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An Experimental Evaluation of Robustness of
Networks

Hyoungshick Kim and Ross Anderson

Abstract—Models of conflict in networks provide insights into
applications from epidemiology to guerilla warfare. Barabasi,
Albert and Jeong modelled selective attacks on networks in which
an attacker targets high-order nodes to destroy connectivity;
Nagaraja and Anderson extended this to iterated attacks where
the attacker and defender take turns to remove and rebuild
nodes and edges according to given strategies. We extend the
iterative model by introducing the cost required to perform
network operations. This gives much finer granularity than
previous models, whether we are interested in network resilience
against random failures or intentional attacks. We empirically
study how to design more effective attacks and/or defenses
through intensive simulation on several well-known network
topologies including the three real-world networks. In particular,
an effective defence against many attacks is to add new links
connecting low-centrality nodes to maintain the overall balance
of network centrality.

Index Terms—Network Robustness; Network Resilience; Iter-
ative Attacks and Defenses

I. INTRODUCTION

Many important phenomena depend on networks, from
social interactions between people to explicit networks such
as the Internet and supply chains. Recent advances in the
theory of networks have provided us with mathematical and
computational tools to understand them better [1], [2]. Often
the topology of a network has distinctive features, such as
vertex order distribution, clustering and characteristic path
lengths, which can be explained in terms of its evolution
and which in turn explain some aspects of its behaviour. For
example, networks that grow by preferential attachment may
acquire a power-law distribution of vertex order that in turn
makes them robust against random node failures — yet this
distribution also makes them vulnerable to attacks targeted
on high-degree nodes. Insights like this can inform activities
from epidemiology to policing. Doctors may first vaccinate
those individuals who are likely to come into contact with most
others, while police forces tackle criminal gangs by placing the
most highly connected criminals under arrest or surveillance.
They also apply to technological networks such as the Internet,
the electrical power grid and transportation networks; these
are also robust to random failures but vulnerable to targeted
attacks [3].

Network failure models are not limited to the one-shot
case. When an attack occurs, a defender tries to minimize
the damage by deploying new resources, while the attacker
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may then follow through by causing further damage. In other
words, we need to consider dynamic interaction between an
attacker and a defender over multiple periods. Nagaraja and
Anderson developed a framework to explore iterated “attack”
and “defense” operations: an attacker removes k, nodes from
a network at each attack round, and a defender adds k; nodes
to the network at each defense round. The attacker’s aim
is to decrease network connectivity or efficiency, which can
be measured as the size of the largest connected component
or the average shortest path length in the network, while
the defender’s aim is the opposite [4]. This models how a
network will likely evolve under continuous attack, based
on evolutionary game theory [5]. It enables us to investigate
what sort of attack and defence strategies might prevail in
counterrevolutionary warfare: a conflict in which peacekeepers
identify and arrest rebel ring leaders, while the rebels con-
stantly recruit and reorganise themselves. However, Nagaraja
and Anderson’s work has two limitations: (1) it does not model
the costs of creating new nodes and edges realistically, as the
defender is allowed to create a fixed number of new nodes at
each round plus an arbitrary number of edges. In practice the
cost of establishing edges is not zero, so it would be preferable
to enable the defender to allocate his budget to nodes and
edges with some fixed marginal cost of substitution (2) their
experimental results were limited to a single scenario, namely
a Barabasi-Albert scale-free network consisting of 400 nodes
with most of the experiments involving k, = k4 = 10 and a
few dozen rounds.

We extend their work into a more generalized model: While
Nagaraja and Anderson simply assumed a newly recruited
node could form the right number of new connections to
pursue any given defense strategy, we vary the budgets to
limit newly added nodes and their connections. We note that to
make a network highly robust against node removal attacks,
a simple strategy is just to increase its network density. In
this paper, we seek to answer a simple question: “How much
does a connection cost?” We want a quantitative understanding
of the correlation between network density and resilience to
random failures or attacks as well as insight into the evolution
of networks by iterative growth and shrinkage processes.

