Chapter 7

Distributed Systems

You know you have a distributed system when the crash of a
computer you’ve never heard of stops you from

getting any work done.

— LESLIE LAMPORT

What’s in a name? That which we call a rose
by any other name would smell as sweet
— WILLIAM SHAKESPEARE

7.1 Introduction

We need a lot more than authentication, access control and cryptography to
build a robust distributed system of any size. Some things need to happen
quickly, or in the right order; and matters are trivial to deal with for a few
machines become a big deal once we have hyperscale data centres with complex
arrangements for resilience. Everyone surely has noticed that when you update
your address book with an online service provider, the update might appear a
second later on another device, or perhaps only hours later.

Over the last 50 years, we’ve learned a lot about issues such as concurrency,
failure recovery and naming, as we’ve built things ranging from phone systems
and payment networks to the Internet itself. We have solid theory, and a lot
of hard-won experience. These issues are central to the design of robust secure
systems but are often handled rather badly. I've already described attacks
on protocols that arise as concurrency failures. If we replicate data to make
a system fault-tolerant then we may increase the risk of data theft. Finally,
naming can be a thorny problem. There are complex interactions of people
and objects with accounts, sessions, documents, files, pointers, keys and other
ways of naming stuff. Many organisations are trying to build larger, flatter
namespaces — whether using identity cards to track citizens or using device ID
to track objects — but there are limits to what we can practically do. Big data
means dealing with lots of identifiers, many of which are ambiguous or even

220

7.2. CONCURRENCY

changing, and a lot of things can go wrong.

7.2 Concurrency

Processes are called concurrent if they can run at the same time, and con-
currency is hard to do robustly. Processes may use old data; they can make
inconsistent updates; the order of updates may or may not matter; the system
might deadlock; the data in different systems might never converge to consistent
values; and when it’s important to make things happen in the right order, or
even to know the exact time, this can be trickier than you might think.

Systems are becoming ever more concurrent for a number of reasons. First
is scale: Google may have started off with four machines but their fleet passed
a million in 2011. Second is device complexity; a luxury car can now contain
dozens to hundreds of different processors. The same holds for your laptop and
your mobile phone. On top of this, virtualization technologies such as Xen are
the platform on which modern cloud services are built, and may turn a handful
of real CPUs in a server into hundreds or even thousands of virtual CPUs.
Then there’s interaction complexity: an apparently simple transaction such as
booking a rental car may call ever more other systems, to check your credit
card, your credit reference agency score, your insurance claim history and much
else, while these systems in turn may depend on others.

Programming concurrent systems is hard; the standard textbook examples
come from the worlds of operating system internals and of performance mea-
surement. Computer scientists are taught Amdahl’s law: if the proportion that
can be parallelised is p and s is the speed-up from the extra resources, the over-
all speedup is (1 — p + p/s)~!. Thus if three-quarters of your program can be
parallelised but the remaining quarter cannot be, then the maximum speedup
you can get is four times; and if you throw eight cores at it, the practical speed-
up is not quite three times'. But concurrency control in the real world is also a
security issue. Like access control, it is needed to prevent users interfering with
each other, whether accidentally or on purpose. And concurrency problems can
occur at many levels in a system, from the hardware right up to the business
logic. In what follows, I provide a number of concrete examples; they are by no
means exhaustive.

7.2.1 Using old data versus paying to propagate state

I've already described two kinds of concurrency problem: replay attacks on
protocols, where an attacker manages to pass off out-of-date credentials; and
race conditions, where two programs can race to update some security state.
As an example, I mentioned the ‘mkdir’ vulnerability from Unix, in which a
privileged instruction that is executed in two phases could be attacked halfway
through by renaming the object on which it acts. Another example goes back to
the 1960s, where in one of the first multiuser operating systems, IBM’s OS/360,
an attempt to open a file caused it to be read and its permissions checked; if

11— 32+ 271 =(0.25 4 0.09375) ~ 1=(0.34375)~1=2.909

Security Engineering 221 Ross Anderson

7.2. CONCURRENCY

the user was authorised to access it, it was read again. The user could arrange
things so that the file was altered in between [852].

These are examples of a time-of-check-to-time-of-use (TOCTTOU) attack.
We have systematic ways of finding such attacks in file systems [198], but attacks
still crop up both at lower levels, such as system calls in virtualised environ-
ments, to higher levels such as business logic. Preventing them isn’t always
economical, as propagating changes in security state can be expensive.

A good case study is card fraud. Since credit and debit cards became popular
in the 1970s, the banking industry has had to manage lists of hot cards (whether
stolen or abused) and the problem got steadily worse in the 1980s as card net-
works went international. It isn’t possible to keep a complete hot card list in
every merchant terminal, as we’d have to broadcast all loss reports instantly to
tens of millions of devices, and even if we tried to verify all transactions with the
bank that issued the card, we’d be unable to use cards in places with no network
(such as in remote villages and on airplanes) and we’d impose unacceptable costs
and delays elsewhere. Instead, there are multiple levels of stand-in processing,
exploiting the fact that most payments are local, or low-value, or both.

Merchant terminals are allowed to process transactions up to a certain limit
(the floor limit) offline; larger transactions need online verification with the
merchant’s bank, which will know about all the local hot cards plus foreign cards
that are being actively abused; above another limit it might refer the transaction
to a network such as VISA with a reasonably up-to-date international list; while
the largest transactions need a reference to the card issuing bank. In effect, the
only transactions that are checked immediately before use are those that are
local or large.

Experience then taught that a more centralised approach is better for bad
terminals. About half the world’s ATM transactions use a service by FICO
which gets alerts from subscribing banks when someone tries to use a stolen
card at an ATM, or guesses the PIN wrong. FICO observed that criminals will
take a handful of stolen cards to a cash machine and try them out one by one.
They maintain a list of the 40 ATMs worldwide that have been most recently
used for attempted fraud, and subscribing banks simply decline all transactions
there — so their cards don’t work, and thieves throw them away.

Until about 2010, payment card networks had the largest systems that man-
age the global propagation of security state, and their experience taught us that
revoking compromised credentials quickly and on a global scale is expensive.
The lesson was learned elsewhere too; the US Department of Defense, for exam-
ple, issued 16 million certificates to military personnel from 1999-2005 by which
time it had to download 10 million revoked certificates to all security servers
every day [971].

The costs of propagating security state can lead to centralisation. Big ser-
vice firms such as Google, Facebook and Microsoft have to maintain credentials
for billions of users anyway, so offer logon as a service to other websites. Other
firms, such as certification authorities, also provide online credentials. But al-
though centralisation can cut costs, a compromise of the central service can be
disruptive. In 2011, for example, hackers operating from Iranian IP addresses
compromised the Dutch certification authority Diginotar and generated fake

Security Engineering 222 Ross Anderson

7.2. CONCURRENCY

certificates on July 9th and did middleperson attacks on the Gmail of Iranian
activists. Diginotar noticed on the 19th that certificates had been wrongly is-
sued but merely called in its auditors. The hack became public on the 29th, and
Google reacted by removing all Diginotar certificates from Chrome on Septem-
ber 3rd, and getting Mozilla to do likewise. This led immediately to the failure
of the company, and Dutch public services were unavailable online for many
days as ministries scrambled to get certificates for their web services from other
suppliers [361].

7.2.2 Locking to prevent inconsistent updates

When people work concurrently on a document, they may use a version control
system to ensure that only one person has write access at any one time to any
given part of it, or at least to warn of contention and flag up any inconsistent
edits. Locking is one general way to manage contention for resources such as
filesystems and to make conflicting updates less likely. Another approach is
callback; a server may keep a list of all those clients which rely on it for security
state, and notify them when the state changes.

Credit cards again provide an example of how this applies to security. If I
own a hotel, and a customer presents a credit card on checkin, I ask the card
company for a pre-authorisation which records that I will want to make a debit
in the near future; I might register a claim on ‘up to $500°. This is implemented
by separating the authorisation and settlement systems. Handling the failure
modes can be tricky. If the card is cancelled the following day, my bank can
call me and ask me to contact the police, or to get her to pay cash?. This is an
example of the publish-register-notify model of how to do robust authorisation
in distributed systems (of which there’s a more general description in [124]).

