
The eternal resource locator:
an alternative means of establishing

trust on the World Wide Web

Ross J Anderson, Václav Matyáš Jr., Fabien AP Petitcolas

University of Cambridge, UK
{rja14, vm206, fapp2}@cl.cam.ac.uk

3rd USENIX workshop on electronic commerce, 31 August–3 September 1998,

Boston, Massachusetts, USA, pp. 141–153. ISBN 1-880-446-97-9.

Abstract. Much research on Internet security has concentrated so far
on generic mechanisms such as firewalls, IP authentication and proto-
cols for large scale key distribution. However, once we start to look at
specific applications, some quite different requirements appear. We set
out to build an infrastructure that would support the reliable electronic
distribution of books on which doctors depend when making diagnos-
tic and treatment decisions, such as care protocols, drug formularies and
government notices. Similar requirements will be essential for other areas
of human activities such as electronic commerce.
We initially tried to implement a signature hierarchy based on X.509 but
found that this had a number of shortcomings. We therefore developed
an alternative way to manage trust in electronic publishing, that has a
number of advantages which may commend it in other applications. It
does not involve the use of export-controlled cryptography; it uses much
less computational resources than digital signature mechanisms; and it
provides a number of features that may be useful in environments where
we are worried about liability.
Yet another alternative involves use of one-time signatures. We have
actually implemented one-time signatures for one version of the medi-
cal publishing system. This system initially used the familiar X.509 and
RSA based signature mechanisms; the move to one-time signatures en-
abled considerable simplification, cost reduction and performance im-
provement. We believe that similar mechanisms may be appropriate for
protecting other information that changes slowly and remains available
over long time periods. Book and journal publishing or legal announce-
ments in general appear to be strong candidates.

1 Introduction

The previous work that directly concerns us is Wax [2]. This is a proprietary
hypertext system used for medical publishing; its goal is the secure and timely
electronic distribution of information used to support clinical practice, such as
treatment protocols and drug formularies. It will also be used for government

circulars ranging from purely administrative information such as advice on cop-
ing with the Y2K bug to notices of newly discovered adverse drug reactions; and
for local information such as hospital waiting lists.

We start with a brief outline of Wax (detailed description is provided in [2,
18]), followed by introduction to the Eternal Resource Locator (ERL) concept
in section 2 on page 4. Some examples of ERL applications are discussed in
section 3. Section 4 reviews our implementation of one-time signatures for one
of the first versions of secure Wax. A comprehensive conclusion is provided on
page 13.

1.1 Wax

The information in Wax is structured hierarchically with the levels being a shelf
(owned by a publisher) containing books (each owned by an editor) consisting
of chapters (each owned by an author). Thus if a primary care physician wants
the latest advice on the conditions under which a patient with gout should be
referred to hospital, he will draw from the Wax shelf the book on rheumatol-
ogy and consult the chapter on gout. This chapter will have been written by a
leading specialist and will be updated as necessary (typically every few years);
the editor’s job is quality control, principally choosing the experts and ensuring
proper peer review.

As a solution was sought rapidly, an initial attempt at protection using digi-
tal signatures was undertaken using materials ready to hand — SHA, RSA, and
X.509 [17] (this decision was influenced by the fact that RSA with exponent
3 has just been accepted as the European standard for healthcare signatures).
The X.509 hierarchy was founded on a Wax-root key, whose public component
is embedded in the Wax browser software; Wax-root signatures certify keys of
medical publishers (the Wax-centre for treatment protocols, the British Medi-
cal Journal, the Department of Health, individual hospital trusts, ...) and the
publishers in turn certify the keys of editors and authors.

As we did not know the optimum granularity of the signed objects, and had
an operational requirement to open already cached books quickly, we also im-
plemented a secondary protection mechanism whereby the book index contained
(invisibly to the human reader) the SHA hashes of each chapter, and each shelf
catalogue similarly contained hashes of book indexes. Thus a given book can be
verified by means of its editor’s signature, and also by reference to the publisher’s
catalogue. There is also considerable machinery to deal with trusted distribution
of the Wax software, trusted updating of local catalogues, and trusted collection
of public keys from authors, none of which concern us here.

