogra-
phers is to eradicate bool completely in critical code;
and to have specially-crafted functions to compare inte-
gers in constant time too. OpenSSL currently declares 37
different functions to support this. Unfortunately, compilers
offer no guarantees to such code; the next version of the
same compiler may silently understand it and optimize
the constant-timeness away. Examples of such failures in-
clude the carefully-crafted constant-time implementation of
curve25519 which was broken by Microsoft’s compiler in
2015 [30].

The current status quo is to be very wary of side effects
of compiler output. A large body of work exists on veri-
fying constant-timeness of code [31–34]. Although these
approaches are helpful, none of them considers having the
compiler as an ally rather than an enemy. We advocate do-
ing exactly this. In Section 4.1 on page 7, we will describe
constant-time selection support we added to Clang/LLVM;
which offers a better guarantee of the constant-timeness of
generated code. The developer can use a single function
(instead of juggling between the 37 in OpenSSL); this
should also improve code readability and productivity. This
will benefit not just widely-used cryptographic software,
but also verified cryptographic implementations that also
rely on controlling side effects of generated code [35, 36].

2.2.2. Secret Erasure. Another interesting example of con-
trolling side effect is the erasure of sensitive data such as
crypto keys from RAM – a problem practitioners have been
fighting for years [37, 38].

Erase Function:
Consider the example in Listing 4. The programmer de-

fines a sensitive_buffer variable on the stack. After
using it, she wishes to erase it by filling it with 0s through
a call to memset(). In effect, she is trying to control
side effects of the stack content. However, the compiler
realizes that sensitive_buffer goes out of scope as
sensitive_function returns, so it removes the call
to memset(). This “dead store elimination” happens in
both gcc and Clang when optimization is enabled. The
current answer to this well-known problem is to use C11’s
memset_s() function, which the compiler guarantees
to never remove. Because this is not widely supported
by C compilers, cryptographers, again, are left fighting
the compiler: they use a specially-crafted function that
obfuscates the code so as to prevent its removal during
compilation. OpenSSL and mbedTLS code for scrubbing
memory is presented in Listing 5 on the following page.
Both approaches are unsatisfactory:

1

2 ; c l ang −[3 .3 , 3 . 9 ] −O[ 2 , 3 ] −m32 −march= i386
3 ; VERSION 2
4 c t s e l e c t u 3 2 :
5 mov 0x4(% esp ) ,% a l
6 t e s t %a l ,% a l
7 j n e L <−−−−− ∗∗ JUMP ∗∗
8 l e a 0 xc(% esp ) ,% eax
9 mov (%eax ) ,% eax

10 r e t
11 L : l e a 0x8(% esp ) ,% eax
12 mov (%eax ) ,% eax
13 r e t
14

15 ; c l ang −[3 .3 , 3 . 9 ] −O[ 1 , 2 , 3 ] −m32 −march= i386
16 ; VERSION 3
17 c t s e l e c t u 3 2 :
18 mov 0x4(% esp ) ,% c l
19 movzbl %cl ,% eax
20 or $ 0 x f f f f f f f e ,% eax
21 t e s t %c l ,% c l
22 j n e L <−−−−− ∗∗ JUMP ∗∗
23 xor %ecx ,% ecx
24 jmp M
25 L : mov 0x8(% esp ) ,% ecx
26 M: i n c %eax
27 and 0 xc(% esp ) ,% eax
28 or %ecx ,% eax
29 r e t
30

31 ; c l ang −[3 .0 , 3 .3 , 3 . 9 ] −O[ 1 , 2 , 3 ] −m32 −march= i386
32 ; VERSION 4
33 c t s e l e c t u 3 2 :
34 mov 0x4(% esp ) ,% a l
35 t e s t %a l ,% a l
36 j n e L <−−−−− ∗∗ JUMP ∗∗
37 l e a 0 xc(% esp ) ,% eax
38 mov (%eax ) ,% eax
39 r e t
40 L : l e a 0x8(% esp ) ,% eax
41 mov (%eax ) ,% eax
42 r e t

Listing 3: Code generated for different compilers/versions
for the constant-time ct_select_u32() function.

1 vo id s e n s i t i v e f u n c t i o n ( . . . )
2 {
3 u8 s e n s i t i v e b u f f e r [KEY MAX] = ”\0 ” ;
4 l o a d d a t a ( s e n s i t i v e b u f f e r , KEY MAX) ;
5 u s e d a t a ( s e n s i t i v e b u f f e r , KEY MAX) ;
6 memset ( s e n s i t i v e b u f f e r , 0 , KEY MAX) ;
7 }

Listing 4: Attempt to erase a stack buffer.

• OpenSSL’s implementation is overly complicated, and
the generated code is less compact, and slower, than
strictly needed to erase memory.