Callback mechanisms don’t provide a universal solution, though. The cre-
dential issuer might not want to run a callback service, and the customer might
object on privacy grounds to the issuer being told all her comings and goings.
Consider passports as another example. In many countries, government ID is
required for many transactions, but governments won’t provide any guarantee,
and most citizens would object if the government kept a record of every time
an ID document was presented. Indeed, one of the frequent objections to the
Indian government’s requirement that the Aadhar biometric ID system be used
in more and more transactions is that checking citizens’ fingerprints or iris codes
at all significant transactions creates an audit trail of all the places where they
have done business, which is available to officials and to anyone who cares to
bribe them.

There is a general distinction between those credentials whose use gives rise
to some obligation on the issuer, such as credit cards, and the others, such
as passports. Among the differences is whether the credential’s use changes
important state, beyond possibly adding to a log file or other surveillance system.

2My bank might or might not have guaranteed me the money; it all depends on what sort
of contract I'’ve got with it. There were also attacks for a while when crooks figured out how to
impersonate a store and cancel an authorisation, so that a card could be used to make multiple
big purchases. And it might take a day or three for the card-issuing bank to propagate an
alarm to the merchant’s bank. A deep dive into all this would be a book chapter in itself!

Security Engineering 223 Ross Anderson

7.2. CONCURRENCY

This is linked with whether the order in which updates are made is important.

7.2.3 The order of updates

If two transactions arrive at the government’s bank account — say a credit of
$500,000 and a debit of $400,000 — then the order in which they are applied may
not matter much. But if they’re arriving at my bank account, the order will
have a huge effect on the outcome! In fact, the problem of deciding the order in
which transactions are applied has no clean solution. It’s closely related to the
problem of how to parallelise a computation, and much of the art of building
efficient distributed systems lies in arranging matters so that processes are either
simply sequential or completely parallel.

The traditional bank algorithm was to batch the transactions overnight and
apply all the credits for each account before applying all the debits. Inputs from
devices such as ATMs and check sorters were first batched up into journals
before the overnight reconciliation. Payments which bounce then have to be
reversed out — and in the case of ATM and debit transactions where the cash
has already gone, you can end up with customers borrowing money without
authorisation. In practice, chains of failed payments terminate. In recent years,
one country after another has introduced real time gross settlement systems
in which transactions are booked in order of arrival. There are several subtle
downsides. First, at many institutions, the real-time system for retail customers
is an overlay on a platform that still works by overnight updates. Second, the
outcome can depend on the order of transactions, which can depend on human,
system and network vagaries, which can be an issue when many very large
payments are made between financial institutions. Credit cards operate a hybrid
strategy, with credit limits run in real time while settlement is run just as in an
old-fashioned checking account.

In the late 2010s, the wave of interest in cryptocurrency has led some en-
trepreneurs to believe that a blockchain might solve the problems of inconsistent
update, simplifying applications such as supply-chain management. The energy
costs rule out a blockchain based on proof-of-work for most applications; but
might some other kind of append-only public ledger find a killer app? We will
have to wait and see. Meanwhile, the cryptocurrency community makes exten-
sive use of off-chain mechanisms that are often very reminiscent of the checking-
account approach: disconnected applications propose tentative updates that are
later reconciled and applied to the main chain. Experience suggests that there
is no magic solution that works in the general case, short perhaps of having a
small number of very large banks that are very competent at technology. We’ll
discuss this further in the chapter on banking.

In other systems, the order in which transactions arrive is much less im-
portant. Passports are a good example. Passport issuers only worry about
their creation and expiration dates, not the order in which visas are stamped
on them?.

3Many Arab countries won’t let you in with an Israeli stamp on your passport, but most
pure identification systems are essentially stateless.

Security Engineering 224 Ross Anderson

7.2. CONCURRENCY

7.2.4 Deadlock

Another problem is deadlock: where two systems are each waiting for the other
to move first. Edsger Dijkstra famously explained this problem, and its possible
solutions, via the dining philosophers’ problem. A number of philosophers are
seated round a table, with a chopstick between each of them; and a philosopher
can only eat when he or she can pick up the two chopsticks on either side. So
if they all try to eat at once and each picks up the chopstick on his right, they
get stuck [426].

This can get really complex when you have multiple hierarchies of locks,
distributed across systems some of which fail (and where failures can mean that
the locks aren’t reliable) [123]. And deadlock is not just about technology; the
phrase ‘Catch-22’ has become popular to describe deadlocks in bureaucratic
processes . Where a process is manual, some fudge may be found to get round
the catch, but when everything becomes software, this option may no longer be
available.

In a well known business problem — the battle of the forms — one company
issues an order with its own contract terms attached, another company accepts
it subject to its own terms, and trading proceeds without any further agreement.
In the old days, the matter might only be resolved if something went wrong and
the companies ended up in court; even so, one company’s terms might specify
an American court while the other’s specify one in England. As trading has
become more electronic, the winner is often the company that can compel the
loser to trade using its website and thus accept its terms and conditions. Firms
increasingly try to make sure that things fail in their favour. The resulting
liability games can have rather negative outcomes for both security and safety;
we’ll discuss them further in the chapter on Economics.

7.2.5 Non-convergent state

When designing protocols that update the state of a distributed system, the
‘motherhood and apple pie’ is ACID — that transactions should be atomic,
consistent, isolated and durable. A transaction is atomic if you ‘do it all or
not at all’ — which makes it easier to recover after a failure. It is consistent if
some invariant is preserved, such as that the books must still balance. This is
common in banking systems, and is achieved by insisting that each credit to one
account is matched by an equal and opposite debit to another (I'll discuss this
more in the chapter on Banking and Bookkeeping). Transactions are isolated if
they are serialisable; and they are durable if once done they can’t be undone.

These properties can be too much, or not enough, or both. On the one
hand, each of them can fail or be attacked in numerous obscure ways; on the
other, it’s often sufficient to design the system to be convergent. This means
that, if the transaction volume were to tail off, then eventually there would
be consistent state throughout [1007]. Convergence is usually achieved using
semantic tricks such as timestamps and version numbers; this can often be

4Joseph Heller’s 1961 novel of that name described multiple instances of inconsistent and
crazy rules in the World War 2 military bureaucracy.

Security Engineering 225 Ross Anderson

7.2. CONCURRENCY

enough where transactions get appended to files rather than overwritten.

In real life, you also need ways to survive things that go wrong and are
not completely recoverable. The life of a security or audit manager can be a
constant battle against entropy: apparent deficits (and surpluses) are always
turning up, and sometimes simply can’t be explained. For example, different
national systems have different ideas of which fields in bank transaction records
are mandatory or optional, so payment gateways often have to guess data in
order to make things work. Sometimes they guess wrong; and sometimes people
see and exploit vulnerabilities which aren’t understood until much later (if ever).
In the end, things may get fudged by adding a correction factor and setting a
target for keeping it below a certain annual threshold.

Durability is a subject of debate in transaction processing. The advent of
phishing and keylogging attacks has meant that some small proportion of bank
accounts will at any time be under the control of criminals; money gets moved
both from them and through them. When an account compromise is detected,
the bank moves to freeze it and perhaps to reverse payments that have recently
been made from it. The phishermen naturally try to move funds through in-
stitutions, or jurisdictions, that don’t do transaction reversal, or do it at best
slowly and grudgingly [63]. This sets up a tension between the recoverability
and thus the resilience of the payment system on the one hand, and transaction
durability and finality on the other®.

7.2.6 Secure time

The final concurrency problem of special interest to the security engineer is the
provision of accurate time. As authentication protocols such as Kerberos can
be attacked by inducing clock error, it’s not enough to simply trust a random
external time source. One possibility is a Cinderella attack: if a security critical
program such as a firewall has a licence with a timelock, an attacker might wind
your clock forward “and cause your firewall to turn into a pumpkin”. Given the
spread of IoT devices which may be safety-critical and use time in ways that are
poorly understood, there is now some concern about possible large-scale service
denial attacks.

