
Chapter 20

Advanced Cryptographic
Engineering

Give me a rock on which to stand, and I will move the world.
– Archimedes

Whoever thinks his problem can be solved using cryptography,
doesn’t understand his problem and doesn’t understand

cryptography
– Attributed by Roger Needham and Butler Lampson to each other

20.1 Introduction

Cryptography is often used to build a trustworthy component on which more
complex designs can rely. Such designs come from three rather di↵erent back-
grounds. The first is the government systems world we described in Chapter
9, where the philosophy is to minimise the trusted computing base using mech-
anisms like data diodes and multilevel secure encryption devices. The second
is the world of banking described in Chapter 12 where smartcards are used
as authentication tokens while HSMs are used to protect PINs and keys. The
third is the world of cryptography research in the 1980s and 1990s where people
dreamed of solving social problems using mathematics: of creating anonymous
communications so that oppressed groups could evade state surveillance, lead-
ing to censorship-resistant publishing, untraceable digital cash and electronic
elections that would be impossible to rig. In all these cases, real life turned out
to be somewhat messier than we anticipated.

There are even more complex cryptographic components that we use as
platforms. But the engineering isn’t just about reducing the attack surface, or
simplifying our fault tree analysis. In most cases there’s a significant interaction
with policy, liability and other complicating factors.

In this chapter I’m going to discuss six examples of cryptographic engineering
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– full disk encryption, the Signal protocol, Tor, hardware security modules,
enclaves and blockchains. The first is a simple example to set the scene; the other
five use crypto in more complex ways to support a wide range of applications,
including payments in the case of the last three. All but HSMs are used by
cybercriminals.

Hard disk encryption has been around since the 1980s and is one of the
simplest security products, at least conceptually. By encrypting the data on
your hard disk when the machine’s in use, you ensure that a thief can only steal
the hardware, not the data.

Signal is a protocol for secure messaging between phones. It is perhaps the
next level up in complexity and is about enabling people to manage a social
network as securely as possible in the face of equipment compromise. Signal
does private contact discovery by means of enclaves.

Tor takes this to the next level by providing anonymity, when you don’t want
someone observing your tra�c to know who you’re talking to or which websites
you’re visiting.

HSMs have provided a trust platform for payment services since the 1980s.
But the crypto apps that run on them can su↵er from attacks on their application
programming interfaces that are so deeply entangled with payment applications
that they are very hard to fix.

Enclaves are an attempt by CPU vendors to provide a general purpose crypto
platform: we’ve had Arm’s TrustZone since 2004 and Intel’s SGX since 2015.
They are starting to replace HSMs in payment applications, and also support
private contact discovery in Signal. But they have been plagued with problems
from side-channel attacks to class breaks. For example, if you can extract the
master secret key from an SGX chip, you can break the whole ecosystem.

Finally, for a quite di↵erent kind of trusted computer, we look at Bitcoin.
This is a project, since 2009, to create a digital currency based on a shared ledger
that emerges using cryptographic mechanisms from the cooperation of mutually
mistrustful parties. Many of the stakeholders are far from trustworthy, and there
are dominant players at several levels in the technology stack. Yet a trusted
computer has somehow emerged, thanks to a combination of cryptography and
economic incentives, and has kept going despite the huge amounts of money
that could be taken in a successful attack.

It may be useful to bring together in one chapter the trusted platforms
of both bankers and gangsters, so we can contrast them. Some striking facts
emerge. For example, the best attempts of the top technology companies to
produce trusted computers have produced flawed products, while the gangsters
seem to have created something that works – at least for now.

20.2 Full-disk encryption

The idea behind full-disk encryption (FDE) is simple. You encrypt data as
it’s written to disk, and do decryption as it’s read again. The key depends
on an initial authentication step such as a password, which is forgotten when
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the machine sleeps or is switched o↵. So if a doctor leaves their laptop on a
train, only the hardware is lost; the medical records are not. FDE has become
a regulatory requirement in many industries. In Europe, privacy regulators
generally see the loss of machines with FDE as not serious enough to attract
a fine or to need mandatory notification of data subjects. Many phones and
laptops come with FDE; with some it’s enabled by default (Android) while with
others it just takes a click (Mac).

Scratch a little under the surface, though, and there’s a wide variance in
quality. From the early days of hard disks in 1980s, software FDE products
were available but imposed a performance penalty, while hardware products
cost more and were export-controlled. The engineering isn’t trivial, as you
need a platform on which to run the initial authentication step. Early products
o↵ered an extra encrypted volume but did not protect the host operating system
and could be defeated by malware. The initial authentication is tricky in other
ways. If you derive the disk key from a user password, then a thief can try
zillions of them o✏ine, as we discussed in 3.4.4.1, and guess anything a normal
user sets up. A hardware TPM chip can limit password guessing, and from
2007 this became available for Windows with Bitlocker. Integrating FDE into a
platform enables the vendor to design coherent mechanisms for trusted boot of
an authentic copy of the operating system, setting up and managing recovery
keys, and coping with quite complex interactions with software upgrade, swap
space, device repairs, the backup and recovery of user data, and factory reset
when the device is sold.

Third-party o↵erings started to o↵er some extra features: TrueCrypt, for
example, o↵ered a steganographic file system where the very existence of a disk
volume would remain hidden unless the user knew the right password [114]1.
A crypto phone sold to criminals, EncroChat, had a whole hidden partition
containing encrypted chat and VOIP apps; I’ll discuss such products in more
detail in section 25.4.1. However most people now use the FDE facility provided
by the vendor of their phone or laptop, as proper integration involves quite a lot
of the platform. Since 2010 we’ve had a special mode of operation, XTS-AES,
designed for FDE; it encrypts each block salted with the sector number, and has
a mechanism to fit disc blocks to block ciphers. O↵erings such as Microsoft’s
BitLocker and Apple’s FileVault have an overhead of only a few percent, when
run on CPUs with AES support.

Yet attacks continue. In 2008, Alex Halderman and colleagues at Princeton
came up with cold boot attacks, which defeated the principal FDE products then
on the market and can still present a problem for many machines [854]. As I
described in section 18.3, you freeze a computer’s DRAM in which the transient
encryption key is stored, then reboot the device with a lightweight operating
system and acquire a memory image, from which the key can be read. In 2015,
we found that most Androids were insecure: the factory reset function was so
badly engineered by most OEMs that credentials, including FDE keys, could be
recovered from second-hand devices [1757]. And most Android phones don’t get

1That product was suddenly discontinued and its anonymous developers recommended
that users migrate to other products because of an unspecified vulnerability; some suspect
that this was a ‘warrant canary’, a pre-planned warning message whose transmission the
developers suppress by certifying regularly that they are not subject to coercion, but which
fires o↵ a warning once they’re served with a subpoena or warrant [61].
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patched once they’re no longer on sale. And in 2019, Carlo Meijer and Bernard
van Gastel found that the three third-party FDE products that held 60% of the
market were insecure, that open-source software encryption would have been
better, and that Bitlocker turned itself o↵ if one of these hardware products
appeared to be present; thanks to their work, it no longer does so [1285]. And
then there’s the collateral damage. Now that lots of sensitive data are kept not
on hard disks but in Amazon S3 buckets, auditors routinely demand that these
buckets are encrypted; but as the failure mode of an S3 bucket isn’t a burglar
in Amazon’s data centre but negligence over access controls, it’s unclear that
S3 bucket encryption achieves anything other than tick-box compliance.

And finally one has to consider abusability, of which there are at least two
significant kinds. First, the wide availability of FDE code is one of the two
components that led to the recent wave of ransomware attacks, where a gang
penetrates your systems, installs FDE, lets it run until you’ve encrypted enough
backups to make recovery painful, then demands a ransom for the key. (The
other component is cryptocurrency which I’ll discuss later in this chapter.) Sec-
ond, many people consider FDE to be magic insurance against compromise, and
won’t report a laptop left on a train if it had FDE enabled (or was supposed
to), even if the finder might have seen the password, or be able to easily guess
it.

So even the simplest of encryption products has a significant entanglement
with compliance, is much more complex under the hood than you might think at
first glance, usually imposes some performance penalty, and can be vulnerable to
a capable opponent – even years after the relevant attacks have been published.

20.3 Signal

As smartphones spread round the world, people switched from SMS to messaging
apps such as WhatsApp, Telegram and Signal as they’re cheaper and more
flexible, allowing you to create groups of families and friends. Pretty soon they
started supporting voice and video calls too, and o↵ering end-to-end encryption.
It had previously been possible to encrypt email using programs like PGP, but
it was rather fiddly (as we discussed in section 3.2.1) and remained a niche
activity. The arrival of new platforms meant that message encryption could
be made universal, shipped as a default with the app; the Snowden disclosures
helped stoke the public demand.

Signal is a free messaging app, initially developed by a man who uses the
name of Moxie Marlinspike. It set the standard for end-to-end encryption of
messaging, and its mechanisms have been adopted by competing products in-
cluding WhatsApp. Mobile messages can be highly sensitive, with everything
from lovers’ assignations through business deals to political intrigues at diplo-
matic summits; yet mobile phones are often lost or stolen, or sent in for repair
when the screens break. So key material in phones is frequently exposed to com-
promise, and it’s not enough to just have a single long-lived private key in an
app. The Signal protocol therefore provides the properties of forward secrecy,
that a key compromise today won’t expose any future tra�c, and backward se-
crecy, which means that it won’t expose previous tra�c either. These are now
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formalised as post-compromise security [451].

The protocol has three main components: the Extended Triple Di�e-Hellman
(X3DH) protocol to set up keys between Alice, Bob and the server; a ratchet
protocol to derive message keys once a secret key is established; and mechanisms
for finding the Signal keys of other people in your address book.