• mbedTLS’s implementation uses the volatile key-
word, which prevents the compiler from caching values
in registers, and may lead to slower code too – it writes
zeros one byte at a time since it uses char pointers. The
Linux kernel has an ACCESS_ONCE macro that casts a
variable to volatile only for specific checks, but this
relies on a particular compiler implementation to work,
and led to bugs with gcc-4.6 and gcc-4.7 [39].
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1 / / code f o r OpenSSL ’ s OPENSSL cleanse
2 u n s i g n e d c h a r c l e a n s e c t r = 0 ;
3

4 vo id OPENSSL cleanse ( vo id ∗ p t r , s i z e t l e n )
5 {
6 u n s i g n e d c h a r ∗p = p t r ;
7 s i z e t l oop = len , c t r = c l e a n s e c t r ;
8 w h i l e ( loop−−) {
9 ∗ ( p ++) = ( u n s i g n e d c h a r ) c t r ;

10 c t r += (17 + ( ( s i z e t ) p & 0xF ) ) ;
11 }
12 p = memchr ( p t r , ( u n s i g n e d c h a r ) c t r , l e n ) ;
13 i f ( p )
14 c t r += (63 + ( s i z e t ) p ) ;
15 c l e a n s e c t r = ( u n s i g n e d c h a r ) c t r ;
16 }
17

18 / / code f o r mbedTLS
19 vo id m b e d t l s z e r o i z e ( vo id ∗v , s i z e t n ) {
20 v o l a t i l e u n s i g n e d c h a r ∗p = v ;
21 w h i l e ( n−− ) ∗p++ = 0 ;
22 }

Listing 5: secure_erase() implementation for
OpenSSL and mbedTLS.

• There is no strong guarantee that a compiler will not
recognize these idioms and optimize them somewhat.
For example, a discussion among LLVM developers con-
cluded that it was valid to remove volatile stores if the
address is a stack allocation that does not escape and the
result of the store can be proven never to be read [40].

Many of these techniques depend on the compiler re-
maining ignorant. For example, if the scrubbing function
is declared in one compilation unit and called in another,
a compiler is not able to inline it and misidentify it as a
memset that it can elide. Unfortunately, compilers increas-
ingly make use of Link Time Optimization (LTO) (e.g. for
data flow analysis). It may therefore become aware of the
semantics of secure_erase(). LTO typically provides
a 5-10% performance improvement for little cost [41] and
so is increasingly the default for large software projects, but
defeats many approaches that rely on hiding information
about the implementation of a function from the compiler.
Of course, one could separate compilation units to avoid
LTO, but this is just another example of fighting the com-
piler rather than having it as an ally.

Erasing Stack: In addition to the problems mentioned
above, the secure_erase() function is not sufficient
for a programmer to properly scrub memory, because it
does not allow clearing of state that is not part of the C ab-
stract machine. In other words, even if secure_erase()
is not removed and it successfully erases memory intended
by the programmer, there are side effects of generated
code it cannot handle. The compiler may generate code
that temporarily copies parts (or all) of a buffer content
to other stack areas known as “stack slots”. These do
not correspond to variables declared in the original source
code so a developer cannot erase them programmatically.
This often happens because of register pressure; and the
compiler must temporarily “spill” registers to the stack.
More generally, this also happens before function calls
(e.g. if a register is caller-saved, it is pushed on the stack)

and in function prologues (e.g. a callee-saved register is
temporarily saved on the stack). Regardless of the use of
memset_s() or a specially-crafted secure_erase(),
a compiler offers no guarantee about “leaks” of secret data
to the stack. This could be particularly problematic if the
implementation uses extended registers (128 to 512 byte
wide), as is often the case for AES.

To test the scope of this problem in practice, we im-
plemented a runtime taint-tracking engine tool (available
at [42]) on top of Valgrind to follow tainted (i.e. secret)
data during program execution. We tested this on OpenSSL,
mbedTLS and GnuPG (RSA and AES operations only). We
tested programs rather than just functions. This is made
relatively easy because most cryptographic libraries contain
unit tests (mbedTLS) or a versatile command line interface
(OpenSSL and GnuPG). We found that formatting func-
tions (e.g. *printf, *scanf, etc.) are prone to leaving
residual data on the stack. We also found that recursive
functions tend to leave residual data, as they aggressively
spill registers on the stack. And more generally, a lot of data
was left unerased on the stack due to the Application Binary
Interface (ABI), calling conventions, and register spills.
Most of the time, these were short values (e.g. 64bits on
x64); but as we mentioned earlier, extended registers could
have more serious implications. So even these specially-
crafted erasure functions do not provide high guarantees in
practice.

The only chance practitioners have today to erase the
stack is to try to outwit the compiler. Let us consider a
candidate solution as presented in Listing 6 on the next
page: the programmer declares a currentStack variable
to obtain the current stack pointer, then it uses it to erase the
stack through a call to secure_erase(). This assumes:
1) The compiler allocates variable currentStack at the

bottom of the stack (on x86).
2) The compiler allocates all local variables on the stack,

not in registers.
3) Local variables are contiguously allocated, with no

padding between them.
4) The call to secure_erase() is not optimized away.

All these assumptions may be violated in practice. A
compiler can allocate variables anywhere on the stack,
pad them for alignment purposes, spill registers (including
extended ones) on the stack to re-use them, push regis-
ters on the stack according to calling conventions, etc.
As we described in Section 2.2 on page 2, the call to
secure_erase() may also be removed.

3. Side Effects in Cryptography

Compilers optimize out a wide range of implicit code
properties intended by cryptographers. In the previous sec-
tion, we presented two detailed motivating examples. In
this section, we provide more general use cases that would
benefit from controlling side effects.