Anyway, there are several possible approaches to the provision of secure time.
You can give every computer a radio clock, and indeed your smartphone has
GPS — but that can be jammed if the opponent is serious. You can abandon
absolute time and instead use Lamport time in which all you care about is
whether event A happened before event B, rather than what date it is [845].
Using challenge-response rather than timestamps in security protocols is an
example of this; another is to use some kind of blockchain, or more simply a
public timestamping service [626].

In many applications, you are likely to end up using the network time pro-
tocol (NTP). This has a moderate amount of protection, with clock voting and

5A market solution might have been to charge merchants a premium to receive irrevocable
payments and let the market allocate the associated risks to the bank best able to manage
them; the practical outcome was that the banks acted as a cartel to make payments final more
quickly, both via card network rules and by lobbying European institutions over the Payment
Services Directives.

Security Engineering 226 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

authentication of time servers, and is dependable enough for many purposes.
However, you still need to take care. For example, Netgear hardwired their
home routers to use an NTP server at the University of Wisconsin-Madison,
which was swamped with hundreds of thousands of packets a second; Netgear
ended up having to pay them $375,000 to maintain the time service for three
years. Shortly afterwards, D-Link repeated the same mistake [342]. Second,
from 2016 there have been denial-of-service attacks using NTP servers as force
multipliers; millions of servers turned out to be abusable, so many ISPs and
even [XPs started blocking them. So if you're planning to deploy lots of devices
outside your corporate network that will rely on NTP, you’d better think hard
about which servers you want to trust, and pay attention to the latest guidance
from CERT [1321].

7.3 Fault Tolerance and Failure Recovery

Failure recovery is often the most important aspect of security engineering, yet
it is one of the most neglected. For many years, most of the research papers
on computer security have dealt with confidentiality, and most of the rest with
authenticity and integrity; availability has almost been ignored. Yet the actual
expenditures of a modern information business — whether a bank or a search
engine — are the other way round. Far more is spent on availability and recovery
mechanisms, such as multiple processing sites and redundant networks, than in
integrity mechanisms such as code review and internal audit; and this in turn is
way more than is spent on encryption. As you read through this book, you’ll see
that many other applications, from burglar alarms through electronic warfare to
protecting a company from DDoS attacks, are fundamentally about availability.
Fault tolerance and failure recovery are often the core of the security engineer’s
job.

Classical fault tolerance is usually based on redundancy, fortified using mech-
anisms such as logs and locking, and is greatly complicated when it must with-
stand malicious attacks on these mechanisms. Fault tolerance interacts with
security in a number of ways: the failure model, the nature of resilience, the
location of redundancy used to provide it, and defence against service denial
attacks. T'll use the following definitions: a fault may cause an error, which
is an incorrect state; this may lead to a failure which is a deviation from the
system’s specified behavior. The resilience which we build into a system to tol-
erate faults and recover from failures will have a number of components, such
as fault detection, error recovery and if necessary failure recovery. The meaning
of mean-time-before-failure (MTBF) and mean-time-to-repair (MTTR) should
be obvious.

7.3.1 Failure models

In order to decide what sort of resilience we need, we must know what sort of
attacks to expect. Much of this will come from an analysis of threats specific to
our system’s operating environment, but some general issues bear mentioning.

Security Engineering 227 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

7.3.1.1 Byzantine Failure

First, the failures with which we are concerned may be normal or malicious,
and we often model the latter as Byzantine. Byzantine failures are inspired by
the idea that there are n generals defending Byzantium, ¢ of whom have been
bribed by the attacking Turks to cause as much confusion as possible. The
generals can pass oral messages by courier, and the couriers are trustworthy, so
each general can exchange confidential and authentic communications with each
other general (we could imagine them encrypting and computing a MAC on each
message). What is the maximum number ¢ of traitors that can be tolerated?

The key observation is that if we have only three generals, say Anthony,
Basil and Charalampos, and Anthony is the traitor, then he can tell Basil “let’s
attack” and Charalampos “let’s retreat”. Basil can now say to Charalampos
“Anthony says let’s attack”, but this doesn’t let Charalampos conclude that
Anthony’s the traitor. It could just as easily have been Basil; Anthony could
have said “let’s retreat” to both of them, but Basil lied when he said “Anthony
says let’s attack”.

This beautiful insight is due to Leslie Lamport, Robert Shostak and Marshall
Pease, who proved that the problem has a solution if and only if n > 3t+1 [846].
Of course, if the generals are able to sign their messages, then no general dare
say different things to two different colleagues. This illustrates the power of
digital signatures in particular and of end-to-end security mechanisms in general.
Relying on third parties to introduce principals to each other or to process
transactions between them can give great savings, but if the third parties ever
become untrustworthy then it can impose significant costs instead.

Another lesson is that if a component which fails (or can be induced to fail
by an opponent) gives the wrong answer rather than just no answer, then it’s
much harder to use it to build a resilient system. It can be useful if components
that fail just stop, or if they can at least be quickly identified and blacklisted.

7.3.1.2 Interaction with fault tolerance

So we can constrain the failure rate in a number of ways. The two most obvi-
ous are by using redundancy and fail-stop processes. The latter process error-
correction information along with data, and stop when an inconsistency is de-
tected; for example, bank transaction processing will typically stop if an out-of-
balance condition is detected after a processing task. The two may be combined;
the processors used in some safety-critical functions in cars and aircraft typi-
cally have two cores. The pioneer of this was Stratus, later IBM’s System/88
after IBM bought the company. This had two disks, two buses and even two
CPUs, each of which would stop if it detected errors; the fail-stop CPUs were
built by having two CPUs on the same card and comparing their outputs. If
they disagreed the output went open-circuit, thus avoiding the Byzantine fail-
ure problem. A competitor, Tandem, had three CPUs and voting. Something
similar was used in System X telephone exchanges. Nowadays, the data centres
of large service firms have much more elaborate protocols to ensure that if a
machine fails, another machine takes over; if a rack fails, another rack takes
over; and even if a data centre fails, its workload is quickly recovered on others.

Security Engineering 228 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

Google was a leader in developing the relevant software stack, having discov-
ered in the early 2000s that it was much cheaper to build large-scale systems
with commodity PCs and smart software than to buy ever-larger servers from
specialist vendors.

While redundancy can make a system more resilient, it has costs. First, we
have to deal with a more complex software stack and toolchain. Second, if I
have multiple sites with backup data, then confidentiality could fail if any of
them gets compromised; and if I have some data that I have a duty to destroy,
then purging it from multiple backup tapes can be a headache.

However, there are traps for the unwary. In one case in which I was called as
an expert, my client was arrested while using a credit card in a store, accused
of having a forged card, and beaten up by the police. He was adamant that the
card was genuine. Much later, we got the card examined by VISA who confirmed
that it was indeed genuine. What happened, as well as we can reconstruct it,
was this. Credit cards have two types of redundancy on the magnetic strip — a
simple checksum obtained by combining together all the bytes on the track using
exclusive-or, and a cryptographic checksum which we’ll describe in detail later
in section 10.5.2. The former is there to detect errors, and the latter to detect
forgery. It appears that in this particular case, the merchant’s card reader was
out of alignment in such a way as to cause an even number of bit errors which
cancelled each other out by chance in the simple checksum, while causing the
crypto checksum to fail. The result was a false alarm, and a major disruption
in my client’s life.