The principal lesson that we learned from this exercise was that the X.509
mechanisms are not really suitable for publishing. This realisation started to
dawn when we had to decide on the longevity of publisher’s keys. Assuming that
users’ keys would last three years, why not make the publishers’ last five? But
what would happen once a publisher’s key was more than two years old, and

2

thus unable to issue a certificate of three years’ duration for an author? Would
he have to refresh it, or acquire another one?

Many further complexities arose. For example, what does revocation mean
in the context of book publishing? If an author fails to pay his annual fee to the
local CA, will all his books magically vanish from all library shelves? What if
a lawsuit is then brought in which a party relies on one of them? And what if
revocation mechanisms were used maliciously as an instrument of censorship?

‘Planned obsolescence’ may make sense in software publishing, and in the
banking world it is quite natural to use X.509 certificates in SET where both
public and private keys have a lifetime of two years, as this simply replicates the
existing trust structure of mag-stripe credit cards. However this approach is not
appropriate in publishing, where objects are long-lived. Book copyright in the
EU countries is now for a period of 70 years after the author’s death.

The conclusion to which we were unexpectedly driven by the Wax project
was that our secondary trust mechanism — namely, a tree of hashes in which
chapters are hashed into a book and books into a catalogue — should in fact be
the primary mechanism, while the X.509 signature mechanisms, which we had
anticipated would provide the primary protection, are relegated to a number of
secondary and specialist roles. The basic functionality can be seen in figure 1.

BMA Catalogue 3.41

<A HREF="www..."

<A HREF="www..."

<A HREF="www..."

Gerontology 5.3

Pediatrics 16.3

Hash="112233..."

<HTML>... <BODY>...

<DOC URL="http://...">

...

<HASH METHOD="TIGER"...
</HASH-BODY>

... </BODY>... </HTML>
</HASH>

<HTML>... <BODY>...

<DOC URL="http://...">

...

<HASH METHOD="TIGER"...
</HASH-BODY>

... </BODY>... </HTML>

VALUE="5798..."

</HASH>

<HTML>... <BODY>...

<DOC URL="http://...">

<H1>Pediatrics 16.3</H1>
...

<HASH METHOD="TIGER"...
</HASH-BODY>

... </BODY>... </HTML>
</HASH>

<H1>Rheumatology 9.6</H1>

Rheumatology 9.6

<H1>Gerontology 5.3</H1>

Gerontology 5.3

Rheumatology 9.6

Pediatrics 16.3

<HASH-BODY>

<HASH-BODY>

<HASH-BODY>

... PARENT="http://..."

... VALUE="6128..."
<HASH METHOD="TIGER"...

... PARENT="http://..."

... VALUE="4354..."
<HASH METHOD="TIGER"...

... PARENT="http://..."

... VALUE="5798..."
<HASH METHOD="TIGER"...

VALUE="4354..."

VALUE="6128..."

Fig. 1. Publishing medical information. The publisher issues a catalogue, every few
months which lists all titles published, together with their hash values. The hash of the
catalogue has to be distributed a trusted way, by being published in a paper journal,
and signed using a long-term key

3

The question that we were naturally led to ask was whether catalogue-based
trust had other natural applications than medical publishing, and what exten-
sions of it might be appropriate. Our conclusion is that it gives a much bet-
ter solution to some problems currently tackled using public-key cryptography,
ranging from assuring the authorship of applets through enabling web authors to
protect themselves from libel actions; in general, we can adopt the Wax mech-
anisms to provide a simple and robust set of mechanisms to authenticate the
content of world wide web and other hypermedia systems, which fits well with
the actual trust model that people have for published content.

We will now describe a set of proposed extensions to HTML that explain
what we have in mind and make clear what can be achieved with it.