Constant Side Effects: The most common countermea-
sure against side-channel attacks is to make all side effects
constant: constant power drain, constant electromagnetic
(EM) emanations, constant-time executions, etc. We al-
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1

2 e x t e r n i n t foo2 ( i n t , u8 ∗ ) ;
3 e x t e r n i n t foo3 ( i n t , i n t , u8 ∗ ) ;
4 e x t e r n vo id s e c u r e e r a s e ( u8 ∗ , s i z e t ) ;
5

6 # d e f i n e FUNCTION STACK ( s i z e o f ( a ) + s i z e o f ( b ) +
s i z e o f ( r e t ) + s i z e o f ( buf ) + s i z e o f ( c u r r e n t S t a c k )
)

7 # d e f i n e ARG CALLEES ( s i z e o f ( a ) + s i z e o f ( b ) + s i z e o f (
u8 ∗ ) )

8 # d e f i n e STACK SIZE ( FUNCTION STACK + ARG CALLEES
+ s i z e o f ( c u r r e n t S t a c k ) )

9

10 i n t foo ( i n t c , i n t d )
11 {
12 i n t a , b , r e t ;
13 u8 buf [ 2 5 6 ] ;
14

15 a = c ;
16 b = d ;
17

18 r e t = foo2 ( a , buf ) ;
19 i f ( r e t != 0 ) r e t u r n r e t ;
20

21 r e t = foo3 ( a , b , buf ) ;
22 i f ( r e t != 0 ) r e t u r n r e t ;
23

24 [ . . . ]
25

26 / / t r y t o e r a s e t h e s t a c k
27 i n t c u r r e n t S t a c k ;
28 s e c u r e e r a s e ( ( ( u8 ∗ )&c u r r e n t S t a c k ) , STACK SIZE ) ;
29

30 r e t u r n r e t ;
31

32 }

Listing 6: Erasing stack by outwitting a compiler, x86.

ready elaborated on the need for constant-time side effects;
the same basic ideas apply to other side effects too.

Other compiler threats include code motion, common
subexpression elimination (CSE), and peephole optimiza-
tions [43]. Constant-time arithmetic needs not just constant-
time comparison [44] and conditional swap [45] but at-
tention to whether operation timings depend on operand
content [46]. Changes to instruction ordering might leave
timings unchanged but have an effect on power consump-
tion, making differential power attacks easier. So the de-
sired security properties are not just about stopping dead
code elimination in particular functions; they may require
support from many layers of the stack.

Secret-Independent Control Flow: Microsoft’s com-
piler introduced a secret-dependent jump in the constant-
time implementation of curve25519, leading to the recovery
of key material remotely [30]. A toolchain with explicit
controls of side effects might not only guarantee a pro-
grammer’s invariant, but also warn the programmer if a
sensitive variable affects the control flow. This would often
be understood quickly to be a mistake.

Secret-Independent Memory Access: The same holds
for memory access. For example, many AES implemen-
tations have table lookups indexed by secret data, and
may use random values (blinding) to prevent an attacker
exploiting cache-based side channels by polluting the
cache [3, 47, 48].

Secret-Independent Loop Bounds: Secret-dependent
loop bounds may also leak sensitive information during
operations such as padding validation, group addition, or
simply during memory comparison.

Noise Addition: Programmers often want to add noise
to a program to mitigate information leakage via side
channels (e.g. acoustic, power, EM, time). They may add
random delays and arbitrary code [49, 50]; run different
codes of the same algorithm depending on when it is
executed; or shuffle instructions randomly [51], etc. But
as the side channels are side effects, there is a risk that a
compiler will optimize away the noise too.

Bit Splitting scatters sensitive data across memory to
make it more difficult for an attacker to locate and recon-
struct sensitive data from a RAM dump or chip scan. Coded
by hand, this might amount to using eight 1-bit variables
instead of a single 1-byte variable. But this is tedious to do
by hand, and may be optimized away by the compiler.

Bit Splicing also splits variables into single-bit vari-
ables and then uses only single-bit logical operations (e.g.
AND, OR, XOR, NOT, etc.). This helps fight timing side
channels by removing conditions. Again, this may be op-
timized away by the compiler.

Fault Injection Countermeasure: An attacker may use
a laser or a rowhammer technique to inject memory faults.
Cryptographers sometimes read variables multiple times
from various locations to spot inconsistent changes. But
this also gets optimized away by the compiler. One possible
fix is to declare those variables as volatile; but this
slows down the program, especially if the value is a global.
Compiler support for countermeasures against changes in
critical code and data would be welcome.

Secret Erasure: Scrubbing sensitive data from RAM is
a problem with which cryptographers have been struggling
for years [37, 38, 52, 53]. We illustrated this problem
in Section 2.2 on page 2.

4. Implementations of Explicit Side Effects

Previous sections demonstrated the need for compiler
support to control side effects of security-sensitive code.
Modern compiler IRs differ, but the core requirements for
implementing such features are present in all of them. In
this section, we present the support we added in Clang/L-
LVM for both constant-time selection and secure stack
erasure from Section 2 on page 2. We argue that this should
be only the first step in a sustained engineering effort to
provide explicit compiler support for implicit properties.

Clang/LLVM is a compiler framework divided in three
core parts: 1) the frontend which reads the source code
(for C, this is Clang); 2) LLVM where all common op-
timizations take place (e.g. dead-code elimination, com-
mon subexpression elimination, etc.); and 3) the backend,
where target-specific optimizations take place (e.g. peep-
hole optimization) and machine instructions are emitted.
Well-known optimizations responsible for side effects are
caused by LLVM (e.g. dead code elimination may remove
the call to zero a buffer). But backend implementations
may also get in the way: for example, if we compile the
naive select of Listing 1 on page 3 with clang-3.9
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-m32 -march=i386, then the LLVM representation is
branchless; but the generated binary no longer is. This
remains true even if we replace the condition bool b by
an integer uint32_t b, and for any optimization level
-O0,-O1,-O2,-O3. Thus, to have high guarantees about
side effects, we must avoid both LLVM and the backend
optimizations.