Redundancy is hard enough to deal with in mechanical systems. For ex-
ample, training pilots to handle multi-engine aircraft involves drilling them on
engine failure procedures, first in the simulator and then in real aircraft with an
instructor. Novice pilots are in fact more likely to be killed by an engine failure
in a multi-engine plane than in a single; landing in the nearest field is less haz-
ardous for them than coping with suddenly asymmetric thrust. The same goes
for instrument failures; it doesn’t help to have three artificial horizons in the
cockpit if, under stress, you rely on the one that’s broken. Aircraft are much
simpler than many modern information systems — yet there are still regular air
crashes when pilots fail to manage the redundancy that’s supposed to keep them
safe. All too often, system designers put in multiple protection mechanisms and
hope that things will be “all right on the night”. This really isn’t good enough.
Many safety failures are really failures of safety usability, and the same applies
to security, as we discussed in the chapter on Psychology.

7.3.2 What is resilience for?

When introducing redundancy or other resilience mechanisms into a system, we
need to understand what they’re for, and the incentives facing the various actors.
It therefore matters whether the resilience is local, or crosses geographical or
organisational boundaries.

In the first case, replication can be an internal feature of the server to make
it more trustworthy. I already mentioned 1980s systems such as Stratus and
Tandem; then we had replication of standard hardware at the component level,

Security Engineering 229 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

such as redundant arrays of inexpensive disks (RAID disks). Since the late
1990s there has been massive investment in developing rack-scale systems that
let multiple cheap PCs do the work of expensive servers, with mechanisms to
ensure a single server that fails will have its workload taken over rapidly by
another, and indeed a rack that fails can also be recovered on a hot spare. These
are now a standard component of cloud service architecture: any firm operating
hundreds of thousands of servers will have so many failures that recovery must
be largely automated.

But often things are much more complicated. A service may have to assume
that some of its clients are trying to cheat it, and may also have to rely on a
number of services none of which is completely accurate. When opening a bank
account, or issuing a passport, we might want to check against services from
voter rolls through credit reference agencies to a database of drivers’ licences,
and the results may often be inconsistent. Trust decisions may involve complex
logic, not entirely unlike the systems used in electronic warfare to try to work
out which of your inputs are being jammed. (I'll discuss these further in the
chapter on Electronic Warfare.)

The direction of mistrust has an effect on protocol design. A server faced
with multiple untrustworthy clients, and a client relying on multiple servers
that may be incompetent, unavailable or malicious, will both wish to control
the flow of messages in a protocol in order to contain the effects of service denial.
Designing systems for the real world in which everyone is unreliable and all are
mutually suspicious, is hard.

Sometimes the emphasis is on security renewability. The obvious example
here is bank cards: a bank can upgrade security from time to time by mailing out
newer versions of its cards, whether upgrading from mag strip to chip or from
cheap chips to more sophisticated ones; and it can recover from a compromise
by mailing out cards out of cycle to affected customers. Pay-TV and mobile
phones are somewhat similar.

7.3.3 At what level is the redundancy?

Systems may be made resilient against errors, attacks and equipment failures
at a number of levels. As with access control, these become progressively more
complex and less reliable as we go up to higher layers in the system.

Some computers have been built with redundancy at the hardware level, such
as Stratus systems and RAID discs I mentioned earlier. But simple replication
cannot provide a defense against malicious software, or against an intruder who
exploits faulty software.

At the next level up, there is process group redundancy. Here, we may run
multiple copies of a system on multiple servers in different locations, and com-
pare their outputs. This can stop the kind of attack in which the opponent gets
physical access to a machine and subverts it, whether by mechanical destruction
or by inserting unauthorised software. It can’t defend against attacks by autho-
rised users or damage by bad authorised software, which could simply order the
deletion of a critical file.

Security Engineering 230 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

The next level is backup. Here, we typically take a copy of the system (a
checkpoint) at regular intervals. The backup copies are usually kept on media
that can’t be overwritten such as write-protected tapes or discs with special
software. We may also keep journals of all the transactions applied between
checkpoints. Whatever the detail, backup and recovery mechanisms not only
enable us to recover from physical asset destruction; they also ensure that if we
do get an attack at the logical level we have some hope of recovering. The classic
example in the 1980s would have been a time bomb that deletes the customer
database on a specific date; since the arrival of cryptocurrency, the fashion has
been for ransomware.

Businesses with critical service requirements, such as banks and retailers,
have had backup data centres for many years. The idea is that if the main
centre goes down, the service will failover to a second facility. Maintaining such
facilities absorbed most of a typical bank’s information security budget.

Backup is not the same as fallback. A fallback system is typically a less
capable system to which processing reverts when the main system is unavailable.
An example is the use of manual imprinting machines to capture credit card
transactions from the card embossing when electronic terminals fail. Fallback
systems are an example of redundancy in the application layer — the highest
layer we can put it.

It is important to realise that these are different mechanisms, which do
different things. Redundant disks won’t protect against a malicious programmer
who deletes all your account files, and backups won’t stop him if rather than just
deleting files he writes code that slowly inserts more and more errors. Neither
will give much protection against attacks on data confidentiality. On the other
hand, the best encryption in the world won’t help you if your data processing
center burns down. Real world recovery plans and mechanisms involve a mixture
of all of the above.

The remarks that I made earlier about the difficulty of redundancy, and
the absolute need to plan and train for it properly, apply in spades to system
backup. When I was working in banking in the 1980s we reckoned that we
could probably get our backup system working within an hour or so of our main
processing centre being destroyed, but the tests were limited by the fact that
we didn’t want to risk processing during business hours: we would recover the
main production systems on our backup data centre one Saturday a year. By
the early 1990s Tesco, a UK supermarket, had got as far as live drills: they’d
pull the plug on the main processing centre once a year without warning the
operators, to make sure the backup came up within 40 seconds. By 2011, Netflix
had developed ‘chaos monkeys’ — systems that would randomly knock out a
machine, or a rack, or even a whole data centre, to test resilience constantly.
By 2019, large service firms have got to such a scale that they don’t need this.
If you have three million machines across thirty data centres, then you’ll lose
machines constantly, racks frequently, and whole data centres often enough that
you have to engineer things to keep going. So nowadays, you can simply pay
money and a cloud service provider will worry about a lot of the detail for you.
But you need to understand really well what sort of failures Amazon or Google
or Microsoft can handle for you, and the sort you have to deal with yourself.

Security Engineering 231 Ross Anderson

7.3. FAULT TOLERANCE AND FAILURE RECOVERY

It’s worth trying to work out which services you depend on that are outside
your direct supply chain. For example, Britain suffered a fuel tanker drivers’
strike in 2001, and some hospitals had to close because of staff shortages, which
was supposed to not happen. The government had allocated petrol rations to
doctors and nurses, but not to schoolteachers. So the schools closed, and the
nurses had to stay home to look after their kids, and this closed hospitals too.
As we become increasingly dependent on each other, contingency planning gets
ever harder.

7.3.4 Service-denial attacks

One of the reasons we want security services to be fault-tolerant is to make
service-denial attacks less attractive, less effective, or both. Such attacks are
often used as part of a larger plan. For example, one might take down a security
server to force other servers to use cached copies of credentials, or swamp a web
server to take it temporarily offline, and then get another machine to serve the
pages that victims try to download.

A powerful defense against service denial is to prevent the opponent mount-
ing a selective attack. If principals are anonymous — say there are several equiv-
alent services behind a load balancer, and the opponent has no idea which one
to attack — then he may be ineffective. I'll discuss this further in the context of
burglar alarms and electronic warfare.

Where this isn’t possible, and the opponent knows where to attack, then
there are some types of service-denial attacks which can be stopped by redun-
dancy and resilience mechanisms, and others which can’t. For example, the
TCP/IP protocol has few effective mechanisms for hosts to protect themselves
against network flooding, which comes in a wide variety of flavours. Defense
against this kind of attack tends to involve moving your site to a beefier hosting
service with specialist packet-washing hardware — or tracing and arresting the
perpetrator.