2 The Eternal Resource Locator

Trust, in the electronic world, is based on binding real-world assurances and/or
relations to their electronic representation. This is expensive, and so in order for
the trust transfer mechanisms (such as electronic signatures) to give maximum
value, one should perform such bindings infrequently (but well). This is true for
establishing a root of trust (e.g. top level certification authorities) and also for
lower level entities. For example [4], it is a bad idea to bind keys and access
rights to principals like this:

key → principal ← capability

as this involves two bindings between the real world and cyberspace. We should
rather build systems like this:

principal ← key ← capability

Thus, when designing trust structures in general, we will try to have a small
number of root keys or other authenticator values that can be made well known
by out-of-band mechanisms, and derive the rest of the structure directly from
these. The cleaner the structure, the better for a number of reasons, including
both cost and robustness.

With trust based on hash trees, the root is quite simply the root of the
tree; in the case of Wax, the hash of the current Wax catalogue. This can be
assured by a variety of means (currently signature with the Wax-centre key and
publication in the British Medical Journal). However, once we have gone to the
trouble of certifying this root, we want all the pages in the publishing hierarchy
to be checkable from it. We will now describe how this can be done using a simple

4

extension that does not upset existing browsers, yet can be implemented either
as a suitable applet or as part of a proxy service such as a hospital firewall. (The
former is far preferable as it can be arranged more easily for ‘untrusted’ text to
be highlighted.)

2.1 Basic (static) mechanism

It would be clumsy to insist on the signature of whole web pages, so instead we
propose to use HTML elements [13] to define the borders of the hashed section
of the document as well as other features of the hashing mechanism1:

– The HASH-BODY element denotes the hashed section of an HTML document.
All the text and HTML document elements in this section will be hashed
with various hashing algorithm specified in the HASH element.

– The HASH element is an extensible container for use in identifying hash docu-
ment information. It has three main functions: define the hashing algorithm
used, store the corresponding hash value and link the element to a parent.
The HASH element should be used both inside the HASHBODY section and out-
side; the purpose is to bind the protected section to its hash and its parent.
There can be as many HASH elements as hashing algorithms. Attributes of
the HASH element:
• METHOD specifies the hashing algorithm. A number of algorithms may

be used in parallel in order to give reassurance against cryptanalytic
progress;
• VALUE specifies the value of the hash;
• PARENT provides a pointer to another HTML document, called parent

and specified by its URL. This enables a browser that wishes to check
the page’s integrity to follow the hash chain to a suitable root. The name
of the root may be given for performance reasons. If there is no parent
(i.e. the document is a root) the attribute should not be omitted but
instead should be set to NO.
• The URL attribute optionally specifies where the page normally lives,

and can provide basic protection against attacks involving the copy-
ing of pages to false hosts. Care is needed not to get entangled with
pages that have different URL, typically http://www.foo.com/ and
http://www.foo.com/index.html.

– Extensions to A include HASH-METHOD, HASH-VALUE and HASH-PARENT and
have the same meaning than the options of the HASH element.

Simplified, the way to protect part of the web page will look like:

<HTML>

...

1 To make it easier to read we used ‘-’ in some elements. They should be removed in
the implementation

5

<HASH-BODY>

...

The examination results for the second MB degree examination are as follows:

...

...

<HASH URL="http://www.med.abc.ac.uk/examresults" METHOD="SHA-1"

PARENT="http://www.cert.bma.org.uk">

<HASH URL="http://www.med.abc.ac.uk/examresults" METHOD="TIGER"

PARENT="http://www.cert.med.ac.uk">

</HASH-BODY>

<HASH METHOD="SHA-1" VALUE="12345678..." PARENT="http://www.cert.bma.org.uk">

<HASH METHOD="TIGER" VALUE="98765432..." PARENT="http://www.cert.med.ac.uk">

...

</HTML>

One of the URLs that refers to this page might look something like:

...see <A HREF="http://www.med.abc.ac.uk/examresults"

HASH-METHOD="TIGER" HASH-VALUE="987654321..."

HASH-PARENT="http://www.cert.med.ac.uk"> here for the list of

candidates who have satisfied the requirements for the degrees

of MB and BS ...

Checking a hash involves computing the hash value on all the bytes of an
HTML document between the hash-input border tags and comparing the HTML
document’s URL against the value specified within the hash-input. This value
is then verified against the value held in the reference in the parent document.

We call this URL-with-hash combination an ERL or ‘eternal resource locator’
as it makes (static) objects unique for ever. Dynamic objects are slightly more
complex (but only slightly).