We can’t use vanilla Di�e-Hellman to establish a fresh key between Alice
and Bob, as they might not be online at the same time. So in the X3DH
protocol [1227], each user U publishes an identity key IKU and a prekey SKU

to a server, together with a signature on the latter that can be verified using
the former. The algorithms are elliptic-curve Di�e-Hellman and elliptic-curve
DSA. When Alice wants to send a message to Bob, she fetches Bob’s keys IKB

and SKB from the server, generates an ephemeral Di�e-Hellman key EKA,
and combines them with Bob’s keys in all the feasible ways: DH(IKA, SPKB),
DH(EKA, IKB), and DH(EKA, SPKB). These are hashed together to give
a fresh key KAB . Alice then sends Bob an initial message containing her keys
IKA and EKA, a note of which of Bob’s prekeys she used, and a ciphertext
encrypted using KAB so that he can check he’s got it too. Optionally, Bob can
upload a one-time ephemeral key that Alice will combine with EKA and hash
into the mix.

Given an initial Di�e-Hellman key KAB , Alice and Bob then use the dou-
ble ratchet algorithm to derive message keys for individual texts and calls. Its
purpose is to recover security if one of their phones is compromised. It uses
two mechanisms: a key derivation function (KDF) or one-way hash function to
update stored secret keys, and further Di�e-Hellman key exchanges. Alice and
Bob each maintain separate KDF chains for sending and for receiving, each with
a shared-secret key and a Di�e-Hellman key. Each message carries a new Di�e
Hellman key part which is combined with the key for the relevant chain, while
the shared-secret key is passed through the KDF. The actual details are slightly
more fiddly, because of the need to deal with out-of-order messages [1512]. The
goal is that an opponent must compromise either Alice’s phone or Bob’s con-
tinuously in order to get access to the tra�c between them.

The really tricky part is the initial authentication step. If Charlie could take
over the server and send Alice his own IK instead of Bob’s, all bets are o↵. This
is the attack being mounted on messaging apps by some intelligence agencies.
Systems such as Apple’s iMessage don’t just send a single identity key KI to
your counterparty but a whole keyring of device keys – one for each of your
MacBooks, iPhones and other Apple devices. Ian Levy and Crispin Robinson of
GCHQ propose that laws such as the UK’s Investigatory Powers Bill be used to
compel providers to add an extra law-enforcement key to the keyring of any user
against whom they get a warrant [1153]. This has led to policy tussles in the
USA, the UK and elsewhere, to which I return in section 26.2.8. Keeping such
surveillance covert will depend on the phone app software remaining opaque
to users; otherwise the double ratchet algorithm will prevent Alice and Bob’s
private conversation being joined by Charlie as a silent conference call partner,
or ‘ghost user’. Signal attempts to forestall this by being open source.

The upshot is that if Charlie wants to exchange Signal messages with Alice
while pretending to be Bob, he has to either compromise Bob’s phone or steal
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Bob’s phone number. The options are much the same as if he wanted to steal
money from Bob’s bank account. They include hacking and stealing the phone;
using SS7 exploits to steal Bob’s SMS messages; and a SIM swap attack to take
over Bob’s phone number. The easiest attack for an individual to mount is
probably SIM swapping, which we discussed in section 12.7.4. Signal now o↵ers
an additional PIN that you need to enter when recovering service on a phone
number on which a di↵erent handset was previously active. Nation states have
sophisticated hacking tools, and have SS7 access – so if the FSB’s in your threat
model, it’s best to use a phone whose number they don’t know, and don’t carry
it around switched on at the same time as a phone they do know is yours, or
they might correlate the traces – as I described in section 2.2.1.10.

As we will discuss in section 26.2.2, much of the benefit of signals intelligence
comes from metadata, from knowing who called whom and when (or who trav-
eled with whom and when). So for a whistleblower, the game depends on how
many other people will become suspects as well as you – the anonymity set. If
you’re a senior civil servant thinking of leaking an illegal policy to a newspaper,
and you’re one of ten people who knows the story, then you might be the only
one of the ten who has ever used Signal.

However, if you’re one of hundreds of low-level suspects (say you’re a union
organiser or NGO sta↵er) and might be on a long list of targets for thematic
collection, then you may want to block the local police from systematically
recording your patterns of contacts, and here Signal can indeed help. It o↵ers
the interesting innovation of private contact discovery.

Previous attempts to help ordinary people use end-to-end encryption, such
as the email encryption program PGP, never got much traction outside specialist
niches because key management was too much bother. Messaging apps solved
the usability problem by demanding access to your address book, looking up
all your contacts on their servers to see who else was a user and then flagging
them so you know you can message them. However, giving service firms a
copy of your address book is already a privacy compromise, and if you also let
them keep a plaintext record of your social graph, profile name, location, group
memberships and who is messaging whom, then investigators can get all this by
subpoena. The original version of Signal compared hashes of the phone numbers
in people’s address books to discover who was using it; however, Christof Hagen
and colleagues used 100 accounts over 25 days to scan all 505m phone numbers
in the USA, discovering 2.5m Signal users [848]. Signal has now implemented
private contact discovery; I will discuss it later in section 20.6 which discusses
SGX, the mechanism it uses. However, when you set up a Signal account on
your phone, even private contact discovery makes this fact immediately apparent
to everyone in your address book who’s also on Signal (and they’ll say – ‘Hey,
Fred’s about to leak something’ – so a careful leaker would buy a burner phone
for cash.)

A critical but less visible part of the system is the message server. This has
to store encrypted messages that have not yet been delivered but how much
else is kept and for how long2? Signal keeps records of group memberships,
but there’s now a proposal for anonymous group messaging, which would make

2There was a debate about how to handle undelivered messages when keys change, and
the WhatsApp implementation was criticised for prioritising delivery over failing closed.
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group members known to each other but not to Signal’s servers [409]. Again,
technology can only do so much; if one member of your group is disloyal, they
can betray others. However Signal has got real traction as the leading commu-
nications security tool available to the public. There was a significant uptick in
usage in the USA after the 2016 election, and in 2020 the European Commission
(Europe’s civil service) ordered its sta↵ to switch to Signal after the compromise
of a server containing thousands of diplomatic cables [399].

There was an upset in July 2020, when a Signal update forced users to select
a PIN, with a view to keeping each user’s contact data encrypted in an enclave,
so it could be recovered if the user got a new phone, and so that there could be
some other way to make a Signal contact other than by sharing a phone number.
This created a storm of protest as users assumed that Signal would also keep
message content; other users didn’t think a PIN gave enough protection, or
didn’t want to give Signal a PIN they used for banking, or just didn’t like the
idea of any centralised data at all. People started questioning the wisdom of
relying on a secure communications app whose chief maintainer is someone who
uses a pseudonym, who can hold millions of users hostage on a whim, and whose
backing was partly from the government and partly from a billionaire3. What
should the governance of public-interest critical infrastructure look like?

Signal claims to keep no records of tra�c, but what if a FISA warrant from
the NSA had forced them to do so and lie about it? This brings us to the harder
question of how communications can be made anonymous.

20.4 Tor

The Onion Router (Tor) is the main system people use to get serious anonymity
online, with about 2 million concurrent users in 2020. It began its life in 1998
at the US Naval Research Laboratory, and was called Onion Routing because
messages in it are nested like the layers of an onion [1590]. If Alice wants to
visit Eve’s website without Eve or anyone else being able to identify her, she
sets up a TLS connection to a Tor relay operated by Bob, which sets up a TLS
connection to a Tor relay operated by Carol, which in turn a TLS connection to
a Tor relay operated by David – from whose ‘exit node’ Alice can now establish a
connection to Eve’s website [1360]. The idea is to separate routing from identity
– anyone wanting to link Alice to Eve has to subvert Bob, Carol and Dave, or
monitor the tra�c in and out of Bob’s and David’s systems.

The inspiration had been a 1981 idea of David Chaum’s, the mix or anony-
mous remailer [410]. This accepts encrypted messages, strips o↵ the encryption,
and then remails them to the address that it finds inside. Various people ex-
perimented with these in the 1990s and found that you need three more things
to make it work properly. First, you need more than one mix; an opponent
could compromise a single mix by coercing the operator, or simply correlating
the tra�c in and out. Second, you need to engineer it for the tra�c you want
to protect, be that email, web or messaging. Third, and hardest of all, you need
scale.

3Brian Acton, one of the founders of WhatsApp.
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The Navy opened Tor up to the world in 2003 because you can only be
anonymous in a crowd. If Tor had been restricted to US intelligence agents, then
anyone using it would be a target. It is now maintained by the Tor Project, a
US nonprofit that maintains the Tor Browser, which has become the default Tor
client. This not only handles circuit setup and encryption but manages cookies,
javascript and other browser features that are hazardous to privacy. Similar
functionality is also built into some other browsers, such as Brave. There’s
also software for Tor relays, which are run by volunteers with high-bandwidth
connections; in 2020, about 6,000 active relays serve about 2 million users. When
you turn on a Tor-enabled browser, it opens a circuit by finding three Tor relays
through which it connects to the outside world.

Tor’s cryptographic and software design has evolved over 20 years in the face
of a variety of threats and abuse, and it is now used as a component in many
applications. It’s used to defeat censorship in countries like Iran and Pakistan so
you can connect to Facebook and read American and European newspapers. The
US State Department supports it, and Facebook is the biggest Tor destination.
It can also be used to connect to underground dark markets where you can buy
drugs and malware. It can be used to leak classified documents. It can be used
to visit child sex abuse websites. The police also use it to visit such sites, so the
operators don’t know they’re police.