Distributed denial-of-service (DDoS) attacks came to public notice when
they were used to bring down Panix, a New York ISP, for several days in 1996.
During the late 1990s they were occasionally used by script kiddies to take
over chat servers. In 2001 I mentioned them in passing in the first edition
of this book. Over the following three years, extortionists started using them
for blackmail; they’d assemble a botnet, a network of compromised PCs, which
would flood a target webserver with packet traffic until its owner paid them
to desist. Typical targets were online bookmakers, and amounts of $10,000 —
$50,000 were typically demanded to leave them alone, and the typical bookie
paid up the first time this happened. When the attacks persisted the first
solution was replication: operators moved their websites to hosting services
such as Akamai whose servers are so numerous (and so close to customers) that
they can shrug off anything the average botnet could throw at them. In the
end, the blackmail problem was solved when the bookmakers met and agreed
not to pay any more blackmail money, and the Ukrainian police were prodded
into arresting the gang responsible.

By 2018, we had come full circle, and about fifty bad people were operating

Security Engineering 232 Ross Anderson

7.4. NAMING

DDoS-as-a-service, mostly for gamers who wanted to take down their opponents’
teamspeak servers. The services were sold online as ‘booters’ that would boot
your opponents out of the game; a few dollars would get a flood of perhaps
100Gbit/sec. Service operators also called them, more euphemistically, ‘stres-
sors’ — with the line that you could use them to test the robustness of your own
website. This didn’t fool anyone, and just before Christmas 2018 the FBI took
down fifteen of these sites, arresting a number of their operators and causing
the volumes of DDoS traffic to drop noticeably for several months [1070].

Finally, where a more vulnerable fallback system exists, a common technique
is to use a service-denial attack to force victims into fallback mode. The classic
example is in payment cards. Smartcards are generally harder to forge than
magnetic strip cards, but perhaps 1% of them fail every year, thanks to static
electricity and worn contacts. Also, some tourists still use magnetic strip cards.
So most card payment systems still have a fallback mode that uses the magnetic
strip. A simple attack is to use a false terminal, or a bug inserted into the cable
to a genuine terminal, to capture card details, and then write them to the
magnetic strip of a card with a dead chip.

7.4 Naming

Naming is a minor if troublesome aspect of ordinary distributed systems, but
it becomes surprisingly hard in security engineering. During the dotcom boom
in the 1990s, when SSL was invented and we started building public-key cer-
tification authorities, we hit the problem of what names to put on certificates.
A certificate that says simply “the person named Ross Anderson is allowed to
administer machine X” is little use. Before the arrival of Internet search en-
gines, I was the only Ross Anderson I knew of; now I know of dozens of us. I
am also known by different names to dozens of different systems. Names exist
in contexts, and naming the principals in secure systems is becoming ever more
important and difficult.

We observed then that using more names than you need to causes unnec-
essary complexity. For example, a certificate that simply says “the bearer of
this certificate is allowed to administer machine X” is a straightforward bearer
token, which we know how to deal with; whoever controls that private key is
the admin, just as if the root password were in an envelope in a bank vault. But
once my name is involved, and I have to present some kind of ID to prove who I
am, the system acquires a further dependency. If my ID is compromised the con-
sequences could be far-reaching, and I really don’t want to give the government
a reason to issue a false ID in my name to one of its agents.

After 9/11, governments started to force businesses to demand government-
issue photo ID in places where this was not previously thought necessary. In
the UK, for example, you can no longer board a domestic flight using just
the credit card with which you bought the ticket, but you have to produce a
passport or driving license — which you also need to order a bank transfer for
more than £1000, to rent an apartment, to hire a lawyer or even to get a job.
Such measures are not only inconvenient but introduce new failure modes into
all sorts of systems.

Security Engineering 233 Ross Anderson

7.4. NAMING

There is a second reason that the world is moving towards larger, flatter name
spaces: the growing dominance of the large service firms in online authentication.
Your name is increasingly a global one; it’s your Gmail or Hotmail address,
your Twitter handle, or your Facebook account. These firms have not merely
benefited from the technical externalities which we discussed in the chapter on
authentication, and business externalities which we’ll discuss in the chapter on
economics: they have sort-of solved some of the problems of naming. But we
can’t be complacent as many other problems remain. So it’s useful to canter
through what a generation of computer science researchers have learned about
naming in distributed systems.

7.4.1 The Needham naming principles

During the last quarter of the twentieth century, engineers building distributed
systems ran up against many naming problems. The basic algorithm used to
bind names to addresses is known as rendezvous: the principal exporting a name
advertises it somewhere, and the principal seeking to import and use it searches
for it. Obvious examples include phone books, and directories in file systems.

People building distributed systems soon realised that naming gets complex
quickly, and the lessons are set out in a classic article by Needham [1053]. Here
are his ten principles.

1. The function of names is to facilitate sharing. This continues to hold:
my bank account number exists in order to share the information that
I deposited money last week, with the teller from whom I am trying to
withdraw money this week. In general, names are needed when the data
to be shared is changeable. If I only ever wished to withdraw exactly
the same sum as I'd deposited, a bearer deposit certificate would be fine.
Conversely, names need not be shared — or linked — where data will not
be; there is no need to link my bank account number to my telephone
number unless I am going to pay my phone bill from the account.

2. The naming information may not all be in one place, and so resolving
names brings all the general problems of a distributed system. This holds
with a vengeance. A link between a bank account and a phone number as-
sumes both of them will remain stable. So each system relies on the other,
and an attack on one can affect the other. Many banks use two-channel
authorisation to combat phishing — if you order a payment online you get
a text message on your mobile phone saying ‘if you want to pay $X to ac-
count Y, please enter the following four digit code into your browser’. The
standard attack is for the crook to claim to be you to the phone company,
and report the loss of your phone. So they give him a new SIM that works
for your phone number, and he makes off with your money. The phone
company could stop that, but it doesn’t care too much about authentica-
tion, as all it stands to lose is some airtime, whose marginal cost is zero.
And the latest attack is to use Android malware to steal authentication
codes. Google could stop that, by locking down the Android platform as
tightly as Apple — but it has no incentive to do so.

Security Engineering 234 Ross Anderson

7.4. NAMING

3. It is bad to assume that only so many names will be needed. The shortage
of TP addresses, which motivated the development of IP version 6 (IPv6),
is well enough discussed. What is less well known is that the most ex-
pensive upgrade the credit card industry ever had to make was the move
from thirteen digit credit card numbers to sixteen. Issuers originally as-
sumed that 13 digits would be enough, but the system ended up with tens
of thousands of banks — many with dozens of products — so a six digit
bank identification number was needed. Some issuers have millions of cus-
tomers, so a nine digit account number is the norm. And there’s also a
check digit to detect errors.

4. Global names buy you less than you think. For example, the 128-bit ad-
dress in IPv6 can in theory enable every object in the universe to have
a unique name. However, for us to do business, a local name at my end
must be resolved into this unique name and back into a local name at your
end. Invoking a unique name in the middle may not buy us anything; it
may even get in the way if the unique naming service takes time, costs
money, or occasionally fails (as it surely will). In fact, the name service
itself will usually have to be a distributed system, of the same scale (and
security level) as the system we’re trying to protect. So we can expect
no silver bullets from this quarter. Adding an extra name, or adopting
a more complicated one, has the potential to add extra costs and failure
modes.

5. Names imply commitments, so keep the scheme flexible enough to cope with
organisational changes. This sound principle was ignored in the design of
the UK government’s key management system for secure email [92]. There,
principals’ private keys are generated from their email addresses. So the
frequent reorganisations meant that the security infrastructure had to be
rebuilt each time — and that more money had to be spent solving secondary
problems such as how people access old material. In the end they gave
up, and moved everything but the Top Secret stuff to commercial cloud
service providers.

6. Names may double as access tickets, or capabilities. We have already seen
a number of examples of this in Chapters 2 and 3. In general, it’s a bad idea
to assume that today’s name won’t be tomorrow’s password or capability
— remember the Utrecht fraud we discussed in section 4.5. Norway, for
example, used to consider the citizen’s ID number to be public, but it
ended up being used as a sort of password in so many applications that
they had to relent and make it private. There are similar issues around
the U.S. Social Security Number.