2.2 Dynamic pages

If we used hash functions alone, then this would limit us to material that was
available and known when the last issue of the catalogue was published. Almost
all published medical information is of this nature; it changes relatively slowly
owing to safety protocols that insist on thorough peer review and validation.
However, there is a demand for a small number of dynamic pages in the system
holding ‘hot’ news such as recently advised drug side effects and other safety
notices, or operational data such as test results. What we do not want to do is
say something like ‘for recent notices on drug X, look at URL Y for a message
signed by a key certified to belong to Z’ as this would suddenly involve reliance
on a second root.

6

The effect would be that the referenced information was no longer part of
the same trust structure, introducing complexity and making liability poten-
tially uncertain. We therefore accommodate flexible links to web pages by using
signatures in a very simple way which we will now describe.

The owner of the dynamic page creates a signature keypair and embeds a
hash of the public key component in the reference on the parent page, where
otherwise the hash would be. An example makes this clear:

...see <A HREF="http://www.med.abc.ac.uk/bloodtestresults"

HASH-METHOD="TIGER" VALUE="987654321..."

HASH-PARENT="http://www.cert.med.ac.uk"> here for today’s

blood test results for the Fisher medical practice ...

The reason that the public key’s presence is not made clear in the parent page
is to preserve bandwidth (keys are relatively large) and because we could find ne
reason why someone, when clicking on a link should know in advance whether it
is statically or dynamically protected. It also makes the implementation simpler.
Thus the actual verification key value (and the signature value) must be included
in the daughter page:

<HTML>

...

<HASH-BODY>

...

The blood test results for the Fisher practice on 31/7/97 are as follows:

...

...

<HASH URL="http://www.med.abc.ac.uk/examresults" METHOD="SHA-1"

PARENT="http://www.cert.bma.org.uk">

<HASH URL="http://www.med.abc.ac.uk/examresults" METHOD="TIGER"

PARENT="http://www.cert.med.ac.uk">

</HASH-BODY>

<HASH METHOD="SHA-1" VALUE="12345678..." PARENT="http://www.cert.bma.org.uk"

KEY-VALUE="ABCDEF01234....................................89ABC"

SIGNATURE-VALUE="FEDCBA987.......................................76543"

ALGORITHM="RSAE3">

...

</HTML>

Note that although we are using public key cryptography, we have no need of
an X.509 certification mechanism. All the trust links created by the public keys
are local and transient. So there is no need for long-term secrets; everything gets
suddenly much simpler, more manageable and more exportable.

7

3 Other applications of ERL

Ignoring dynamic links for the moment, the trust structure naturally supported
by ERLs has an interesting and, from any publisher’s point of view, highly
desirable property: that you cleanly distinguish material of which you approve
and in which you expect your readers to place some reliance. This may seem
trite but is a growing concern, as in the laws of many countries a defamation
suit may be brought against anyone involved in the distribution of a contested
statement and not merely the author.

In the UK it is normal for libel litigants to sue and attempt to enjoin the
distributors of newspapers and magazines with which they have taken issue;
and recently the Nottinghamshire County Council issued lawyers’ letters and
injunctions against a number of people who had links on their home pages to
leaked copies of a report on satanic child abuse that the council considered to
be its copyright [14].

So putting a link on one’s home page can be dangerous; the controller of
the referenced page might introduce controversial material and one could be
sued. The implications in medicine include, for example, that a hospital which
carelessly referenced a drug company’s information page could find its standing
in a negligence case substantially altered; equally serious consequences could
follow elsewhere.

So the general use of ERLs rather than URLs would often be prudent practice,
as the failure of a followed link to authenticate will indicate that it has been
changed since the author of the link last consulted it, and he can thus in no way
be held liable for its contents.

Other applications will typically arise where a publisher owes some particular
duty of care, and we suggest some examples here.

3.1 Public keys with multiple accreditors

It is quite common to assign a person a role whose performance depends on using
a role key. However, we can have multiple parties having to approve assignment of
such role. This is common in banking, where transactions over a certain amount
typically have to be approved by more than one officer, but may be delegated
on a limited basis. At present, special key management standards are being
developed for banking by ANSI, as multiple signatures are not supported by
X.509.