The principal vulnerabilities were known from day one and documented in
the 1998 paper that introduced onion routing to the world, six years before
Tor itself appeared [1590]. But they have frequently been overlooked by care-
less users. First, a malicious exit node can monitor the tra�c if Eve’s website
doesn’t use encryption, or if she uses it in such a way that the exit node can do
a man-in-the-middle attack. In September 2007, someone set up five Tor exit
nodes, monitored the tra�c that went through them, and published the inter-
esting stu↵ [1359]. This included logons and passwords for a number of webmail
accounts used by embassies, including missions from Iran, India, Japan and
Russia4. Yet the Tor documentation made clear that exit tra�c can be read,
so more careful diplomats would have used a mail service that supported TLS
encryption, as Gmail already did by then.

The second problem is the many tricks that web pages employ to track users.
This was the main reason for the introduction in 2008 of the Tor Browser, which
limits the tracking ability of cookies and other fingerprinting mechanisms. But
many applications get users to identify themselves explicitly, or leak information
without realising it. In section 11.2.3 I discussed how supposedly anonymous
search histories from AOL identified users: a few local searches (that tell where
you live) and a few special-interest searches (that reveal your hobbies) can be
enough.

Third, low-latency, high-bandwidth systems such as Tor have some intrinsic
exposure to tra�c analysis [1363]. A global adversary such as the NSA, that
taps tra�c at many points in the Internet, need only tap a small number of
exchange points to get a good enough sample to reconstruct circuits [1365]. In
practice this is harder than it looks5. Tor has made clear since the start that

4This gave an insight into password choice: Uzbekistan came top with passwords like
‘s1e7u0l7c’ while Tunisia just used ‘Tunisia’ and an Indian embassy ‘1234’.

5The intelligence community paid a compliment to Tor, on a GCHQ slide deck leaked by
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it does not protect against tra�c confirmation attacks, where the opponent
controls both the entry and exit relays and correlates the timing, volume or
other characteristics of the tra�c to identify a particular circuit. Indeed, in 2014
it was discovered that someone (presumably an intelligence agency) had been
doing just this, volunteering relays into the system that tinkered with protocol
headers in order to make it easier [561]. Tor relays now have countermeasures
against such tweaks, but tra�c confirmation is still a threat.

Fourth, as Tor connects through a pool of some 6,000 relays, a firewall can
simply block their IP addresses. This is done by some companies and also by
some countries, most notably China. To circumvent such blocking, volunteers
make available Tor bridges – Tor entry nodes not listed in the public directory.
Various games are played as Chinese and other censors try to find and block
these too, and to characterise Tor tra�c. China appears to prefer that people
circumventing its national firewall use VPNs instead; these are not only more
scalable but easier to shut down completely at times of crisis (such as in the
early stages of the 2020 coronavirus outbreak).

Law-enforcement agencies have on a number of occasions managed to find
and close down Tor onion services, websites that are available only through the
Tor network; rather than a normal URL, they have a ‘.onion’ address that is
essentially a cryptographic key. The most famous such service was Silk Road,
an underground marketplace where people bought and sold drugs; its operator
was arrested because of poor operational security (the email address he used to
announce his new service could be traced back to him). Other onion services
have had their servers hacked, or supply chains traced. Many of them use
cryptocurrencies, which we’ll describe later and which can also be traced in
various ways. There have also been attacks on the browsers of Tor users with
techniques such as zero-days and sandbox escapes. And even in the absence of
technical failures, anonymity is intrinsically hard; real-world transactions (and
indeed real-world web tra�c) can be very dirty, so unexpected inferences can
often be drawn.

As with FDE, Tor has a significant entanglement with compliance, helping
a variety of actors to evade surveillance and circumvent laws both good and
bad. The engineering has become a lot more complex under the hood than it
looks. It definitely imposes a performance penalty – websites can take a second
to load rather than a few hundred milliseconds. And despite the robustness of
the Tor system itself, it has intrinsic limitations that are not intuitively obvious
and make anonymity systems built on it hazardous to use. Anonymity systems
require careful operational security as well as just the right software.

The governance aspects are of interest. Tor is maintained by the Tor Project,
a US nonprofit set up in 2006 to formalise a volunteer project that had started
in 2002. Although it has many volunteers, a growing core of permanent sta↵
have been funded from various sources over the years, from the EFF to the US
State Department. It remains at heart an international community of people
motivated by human rights. An ethnographic study by Ben Collier describes
it as made up of three overlapping groups: a group of engineers who see Tor
as a structure, and believe that political problems can be solved by doing engi-

Ed Snowden, saying “Tor stinks!”
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neering; a group of activists see it as a struggle, and are committed to specific
political values such as anti-racism; while a third group of people largely main-
tain the Tor relays, are generally politically agnostic, and see what they do as
providing infrastructure – “privacy as a service” [458]. Security at scale requires
infrastructure, and to provide this largely by volunteer e↵ort requires leaders
who can translate between the di↵erent stakeholders’ agendas and negotiate
values rather than just contracts.

20.5 HSMs

In the chapter on Banking and Bookkeeping, we described how banks use HSMs
to enforce a separation-of-duty policy: no single person at the bank should be
able to get their hands on a customer’s card details and PIN. HSMs are also
used to protect the SSL/TLS keys for many websites; you don’t want important
live keys to be sitting on a developerâĂŹs laptop, or to be easily extractable
by a cloud provider through a memory dump. In the cryptocurrency industry,
HSMs are used to protect keys that could sign away substantial assets. In the
chapter on Tamper Resistance, we described the mechanisms used to make the
HSM tamper-proof. But this isn’t enough. You also have to ensure that when
you split a computation between a more trusted component such as an HSM
and a less trusted component, an attacker can’t exploit the split.

Whenever a trusted computer talks to a less trusted one, you have to expect
that the less trusted device will lie and cheat, and probe the boundaries by using
unexpected combinations of commands, to trick the more trusted one. How can
we analyse this systematically?

Banking HSMs have a lot to teach. In 1988, Longley and Rigby identified the
importance of separating key types while doing work for security module vendor
Eracom [1184]. In 1993, we reported a security flaw that arose from a custom
transaction added to a security module [107]. However we hit paydirt in 2000
when Mike Bond, Jolyon Clulow and I observed that HSM APIs had become
immensely complex, with hundreds of di↵erent transactions involving complex
combinations of cryptographic operations to support dozens of payment protocol
variants, and started to think systematically about whether there might be a
series of HSM transactions that would break it [71]. We asked: “How can you
be sure that there isn’t some chain of 17 transactions which will leak a clear
key?’ After we spent some time staring at the manuals, we started to discover
lots of vulnerabilities of this kind.

20.5.1 The xor-to-null-key attack

HSMs are driven by transactions sent to them by servers at a bank or ATMs in
the field. The HSM contains a number of master keys that are kept in tamper-
responding memory. Most keys are stored outside the device, encrypted under
one or more master keys. It’s convenient to manage keys for ATMs and other
terminals in the databases used to manage them; and nowadays many HSMs
are located in the Azure and Amazon clouds where they serve multiple tenants.
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The encrypted working keys have a type system which classifies them by
function. For example, in the PCI standard for security modules, a PIN deriva-
tion key – the master key used to derive a PIN from an account number as
described in section 12.4.1 – is stored encrypted under a particular pair of mas-
ter DES keys to mark it as a non-exportable working key. The Terminal Master
Key for an ATM is of the same type, and you’ll recall from section 12.4.1 that
ATM security policy is dual control, so the bank generates separate keys for
two ATM custodians, say the branch manager and the branch accountant, who
enter them at a keypad when the device is commissioned, or following a service
visit. The HSM thus has a transaction to generate a key component and print
it out on an attached security printer. It also returns its encrypted value to the
calling program. There was another transaction that combines two components
to produce the terminal master key: given two encrypted keys, it would decrypt
them, exclusive-or them together, and return the result – encrypted in such a
way as to mark it as a non-exportable working key.

The attack was to combine a key with itself, yielding a known key – the
key of all zeros – marked as a non-exportable working key. As there was a
further transaction, which would encrypt any non-exportable working key with
any other, you were now home and dry. You could extract the crown jewels –
the PIN derivation key – by encrypting it with your all-zero key. You can now
decrypt the PIN derivation key and work out the PIN for any customer account.
The HSM has been defeated.

The above attack went undiscovered for years. The documentation did not
spell out what the various types of key in the device were supposed to do; non-
exportable working keys were just described as ‘keys supplied encrypted under
master keys 14 and 15’, and the implications of a transaction to encrypt one such
key under another were not immediately obvious. In fact, the HSMs had simply
evolved from earlier, simpler designs as ATM networking was introduced in the
1980s and banks asked for lots more features so they could make heterogeneous
networks talk to each other.

So Mike Bond built a formal model of the key types used in the device
and immediately discovered another flaw. You could supply the HSM with an
account number, pretend it’s a MAC key, and get it encrypted with the PIN
verification key – which also gives you the customer PIN directly. Confused?
Initially everyone was – modern APIs are way too complicated for bugs to be
evident on casual inspection. Anyway, the full details are at [100]. The latest
HSMs have strong typing to make it easier to reason formally about keys.

20.5.2 Attacks using backwards compatibility and time-
memory tradeo↵s

We worked with an HSM vendor, nCipher, who supplied us with samples of their
competitors’ products, so we could break them – not just to help their marketing,
but to enable them to migrate customer key material to their own products. The
top target at the time was the IBM product, the 4758 [951]. This was the only
device certified to FIPS 140-1 level 4; in e↵ect the US government had said it was
unbreakable. It turned out to be vulnerable to an attack exploiting backwards
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compatibility [279].