We therefore empirically analyse the effects of at-
tack/defense strategies with more realistic budgets on well-
known network topologies: two Erd6s-Rényi random graphs,
two Barabasi-Albert scale free networks [6], two Chord
networks [7], two Hypergrid graphs [8], a Transit-Stub
graphs [9], a Watts-Strogatz small world network [10], a
Content-Addressable network [11], a PRU network [12], and
the three real-world networks [13], [14], [15].
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Our experimental results show that the strategy of connect-
ing low centrality nodes produces the best overall performance
for maintaining network connectivity for a given budget. Also,
even simple defense strategies (e.g. adding nodes and their
connections randomly) can be effective enough to fight against
sophisticated attacks (e.g. removing nodes with high centrality
in high priority) if we can increase the number of connections
per node past a certain threshold.

II. RELATED WORK

Albert, Jeong and Barabdasi [3] showed that attacks targeted
on high-degree nodes in scale-free networks are much more
effective than random attacks; the size of the largest connected
component is rapidly reduced. This is because scale-free
networks get much of their connectivity from few nodes of
high degree. It is hard to remove enough of those hub nodes
in a random attack, but if they are targeted deliberately, then
connectivity decreases dramatically. Holme and others [16] got
similar experimental results by doing such attacks on edges,
and also suggested using centrality as an alternative to degree
for targeting. Zhao and others [17] studied the circumstances
under which a scale-free network suffers cascading breakdown
caused by the successive failures of hub nodes.

Nagaraja and Anderson [4] extended this by introducing
a framework from evolutionary game theory to explore the
effectiveness of iterated attack and defense operations. They
showed that a defender can make a network resilient to attacks
by replacing highly connected nodes with cliques — small
groups of vertices that are fully connected to each other and
which share the outgoing edges that previously went to a
single highly-connected node. This strategy, however, requires
the modification of the existing connections in a network and
may have high implementation costs if adding an extra edge
is expensive. Clique-based defense strategies are likely to be
nontrivial in some environments such as wired networks.

Recently, Domingo-Ferrer has been extending Nagaraja and
Anderson’s model to weighted and directed networks [18]. He
also found that the costs of attacks/defenses were not clearly
defined in [4] and discussed the economic aspects of the
attack and defense strategies by considering the cost of node
destruction/replenishment. However, it is hard to evaluate the
usefulness of the estimated cost functions; as already noted,
the cost of rewiring edges is usually not zero. We therefore set
out to refine the iterated attack / defense model to take account
of the cost of edges added or changed as well as the number
of nodes added during the defense phase. We also extended
the modelling to a much larger range of graph topologies.

IT1I. MODEL

Our framework can formally be represented as a game on
a graph G by iterating “attack” and “defense” operations for
a certain number of rounds. Here an attacker’s objective is to
maximize disruption to the network while a defender tries to
minimize it.

Each round consists of an attack phase followed by a
defense phase. In an attack phase, an attacker picks the existing
k, nodes from the graph G according to her attack strategy and

then removes the selected nodes and their associated edges.
In a defense phase, a defender creates k; new nodes and then
adds them by sequentially connecting a new node v with m
edges to m different nodes already present in G according
to his strategy. Unlike Nagaraja and Anderson’s model, we
do not allow the defender to rewire the existing edges in the
graph G — this may be expensive compared to establishing
new edges in some real environments such as wired networks
since an edge rewiring operation can actually be treated as
a combination of destroying existing edges and establishing
new edges. We assume that the defender has no knowledge of
which nodes and their connections are disappeared (otherwise
the best strategy may be to restore the last status of the network
when k, = kg).

In order to measure the effectiveness of attacks and de-
fenses, we use the size of the largest connected component
after a certain number of rounds as the metric, as other authors
in this field have done.

A. Attack strategies

An attack strategy is a strategy (an algorithm) to select k,
nodes to be removed from a graph G = (V, E) in an attack
phase. We here assume k, is a constant. We consider the
following three strategies:

1) Random removal: Pick a node randomly from G and

remove it and its associated edges. Repeat this process
k, times.

o This strategy is very simple and efficient: An at-
tacker does not need any knowledge of the network
topology. The total running time is O(d(G)) if we
ignore the cost of random selection where d(G) is
the average node degree in the graph G.

2) High-degree removal: Pick the highest-degree node from
G and remove it and its associated edges. Repeat this
process k, times.

« This strategy requires global knowledge of the node
degree. The total running time is O(|V]log|V])
since the nodes are sorted in decreasing order with
respect to their degree.