A similar problem arises in medicine, where the signing key used by (say) a
doctor on a six month assignment in a hospital would not wish to use his long
term personal signing key (hospital systems are often mutually incompatible
and quite insecure) but would instead use a key that was signed both by his
own personal long term key (in an off-line operation) and the hospital. This
dual signature signifies that both the doctor and the hospital accept their joint
liability for malpractice suits; it should also be possible for either of them to

8

revoke the key when the relationship is terminated. This multiple revocation
requirement is quite a complicated problem if one tries to implement everything
as extensions of X.509.

Neither are medicine or banking the only applications in which dual control
is required. Almost every substantial organisation has its own rules and proce-
dures for managing dual control. Sometimes these rules may be hidden, as with
military intelligence organisations who do not wish to reveal which officers have
actual power; at other times, concealment is forced, as with the system of EU
grants under which each grant receiving organisation (such as a university) must
designate one ‘official signatory’ and the European Commission refuses to take
any interest in the procedures that may lie behind this person’s use of his offi-
cial signature. However, in the main, there is no great secret about dual control
policies. How then can we support them using either catalogue based or public
key based trust mechanisms?

In the old days of paper-based banking systems, the custom was for each
bank to publish several hundred copies of a ‘signature book’, which contained
the specimen signatures of its managers together with a set of rules defining, for
example, which combinations of signatures were required on a letter of credit
over $10m.

Our catalogue based trust mechanisms can provide an electronic implemen-
tation. In its simplest form, the company authenticates at regular intervals a set
of public keys suitable for appropriate purposes and makes them available via
web pages bound to the relevant trust trees.

This can even be done if need be in real time; we are experimenting with a
mechanism whereby flexible links can be created on request to authenticate a
key for a particular purpose. The example figure 2 is where a company lawyer
wishes to create a one-time key to conclude a property transaction that involves
both internal certification (from his superior officer and the company’s CEO)
and an external land and property agency.

The effect of this mechanism is that CA functions can be performed on a one-
off basis by various people and organisations as they are needed — a flexibility
that is still critically lacking in X.509.

3.2 Timestamps

Time stamping services such as Surety’s [5] are another example of a hash tree.
In this case there is a mechanism for recomputing the tree and reliably publishing
the hash every second, thus allowing rapid generation of an existence proof for
a document.

We hope that formats for the inclusion of timestamps and other such evidence
within the ERL structure and within HTML generally can be developed that is
acceptable and useful to all parties.

9

Company Lawyer Key
Referred from the board:

keypoint.htm"
<A HREF="www.xyz/board/

Referred from the LPA:

list.htm#3452396985"
<A HREF="www.lpa.org/m1984/

Referred from the SO:
<A HREF="www.xyz.uk/Bloggs

people_key.htm#lawyer"
Referred from the CEO:

<A HREF="www.xyz/~Doe/
UKbr_key.html#law2"

<HASH-BODY>
<DOC URL="http://...">

The Lawyer key itself here...
</HASH-BODY>

Fig. 2. Publishing key information. Multiple accreditors are referring to the key that
is valid if and only if all self-contained required links exist and the key-page hash value
has not changed.

4 Implementation of One-time Signatures

The success of WAX led to interest from other countries and in particular from
the USA. A US software company, Intelligent Medical Objects, Inc.(Northbrook,
Illinois, USA) decided to adopt the system as its preferred system for delivery of
medical knowledge relating to HIV and AIDS. This would involve distribution
of the browser software to over 300,000 physicians and other carers in the USA,
and led immediately to a dilemma.

The owner of the RSA patent, RSA Data Security Inc., insists on a royalty
that is a function of the sale price of software incorporating its technology, and
which in the case of software distributed for free has a minimum value of $5.00.
The WAX project having been funded by charitable money, research grants and
volunteer labour, was not in a position to pay $1.5m or more as the price of
entry to the USA.