For all evaluations reported in the rest of this paper, we
run programs on a server installation of Debian Jessie. To
minimize the impact of other programs running on the ma-
chine, we boot it with kernel option init=/bin/bash.
This makes the kernel start /bin/bash instead of the
usual init daemon. This, among other things, ensures no
additional services are started, including networking.

4.1. Constant-Time Selection

4.1.1. Implementation. As we explained in Section 2.2.1
on page 3, OpenSSL currently defines 37 functions to
implement constant-time selection. Even though this seems
to work on today’s compilers, there is no garanatee that the
next generation will not break the constant-timeness. As
compilers become smarter, they become better at spotting
idioms and at optimizing them (Section 2.2.1 on page 3).

So we implemented a unique builtin function
__builtin_ct_choose(bool cond, x, y) in
the Clang/LLVM framework (a reference implementation
is available at [8]). In the frontend, we automatically
detect the integer type of x and y so we do not need a
different function for every different type. If their types
do not match, the compiler outputs an error and refuses to
compile. We purposely abstained from supporting floating
point integers as these are known to lead to non-constant
execution times [54].

The __builtin_ct_choose function we imple-
mented can be called with the condition bool b expressed
with the usual comparison operators (e.g. >, ==, !=, etc.). It
does not require the specially-crafted comparison functions
that modern cryptographic libraries use. This improves code
readability, API usability and developer productivity. To
ensure the compiler does not create a branch depending
on the condition, we mark the function as “not duplica-
ble” throughout its life cycle (IntrNoDuplicate in LLVM,
isNotDuplicable in the backend).

We added custom support to the x64 backend by ul-
timately compiling the function into a CMOV after other
optimizations have been performed. This way we avoid
backend optimizations too. CMOV was empirically shown
to be constant time by previous work [55, 56]. We did
not aim at challenging this assumption in this work. A
compiler may replace this with a XOR or other constructs,
without source code modification if it is found to be invalid.
For other backends that do not provide custom support
for constant-time selection yet, we implemented a default
one that compiles __builtin_ct_choose to a XOR
instruction (VERSION 1/2/4 in Listing 2 on page 3) – the
XOR instruction is more likely than multiplication (VER-
SION 3) to be constant-time for different operands. The
default implementation happens at the start of the backend
so it avoids optimizations of LLVM but not the backend

ones. This is still better than any hand-crafted version that
goes through the LLVM optimizations, as we show next.

4.1.2. Evaluation. For x64, we verified that generated code
did indeed contain the expected CMOV instructions for vari-
ous programs including OpenSSL and mbedTLS. For other
backends, we focused on the code we presented in Listing 2
on page 3; and that we showed was often compiled into
non-constant-time code by Clang. We found that with our
compiler solution, and even though the default-backend
implementation does not avoid backend optimization, the
generated binary contained no branches. For x64 and x86,
we further tested the constant-time implementations with
two crypto algorithms that make use of multi-variable se-
lection: OpenSSL’s X25519 (the Diffie-Hellman exchange
that uses curve25519) and a self-written constant-time RSA
exponentiation using the Montgomery ladder [57]). We
used a tool called Dudect [33]: this runs the program
with millions of different inputs to detect significant time
differences indicative of non-constant time code. Constant-
time code is hard to come by, so testing a large corpus of
constant-time code was deemed out of scope of this work.

Wide adoption of security primitives is hampered by the
non-negligible overhead they usually incur. So we bench-
marked the two crypto implementations too. For each, we
compiled with the builtin __builtin_ct_choose and
with OpenSSL’s hand-crafted version, then ran them 100
times. The results are presented in Figure 1. For X25519,
our builtin solution incurs less than 1% running time over-
head; for the Montgomery ladder our builtin solution is
about 4% faster.

Figure 1: Runtime overhead for X25519 (OpenSSL) and
RSA Montgomery ladder.
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4.2. Stack and Register Erasure

We saw in Section 2.2.2 on page 4 that it is imprac-
tical for a developer to programmatically erase sensitive
data spilled on the stack. So our goal in this section is
to provide explicit support for this in a mainstream C
compiler, through function annotations. For example, to
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enable instrumentation for a function foo(), a program-
mer simply precedes its declaration and definition with the
__zero_on_return keyword.

Right before the function returns, our instrumentation
zeros the stack and registers used. It is important to zero the
registers too as they may be spilled to the stack later. We
opted for Clang/LLVM as the compiler framework to im-
plement our solution (a reference implementation is avail-
able at [9]); x64 Linux as the target platform; musl-libc [58]
as the standard C library and runtime linker; and the gold
linker as static linker. As a proof-of-concept, the musl-
libc run-time linker was easier to modify. Our approaches
should work with any C implementation, with varying
amounts of engineering effort. Unlike current approaches
discussed in Section 2.2.1 on page 3, our solution uses
no source-code tricks: we implemented our instrumentation
in the compiler backend after other backend optimizations
have taken place. This gives strong guarantees that the code
is not altered.

In the rest of the paper, we assume a single-threaded
userspace program P that uses secret data at time Tuse.
Once P is done using the secret, it tries to erase it. The
erasure is secure, or successful, if an attacker with access
to the virtual address space of P at a time Tattacker > Tuse

gains no information that helps her recover the secret (key
or plaintext). We do not consider adversaries with physical
access to the memory. We assume the kernel does not leak
secrets.

Given the large amount of code involved in modern
toolchains (the OS kernel, libraries, loader, linker, the ABI,
the compiler and the programmer), we abstain from trying
to formally verify our implementation. We see value in
a working implementation that we can open source today
and we leave formal guarantees for future work. Next, we
detail what is really involved to implement proper erasure
in a mainstream C compiler today, and the assumptions we
make throughout.