I've given a number of examples of how things go wrong when a name
starts being used as a password. But sometimes the roles of name and
password are ambiguous. In order to get entry to a car park I used to use
at the university, I had to speak my surname and parking badge number
into a microphone at the barrier. So if I say, “Anderson, 123”, which
of these is the password? In fact it was “Anderson”, as anyone can walk
through the car park and note down valid badge numbers from the parking
permits on the car windscreens.

Security Engineering 235 Ross Anderson

7.4. NAMING

7. Things are made much simpler if an incorrect name is obvious. In stan-
dard distributed systems, this enables us to take a liberal attitude to
caching. In payment systems, credit card numbers used to be accepted
while the terminal was offline so long as the credit card number appears
valid (i.e., the last digit is a proper check digit of the first fifteen) and it
is not on the hot card list. The certificates on modern chip cards provide
a higher-quality implementation of the same basic concept.

8. Consistency is hard, and is often fudged. If directories are replicated, then
you may find yourself unable to read, or to write, depending on whether
too many or too few directories are available. Naming consistency causes
problems for business in a number of ways, of which perhaps the most no-
torious is the bar code system. Although this is simple enough in theory
— with a unique numerical code for each product — in practice different
manufacturers, distributors and retailers attach quite different descrip-
tions to the bar codes in their databases. Thus a search for products by
“Kellogg’s” will throw up quite different results depending on whether or
not an apostrophe is inserted, and this can cause confusion in the supply
chain. Proposals to fix this problem can be surprisingly complicated [679].
There are also the issues of convergence discussed above; data might not
be consistent across a system, even in theory. There are also the problems
of timeliness, such as whether a product has been recalled.

9. Don’t get too smart. Phone numbers are much more robust than computer
addresses. Early secure messaging systems — from PGP to government
systems — tried to link keys to email addresses, but these change when
people’s jobs do. More modern systems such as Signal and WhatsApp use
mobile phone numbers instead. In the same way, early attempts to replace
bank account numbers and credit card numbers with public-key certificates
in protocols like SET failed, though in some mobile payment systems, such
as Kenya’s M-Pesa, they’ve been replaced by phone numbers. (I'll discuss
further specific problems of public key infrastructures in section 21.4.5.6.)

10. Some names are bound early, others not; and in general it is a bad thing
to bind early if you can avoid it. A prudent programmer will normally
avoid coding absolute addresses or filenames as that would make it hard
to upgrade or replace a machine. It’s usually better to leave this to a
configuration file or an external service such as DNS. Yet secure systems
often want stable and accountable names as any third-party service used
for last-minute resolution could be a point of attack. Designers therefore
need to pay attention to where the naming information goes, how devices
get personalised with it, and how they get upgraded — including the names
of services on which the security may depend, such as the NTP service
discussed in Section 7.2.6 above.

7.4.2 What else goes wrong

The Needham principles were crafted for the world of the early 1990s in which
naming systems could be imposed at the system owner’s convenience. Once we

Security Engineering 236 Ross Anderson

7.4. NAMING

moved to the reality of modern web-based (and interlinked) service industries,
operating at global scale, we found that there is more to add.

By the early 2000s, we had learned that no naming system can be globally
unique, decentralised, and human-meaningful. In fact, it’s a classic trilemma:
you can only have two of those attributes (Zooko’s triangle) [26]. In the past,
engineers went for naming systems that were unique and meaningful, like URLs,
or unique and decentralised, as with public keys in PGP or the self-signed cer-
tificates that function as app names in Android. Human names are meaningful
and local, but don’t scale to the Internet. As I noted above, I used to be the
only Ross Anderson I knew of, but as soon as the first search engines came
along, I could instantly find dozens of others.

The innovation from sites like Facebook is to show on a really large scale that
names don’t have to be unique. We can use social context to build systems that
are both decentralised and meaningful — which is just what our brains evolved
to cope with. Every Ross Anderson has a different set of friends and you can
tell us apart that way.

How can we make sense of all this, and stop it being used to trip people up?
It is sometimes helpful to analyse the properties of names in detail.

7.4.2.1 Naming and identity

First, the principals in security protocols are usually known by many different
kinds of name — a bank account number, a company registration number, a
personal name plus a date of birth or a postal address, a telephone number, a
passport number, a health service patient number, or a userid on a computer
system.

A common mistake is to confuse naming with identity. Identity is when
two different names (or instances of the same name) correspond to the same
principal (this is known to computer scientists as an indirect name or symbolic
link). One classic example comes from the registration of title to real estate.
Someone who wishes to sell a house often uses a different name than they did
at the time it was purchased: they might have changed their name on marriage,
or on gender transition, or started using their middle name instead. A land-
registration system must cope with a lot of identity issues like this.

There are two types of identity failure leading to compromise: where I'm
happy to impersonate anybody, and where I want to impersonate a specific in-
dividual. The former case includes setting up accounts to launder cybercrime
proceeds, while an example of the latter is SIM replacement (I want to clone
a CEO’s phone so I can loot a company bank account). If banks (or phone
companies) just ask people for two proofs of address, such as utility bills, that’s
easy. Demanding government-issue photo-ID may require us to analyse state-
ments such as “The Aaron Bell who owns bank account number 12345678 is the
Aaron James Bell with passport number 98765432 and date of birth 3/4/56”.
This may be seen as a symbolic link between two separate systems — the bank’s
and the passport office’s. Note that the latter part of this ‘identity’ encapsulates
a further statement, which might be something like “The US passport office’s
file number 98765432 corresponds to the entry in the New York birth register

Security Engineering 237 Ross Anderson

7.4. NAMING

for 3/4/56 of one Aaron James Bell.” If Aaron is commonly known as Jim, it
gets messier still.

In general, names may involve several steps of recursion, which gives attack-
ers a choice of targets. For example, a lot of passport fraud is pre-issue fraud:
the bad guys apply for passports in the names of genuine citizens who haven’t
applied for a passport already and for whom copies of birth certificates are easy
to obtain. Postmortem applications are also common. Linden Labs, the op-
erators of Second Life, introduced a scheme whereby you prove you're over 18
by providing the driver’s license number or social security number of someone
who is. Now a web search quickly pulls up such data for many people, such as
the rapper Tupac Amaru Shakur; and yes, Linden Labs did accept Mr Shakur’s
license number — even through the license had expired, and he’s dead.

There can also be institutional failure. For example, the United Arab Emi-
rates started taking iris scans of all visitors after women who had been deported
to Pakistan for prostitution offences would turn up a few weeks later with a
genuine Pakistani passport in a different name and accompanied by a different
‘husband’. Similar problems led many countries to issue biometric visas, so they
don’t have to depend on passport issuers in countries they don’t want to have
to trust.

In addition to corruption, a pervasive failure is the loss of original records. In
countries where registers of births, marriages and deaths are kept locally and on
paper, some are lost, and smart impersonators exploit these. You might think
that digitisation is fixing this problem, but the long-term preservation of digital
records is a hard problem even for rich countries; document formats change,
software and hardware become obsolete, and you either have to emulate old
machines or translate old data, neither of which is ideal. Various states have run
pilot projects on electronic documents that must be kept forever, such as civil
registration, but we still lack credible standards. Sensible developed countries
still keep paper originals as the long-term document of record. In less developed
countries, you may have to steer between the Scylla of flaky government IT and
the Charybdis of natural disasters®.

7.4.2.2 Cultural assumptions

The assumptions that underlie names change from one country to another. In
the English-speaking world, people may generally use as many names as they
please; a name is simply what you are known by. But some countries forbid the
use of aliases, and others require them to be registered. The civil registration
of births, marriages, civil partnerships, gender transitions and deaths is an ex-
tremely complex one, often politicised, tied up with religion in many countries
and with the issue of ID documents as well. And incompatible rules between
countries cause real problems for migrants, tourists and indeed for companies
with overseas customers.

In earlier editions of this book, I gave as an example that writers who change
their legal name on marriage often keep publishing using their former name. So

6while listening to the siren song of development consultants saying ‘put it on the
blockchain!

