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Protocol Analysis, Composability  
and Computation 

Ross Anderson, Michael Bond  

Security protocols—early days 

The study of security protocols has been associated with Roger Needham since 
1978, when he published the seminal paper on the subject with Mike Schroeder 
[2]. 

The problem they investigated was how to distribute cryptographic keys in a 
network of computers. One solution is to have an authentication service with 
which all the principals share a key; then if Alice wants to chat with Bob (for 
example) she can call the service and get two encrypted messages containing the 
same session key—one encrypted under the key she shares with the service so 
she can read it, and one encrypted under the key Bob shares with the service so 
Bob can read it.  She can now send the second of these to Bob to establish secure 
communication. The mechanism that Needham and Schroeder designed for this 
evolved into Kerberos, which is now part of Windows and is probably the most 
widely used of all authentication protocols. 

Security protocols are now embedded in a great many applications, but it is 
common to find unexpected bugs in them.  For example, many banks used to 
encrypt each customer’s PIN using a key known to their ATMs and write it on 
the ATM card magnetic strip. The idea was to provide a limited service when the 
network was down. Years later, a villain discovered that the account number and 
the encrypted PIN were not linked: he could make up a bank card with his own 
encrypted PIN but someone else’s account number, and loot their account. He 
went on to steal a lot of money, and once in prison wrote a manual telling every-
one else how to do it too. The banks had to spend millions on changing their 
systems. 
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Clarifying the assumptions 

Researchers started to gnaw away at the protocols described in the literature and 
found fault with essentially all of them. The failure to bind protocol elements 
was one frequent problem; another was that old messages could be replayed. In 
the case of the original Needham-Schroeder protocol, for example, the freshness 
of the key generated by the server was guaranteed to only one of the principals. 
This was not necessarily an attack, as its inventors only claimed to protect honest 
insiders from dishonest outsiders. However, it led to a debate about the assump-
tions underlying security protocol design. Do we protect only against outsiders, 
or against insiders? Against the malicious, or the merely careless?  For example, 
if we use timestamps to guarantee protocol freshness, are we vulnerable to prin-
cipals who carelessly let their clocks run slow?  Do we only consider an attacker 
to have won if he can impersonate an authorised principal, or do we need to stop 
people abusing the protocol mechanisms to perform a service denial attack? 

The early attacks led to a second seminal paper, which Roger wrote with 
Mike Burrows and Martin Abadi in 1989 [1], and which introduced a logic of 
authentication. This enables an analyst to formalise the assumptions and goals of 
a security protocol, and to attempt to prove its correctness. When a proof cannot 
be found, the place at which one gets stuck often shows where an attack can be 
mounted.  This style of analysis turned out to be very powerful, and a large lit-
erature quickly developed in which the “BAN Logic” and other formal tools 
were developed and extended to tackle a range of problems in protocol design. 

One of the remarkable things about the study of security protocols is that they 
have not become a solved problem. One might think that managing the objects 
associated with authenticating users over a network—passwords, keys and the 
like—was a fairly compact problem which would have been done to death within 
a few years. However, the more we dig, the more we find. 

Between 1992 and 2002, Roger hosted a protocols workshop every Easter. 
Early events dwelt on matters of authentication and logic, but by the mid-90s, the 
growing interest in electronic commerce was yielding papers on mechanisms for 
micropayments, bets, streaming media, mobile communications and electronic 
voting. Later years brought work on PKI, trust management and copyright en-
forcement. More and more problems come along as more and more businesses 
reinvent themselves online; threat models have also become more realistic, with 
dishonest insiders displacing the mythical ‘evil hacker on the Internet’. 

Dishonest insiders, and the composition problem 

Over the last two years, we have been exploring exactly how one might re-
engineer cryptography to cope with dishonest insiders. One conclusion is that the 
analysis of security protocols must be extended to application programming in-
terfaces. This is because the crypto keys used in authentication and payment pro-
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tocols are often kept in separate hardware security processors, or at least in cryp-
tographic libraries, to which access can be restricted using physical or logical 
mechanisms. However, an interface has to be exposed to the application pro-
gram, which will occasionally be suborned—whether by a corrupt insider, or by 
malware. How much harm can be done, and how can we limit it? 

Protecting protocols was hard enough, and yet the typical protocol consists of 
3–5 messages exposed to manipulation. The API of a modern crypto library or 
hardware cryptoprocessor may contain 30–500 callable functions, many with a 
range of options. This provides a very rich and complex environment for mis-
chief. 

Attacks often involve using two separate mechanisms provided by the cryp-
toprocessor for different purposes, each of which could be innocuous by itself 
but which combine to cause trouble. For example, it is common to compute a 
customer PIN by encrypting the account number with a ‘PIN derivation key’: the 
cryptoprocessor then returns the PIN encrypted with a PIN storage key, so that 
the application has no access to its clear value. So far, so good. Then there is 
another transaction that can be used to encrypt a communications key under the 
terminal key loaded in an ATM. Here things start to go wrong, as the crypto-
processor does not distinguish between a terminal key and a PIN derivation key; 
it considers them both to be of the same type. The upshot is that an attacker can 
supply the device with an account number, claiming that it is a communications 
key, and ask for it to be encrypted under the PIN derivation key. 