4.2.1. CPU, OS and ABI. A userspace program does not
run in isolation, but on a machine providing its own set of
libraries. There is a lot of platform code which we cannot
instrument when we compile a userspace application alone.
As well as libc and the runtime loader/linker, we have to
consider the Virtual Dynamic Shared Object (VDSO), a
piece of executable code provided by the OS kernel that is
mapped into userspace as a program starts. If we want to
ensure erasure of the stack, we must recompile all of these.

Even a single-threaded application can receive asyn-
chronous signals in Linux. When this happens, the kernel
stops one of the application’s threads of execution and
executes the signal handler. Prior to this, though, the kernel
saves the current program’s CPU state (i.e. registers) on the
userspace stack. If a program is in the middle of a sensitive
function, these registers are likely to contain sensitive data.
So we must erase the part of the stack where the kernel
saves them – on x86, where the application’s current %esp
points and on x64, 128 bytes below it (Figure 2). This 128-
byte memory region is referred to as the “red zone” and
is guaranteed by the x86-64 System V ABI to never be
clobbered by the kernel during signal handling, allowing

leaf functions to spill values to the stack without having to
move the stack pointer. So we must account for this extra
128-byte offset when calculating the amount of stack to
erase.

Figure 2: Stack layout during signal handling on x64.
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4.2.2. The Compiler and the Linker. Like any modern
software, Clang/LLVM is made up of several modules. We
must be aware of how these fit together to implement our
solution.

Compilers use a runtime library of architecture-
dependent optimized functions to speed up certain opera-
tions, e.g. __udiv* for division. For LLVM, this is called
compiler-rt; while for gcc it is libgcc. We must recompile
these too.

Besides the compiler runtime, a compiler may also
substitute calls to known functions with its own optimized
version, inlined for performance. This is typically the
case for calls to libc’s memory-intensive functions such as
memset(), memcpy(), etc. in LLVM.

Certain compiler optimizations may change the usage
of registers. For example, %ebp is typically used as frame
pointer, so it stores a (non-sensitive) address. If the com-
piler realizes a function does not need a frame pointer (e.g.
a leaf function), it may use %ebp to store sensitive data
instead. We must erase the resgiter in the latter.

A number of compiler optimizations also affect the
stack. Tail-call optimization reduces stack accesses dur-
ing function calls. Let us consider the pseudocode
of Listing 7 on the following page, which defines
three functions: function_A that calls function_B,
function_B that calls function_C, and a leaf function
function_C. Before each function returns, there is an
__erase_stack which represents a piece of code that
erases the stack (described in next section). Now con-
sider Listing 8 on the next page representing the same
code with tail-call optimization: function_B’s call
to function_C is now replaced with a jmp (Line 9),
so no return address is pushed to the stack. This means
that when function_C returns (Line 18), the only return
address on the stack is the one from function_A, and so
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function_C returns directly to function_A, thereby
skipping the __erase_stack present in function_B
(Line 11). So if we are not careful, the code intended to
erase the stack may be skipped.

Defer-pop optimization is a gcc optimization [59] that
“lets arguments accumulate on the stack for several func-
tion calls and pops them all at once.” This also changes the
stack layout, and may have implications for stack usage. It
is not supported in LLVM at the moment.

Shrink-wrapping optimization also tries to reduce stack
usage (Listing 9). Without optimization, all callee-saved
registers that may be used in a function are pushed to
the stack (Lines 3-7). With shrink-wrapping optimization
(Listing 10), registers are pushed only if they are certain
to be used (e.g. within an if-statement, Lines 4-6 and
Lines 19-20). This affects the stack layout.

Function Multiversioning [60] is a gcc feature that
selects the best function version at runtime, depending on
the target. This is not supported by LLVM. The dispatching
mechanism will have to be instrumented as well in future
LLVM versions.

The last step to generating a binary is for the static
linker to link all objects together. To link against shared
libraries (e.g. libc), the static linker adds stubs to redirect
function calls to the runtime linker at runtime. For addi-
tional guarantees, these stubs should also be instrumented.

1 f u n c t i o n A :
2 . . .
3 c a l l f u n c t i o n B
4 e r a s e s t a c k
5 r e t
6

7 f u n c t i o n B :
8 . . .
9 c a l l f u n c t i o n C

10 e r a s e s t a c k
11 ; ; t h i s r e t u r n s t o

f u n c t i o n A
12 r e t
13

14 f u n c t i o n C :
15 . . .
16 e r a s e s t a c k
17 ; ; t h i s r e t u r n s t o

f u n c t i o n B
18 r e t
19

20

Listing 7: Non-optimized
code.

1 f u n c t i o n A :
2 . . .
3 c a l l f u n c t i o n B
4 e r a s e s t a c k
5 r e t
6

7 f u n c t i o n B :
8 . . .
9 jmp f u n c t i o n C

10 ; ; t h i s i s n e v e r
c a l l e d

11 e r a s e s t a c k
12 r e t
13

14 f u n c t i o n C :
15 . . .
16 e r a s e s t a c k
17 ; ; t h i s r e t u r n s t o

f u n c t i o n A
18 r e t
19

20

Listing 8: Tail-call
optimized code.

1 foo :
2 ; a l l r e g i s t e r s a r e

pushed
3 push r1
4 push r2
5 push r3
6 push r4
7 push r5
8

9 i f r0 :
10 r1 = . . .
11 r2 = . . .
12 r3 = . . .
13 e l s e :
14 r4 = . . .
15 r5 = . . .
16

17 ; a l l r e g i s t e r s a r e
popped

18 pop r5
19 pop r4
20 pop r3
21 pop r2
22 pop r1
23

24

Listing 9: Non optimized
code.