Security Engineering 238 Ross Anderson

7.4. NAMING

my lab colleague, the late Professor Karen Spéarck Jones, got a letter from the
university every year asking why she hadn’t published anything (she was down
on the payroll as Karen Needham). The publication-tracking system just could
not cope with everything the personnel system knew. And as software gets in
everything and systems get linked up, conflicts can have unexpected remote
effects. For example, Karen was also a trustee of the British Library, and was
not impressed when it started to issue its own admission tickets using the name
on the holder’s home university library card. Such issues caused even more
friction when we introduced an ID card system keyed to payroll names to give
unified access to buildings, libraries and canteens. These issues with multiple
names are now mainstream; it’s not just professors, musicians and novelists who
use more than one name. Trans people who want to stop firms using names
from a previous gender; women who want to stop using a married name when
they separate or divorce, and who perhaps need to if they're fleeing an abusive
partner; people who've assumed new names following religious conversion —
there’s no end of sources of conflict. If you're building a system that you hope
will scale up globally, you’ll eventually have to deal with them all.

Human naming conventions also vary by culture. Many people in South
India, Indonesia and Mongolia have only a single name — a mononym. Russians
are known by a forename, a patronymic and a surname. Icelanders have no
surname but are known instead by a given name followed by a patronymic if they
are male and a matronymic if they are female. This causes problems when they
travel. In the old days, when ‘Maria Trosttadéttir’ arrived at US immigration
and the officer learned that ‘Trosttadéttir’ isn’t a surname or even a patronymic,
their standard practice was to compel her to adopt as a surname a patronymic
(say, ‘Carlsson’ if her father was called Carl). This caused unnecessary offence.
And then there are cultures where your name changes after you have children.

Another cultural divide is often thought to be that between the English-
speaking countries, where identity cards were unacceptable on privacy grounds”’
and the countries conquered by Napoleon or by the Soviets, where identity
cards are the norm. What’s less well known is that the British Empire happily
imposed ID on many of its subject populations, so the real divide is perhaps
whether a country was ever conquered.

The local history of ID conditions all sorts of assumptions. I know Germans
who have refused to believe that a country could function at all without a proper
system of population registration and ID cards, yet admit they are asked for
their ID card only rarely (for example, to open a bank account or get married).
Their card number can’t be used as a name, because it is a document number
and changes every time a new card is issued. The Icelandic ID card number,
however, is static; it’s just the citizen’s date of birth plus two further digits.
What’s more, the law requires that bank account numbers contain the account
holder’s ID number. These are perhaps the extremes of private and public ID
numbering.

Finally, in many less developed countries, the act of registering citizens and
issuing them with ID is not just inefficient but political [71]. The ruling tribe
may seek to disenfranchise the others by making it hard to register births in their

Tunless they’re called drivers’ licences or health service cards!

Security Engineering 239 Ross Anderson

7.4. NAMING

territory, or by making it inconvenient to get an ID card. Sometimes cards are
reissued in the run-up to an election in order to refresh or reinforce the discrimi-
nation. Cards can be tied to business permits and welfare payments; delays can
be used to extract bribes. Some countries (such as Brazil) have separate regis-
tration systems at state and federal level, while others (such as Malawi) have
left most of their population unregistered. There are many excluded groups,
such as refugee children born outside the country of their parents’ nationality,
and groups made stateless for religious or ideological reasons. Target 16.9 of
the United Nations’ Sustainable Development Goals is to ‘provide legal identity
for all, including birth registration’; and a number of companies sell ID systems
and voting systems financed by development aid. These interact with govern-
ments in all sorts of complex ways, and there’s a whole research community
that studies this [93]. Oh, and if you think this is a third-world problem, there
are several US states using onerous registration procedures to make it harder
for black people to vote; and in the Windrush scandal, it emerged that the
UK government had deported a number of foreign-born UK citizens as they
had not maintained a paper trail of their citizenship that was enough to satisfy
increasingly xenophobic officials.

In short, the hidden assumptions about the relationship between govern-
ments and people’s names vary in ways that constrain system design, and cause
unexpected failures when assumptions are carried across borders.

7.4.2.3 Semantic content of names

Changing from one type of name to another can be hazardous. A bank got sued
after they moved from storing customer data by account number to storing it by
name and address. They wrote a program to link up all the accounts operated
by each of their customers, in the hope that it would help them target junk mail
more accurately. The effect on one customer was serious: the bank statement
for the account he kept for his mistress got sent to his wife, who divorced him.

The semantics of names can change over time. In many transport systems,
tickets and toll tags can be bought for cash, which defuses privacy concerns, but
it’s more convenient to link them to bank accounts, and these links accumulate
over time. The card that UK pensioners use to get free bus travel also started out
anonymous, but in practice the bus companies try to link up the card numbers
to other passenger identifiers. In fact, I once got a hardware store loyalty card
with a random account number (and no credit checks). I was offered the chance
to change this into a bank card after the store was taken over by a supermarket
and the supermarket started a bank.

7.4.2.4 Uniqueness of names

Human names evolved when we lived in small communities. We started off with
just forenames, but by the late Middle Ages the growth of travel led governments
to bully people into adopting surnames. That process took a century or so, and
was linked with the introduction of paper into Europe as a lower-cost and more
tamper-resistant replacement for parchment; paper enabled the badges, seals
and other bearer tokens, which people had previously used for road tolls and

Security Engineering 240 Ross Anderson

7.4. NAMING

the like, to be replaced with letters that mentioned their names.

The mass movement of people, business and administration to the Internet
has been too fast for social adaptation. There are now way more people (and
systems) online than we're used to dealing with. So how can we make human-
memorable names unique? As we discussed above, Facebook tells one John
Smith from another the way humans do, by clustering each one with his set of
friends and adding a photo.

Perhaps the other extreme is cryptographic names. Names are hashes either
of public keys, or of other stable attributes of the object being named. All sorts
of mechanisms have been proposed to map real world names, addresses and
even document content indelibly and eternally on to the bitstring outputs of
hash functions (see, for example, [627]). You can even use hashes of biometrics
or the surface microstructure of objects, coupled with a suitable error-correction
code. The world of cryptocurrency and blockchains makes much use of hash-
based identifiers.

This isn’t entirely new, as it has long been common in transaction process-
ing to just give everything and everyone a number. This can lead to failures,
though, if you don’t put enough uniqueness in the right place. For example, a
UK bank assigned unique sequence numbers to transactions by printing them
on the stationery used to capture the deal. Once, when they wanted to send
£20m overseas, the operator typed in £10m by mistake. A second payment
of £10m was ordered — but this acquired the same transaction sequence num-
ber from the paperwork. So two payments were sent to SWIFT with the same
date, payee, amount and sequence number — and the second was discarded as a
duplicate [251].

7.4.2.5 Stability of names and addresses

Many names include some kind of address, yet addresses change. While we
still had a phone book in Cambridge, about a quarter of the addresses changed
every year; with work email, the turnover is probably higher. When we tried
to develop a directory of people who use encrypted email, together with their
keys, we found that the main cause of changed entries was changes of email
address [82]. (Some people had assumed it would be the loss or theft of keys;
the contribution from this source was precisely zero.)

Distributed systems pioneers considered it a bad thing to put addresses in
names [1007]. But there can be multiple layers of abstraction with some of the
address information at each layer forming part of the name at the layer above.
Also, whether a namespace is better flat depends on the application. Often
people end up with different names at the departmental and organisational level
(such as rjal4@cam.ac.uk and ross.anderson@cl. cam.ac.uk in my own case).
So a clean demarcation between names and addresses is not always possible.

Authorisations have many (but not all) of the properties of addresses. Kent’s
Law tells designers that if a credential contains a list of what it may be used
for, then the more things are on this list the shorter its period of usefulness. A
similar problem besets systems where names are composite. For example, some
online businesses recognize me by the combination of email address and credit

Security Engineering 241 Ross Anderson

7.4. NAMING

card number. This is clearly bad practice. Quite apart from the fact that I have
several email addresses, I have several credit cards.