As DES became vulnerable to keysearch during the 1980s, banks started
migrating to two-key triple-DES: each block was encrypted with the left key,
decrypted with the right key and then encrypted with the left key once more.
This bright idea gave backward compatibility: if you set the left key equal to
the right key, the encryption reverts to single-DES. The 4758 stored left keys
and right keys separately, and encrypted them di↵erently, giving them di↵erent
types – but failed to bind together the two halves of a triple-DES key. You could
take the ‘left half’ of a single-DES key plus the ‘right half’ of another, put them
together into a true triple-DES key, and then use this to export other keys.

So all you had to do to break the 4758 was a single-DES keysearch. That’s
not too hard now, but was still a fair bit of work back in 2002. Fortunately there
was another vulnerability – a time-memory tradeo↵ attack. That generation of
HSMs had ‘check values’ for keys – one-way hashes of each key, calculated by
encrypting a string of zeroes. Suppose you want a single DES key of a specific
type. You precompute a table of (say) 240 keys and their hashes. You get the
HSM to generate keys of the desired type and output the hashes until you see
a hash that’s already in the table. This takes about 216 hashes, which takes
an hour or so [447]. The backwards-compatibility and time-memory tradeo↵
attacks are examples of an API attack on the HSM platform itself rather than
on the PCI PIN management app.

20.5.3 Di↵erential protocol attacks

The 4758 bugs got fixed, and recent models of ATM o↵er public-key mechanisms
for automatic enrolment. But legacy key-management and PIN-management
mechanisms persist at the app layer, as it’s hard to change the architecture of a
distributed system with hundreds of vendors and thousands of banks. And there
was much more to come. The next wave of attacks on HSM APIs was initiated
by Jolyon Clulow in 2003; they perform active manipulation of the application
logic to leak information. Many HSMs support transactions tailored for specific
applications; the largest market segment is to support card payments, though
there are also HSMs for prepayment utility meters, for certification authorities
and even for nuclear command and control.

Clulow’s first attack exploited error messages [449]. I described in sec-
tion 12.4.2 how banks who just wrote a customer’s encrypted PIN to their bank
card got attacked, as a customer could change the account number to another
one and use their PIN to loot that account. In order to stop such attacks, Visa
introduced an optional PIN block format that exclusive-ors the PIN with the
account number before encrypting them. But if the wrong account number was
sent along with the PIN block, the HSM would decrypt it, xor in the account
number, and when the result was not a decimal number, it would return an error
message. So by sending a few dozen transactions to the HSM with a variety of
wrong account numbers, you could work out the PIN6. There are now special

6There are now four di↵erent PIN block formats for PIN transmission, three of which
include the PAN as well; and there’s a further format, the PIN Verification Value (PVV),
which is a one-way encryption of the PIN and PAN that’s sent by banks to switches such as
VISA and Mastercard if they want the switch to do stand-in PIN verification when their own
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PCI rules for HSMs on PIN translation [977]. Complexity opens up new attacks,
which need yet more complexity to patch them.

A further class of attacks was then found by Mike Bond and Piotr Zielinski.
Recall the method used by IBM (and most of the industry) to generate PINs,
as shown in Chapter 12, figure 12.3. The primary account number is encrypted
using the PIN verification key, giving 16 hex digits. The first four are converted
to decimal, and while most banks do this by taking the hex digits modulo 10,
not all do. HSM vendors parametrised the operation by having a decimalisation
table, of which the default is 0123456789012345, which just reduces the hex
output modulo 10. This was a big mistake.

If we set the decimalisation table to all zeros (i.e., 0000000000000000) then
the HSM will return a PIN of ’0000’, albeit in encrypted form. We then repeat
the call using the table 1000000000000000. If the encrypted result changes, we
know that the DES output contained a 0 in its first four digits. Given a few dozen
queries, the PIN can be deduced. Attacks that compare repeated, but slightly
modified, runs of the same protocol, we call di↵erential protocol analysis. The
only real solution was to pay your HSM vendor extra for a machine with your
own bank’s decimalisation table hard-coded. That may cause more problems
when you want to move your bank to the cloud, and share HSMs maintained
by Amazon or Azure7.

At a philosophical level, this illustrates the di�culty of designing a robust
secure multiparty computation – a computation that uses secret information
from one party, but also some inputs that can be manipulated by a hostile
party [99]. Even in this extremely simple case, it’s so hard that you end up
having to abandon the IBM method of PIN generation, or at least nail down
its parameters so hard that you might as well not have made them tweakable in
the first place.

At a practical level, it illustrates one of the main reasons APIs fail over time.
They get made more and more complex, to accommodate the needs of more and
more customers, until suddenly there’s an attack.

20.5.4 The EMV attack

You’d have thought that after the initial wave of API attacks were published
in the early 2000s, HSM designers would have been more careful about adding
new transactions. However, just as security researchers and HSM vendors found
and fixed bugs, the banking industry mandated new ones.

For example, an HSM feature ordered by EMVCo to support secure mes-
saging between a smartcard and a bank HSM introduced an exploitable vul-
nerability in all EMV compliant HSMs [22]. The goal was to enable a bank to
order any EMV card it had issued to change some parameter, such as a key,
the next time it did an online transaction. So EMVCo defined a transaction
Secure Messaging For Keys whereby a server can command an HSM to encrypt

system is down.
7One vendor decreed that a table must have at least eight di↵erent values, with no

value occurring more than four times. But this doesn’t work: 0123456789012345, then
1123456789012345, and so on.
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a text message, followed by a key of a type for sharing with bank smartcards.
The encryption can be in CBC or ECB mode, and the text message can be of
variable length. The attack is to choose the message length so that just one byte
of the target key crosses the boundary of an encryption block. That byte can
then be determined by sending a series of messages that are one byte longer,
and where the extra byte cycles through all 256 possible values until the key
byte is found.

20.5.5 Hacking the HSMs in CAs and clouds

The most recent HSM break, in 2019, was by Jean-Baptiste Bédrune and Gabriel
Campana, on a Gemalto HSM whose application supported the PKCS#11 stan-
dard for public-key cryptography so it could be used in certification authorities
and as a TLS accelerator. (This standard is notoriously obscure and di�cult to
implement.) They got a software development kit for the HSM, which contained
an emulator for the device, and fuzzed it until they found several vulnerabili-
ties. They managed to patch the authentication function so they could login as
admin into the HSM and install tools that read out the keys [203]. This is just
one example of many where sophisticated cryptography was fatally undermined
by careless software engineering.

20.5.6 Managing HSM risks

At one time or another, someone had found an attack on at least one version
of every security module on the market. The root cause, as so often in security
engineering, is featuritis. People make APIs more complex until they break.

Banks still have to use HSMs for compliance with PCI rules, but the crypto
keys in them are not protected by the tamper responding enclosures alone. The
configuration management has to be tight and vendor software patches have to
be applied promptly, just like in other systems. But while most banks of any
size have people who understand software security and the patching lifecycle,
they are less likely to have serious HSM expertise.

Specialist firms o↵er HSM management systems, and we’ll have to see if
these get subsumed eventually by the big cloud service providers. Management
of cloud HSMs is still a work in progress, and products such as Microsoft Cloud
Key Vault allow keys to be moved back and forth between HSMs and enclaves
that o↵er similar functionality. Of course, if a PIN management app has in-
trinsic API vulnerabilities, these will be independent of whether it’s running on
a traditional on-premises HSM, an HSM in a cloud data centre, or an enclave.
Indeed, one selling point of the Microsoft o↵ering is ‘Removing the need for
in-house knowledge of Hardware Security Modules’ [1309].

With that warning, it’s time to look at enclaves.
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20.6 Enclaves

Enclaves are like HSMs in that they aim to provide a platform on which you
can do some computation securely on a machine operated by someone you don’t
entirely trust. Early attempts involved mechanisms for digital rights manage-
ment (DRM) which obfuscated code to make it hard to interfere with8, and were
followed by the ‘trusted computing’ initiative of the early 2000s. This proposed
an architecture in which CPUs would execute encrypted code, with the keys
stored in a separate Trusted Platform Module (TPM) chip. Arm duly produced
TrustZone in 2004, as I described in section 6.3.2.

TrustZone is typically implemented in the System-on-Chip (SoC) at the heart
of a modern Android phone, although its trust boundary is typically the whole
motherboard; enclave data may be available in clear on the bus and in DRAM
chips. The main application has been mobile phones, whose vendors wanted
mechanisms to protect the baseband against user tampering (for regulatory
reasons) and to enable the phone itself to be locked (so that mobile network
operators who subsidise phones could tie them to a contract). In neither case
are hardware attacks a real concern.

Could an enclave mechanism such as TrustZone be used to harden a phone-
banking system against the kind of attacks we discussed in section 12.7.4? At-
tempts were made to market it for this purpose, but even firms that write
banking apps were reluctant to adopt it. Up until 2015, it was a closed system,
and you could only run code in TrustZone if you had it signed by the OEM.
So a developer of a banking app who wanted a ‘more secure’ authentication
component would have to get that signed by Samsung for Samsung phones, by
Huawei for their products, and so on. What’s more, the code would be di↵erent
depending on which SoC the product used. Now it’s hard enough to make an
app run robustly on enough versions of Android without also having to cope
with multiple customised versions of TrustZone running on di↵erent SoC o↵er-
ings. It’s also hard to assess security claims that vendors make about closed
platforms. For the gory details, see Sandro Pinto and Nuno Santos [1529].