1 o p t i m i z e d f o o :
2 i f r0 :
3 ; on ly used

r e g i s t e r s a r e
pushed

4 push r1
5 push r2
6 push r3
7

8 r1 = . . .
9 r2 = . . .

10 r3 = . . .
11

12 ; on ly used
r e g i s t e r s a r e
popped

13 pop r3
14 pop r2
15 pop r1
16

17 e l s e :
18

19 push r4
20 push r5
21

22 r4 = . . .
23 r5 = . . .
24

25 pop r5
26 pop r4
27

28

Listing 10: Shrink-
wrapping optimized code.

4.2.3. The Programmer. As always, we also need coop-
eration from the developer to achieve proper erasure.

For examples, certain functions, such as exit(),
assert(), abort(), execve(), etc. never return. As
we erase stack and registers before a function returns, we
cannot erase them for non-returning functions. In theory, we
could support non-returning functions by erasing all stack
and registers before the call. We would have to be careful
not to erase stack area and registers passed as arguments to
such functions. For exit(int) and abort(void), this
should be fairly simple. But in general for other functions,
one would have to be extremely careful to get this right.
So for our reference implementation, we decided against
adding complexity, and we implicitly rely on the kernel to
zero those pages when the process terminates. This gives
different guarantees whether the kernel erases these pages
straightaway or lazily at the time of re-use. A developer
should avoid calling such functions in sensitive code.

The use of variable-sized stack objects does not lend
itself to low-overhead compile-time stack erasure ap-
proaches, as the compiler cannot determine stack usage at
compile time. These are used rarely (we found only two
occurrences in our tests) and can simply be replaced with
a call to malloc(). In a security context, using variable-
sized stack objects should be avoided anyway, as it may
allow an attacker to cause stack overflows [61].

Certain libc functions affect the stack location, e.g.
sigaltstack() allows a programmer to change the lo-
cation of the stack used by signal handlers. We decided not
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to add unnecessary complexity to support such functions
since these are not used in crypto code.

To ensure a developer does not inadvertently break the
above assumptions, our compiler solution will refuse to
compile if any of these problematic corner-cases are present
in the source code.

4.2.4. Implementation and Evaluation. We implemented
three different solutions. The first, naı̈ve one is function-
based (FB): it performs the erasure for every sensitive func-
tion and its callees. This is not optimal: callees will erase
the same stack area repetitively. So we introduce a stack-
based solution (SB) where callees only keep track of stack
usage. Then, only the sensitive function does the erasure,
and only once. Keeping track of stack usage requires only
register operations, which is faster than performing erasure.
The SB solution shows just 1% runtime overhead in our
tests. However the size of the executable increases as a
result of the instrumentation (by less than 10% in our tests).
So for systems that require more compact code, we explore
a third solution based on the call graph (CGB): the call
graph is used to determine the maximum stack usage of
a sensitive function at compilation time, so it eliminates
callee instrumentation. We describe each solution in more
details, next.

Function-Based Solution (FB):
Before an annotated function returns, this solution

erases the registers and stack it has used. This is identical
to what we unreliably tried to express in Listing 6 on
page 6. Special care must be taken for returned registers
because the upper bits of their “parent register” may contain
sensitive data: for example if register %eax is returned,
we erase the 32 upper bits of %rax. We do not cur-
rently handle non-returning functions such as exit().
We implicitly rely on the kernel to do this. Tail call
optimizations must be disabled for annotated functions, as
they turn returning functions into non-returning ones – in
our tests we simply disabled this globally with compiler
flag -fno-optimize-sibling-calls. This would
be done per function for a production build.

We did not instrument the PLT stubs introduced by
the static linker because musl-libc does not support lazy
binding so all symbols are resolved at load time. Therefore
the stubs simply jump to the resolved functions at runtime
and no spill to the stack happens.

We implemented two sub-solutions for the FB solution:
one with support for signal handlers (FB with SH), and
one without (FB no SH). There are at least two reasons
why a programmer would not want signal support: 1) if
the program does not catch signals, or 2) if the kernel is
patched to zero the position on the stack where it saves the
program’s state.

We verified that functions in compiler-rt, OpenSSL
and mbedTLS contained our instrumentation after com-
piled with our pass. The adoption of security features is
affected by their overhead, so we also used the MiBench
benchmark [62] to see the overhead incurred1. For this,

1We selected MiBench over SPEC CPU2006 because the former is
free

we instrumented all the functions in musl-libc, compiler-
rt and the MiBench programs. This required a mere re-
compilation, and no code changes were needed. We ran
each program 30 times to obtain the results of Figure 3 on
the next page.

Programs instrumented with signal handler support (FB
with SH) run 3.39 times slower, whereas those without
(FB no SH) run 1.86 slower. The reason solution FB with
SH is much worse is because we must assume a signal is
received in every function, so there is an additional per-
function cost. We study a faster solution next.

Stack-Based Solution (SB):
In this solution, we instrument all functions to keep

track of runtime stack usage through a global variable
__GlobalStackValue we added in musl-libc. When
an annotated function returns, we erase the stack used
by itself and its callees, as reflected by the value of
__GlobalStackValue. In our current implementation,
we made the choice to instrument functions after the epi-
logue (before the ret instruction). It is possible to move
this code to the prologue; but we chose the former solution
because at the end of a function, most registers are no
longer live so we can re-use them without spilling them
temporarily to the stack. As a result of this choice, we
require functions to have an epilogue and return, hence
we disable tail-call optimization. Ideally, we would only
disable it in places where it would affect our security
guarantees, rather than globally. But this has little impact
on speed anyway as we show next.