There are many good reasons to use pseudonyms. Until Facebook came
along, it used to considered sensible for children and young people to use online
names that weren’t easily linkable to their real names and addresses. When you
go for your first job on leaving college aged 22, or for a CEQ’s job at 45, you
don’t want a search to turn up all your teenage rants. Many people also change
email addresses from time to time to escape spam; I used to give a different
email address to every website where I shop. Of course, there are police and
other agencies that would prefer people not to use pseudonyms, and this takes
us into the whole question of traceability online, which I'll discuss in Part II.

7.4.2.6 Restrictions on the use of names

The interaction between naming and society brings us to a further problem:
some names may be used only in restricted circumstances. This may be laid
down by law, as with the US Social Security Number (SSN) and its equivalents
in some other countries. Sometimes it is a matter of marketing: a significant
minority of customers avoid websites that demand too much information.

Restricted naming systems interact in unexpected ways. For example, it’s
fairly common for hospitals to use a patient number as an index to medical
record databases, as this may allow researchers to use pseudonymous records
for some purposes. This causes problems when a merger of health maintenance
organisations, or a policy change, forces the hospital to introduce uniform names.
There have long been tussles in Britain’s health service, for example, about
which pseudonyms can be used for which purposes

Finally, when we come to law and policy, the definition of a name throws
up new and unexpected gotchas. For example, regulations that allow police to
collect communications data — that is, a record of who called whom and when
— are usually much more lax than the regulations governing phone tapping; in
many countries, police can get communications data just by asking the phone
company. This led to tussles over the status of URLs, which contain data such
as the parameters passed to search engines. Clearly some policemen would
like a list of everyone who hit a URL like http://www.google.com/search?q=
cannabis+cultivation; just as clearly, many people would consider such large-
scale trawling to be an unacceptable invasion of privacy. The resolution in UK
law was to define traffic data as that which was sufficient to identify the machine
being communicated with or in lay language ‘Everything up to the first slash.” I
discuss this in much more detail later, in the chapter ‘Surveillance or Privacy?’

7.4.3 Types of name

Not only is naming complex at all levels — from the technical up through the
organisational to the political — but some of the really wicked issues go across
levels. T noted in the introduction that names can refer not just to persons (and
machines acting on their behalf), but also to organisations, roles (‘the officer of
the watch’), groups, and compound constructions: principal in role — Alice as

Security Engineering 242 Ross Anderson

7.5. SUMMARY

manager; delegation — Alice for Bob; conjunction — Alice and Bob. Conjunction
often expresses implicit access rules: ‘Alice acting as branch manager plus Bob
as a member of the group of branch accountants’.

That’s only the beginning. Names also apply to services (such as NFS, or
a public key infrastructure) and channels (which might mean wires, ports, or
crypto keys). The same name might refer to different roles: ‘Alice as a computer
game player’ ought to have less privilege than ‘Alice the system administrator’.
The usual abstraction used in the security literature is to treat them as different
principals. So there’s no easy mapping between names and principals, especially
when people bring their own devices to work, or take work devices home, so that
they may have multiple conflicting names or roles on the same platform.

Functional tensions may be easier to analyse once you understand how they
are driven by the underlying business processes. Businesses mainly want to get
paid, while governments want to identify people uniquely. In effect, business
wants your credit card number while government wants your passport number.
An analysis based on incentives can sometimes shed light on a problem by
indicating whether naming systems are better open or closed, local or global,
stateful or stateless — and whether the people who maintain it are the same
people who will pay the costs of failure (one of the key issues for dependability,
which is the subject of the next chapter).

Finally, although I've illustrated many of the problems of naming with re-
spect to people — as that makes the problems more immediate and compelling
— many of the same problems pop up in various ways for cryptographic keys,
unique product codes, document IDs, file names, URLs and much more. As
systems scale, it become less and less realistic to rely on names that are simple,
interchangeable and immutable. You need to scope naming carefully, under-
stand who controls the names on which you rely, work out how slippery they
are, and design your system to be dependable despite their limitations.

7.5 Summary

Many secure distributed systems have incurred large costs, or developed seri-
ous vulnerabilities, because their designers ignored the basics of how to build
(and how not to build) distributed systems. Most of these basics have been in
computer science textbook for a generation.

Many security breaches are concurrency failures of one kind or another;
systems use old data, make updates inconsistently or in the wrong order, or
assume that data are consistent when they aren’t or even can’t be. Using time
to order transactions may help but knowing the right time is harder than it
seems.

Fault tolerance and failure recovery are critical. Providing the ability to
recover from security failures, as well as from random physical and software
failures, is the main purpose of the protection budget for many organisations. At
a more technical level, there are significant interactions between protection and
resilience mechanisms. Byzantine failure — where defective processes conspire,
rather than failing randomly — is an issue, and interacts with our choice of

Security Engineering 243 Ross Anderson

7.5. SUMMARY

cryptographic tools.

There are many different flavors of redundancy, and we have to use the
right combination. We need to protect not just against failures and attempted
manipulation, but also against deliberate attempts to deny service that may be
part of larger attack plans.

Many problems also arise from trying to make a name do too much, or
making assumptions about it which don’t hold outside of one particular system,
or culture, or jurisdiction. For example, it should be possible to revoke a user’s
access to a system by cancelling their user name without getting sued on account
of other functions being revoked. The simplest solution is often to assign each
principal a unique identifier used for no other purpose, such as a bank account
number or a system logon name. But many problems arise when merging two
systems that use naming schemes that are incompatible. Sometimes this can
even happen by accident.

Research problems

I’ve touched on many technical issues in this chapter, from secure time protocols
to the complexities of naming. But perhaps the most important research prob-
lem is to work out how to design systems that are resilient in the face of malice,
that degrade gracefully, and whose security can be recovered simply once the
attack is past. All sorts of remedies have been pushed in the past, from get-
ting governments to issue everyone with ID to putting it all on the blockchain.
However these magic bullets don’t seem to kill any of the goblins.

It’s always a good idea for engineers to study failures; we learn more from
the one bridge that falls down than from the thousand that don’t. We now have
a growing number of failed ID systems, such as the UK government’s Verify
scheme — an attempt to create a federated logon system for public service that
was abandoned in 2019 [1029]. There is a research community that studies
failures of ID systems in less developed countries [93]. And then there’s the
failure of blockchains to live up to their initial promise, which I'll discuss in
Part 2 of this book.

Perhaps we need to study more carefully the conditions under which we
can recover neatly from corrupt security state. Malware and phishing attacks
mean that at any given time a small (but nonzero) proportion of customer bank
accounts are under criminal control. Yet the banking system carries on. The
proportion of infected laptops, and phones, varies quite widely by country, and
the effects might be worth more detailed and careful study.

Classical computer science theory saw convergence in distributed systems as
an essentially technical problem, whose solution depended on technical proper-
ties (at one level, atomicity, consistency, isolation and durability; at another,
digital signatures, dual control and audit). Perhaps we need a higher-level view
in which we ask how we obtain sufficient agreement about the state of the world,
and incorporate not just technical resilience mechanisms and protection tech-
nologies, but also the mechanisms whereby people who have been victims of
fraud obtain redress. Purely technical mechanisms that try to obviate the need

Security Engineering 244 Ross Anderson

7.5. SUMMARY

for robust redress may actually make things worse.

Further reading

If the material in this chapter is unfamiliar to you, you may be coming to the sub-
ject from a maths/crypto background or chips/engineering or even law/policy.
Computer science students get many lectures on distributed systems; to catch
up, I’d suggest Saltzer and Kaashoek [1217]. Other books we’ve recommended
to our students over the years include Tanenbaum and van Steen [1369] and
Mullender [1007]. A 2003 report from the US National Research Council, ‘Who
Goes There? Authentication Through the Lens of Privacy’, discusses the trade-
offs between authentication and privacy, and how they tend to scale poorly [782].
Finally, there’s a recent discussion of naming by Pat Helland [649].

Security Engineering 245 Ross Anderson