In 2015, Intel launched SGX, whose access-control aspects I discussed in
section 6.3.1. SGX enclaves have aimed at a more ambitious use case, namely
cloud computing. It’s become cheaper to run systems on services such as AWS,
Azure and Google: virtualisation lets resources be shared e�ciently, so the
costs of data centres, sysadmins and so on can be amortised over thousands of
customers. But this raises many questions. How can you be sure that sensitive
data isn’t leaked to other tenants of the cloud service, for example via technical
exploits of the hypervisor software? Such products have dozens of bugs patched
every year [479]. And what protection do you have against a nation state using
a warrant to get access to your data – in e↵ect a legal exploit of the hypervisor?
The cloud service providers themselves long for a technical mechanism that
would save them the trouble of dealing with such warrants. Because of these
concerns, the security perimeter of SGX is the boundary of the chip itself. Code
and data are encrypted as they leave the chip, and decrypted as they’re imported
into the cache. The CPU’s hardware protects both confidentiality and integrity.

8For an introduction, see the chapter on ‘Copyright and DRM’ in the second edition of
this book, available free online.
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The key cryptographic mechanism is software attestation which enables the
CPU to certify to the owner of the software that it is running without modi-
fication on top of trustworthy hardware. SGX enclaves run as applications, at
ring 3, and the CPU machinery isolates their code and data from everything
underneath, including both operating system and hypervisor9. The full details
of enclave initialisation, address translation, page eviction, exception handling
and so on are extremely complicated; for an explanation and analysis, see Vic-
tor Costan and Srini Devadas [479]. One concern they raise is that with the
exception of memory encryption, SGX is implemented in microcode, which can
be updated; the whole system is therefore changeable. There are also multi-
ple side-channel attacks, particularly since Meltdown and Spectre introduced
the transient execution family of side-channel attacks, which I discussed in sec-
tion 19.4.5. Some have been patched, but the real scandal may be that Intel
has said it won’t fix the Membuster attack as a matter of policy10.

Here my concern is the cryptography used to support the enclave and attest
to the software running on it, and its suitability as a platform for other crypto
or crypto support for applications.

As the silicon processes used in high-end CPUs don’t support nonvolatile
memory, the first problem is to provide unique and persistent chip keys. Each
chip has fuses into which the fab burns a seal secret and a provisioning secret,
of which the former is not known to Intel but the latter is. This is used to
generate the master derivation key (MDK) which in turn generates key material
dependably across power cycles. Provisioning seal keys are persistent, so when
a computer changes owners, Intel doesn’t need to know. These keys enable the
CPU to prove its authenticity to Intel which supplies it with an attestation key –
a member private key in Intel’s Enhanced Privacy ID (EPID), a group signature
scheme intended to preserve signer anonymity.

These operations are done in a privileged launch enclave (LE). Originally all
SGX code had to be signed by Intel, but recent versions allow code signed by
third parties. Each enclave author is now a CA and certifies each enclave, which
has a public key, a product ID and a version number (migration of secrets is
allowed only to higher version numbers to support patching but not rollback).
The same ratchet applies to updates of the CPU microcode.

One issue is that the compromise of one chip’s MDK – in any CPU, anywhere
– breaks the attestation security of every CPU in the same group. This happened
in 2019 for AMD’s equivalent of SGX, when a bug in the microcode enabled
such a key to be extracted [337]. Intel is vulnerable in the same way: given a
clear value of MDK you can create an SGX enclave outside of SGX’s protection
mechanisms. If such a break were discovered, Intel would have to blacklist all
the CPUs in the same EPID group. We have no idea how large these groups
are, as all attestations are done opaquely by Intel and users must simply trust
the results.

9The earlier proposals of the Trusted Computing Group required that the whole software
stack underneath the enclave be attested and trustworthy, which is incompatible with an
untrusted hypervisor.

10SGX doesn’t defend against cache timing attacks, so when writing enclave code, you can’t
use data-dependent jumps. More generally, it does not protect against software side-channel
attacks that rely on performance counters, but doesn’t give enough information for developers
to model the possible leakage.
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There are now some SGX systems doing real work. An example I mentioned
earlier in this chapter is the messaging app Signal, which uses an enclave for
private contact discovery. Its developers published the source code along with an
extensive discussion of the di�culties of developing it on the Signal blog [1226].
The goal is to enable Signal clients to determine whether the contacts in their
address book are also Signal users without revealing their address book to the
Signal service. How can you build a large social graph without having any insight
into it? The idea is that clients can contact the enclave, verify it’s running the
right software, and send their contacts in to see who’s also a user. However,
doing this within the memory limit of an SGX enclave (128Mb) needs careful
organisation of hash tables of an inverted file of users’ phone numbers.

There are many more things you have to do to prevent information leakage
through memory access patterns: as branches might be observed through such
patterns, critical sections of code must not contain branches. In short, blocking
side channels is much like organising crypto code to run in constant time: fiddly,
ad hoc, manual and prone to error. SGX is also slow: while the memory encryp-
tion itself adds little overhead, context switching is a killer. Checking contacts
against others is really slow, so the process has to be batched for multiple joiners
to make it acceptable.

Another example of an SGX app is Microsoft’s Cloud Key Vault, which
enables Azure tenants to store secrets such as keys, passwords and tokens sep-
arately from their code [1309]. There’s an app to help you create and manage
certificates for TLS; secrets and keys can also be stored in cloud HSMs at the top
end, while routine applications can be both more secure and more manageable
if you don’t have to store database passwords inline in your code.

In short, writing good SGX code is hard. The toolchain is restricted, and
things like antivirus are excluded. If you’re smart, you can write trusted mal-
ware. You can even write malware that will run in one SGX enclave and do
timing attacks on code in other enclaves in the same machine, using the SGX
mechanisms to hide itself from detection [1689].

And even if you trust Intel completely; even if you believe that the NSA
won’t use a FISA warrant to force Intel to attest to an enclave in debug mode;
even if you’re not worried about an MDK compromise or the exploitation of side
channels – then there’s still the risk of app-layer exposure, just as with HSMs.
If you write your enclave code in such a way that it can be used as an oracle by
less trusted code, you’re in trouble.

Intel (and Arm) are talking about successor versions of their enclave tech-
nology. Meantime Intel points crypto developers at their management engine
(ME), a separate microcontroller shipped in the CPU chipset that starts the
CPU and contains a firmware TPM to do secure boot. It can brick a CPU by
erasing keys if the machine is reported stolen. Its code is proprietary, based
on Minix, and is signed by Intel. It supports yet another enclave with a Java
trusted execution environment, in which developers can do crypto; for example,
in payment terminals you can engineer a hardware trusted path from the ME
to a PIN pad [1698]. This enables crypto code to be shielded from malware on
the CPU but brings issues of its own, such as attacks involving physical access.
The ME has also had a whole series of vulnerabilities and exploits. It is consid-
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ered by the EFF to be a backdoor, and at least one vendor has made machines
available to governments where it is switched o↵ after boot.

20.7 Blockchains

The previous sections on the uses and limits of cryptography, on how cryptog-
raphy can be used to support anonymity, and how crypto apps can su↵er flaws
at various levels in the stack, set us up to discuss cryptocurrencies and smart
contracts. During 2016–7, cryptocurrencies were ‘the’ thing, taking their place
in the hype cycle after Big Data and the Internet of Things, alongside AI and
quantum. To many people, the word ‘crypto’ now refers to bitcoins rather than
to ciphers.

In 2008, Bitcoin was released quietly by someone using the pseudonym of
Satoshi Nakamoto, with a white paper and an implementation [1375]. This
system of anonymous digital cash circulated initially among hobbyists and ac-
tivists on the cypherpunks mailing list, but within two years it had gone viral.
In February 2011, a young libertarian called Ross Ulbricht set up Silk Road,
an online marketplace outside government control. Buyers and sellers met on
a Tor onion service and could pay for goods and services using Bitcoin. They
could rate each other, as on eBay, and there was an escrow service so that a
buyer could deposit bitcoins for release when goods were delivered. Silk Road
rapidly became the market for the mail-order supply of controlled drugs, and
over $1bn worth of trades went through it before the FBI arrested Ulbricht in
October 2013 [421]. Other underground markets adopted Bitcoin too. While
Silk Road was trading, the price had risen from about a dollar to over a hundred
dollars, and the rising price attracted investors11. Further transaction demand
came from people wanting to get their money out of countries with exchange
controls, leading to investment demand from people seeing Bitcoin as an asset
to be bought in times of crisis, like gold. By 2017 we had a bubble – with the
price of a bitcoin rising steeply through the thousand-dollar mark to a peak in
December 2017 of almost $20k.

Bitcoin has spawned multiple imitators – most of them scams, but some real
innovations too. Boosters claimed that cryptocurrency would enable a new wave
of innovation and automation as machines could negotiate smart contracts with
each other without humans or banks getting in the way. At the time of writing
(2020), the peak of enthusiasm has passed, but cryptocurrencies have become
a new asset class for investors, as well as posing multiple problems for financial
regulators and law enforcement.

All that said, Bitcoin is a fascinating construct of cryptography and eco-
nomics which has led to the emergence of a payment system that is also a
trusted computer, out of the distributed e↵ort of millions of machines that at-
tempt to mine bitcoins. There are no trusted parties other than the people
who write the software, and no pre-assumed identities of participants. The
mechanisms provide a new way of achieving consensus in distributed systems,
quite distinct from the Byzantine fault-tolerance mechanisms we discussed in

11When Ulbricht was busted, the Bitcoin price fell from $145.70 to $109.76, but as other
drug markets got going, it quickly recovered.
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section 7.3.1. That is one reason to include cryptocurrencies as an example of
advanced cryptographic engineering; another is the smart contracts and other
second-layer protocols built on top of them, which are of technical interest al-
though they have had little impact so far on business (the total capital of digital
exchanges may be only about $1bn).

Here is a brief summary of the basic mechanisms.