This compelled the WAX project to revisit the cryptography issue. Another
team was put together and we took a long look at the design and trust issues.
We found that we could achieve the same goals as before, and even more simply,
by using one-time signatures instead of RSA. Necessity had truly become the
mother of invention.

In this section we briefly outline our solution based on one-time signatures.
First we will recall briefly the ideas behind one-time signatures and then detail
our implementation.

10

4.1 One-time signature basics

One-time signature scheme was first introduced by Lamport [9]. For signing a
single bit, choose as the secret key two values x1 and x2 (representing ‘0’ and ‘1’)
at random and publish their images under a one-way function y1 = f(x1) and
y2 = f(x2) as the public key. These x’s and y’s are called secret key components
and public key components, respectively. To sign a single bit message, reveal the
pre-image corresponding to the actual ‘0’ or ‘1’. For signing longer messages,
several instances of this scheme can be used.

4.2 Optimisations

Motivated by Lamport’s approach, many researchers subsequently proposed
more efficient one-time signature schemes. Merkle [10, 11] proposed an improve-
ment which reduces the number of public key components in the Lamport
method by almost two-fold. Instead of generating two x’s and two y’s for each bit
of the message, the signer can generate only one x and one y for each bit of the
message to be signed. When one of the bits in the message to be signed is a ‘0’,
the signer releases the corresponding value of x; but when the bit to be signed
is a ‘1’, the signer releases nothing. Because this allows the receiver to pretend
that he did not receive some of the x’s, and therefore to pretend that some of
the ‘0’ bits in the signed message were ‘1’, the signer must also sign count of
the ‘1’ bits in the message. Now, when the receiver pretends that a ‘0’ bit was
actually a ‘1’ bit, he must also increase the value of the count field, which can’t
be done. Because the count field has only log2 n bits in it, the signature size is
decreased by almost a factor of two, i.e., from 2n to n+ dlog2 ne.

4.3 Proposed deployment in WAX

In the current version of WAX, we apply our flavour of one-time signature at the
catalogue level. Each catalogue contains the hashes of all relevant books which
can then be simply authenticated via the catalogue itself. A näıve implemen-
tation would have included a bunch of key material during the installation of
the software. Instead we preferred to link our catalogues together. We include
in each signed catalogue seven public keys with which further editions of the
catalogue, and other material from the same publisher, can be authenticated.
This means that the chain of trust is broken if a user skips 7 updates or more; in
that case, he has to verify the public key of the new update using the same out-
of-band mechanisms employed when the system was initially loaded and which
we describe below.

In order to bootstrap the trust in the system, each user is required to verify
the public key K1 of this initial shipment. A number of channels are provided
for this, which is tightly bound up with the problem of trusted distribution.
Initial deployment is by means of a mass mailing of CDs (stuck to the cover of

11

an appropriate medical journal); electronic distributions are also available with
authentication provided by the available mechanisms (such as PGP signatures,
published MD5 hashes in medical journals, and download using SSL from a
‘secure’ web site).

The version of WAX that used RSA and X.509 had some further mechanisms,
that were involved with users registering public keys of their own to the system;
the corresponding private keys were used to generate signatures on books gen-
erated locally (such as treatment protocols developed in an individual medical
practice) and also to generate countersignatures on catalogues which had been
downloaded and verified (as an extra precaution against virus attacks and the
like).

On reviewing this design we concluded that the local use of public key cryp-
tography added little to the security of the system. A medical practice which
is going to publish a locally developed treatment protocol will as a matter of
basic safety submit it to a peer review process, and thus all publication either
is intermediated or can easily be made so. As for virus attack, the use of local
signatures really only adds a modest layer of ‘security through obscurity’ as a
virus written after study of the WAX code could alter the local public key and,
absent tamper resistant processors, there appears to be no way to stop this.

4.4 New books

In order to issue an update of one or more books, a publisher just has to create a
new catalogue and include the hashes of the books in it, and of course generate a
new keypair and include the public part. The catalogue and the book are made
available for download.

A user can choose which books he wishes to download and update. He must
first download a catalogue and verify its signature. Then he can start down-
loading all or some of the books in the catalogue. Once these books have been
downloaded and their integrity checked, the local index of books is updated and
a checksum retained locally using 3-DES encryption and a passphrase, signed
using a new one-time key pair.