Attacks like this extend protocol analysis all the way to the composition 
problem—the problem that connecting two systems that are secure in isolation 
can give a composite system that leaks. This had previously been seen as a sepa-
rate issue, tackled with different conceptual tools. 

Differential protocol analysis 

We are now working on the second generation of API attacks, which exploit the 
application syntax supported by the cryptographic service. These attacks are 
even more powerful, and at least as interesting from the scientific point of view. 
PIN generation provides a neat example here too. In more detail, the standard 
PIN computation involves writing the result of the encryption as a hex string and 
decimalising it. As some banks like to let customers change their PIN to a more 
memorable number, there is a provision to add an offset to give the PIN that the 
customer actually enters: 

 Account number:            8807 0123 4569 1715  
 PIN derivation key:         FEFE FEFE FEFE FEFE  
 Encrypted account number:   A2CE 126C 69AE C82D  
 Natural (decimalised) PIN:  0224 
 Offset:                     6565 
 Customer PIN:               6789 



4 Anderson and Bond 

The typical implementation requires the programmer to send the cryptoproc-
essor the account number, a table describing the decimalisation (here, ‘0123 
4567 8901 2345’) and the offset. The processor returns the PIN, encrypted 
under the PIN storage key. 

The designers do not seem to have realised that a crooked programmer can 
manipulate the decimalisation table and the offset as well as the account number. 
A multitude of attacks follow. For example, one can send in an account number 
with a decimalisation table of ‘1111...11’ to find out the ciphertext corre-
sponding to a clear PIN of ‘1111,’ and then with a decimalisation table of 
‘0111...11’ to see if there is a zero in the first four digits of the encrypted 
account number (if so, the PIN, and thus the ciphertext output, will be different). 
By manipulating the decimalisation table further, he can get all the digits in the 
PIN, and by then playing with the offset he can get their order. In total, the attack 
requires only 15–25 unprivileged cryptoprocessor transactions to discover the 
PIN on a single target account. 

This second type of attack takes protocol analysis into yet another realm: that 
of differential attacks. Over the last ten years, a number of techniques have been 
invented for attacking cryptographic systems by bombarding them with inputs 
with chosen differences.  For example, in differential cryptanalysis, one analyses 
the changes in the output of the encryption algorithm; while with differential 
power analysis, one measures changes in the current consumption or electro-
magnetic emissions of the equipment. Now we have examples of how consecu-
tive runs of a protocol can leak information if the inputs are suitably chosen. The 
resulting ‘differential protocol analysis’ appears to be very powerful against ap-
plication-level crypto. 

It will take us some time to figure out the general lessons to be drawn from 
attacks like this, the robustness principles that designers should use to avoid 
them, and the analysis techniques that might assure us of a particular design’s 
soundness. The randomisation of all protocols (another feature of Roger’s work) 
is likely to be important. 

Quantitative analysis and multiparty computation 

Various researchers have speculated about whether there might one day be a 
quantitative analysis of protocol security. This might be feasible for PIN proc-
essing applications as we can measure the information leakage per transaction in 
terms of the reduction of entropy in the unknown PIN. This leads in turn to a 
possible real-world application of an attack previously considered theoretical. 

Gus Simmons wrote extensively on covert channels in protocols. One such 
channel that is always present is the ‘balking channel’—when one of the princi-
pals in a protocol signals something by halting and refusing to continue. This is 
normally considered unimportant as its information capacity is only a third of a 
bit per transaction. But with systems designed to cope with large transaction vol-
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umes, this need no longer hold. For example, a Trojanned cryptoprocessor could 
balk when it sees a predetermined PIN. If the PIN length were eight digits, this 
would be unlikely to hinder normal operation, but at a thousand transactions a 
second, a programmer could quickly find a number in a typical nine-digit ac-
count number range with just this PIN, and open an account for it. Once this kind 
of problem is appreciated, one can start to look for attacks that involve inducing 
rare error conditions that cause the cryptoprocessor to abort a transaction.  (They 
exist.) 

A third emerging link is between protocol analysis and secure multiparty 
computation. In application-level crypto we may have several inputs to a compu-
tation, some of them coming from an untrusted source, and we have to stop users 
manipulating the computation to get outputs useful for bad purposes. In the PIN 
decimalisation example above, one might try to solve the problem by blocking 
tables such as ‘1111...11.’ Yet an attacker can get by with scarcely more 
work by using two normal-looking tables that differ slightly (another kind of 
differential attack). We might therefore think that if we can’t sanitize the inputs 
to the computation, perhaps we can authenticate them, and use only those tables 
that real banks actually use. But building every bank in the world into our trust 
base is what we were trying to avoid by using cryptography! 

Conclusion 

The protocol work that started off a quarter of a century ago may have seemed at 
the time like a minor detail within the larger project of designing robust distrib-
uted systems. Yet it has already grown into the main unifying theme of security 
engineering.  Application-level protocols, and especially those from which an 
attacker can harvest data over many runs, open up new problems. The resulting 
analysis techniques are set to invade the world of composable security, and the 
world of multiparty computation. The influence, and the consequences, of 
Roger’s contribution just keep on growing. 
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