1. The Bitcoin blockchain is an append-only file containing a series of trans-
actions.

2. Users appear on the blockchain as addresses – pseudonyms which are
hashes of public keys.

3. Most transactions transfer currency from one address to another by taking
an unspent transaction output (UTXO) from a previous transaction and
transferring it to one or more addresses. Such a transaction must be signed
by the private key corresponding to the UTXO address.

4. To make a payment, you sign a transaction and broadcast it via a peer-
to-peer network to other users. Other users are free to select a set of
requested transactions, check that they’re valid, and mine them into a
new block for the blockchain.

5. Each block of transactions is authenticated by a miner by means of a
SHA256 hash of the block contents and a random salt. Miners try di↵erent
salts until the hash output has enough leading zeros to make it a hard
enough puzzle. Such a hash constitutes a proof of work, and finding them
is a random process, so it’s hard to predict which miner will find the next
one. The blockchain consists of a chain of hashes and the blocks they
authenticate. The di�culty of the puzzle is adjusted automatically so
that a new block is mined about every ten minutes.

6. Miners are paid a block reward for each block they mine; at the time of
writing, this is 12.5 bitcoins, or over $100,00012.

7. Miners also get transaction fees, which are the amount by which the inputs
of each transaction exceed the outputs. Users bid transaction fees to get
priority for their transactions; they are usually in the tens of cents but
can rise into the tens of dollars at times of congestion.

8. If two competing next blocks are mined then the conflict is resolved by the
rule that miners mine the longest chain. As a result, transactions aren’t
really considered final until about half a dozen further blocks have been
mined – about an hour for classic Bitcoin. Even so, a majority of miners
could rewrite history by constructing a chain that reached even further
back – a so-called chain reorganisation.

12In early 2020 a miner who could buy electricity for 5c per kWh could expect to mine
Bitcoin worth about half what the coins would fetch on the market, if you disregard the costs
of the equipment. However the reward halves from time to time to limit the total supply of
bitcoin, and the reward is due to drop to 6.25 bitcoin in mid-2020. People investing in mining
rigs are therefore gambling that the Bitcoin price will rise and that regulators will not be
e↵ective in suppressing demand.
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9. If the conflict isn’t resolved then you can end up with a fork – the system
spawns two incompatible successors. Bitcoin split in 2017 into Bitcoin
and Bitcoin Cash over a policy dispute about block length, and users who
owned bitcoins before the fork ended up owning bitcoins in both. But
some forks have been deliberate, and on top of that entrepreneurs have
started several thousand Bitcoin clones – most of which were scams.

10. Transactions can also contain scripts, which make payments programmable.

For a detailed description, there are three standard references. The first
two are technical expositions by a group of Princeton computer scientists: an
18-page systematisation-of-knowledge paper in 2015 by Joe Bonneau, Andrew
Miller, Jeremy Clark, Arvind Narayanan, Joshua Kroll and Ed Felten [293] while
at 308 pages there’s a 2016 book by Arvind Narayanan, Joe Bonneau, Ed Felten,
Andrew Miller and Steven Goldfeder [1383]. The third is a 2015 paper in the
Journal of Economic Perspectives by Rainer Böhme, Nicolas Christin, Benjamin
Edelman, and Tyler Moore [274]. At the time of writing, these are getting out
of date, so in what follows I will concentrate on developments since then. I’ll
assume you know the detail, or can look it up, or are not too bothered.

To understand what can go wrong with cryptocurrencies, we have to look at
a lot more than just the cryptomathematics. A common pattern has been that
elegant cryptographic ideas are let down by shoddy software engineering, a lack
of systems thinking and a near-total lack of concern for users.

20.7.1 Wallets

In the beginning, all Bitcoin users were peers: the full client software would
mine Bitcoin and let you spend the coins you mined. But things soon started to
specialise with custom rigs for miners, and light clients for ordinary users which
don’t do mining or store the whole blockchain, but make the process of buying
and selling more manageable. There is no intrinsic concept of an account, as
you own Bitcoin by knowing a private key that will unlock one or more UTXOs.
Wallets initially stored one or more private keys and provided an interface so the
user could see the UTXOs that these keys could spend (‘my bitcoins’). Wallet
security rapidly became a big deal. So-called ‘brain wallets’ which generated
private keys from a user-selected passphrase were broken by attackers doing
exhaustive search over the public keys visible on the blockchain; brain wallets
with guessable passwords were typically emptied within 24 hours [1947].

Software wallets that keep your signing keys on your hard disk, protected by
a passphrase, are an improvement, but vulnerable to malware and other attacks.
Serious operators use hardware wallets, which are essentially small HSMs and
which may be kept o✏ine (so-called cold wallets). Even so it is not unknown
for people who are known to own millions of dollars worth of Bitcoin to be held
up by armed robbers in their homes and forced to transfer it. If you have sole
physical custody of a Bitcoin wallet then you’re just as vulnerable as when,
centuries ago, people kept their savings in gold coins. By 2013 we’d seen the
emergence of hosted wallets where an exchange or other online service provider
does everything for you. That doesn’t really solve the robbery problem, as the
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robber will just force you to log on and pay him. But hosted wallets have led
to widespread other fraud and abuse as I’ll describe below.

20.7.2 Miners

As bitcoins grew in popularity and value, more people joined in to mine them.
Mining rigs appeared using FPGAs and then ASICs that run so much faster
than software on general-purpose machines that within a few years they had
taken over. Miners operate where electricity is naturally cheap, such as Iceland
and Quebec, but are mostly in places like Russia or China where they can
do deals with local o�cials. The total energy consumption of cryptocurrency
mining during 2019 was about 75TWh, and the CO2 emissions were over 35Mt
– comparable to the carbon footprint of New Zealand. As of 2020, each bitcoin
transaction consumes over half a MWh and emits over a quarter ton of CO2.

Miners have organised themselves into a small number of mining pools that
average their earnings. The control of these pools is opaque. Capacity can be
rented and is sometimes used to attack cryptocurrencies in so-called 51% attacks.
The whole point of the blockchain is to prevent double spending by creating
a tamper-proof, public, append-only log of transactions; but if a majority of
miners collude then they can rewrite history and spend coins multiple times. In
the early days, people thought that such an attack would be instantly fatal to a
currency’s credibility, but reality turned out to be more complex. For example,
in January 2019, attackers used this technique to steal over $1m from Ethereum
Classic, a cryptocurrency with a market capitalisation of over $500m, with chain
reorganisations dozens of blocks in length [1428]. Yet its market value was not
significantly a↵ected. Had they stolen most of it, the price would have collapsed
and their loot would have been worthless. There were two furthers attack in
August 2020, in one of which the attackers spent $192,000 to buy the hash power
required to steal $5.6m [1519]. So we need to think carefully about the game
theory as well as the cryptography when reasoning blockchains; the simplistic
arguments don’t always align with reality.

20.7.3 Smart contracts

The scripting language in Bitcoin is simple, but a later cryptocurrency system,
Ethereum, has a Turing-complete VM whose bytecode is usually compiled from
a language called Solidity. Ethereum has become the second cryptocurrency by
market cap as it holds out the prospect of smart contracts that can perform
complex transactions automatically. During the bubble, many startups talked
of using smart contracts to animate the Internet of Things, and to create new
services such as distributed storage, where people might pay others for the use
of their spare hard disk space for backup. The idea of such a distributed au-
tonomous organisation was heavily promoted during the bubble. This is linked
to the ‘redecentralize’ movement which seeks to move the online world away
from the large service firms that came to dominate it during the 2000s; and
while we have good tools to decentralize the distribution of static, read-only
content, we lacked a good way to decentralize transactions [509]. As of 2020,
the main applications seem to be around trading, where distributed exchanges
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(DEXs) enable people to trade one cryptocurrency for another without human
intervention. (They still account for only a tiny fraction of the total trading
volume.)

This has led to interesting new failure modes. Although the consensus mech-
anisms of the original Bitcoin blockchain are believed to be incentive compati-
ble, this is not the case when the transactions on a blockchain represent extra
value that a miner can extract by manipulating the consensus. There have
now appeared arbitrage bots that exploit ine�ciencies in DEXs by frontrunning
(anticipating and exploiting) trades. The bots bid up transaction fees, called
gas in Ethereum; there have been hundreds of millions of these priority gas
auctions where traders hustle to get priority for their trades [508]. Bots might
in theory take over the governance of a market and loot it if they could raise
enough money [869]; they already make large profits by exploiting bugs in smart
contracts [1507].

Fixing bugs can be expensive. In 2016, an investment fund called DAO
was set up as a smart contract on the Ethereum blockchain, and attracted over
$150m from over 10,000 investors. Attackers exploited a flaw in the contract to
steal the money13, and after some discussion the Ethereum software was changed
to move the stolen money to a recovery account. This resulted in a hard fork
of the blockchain, with holders of the original cryptocurrency acquiring units in
both the modified currency and in ‘Ethereum Classic’, as the unmodified version
became known.

A Danish study illustrates the further problems of using smart contracts in
a real-world application context. There had been a proposal to use them to
pay parents who have to take time o↵ work to care for sick children, which has
complex legal rules that clerks often miss, leading to appeals. The idea was
to put hashes of the case documents on the Ethereum blockchain so that both
parents and the appeals board can track them, in the hope that automating the
execution of decisions would cut bureaucratic foot-dragging. But what about
insiders, hackers and mistakes? Local governments tend to get hacked a lot
and end up paying ransomware. And who updates the contract when the law
changes, or a bug is discovered? Blockchains are by design immutable, so can’t
be patched. But the real deal-breaker was local government fear of losing control
of the process. Two further issues include the fact that people often have to bend
the rules to get stu↵ done, and that programmers are more likely to write bugs
in an unfamiliar language such as Solidity rather than a familiar one such as
Python or even Cobol – a known problem with new languages, which I discussed
in section 7.3.1.2.