4.5 New publisher

New publishers can introduce themselves at any time by simply publishing a
catalogue, making it available for download, and providing out-of-band mech-
anisms for verifying the initial public key. This, however, replicates the effort
required for out-of-band verification.

A simpler solution, which we have implemented, is to designate a special
publisher (known as ‘WAX-Root’) whose sole function is to introduce new pub-
lishers. Each WAX-Root catalogue assigns one (or exceptionally more than one)
of the 7 public keys to the new publisher’s first catalogue, and in this way we
branch the authentication tree.

12

5 Conclusions

This work has provided a number of insights.
Firstly, the use of hash trees rather than certificate chains is appropriate for

trust relationships that change slowly (X is an employee of company A) or not
at all (book Y was published by company B). Public key certificates are less
suited for such relationships, at least in their most common forms: the typical
three year lifetime of a key in an X.509 certificate system is too short for such
applications; while a private signing key with a 100-year lifetime would be hard
to protect (indeed, even three years may be too long a period to protect a really
valuable private key). Catalogue based trust is one way of escaping this difficult
trade-off between the need for a long-lived public key and a short-lived private
one.

Secondly, trust mechanisms built using hash trees are simple to implement,
intuitive to use, cost little in performance terms, and need often contain no
export-controlled mechanisms such as asymmetric cryptography.

Thirdly, catalogue based trust has a very natural fit with the publishing
industry’s business model in a number of ways ranging from the need to be
careful about libel to the fact that catalogues are used anyway. Publishing is no
longer a matter of the manufacture and distribution of books and newspapers;
much of electronic commerce is publishing in some sense or another, and even
where the net is used to sell widgets its main function is the publication of price
lists, product data, delivery schedules and other information that is most easily
organised in the form of one or more catalogues.

Fourthly, catalogue based trust mechanisms can be used to compensate for
the shortcomings of X.509-type systems, such as the failure to support multiple
certification discussed above.

Fifthly, catalogue based trust is robust. Cross-links can be inserted easily, in
that a given book might appear in its publisher’s sales catalogue and also in its
editor’s CV. Thus the security failure of one or another of these documents will
leave the reliability of the book in some sense unchanged. Such resilience is hard
to achieve using X.509.

These advantages have become apparent to us in the course of the Wax
project. We have sketched how very simple extensions to HTML can make them
available to the net generally. We invite the authors, owners and proponents of
other protection mechanisms to come together and agree a standard syntax for
dealing with such protection tags in a standard way. The goal is no less than
‘trusted browsing’ — and, as this work makes clear, the admirable work already
done in this direction by protocols such as SSL and SET is only the first step.
There are many more protection goals than simply an acceptably secure transfer
of credit card numbers from customer to merchant, and we believe that ERLs
will make a significant contribution.

Other directions of research include the control of updates to cached docu-
ments; allowing a user to store the hash with bookmarks and to be informed

13

of changes – either when subsequently loading the document or at update; and
interactions with the considerable range of other protection primitives in the
security literature (anonymous messaging, digital cash, micropayments, incre-
mental integrity primitives, copyright marking mechanisms and so on).

We have also developed a mechanism based on one-time signatures to assure
the authenticity and integrity of electronic books. Although our particular appli-
cation was medical, and was driven initially by a requirement to avoid RSA Data
Security’s patent, many of the lessons learned are much more general. We believe
that the mechanisms described here are suitable for any application in which we
need to assure the authenticity of relatively stable digital objects over long time
periods, such as cataloguing, notarisation and archiving; they are certainly much
more suitable than current incarnations of X.509 with all their expiry date and
other problems.

There were other, less tangible, benefits. Moving from an X.509 implemen-
tation to this one-time scheme was like a breath of fresh air. Almost all the
complexity vanished — from ASN.1 and DER, through modular arithmetic, to
all the tricks used to protect local signing keys from casual attack. It was found
that signatures based on one-way functions could be explained simply to the
medical personnel involved in the project, as well as to programmers with no
background (or interest) in cryptography. This made progress several times faster
than had been the case when the RSA version was implemented in late 1996. The
consequences for user trust in the system should not be underestimated; neither
should the no doubt greatly reduced likelihood that a design or programming
bug will be discovered and exploited in attacks. Many more details will be given
in the full paper (having been suppressed here to preserve the security team’s
anonymity).