We implemented two sub-solutions: 1) one with “bulk
register zeroing” (we zero all registers at once in annotated
functions only – SB with BRZ), and 2) one where we
erase registers in every function individually (SB no BRZ).
Note that for SB with BRZ, we do not keep track of
registers, so we assume they are all clobbered and erase
them all – except of course for those explicitly returned by
the annotated function.

We verified that functions in compiler-rt, OpenSSL and
mbedTLS contained our instrumentation after compiled
with our pass. As we want this work to be deployed on real
systems, we care about the performance overhead incurred.
We found these implementations improved performance
significantly (Figure 3 on the following page) compared to
the FB solutions, with just 2% overhead for SB no BRZ,
and 1% for SB with BRZ. The stack-based erasure solution
(SB) is faster than the function-based one (FB) because in
the former, we only perform operations on registers (which
is fast) to keep track of stack size; in the latter we erase
memory in every function which is slower (access to RAM
or the CPU caches). Two outliers (CRC32 and bitcount
benchmarks) run slower: those contain tight loops calling
functions where our instrumentation dominates. For exam-
ple, CRC32 calls musl-libc’s puts() which is rather short,
and the call is not inlined: so on every puts()’s return
our instrumentation incurs some overhead. The size of the
musl-libc’s shared library increased by 6.6% and 4.9% for
SB no BRZ and SB with BRZ respectively, which we
think is acceptable for most platforms.

Next, we present a more compact implementation suit-
able for embedded devices where code size matters more.
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Figure 3: Runtime overhead for MiBench programs. The call graph solution (CGB) is omitted because there is no
instrumentation (i.e. no additional overhead) besides the actual zeroing of the stack and registers.

Call-Graph Based Solution (CGB):
In this solution, we leverage the call graph known at

compilation time. The call graph allows us to determine the
maximum stack usage any path of an annotated function
will ever use: this removes the need to instrument every
function, which is faster. We also use the call graph to
obtain the list of registers that may be written to. Before
an annotated function returns, we erase the stack and the
registers. This is the fastest and most compact solution
as we only instrument annotated functions, and not its
callees. We do the minimum amount of work and the only
performance overhead is down to the erasure itself, which
is inevitable – this is why we omit it in Figure 3.

Tail call optimization is compatible with this solution,
except for (the few) annotated functions. To support func-
tion pointers, we ask programmers to tag them as well as
the functions they may point to (an example is presented
in Listing 11 on the following page). This gives us a set of
candidate functions we can use at compilation time to com-
pute the call graph. To reduce the number of annotations
a developer has to write, our solution allows annotating
typedef’ed function pointers: this way any declaration
of such pointer automatically inherits the annotation. At
compilation time, we also validate that pointer usage re-
spects annotations: compilation will fail if the developer
uses a non-annotated pointer where an annotated one is
expected, e.g. in an assignment.

During the computation of the call graph, a general
implementation would normally account for lazy binding,
which redirects execution to the runtime linker the first
time a function is called. However, because musl-libc does
not support lazy binding and always resolves symbols at
program startup, this was not necessary in our case.

The CGB approach does not lend itself to cycles in
the call graph, as these create infinite loops. So recursive
functions should be avoided within sensitive code. In musl-
libc, we found certain functions to be recursive but with a
maximum recursion depth: these can be handled simply by

multiplying their stack usage by this maximum to obtain a
conservative bound on their runtime stack.

Code using asynchronous events (e.g. POSIX asyn-
chronous I/O (AIO) [63]) should avoid accessing sensitive
data. This is because these APIs lead to a non-deterministic
call graph that cannot be reliably determined at compilation
time. This holds true for signal handlers too.

We summarize each of our three solutions’ pros and
cons in TABLE 3.

TABLE 3: Comparisons of Implementations. The first sym-
bol indicates if a solution theoretically supports a feature;
the second symbol indicates if our current implementation
implements it. 3indicates support; 7no support.
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FB 3– 3 3– 3 3– 7 3– 3 3– 3 7– 7 3– 3 3– 7
SB 3– 3 3– 3 3– 7 3– 3 3– 3 7– 7 3– 3 3– 7
CGB 3– 7 3– 3* 3– 3** 7– 7+ 7– 7 7– 7 3– 3++ 3– 7
*Not the stack of signal handler itself.
**Except for annotated functions.
+Support for bounded recursion is possible.
++Only for annotated functions.

5. Related Work

Previous work on controlling side effects of code con-
siders the compiler an enemy the programmer has to fight,
so most research has looked at verifying implicit code
properties after compilation. There has been work to detect
cache side channels through static code analysis [31, 64],
dynamic analysis [32, 33], and via transactional memory
at runtime [65]. WYSINWYX [66] highlights the dangers
in assuming that code in a compiled language has a well
understood mapping to generated code.