20.7.4 O↵-chain payment mechanisms

A standard Bitcoin transaction can take six blocks, or one hour, to become
final, and even longer at times of congestion. This may be fast enough for
paying ransoms or buying drugs online, but it’s unimpressive compared with
EMV. What’s more, Bitcoin’s throughput of about 5 transactions per second is

13An alternative view is that if the contract was to accept the output of the code, then the
flaw was in the users’ grasp of what the code did, and in that case nobody stole anything!
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no match for Visa’s 50,000.

People are trying to fix this using side chains, an example of a layer 2 protocol;
such protocols do transactions outside, but tethered to, a layer 1 protocol such
as Bitcoin or Ethereum. Alice and Bob open a channel by locking coins on
a layer 1 blockchain, and can now do rapid transactions between themselves.
The key idea is that they commit some cryptocurrency to each other using a
hashed time-lock contract (HTLC) made of two conditional transfers. In such a
transfer, Bob sends Alice h(R), where R is a random number, and Alice makes
a commitment in the blockchain’s scripting language to the e↵ect that “if you
show me R by time t I’ll give you this coin.” Bob makes a similar commitment.
This opens a channel for them to trade signed transactions at speed, until they
decide to settle up and close the channel.

Quite a bit more engineering is needed to turn this into a working payment
system. You need a dispute resolution mechanism in case Alice and Bob dis-
agree how much each of them should take from the proceeds. Then you build
mechanisms for Alice to pay Charlie via Bob, and routing algorithms so you can
get money to anybody. In theory this can be peer-to-peer but in practice such
systems appear to organise themselves into hubs, with channels that are always
open, like a banking network. Protocol security involves ensuring that honest
users must not lose money even if others collude. Costs include the need for
intermediate nodes to have enough liquidity to forward transactions, and the
need for all active players to be online – whose implications range from the theft
risks of hot wallets, to the risk of miners front-running Bob when he broadcasts
R, to the risk of mass collapse following a network failure [831]. The leading
such system in 2020 is the Lightning network, which makes payments final in
seconds, enables people with the right phone app to pay to a QR code as with
WeChat Pay, and is now handling 1000 transactions per day. The limit here ap-
pears to be liquidity: although Lightning chains themselves are trust-free, they
tie up capacity at the nodes, and the recipient has to decide whether or not to
accept them. So a malicious user can set up hundreds of payments, leave them
for hours and then cancel them at no cost. As Lightning’s total capitalisation
appears to be only a few million dollars, this may leave it somewhat fragile. It
also appears very possible that regulators will crack down on forwarding nodes.

20.7.5 Exchanges, cryptocrime and regulation

Mining all your own coins is inconvenient, and by 2010 entrepreneurs had set up
exchanges that would trade Bitcoin for conventional money. Most went bust,
often because they were hacked, or because insiders stole the money and claimed
to have been hacked. The leader by 2011 was Mt Gox in Japan which survived
one hack in 2011 but went bust in 2014 claiming that it had been hacked for
$460m. The court case continues; news coverage at the time reported that
internal controls and software development processes were chaotic [1280].

That was not all. One of Mt Gox’s innovations was to become a custodial ex-
change over the course of 2013. Instead of keeping customer bitcoins in separate
wallets, for which the exchange might or might not have temporary access to
the private key after the customer entered the correct password, Mt Gox started
to keep all the Bitcoin in its own wallets, showing customers a notional account
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balance when they visited its website. It had made the transition we saw in
eighteenth-century finance from being a gold merchant to being a bank: rather
than owning a specific bag of gold coins in the vault, the customer now just
had a claim on the bank’s whole assets. Victims related how after their wallets
were hosted, they started to see outgoing transactions they had not authorised.
Analysis after the collapse of Mt Gox revealed that many of these transactions
did not even appear on the blockchain. From mid-2013, when you bought a
bitcoin from them, all they did was to show you a web page saying that you had
a balance of one bitcoin. (And that’s how many exchanges work to this day.)

The Bitcoin world has been full of scams, and it looks like the majority
of victims of cryptocrime were ripped o↵ by exchanges that went bust, or got
hacked, or that claimed to have been hacked. Even in the first three years that
exchanges existed, 2010–13, 18 of the 40 exchanges collapsed [1339].

A report by Chainalysis, a Bitcoin analytics firm, concluded that exchanges
lost about $1bn to hackers in 2018, with most of the thefts perpetrated by two
crime gangs; one of them has since been linked to North Korea. In addition
to this, turnover on underground markets where drugs and other illicit goods
are bought and sold was $600m, approximately double the value for 2017 [400].
There’s also market manipulation. John Gri�n and Amin Shams present evi-
dence that Bitcoin’s price was supported by insider trading involving Tether, a
digital currency pegged to the U.S. dollar, during the 2017 boom [822], raising
the prospect that the market price of many cryptocurrencies may often have
been a result of unlawful manipulation. This has been borne out by subsequent
studies showing that much of the spot trading is generated by unregulated ex-
changes [1615].

Market manipulation aside, the largest single cryptocurrency scam to date
appears to have been a Ponzi scheme called PlusToken, which netted some $3bn
from Chinese nationals before the organisers were arrested in 2019 [864]. But
Bitcoin has a↵ected many other crime types too. Ransomware went up from
about $2–3m a year to maybe $8m a year between 2001 and 2015, as Bitcoin
suddenly made ransoms easy to collect [91]; this crime type is growing steadily,
although ransoms are also collected via gift cards [1190]. By 2018, bulletproof
hosting sites, which provide services to cybercriminals, were moving to cryp-
tocurrency as other payment mechanisms became more di�cult [1452]. In that
year, the world’s largest darknet child pornography website, Welcome to Video,
was closed down after its operators were traced via flows of Bitcoin on the
blockchain, so the pseudonymous nature of cryptocurrency has its limits [551].
In total, scams and other abuse add up to something like 3% of cryptocurrency
transaction volume directly; and in addition to the visible cryptocurrency ex-
changes, there are a number of over-the-counter brokers, some 100 of which have
been identified as involved in money laundering [401]. The regular exchanges
also make life di�cult for law enforcement. Crime gangs may turn proceeds into
Bitcoin through one channel, switch it into a di↵erent coin in a second country,
and then send it to a third country where they get it out via bank transfer.

However, although Bitcoin uses pseudonyms, the blockchain contains a per-
manent record of all transactions. As we’ve discussed in a number of contexts
– from our chapter on inference control to the section on Tor in this chapter –
anonymity is hard. Real-world transactions and data have context and allow
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inferences to be made. Bitcoin users have tried all sorts of tricks to make trans-
actions more anonymous, for example by splitting payments into many smaller
ones, mixing them up, and then recombining them – a so-called ‘tumbler’ or
‘mixer’. However, if you do that, you taint your bitcoins with attempted money
laundering; and in total, perhaps 10% of Bitcoin have been stolen, or passed
though a money-laundering service, at least once. (For an analysis, see [116].)
As an example, an Ohio man was indicted in 2020 for operating just such a
mixer that laundered $300m [553]. There are also cryptocurrencies that o↵er
more privacy using further cryptographic techniques, notably Zcash and Mon-
ero. At present, Monero o↵ers the strongest privacy and is designed so that
coins can be mined using software; over 4% of its coins have been mined by
malware running on other people’s machines [1529].

Governments have been trying to push back using financial regulation. The
US Treasury’s Financial Crimes Enforcement Network (FinCEN) drives anti-
money-laundering (AML) and know-your-customer (KYC) regulations world-
wide, which get incorporated into local law, for example via the EU’s 5th Anti-
money-laundering Directive. Some governments go further. For example, Ger-
many’s regulator BaFin has used existing financial regulations to insist that all
exchanges get licenses; as localbitcoins.com, a peer-to-peer exchange that
enables individuals to buy and sell cryptocurrency from each other for cash,
didn’t apply for one, it is blocked there. But at the time of writing, the biggest
push comes from a FinCEN advisory in 2019 that required cryptocurrency ex-
changes to implement the ‘travel rule’ whereby anyone handling a transaction
over $10,000 has to identify both sender and recipient and file a suspicious ac-
tivity report if relevant. The exchanges were given until June 2020 to come up
with a solution; at least one individual exchanging sums over $10,000 has been
fined [688].

Further regulation is on the agenda in Europe too. Mt Gox largely had
Japanese clients while most Chinese appear to use Binance and many people
in the UK and the USA use Coinbase. When one British or American user
sends Bitcoin to another, there’s a fair chance that the transaction never goes
near the blockchain: if they’re both Coinbase customers, then Coinbase can
simply adjust the balances displayed in their Bitcoin wallet webpages. This
immediately raises the question of why the exchanges are not regulated like
any other money service business. In the EU, the E-money Directive might
seem to apply, yet regulators in the UK and Germany only enforce it in respect
of the traditional currency balances that customers have with the exchanges;
the exchanges argued that as transaction demand is much less than investment
demand, virtual currencies should be treated as assets rather than as payment
mechanisms. But in that case, why does the regulator not require the exchanges
to operate under the same rules as stockbrokers, so that a customer’s bitcoins
can’t be used for transactions, but merely sold back to market with the proceeds
being sent to the bank account used to purchase them?

In an analysis that colleagues and I produced of exchange operations and
of the mechanics of tracing stolen Bitcoin, we also recommended applying the
Payment Services Directive, which would give exchange customers consumer
protection comparable to that with banks [116]. It is notable, for example, that
while banks have shown a lot of interest in how to block SIM swap attacks on
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their customers’ phones, most cryptocurrency exchanges have shown no interest
at all – despite the fact that exchange credentials are one of the main targets of
the SIM swap gangs [1449]. Consumer protection in the world of cryptocurrency
is unfinished business, and regulatory agencies in Europe and elsewhere are
working on it.