There will be applications in which a mixture of the number-theoretic and
hash-function-based approaches will remain attractive. A book on investment,
for example, might have its trust based on the techniques described here, but
contain embedded public keys based on number theory in order to authenti-
cate online pages of current stock prices. The advantage of such a structure is
that these public keys now become independent of X.509 or any other public
certification hierarchy, which is highly desirable given the lack of robustness of
such mechanisms and the political struggles to control them. Such flexible links
from a catalogue-based trust structure to more volatile items could, we believe,
accommodate most of the world of journal and magazine publishing within the
overall structure described here.

A catalogue-based trust structure may also assuage the fears of law enforce-
ment agencies over the proliferation of cryptography. In many applications (such
as conventional book publishing) there is no need for long-term secrets at all.

14

References

1. RJ Anderson. “A Security Policy Model for Clinical Information Systems”, in
Proceedings of the 1996 IEEE Symposium on Security and Privacy pp 30–43.

2. Ross J Anderson, Václav Matyáš Jr., Fabien AP Petitcolas, Iain E Buchan and
Rudolf Hanka. “Secure Books: Protecting the Distribution of Knowledge”. In Lo-
mas et al., Security Protocols: Proceeding of the 5th International Workshop, vol-
ume 1361 of Lecture notes in computer science, pp 1-11.

3. Bundesamt für Sicherheit in der Informationstechnik. ‘Chipkarten im Gesund-
heitswesen’, Bundesanzeiger, 4 May 1995.

4. B Christianson, JA Malcolm. “Binding Bit Patterns to real World Entities”, In
Lomas et al., Security Protocols: Proceeding of the 5th International Workshop,
volume 1361 of Lecture notes in computer science, pp 105–113.

5. S Haber, WS Stornetta. “How to Time-Stamp a Digital Document”, in Journal of
Cryptology v 3 no 2 (1991) pp 99–112.

6. A von Heydwolff, T Wenzel,“Daten aus der Psychotherapie — auch bei uns bald
eine Ware?’, in Psychotherapie Forum v 5 no 1 pp 17–25.

7. ‘Computers can be compatible with confidentiality’ JS Horner, in Journal of the
Royal College of Physicians of London v 31 no 3 (May/June 97) pp 310–312.

8. N Jefferies, C Mitchell, M Walker. “A Proposed Architecture for Trusted Third
Party Services”, in Cryptography: Policy and Algorithms, Springer LNCS v 1029
pp 98–104.

9. L. Lamport. “Constructing digital signatures from one-way function”, Technical
Report SRI-CSL-98, SRI International, October 1979.

10. R.C. Merkle. “A Digital Signature Based on a Conventional Encryption Function”,
Proc. CRYPTO’87, LNCS 293, Springer Verlag, 1987, pp 369-378.

11. R.C. Merkle. “A Certified Digital Signature”, Proc. CRYPTO’89, LNCS 435,
Springer Verlag, 1990, pp 218-238.

12. Press release, NHS Executive, 17th October 1996
13. “HTML 3.2 References Specification — W3C Recommendation”, Dave Ragget,

January, 1997
14. citation suppressed for legal reasons
15. “Institutionell-organisatorische Gestaltung informationstechnischer Sicherungsin-

frostrukturen”, A Roßnagel, in Datenschutz und Datensicherheit (5/95) pp 259–
269

16. “Secure Hash Standard”, National Institute of Standards and Technology, NIST
FIPS PUB 180, U.S. Department of Commerce, May 1993

17. “Information technology – Open Systems Interconnection – The directory: Au-
thentication framework”, ITU-T Recommendation X.509.

18. The WAX home page is at http://www.medinfo.cam.ac.uk/wax/

19. ‘‘The use of encryption and related services with the NHSnet’’, Zergo

Ltd., published as NHSE IMG document number E5254, April 1996

15