The Software Analysis Workbench (SAW) [34] pro-
vides tools to formally verify certain properties of cryp-
tographic C and Java code. Ct-verif [67] formally verifies
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1

2 / / d e f i n i t i o n s o f t a g s
3 # d e f i n e TAG HASH INIT a t t r i b u t e ( (

t y p e a n n o t a t e ( ” t a g h a s h i n i t ” ) ) )
4 # d e f i n e TAG HASH UPDATE a t t r i b u t e ( (

t y p e a n n o t a t e ( ” t a g h a s h u p d a t e ” ) ) )
5 # d e f i n e TAG HASH FINISH a t t r i b u t e ( (

t y p e a n n o t a t e ( ” t a g h a s h f i n i s h ” ) ) )
6

7 / / t a g each f u n c t i o n p o i n t e r w i th t h e
c o r r e s p o n d i n g t a g

8 s t r u c t h a s h t {
9 TAG HASH INIT vo id (∗ i n i t ) ( vo id ) ;

10 TAG HASH UPDATE vo id (∗ u p d a t e ) ( c o n s t u8 ∗ ,
s i z e t ) ;

11 TAG HASH FINISH vo id (∗ f i n a l ) ( u8 ∗ ) ;
12 }
13

14 / / d e f i n e f u n c t i o n wi th c o r r e s p o n d i n g t a g s
15 / / f o r sha3 hash f u n c t i o n s
16 TAG HASH INIT vo id s h a 3 i n i t ( vo id ) { . . . }
17 TAG HASH UPDATE vo id s h a 3 u p d a t e ( c o n s t u8∗ in ,

s i z e t l e n ) { . . . }
18 TAG HASH FINISH vo id s h a 3 f i n a l ( u8 ∗ o u t ) { . . .

}
19

20 / / d e f i n e f u n c t i o n wi th c o r r e s p o n d i n g t a g s
21 / / f o r sha256 hash f u n c t i o n s
22 TAG HASH INIT vo id s h a 2 5 6 i n i t ( vo id ) { . . . }
23 TAG HASH UPDATE vo id s h a 2 5 6 u p d a t e ( c o n s t u8∗ in

, s i z e t l e n ) { . . . }
24 TAG HASH FINISH vo id s h a 2 5 6 f i n a l ( u8 ∗ o u t ) {

. . . }
25

26 vo id h e n e r i c h a s h ( u8 ∗ in , s i z e t l en , u8 ∗ out ,
s t r u c t h a s h t ∗ HT) {

27

28 i f ( HT && i n && l e n ) {
29

30 ∗ (HT−> i n i t ) ;
31 ∗ (HT−>u p d a t e ) ( in , l e n ) ;
32 ∗ (HT−>f i n a l ) ( o u t ) ;
33 }
34 }

Listing 11: Annotation for function pointers.

the constant-timeness of certain components of widely-used
cryptographic libraries. A verified TLS implementation was
showcased by miTLS [35]. Its successor, project Ever-
est [36], is an ongoing project to build a verified https stack.
MiTLS and Everest are written in functional languages.
The FaCT language [68] provides a better substrate for
code with strong constant-time requirements. We would be
happy if the world adopted languages with such guarantees
but unfortunately software, particularly C software, has
a tendency to become security critical long after it was
initially written. There are also verified implementations in
assembly, such as for curve25519 [69].

Copens et al. [55] and Molnar et al. [70] explored pos-
sible code transformations to combat side channels. Chap-
man [71] studied coding styles to reduce programmers’
mistakes when sanitizing memory in Ada and SPARK.

There is notable work on making security guarantees
explicit in programming languages, such as proof-carrying-
code [72] and the functional language F* [73]; but not in
any mainstream language like C. There has also been work

embedding low-level code in F* [74], writing a verified
program that generates C. This provides an attractive model
for writing the code, but then relies on the C compiler
not violating any of the guarantees that the programmer
intended and would complement our work.

Closer to our work is a recent paper by D’Silva et
al. [75] who present compiler optimizations violating se-
curity guarantees of source code. The CompCert compiler
has been used to verify the absence of side channels from
cryptographic code, though this approach relies on a formal
proof of a side-channel free algorithm as input.

Other recent work on securing aspects of compiler
transforms [76–78] is complementary to ours. We encour-
age programmers to express their security intentions in a
way that allows the compiler to ensure that the required
invariants are met, whereas they focus on guaranteeing that
the compiler does not violate these guarantees. There are
also tools, such as Vale [79] that aim to verify assembly
implementations. Such tools could potentially be used for
black-box verification of a compiler that supports annota-
tions of the form that we propose.

6. Conclusion and Future Work

Many code properties that are critical to security and
safety, such as the time code takes to execute, are hard
for a programmer to control because of the side-effects
of compiler optimizations. Previous work has tried to deal
with side-effects by distrusting the compiler and verifying
the generated code. However this leads to secure code
being broken by compiler updates. The arms race between
attacker and defender may be inevitable, but the defender
should not have to fight her toolsmith as well.

We propose that compilers should explicitly support
controls for implicit properties such as execution time and
the zeroing of sensitive data after use. By making intentions
explicit, the compiler writer can become the security engi-
neer’s ally, not her enemy. As case studies, we implemented
constant-time selection and secure register/stack erasure
in LLVM and showed that it can be done with minimal
overhead. Our work highlights the complexity of doing this
task properly, as it requires the kernel, platform libraries
and programmers to synchronize their efforts. It also shows
how unsatisfactory are the ad-hoc methods used up till
now; only with a thorough understanding of the compiler
internals can the job be done properly.

The obvious next steps are support for controlling the
side-effects of sensitive data on computation, memory ac-
cess and control flow; then we need to consider support for
bit splitting, and for countermeasures to fault induction.
Hardware-software co-design issues are next; the latest
ARM designs have support for cache-line zeroing and
control-flow integrity. As security and safety become one in
the “Internet of Things”, and the cost of code maintenance
comes to dominate the total lifecycle cost of more and more
things, compiler support for secure code will be essential.
Defenders should be able to concentrate their efforts on
stopping attackers, and the compiler writer should be an
ally rather than a subversive fifth column in the rear.
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