20.7.6 Permissioned blockchains

The hype around cryptocurrencies and blockchains piqued commercial interest,
and from about 2015, CEOs coming back from Davos told their IT departments
they needed a blockchain. The CIOs then had to explore whether blockchains
could be created that could do useful work, without Bitcoin’s environmental
waste, illegal content and illegal actors. This led to initiatives such as Hyper-
ledger and the Enterprise Ethereum Alliance, with corporate supporters devel-
oping a variety of blockchain tools and standards. Many involve a permissioned
blockchain fabric that is based on Byzantine fault tolerance rather than proof-
of-work and can still support smart contracts. A number of them use SGX as
part of their consensus mechanism, such as Intel’s own proof of elapsed time
(PoET) proposal. There are many other proposed consensus mechanisms; for a
survey, see Bano et al [165].

As an application example, JP Morgan worked on a system from 2015 that
would enable participating banks to enter mortgages on a blockchain, so that
its scripting language would allow traders to create futures and options of arbi-
trary complexity. They explored a number of design tradeo↵s, such as between
low latency and security in adversarial settings, and how transaction privacy
can be extended to keep business logic private as well as the names of indi-
vidual participants [1421]. One conclusion was that for the vast majority of
applications, you don’t need a blockchain; a forward-secure sealed log will do.
And where a blockchain might help, you can’t use a public one. Above all,
blockchain apps must talk to legacy systems and must be no more likely to cre-
ate application security mistakes or usability hazards. There have been enough
screw-ups: for example, Argentina published its o�cial gazette (Boletin O�cial)
on a blockchain, and decreed it to be legally valid, whereupon someone hacked
it to publish fake news about the coronavirus [499]. Such real-world experience
appears to be taming the initial exuberance of the bubble.

Perhaps the most controversial project is Libra, a Facebook proposal to
create a payment system with its value pegged against a basket of currencies.
This was supposed to be run by a consortium of financial, tech and other firms,
but has run into significant opposition from central banks, resulting in key
financial players such as Visa, MasterCard and PayPal pulling out.

20.8 Crypto dreams that failed

A number of people have proposed electronic voting systems based on blockchains
because they’re supposedly immutable and you can build functionality on them
using crypto. These proposals follow over thirty years of research into the pos-
sible use of cryptography in electronic elections to provide a system that is
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simultaneously anonymous and provably accurate. In fact, during the Bitcoin
boom of 2017–8, a common student project proposal was ‘solving world peace
by putting elections on the blockchain’.

Election systems claiming to use a blockchain have now been deployed in
both Russia and America, with less than impressive results. In 2018 a system
for three wards in the city of Moscow used an Ethereum blockchain for vote
tallying, but the link between vote tallying and the blockchain was broken when
two crypto vulnerabilities were fixed just before the election – and the blockchain
vanished just afterwards [782]. Also in 2018, West Virginia became the first US
state to allow some voters to cast their ballot using a mobile phone app. Michael
Specter, James Koppel and Danny Weitzner from MIT reverse engineered it and
found a number of vulnerabilities that would let an attacker expose or alter votes,
despite the app’s use of a blockchain, which was irrelevant to the attacks [1810].
According to the researchers, an attacker could create a tainted paper trail,
making a reliable audit impossible – despite the selling points of blockchains
including transparency and accountability.

The idea that blockchains can solve the problems of elections makes the expe-
rienced security engineer despair. You can’t fix elections with this technology,
because it doesn’t tackle how they’re stolen. Parties in power are constantly
changing the rules and subverting the technology at all levels in the stack, from
voter registration through campaign funding and advertising rules through me-
dia censorship, voter intimidation and voting schemes that can be manipulated.
We’ll discuss this at greater length in section 25.5.

20.9 Summary

Starting in the 1980s, many people have tried to use cryptography as a trusted
platform for some aspect of system security. The original killer app for com-
mercial cryptography was the protection of PINs in ATMs and then of card
payments more generally, as we described in Chapter 12. Many cryptography
researchers (including me) then started to hope that we could solve other eco-
nomic and social problems with cryptography. Anonymous communications
would stop censorship; anonymous digital cash would protect our privacy; digi-
tal voting would make elections harder to rig; threshold signatures would help us
build robust internal control systems; and electronic auctions would push back
on corruption. The research papers at the Crypto and Eurocrypt conferences of
the period are brimming with ideas like these. A generation later, and with a
techlash of scepticism about the e↵ects of globalised technology, it may be time
to take stock.

Our case studies teach a technical point, an economic one, and a policy one.

The technical point is that cryptographic systems aren’t magic; they have
bugs and have to be patched like anything else. Even the simplest applications,
like FDE, get complex as they mature as products, and vary widely in imple-
mentation quality. HSMs are another example of cryptosystems that acquired
ever more features until the features broke them, and now require other com-
ponents to block targeted attacks. SGX runs on processors so complex that
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it’s vulnerable to multiple side-channel attacks, and Intel doesn’t even consider
some of them to be within its threat model: if a capable motivated opponent
can run their code on the same machine as you, you’re basically toast. Much the
same holds for blockchains, which have developed the most complex ecosystem
of all. Even the basic assumption that rational miners are not motivated to
rewrite history starts to fail when applications create the necessary incentives.
Again, a cryptocurrency can go on acquiring features until they break it, and
smart contracts can help the process along.

The economic point is that the advanced crypto mechanisms we’ve seen
deployed all come with a significant cost. HSMs cost more than servers. SGX has
memory limits and a real performance overhead on context switching. Bitcoin
miners emit as much CO2 as New Zealand. Smart contracts may be able to do
some clever things but in practice are very restricted in size and scope compared
with other software. There is a fine calculation about whether the cost is worth
it; and this calculation may become more adverse over time as the maintenance
costs mount and the system gets into technical debt.

The policy point is that advanced cryptographic mechanisms all get tangled
up with liability. If successful they seem to acquire, as part of their core purpose,
either the desire to satisfy some regulation or the desire to avoid regulation. So
the decision to deploy them, or maintain them, may involve subtle externalities.

Hardware security modules are mandatory in card payment systems because
of card scheme rules based, ultimately, on banks’ desire to not be liable for
fraud. SGX is seen as a way to assure customers of cloud computing services
that they protect their most valuable assets against rogue sysadmins and against
intelligence agencies. Bitcoin and its many clones have become a mechanism
for circumventing everything from securities and payment law to anti-money-
laundering regulations. Real systems get built for strategic reasons, and that
tends to mean creating or entrenching power for their creators – be it market
power or political power.

As for cryptocurrencies, they have so far had extreme volatility, limited
capacity, unpredictable transaction costs, no governance, and limited trans-
parency. The proof-of-work mechanisms used by most of them cause CO2 emis-
sions that reasonable people might consider unacceptable, and their use in prac-
tice is entangled with all sorts of criminality. While the law should defend the
right of private firms and individuals to create value tokens such as coupons
and air miles, once these start being used as currency and institutions emerge
that behave like banks, it is reasonable for the lawgiver to treat them as such.
It is also reasonable for the lawgiver to think about carbon taxes, or to require
organisations that use blockchains to account for the CO2 they produce.

If we had to sum up the experience of forty years of trying to apply the magic
of mathematics to solve real-world problems, it would probably be TANSTAAFL:
there ain’t no such thing as a free lunch.
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Research Problems

There are deep problems around decentralisation that cross the boundary be-
tween cryptography and system security. Decentralised protocols tend to fos-
silise; we’re still using email, DNS and BGP mechanisms from the early 1990s
because of the di�culty of changing anything. End-to-end crypto could not be
layered on top of SMTP email, despite the e↵orts of PGP, but needed to wait
for a new platform like Signal that could impose it by fiat.

Bitcoin provides another example. The original cypherpunks ideal was a
fully decentralised payment system providing a means of exchange and a store
of value without the involvement of governments or other dominant players
such as banks. Yet the production of mining rigs has become a monopoly,
controlled by Bitmain, while the ASICs all come from TSMC. The great majority
of Bitcoin users rely on custodial exchanges to hold their cryptocurrency, and
these exchanges do most of the trading – DEXs are only 0.01% of it. The
custodial exchanges have in e↵ect become unregulated banks.

In systems such as Signal, Tor and Bitcoin, the real consensus is not crypto-
graphic but social; it’s the consensus of the developers. In Tor this is a commu-
nity while in the world of cryptocurrency there are competing developer teams
working for profit. The security economics may be expected be more important
than the cryptography, and we’ve already seen how smart contracts can create
application-layer incentives that could break the underlying consensus layer.

What about the dependability of smart contracts in general? The computer
science approach to the API security problem has been to try to adapt formal-
methods tools to prove that interfaces are safe. There is a growing literature on
this, and even a series of workshops, but the methods can still only tackle fairly
simple APIs. Smart contracts are running into similar problems, complicated
by the di�culty of changing them to fix bugs or to respond to changing circum-
stances. It is unsurprising that many of the smart contracts used to set up DEXs
have hard-coded admin keys that enable human intervention if need be. This is
just prudent engineering, but calls into question the ideological justification of
such exchanges as ‘trustless’.

Further Reading

To get up to speed on Tor, a good starting point is the Tor Project’s docu-
mentation page. For more detail on how Bitcoin works, read the Princeton
book [1383] or the JEP paper [274], while for our more detailed view on tracing
stolen Bitcoin and on cryptocurrency regulation, see [116]. For a discussion of
the interaction between centralisation and privacy, see Carmela Troncoso and
colleagues [1910]. A survey of the state of play in messaging apps in 2015 (the
time when Signal came together from previous apps for messaging and VOIP)
can be found at [1917].
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