3) High-centrality removal: Pick the highest-betweenness
centrality node from G and remove it and its associated
edges. Repeat this process k, times. Here, we only
consider betweenness centrality since this is known to
be more related to network connectivity than closeness
or eigenvector centrality. Betweenness centrality b(u) is
calculated for a node u as the proportion of shortest
paths between all node pairs in the network that pass
through w:

crs’t(u)

Os,t

1
b(u) = > (1)
(VI=1-(VI=2) _ Fev
where o, ; is the total number of shortest paths from
source node s to destination node ¢, and o,,(u) is
the number of shortest paths from source node s to

destination node ¢ which actually pass through node wu.

o This strategy requires knowledge of the network
topology and has total running time O(|V| - |E| +
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|[V|log|V]) (the nodes are sorted in decreasing
order with respect to their betweenness centrality

which can be computed in O(|V] - |E|) time [19].)

Arandom Adegree Acentral
b

We use , and to denote random
removal, high-degree removal, and high-centrality removal
attack strategies, respectively. We note that all of these attack
strategies remove the same number of k, nodes at every round
if the remaining nodes of the graph G is greater than or equal
to k.

B. Defense strategies

A defense strategy is a strategy (algorithm) to connect kg4
newly recruited nodes to the existing nodes in a graph G =
(V,E) in a defense phase. We here assume kg is a constant.
A new node v is connected with m new edges to m different
nodes. We consider the following three strategies:

1) Random replenishment: Create a new node and add it to

G such that the node is connected with m new edges to
m randomly selected different nodes. Repeat this process
kg times.

« This strategy requires no knowledge of the network
topology. The total running time is O(m) if we
ignore the cost of random selection.

2) Preferential replenishment: Create a new node and add
it to G such that the node is connected with m new
edges to m different nodes with probability proportional
to their degree (i.e. the node is connected to an existing
node u with the probability p(u) = d(u)/ ),y d(v)
where d(u) is the node u’s degree in (). Repeat this
process kg times.

o This strategy requires knowledge of the node de-
gree. The total running time is O(|V|) if we ignore
the cost of random selection.

3) Balanced replenishment: Create a new node and add
it to G such that the node is connected with m new
edges to m different nodes with probability inversely
proportional to their betweenness centrality (i.e. the node
is connected to an existing node u with the probability
plu) = (b(w) + )/ ey (b(v) + )" where bu)
is the node u’s betweenness centrality in G and € is a
very small constant to prevent division by zero). Repeat
this process kq times.

o This strategy requires knowledge of the network
topology. The total running time is O(|V| - |E|) if
we ignore the cost of random selection.

We use D"ondem prrefer and pPalence o denote random
replenishment, preferential replenishment, and balanced re-
plenishment defense strategies, respectively. We note that all
of these defense strategies add the same numbers of k; nodes
and m - k, edges at every round.

IV. THE NECESSARY NETWORK DENSITY FOR ROBUST
NETWORKS

A fundamental question is whether we can make a network
resilient against node failures or attacks by just increasing the
number of edges.If a graph has too few edges, it is necessarily

disconnected. As a network becomes better connected so
its robustness will in general increase. And when providing
network robustness we want to know the optimal edge budgets
for newly recruited nodes.

To get an insight into this problem, we generated Erdds-
Rényi random graphs by varying the parameters (from 300
to 1,500 for the number of nodes n and from O to 5 for the
average node degree d(G)) and found the largest connected
component in each graph. We repeated this 100 times for each
tuple (n, d(G)) and computed the average size of the largest
connected components over the sample. Figure 1 demonstrates
the fraction of nodes remaining in the largest connected
component with d(G).

Fraction of LCC

Node Size

Average Degree

Fig. 1. The average size of the largest connected components over Erdds-
Rényi random graphs. With each pair of node size (from 300 to 1,500) and
average degree (from O to 5) we generate 100 random graphs and compute
the average size of the largest connected components over these graphs. All
decay rates of the largest connected component in random graphs increases
dramatically at d(G) = 2.

The decay rates of the largest connected components in
all Erd6s-Rényi random graphs show almost the same pattern
regardless of n. The curve has a gentle slope until d(G) = 2
then plunges towards 0 when d(G) < 2. As a selective attack
is at least as effective as random edge removal, we can always
expect a significant number of nodes to be disconnected from
the network if d(G) < 2. And when d(G) = 2, the largest
connected component in G has a tendency to form a tree-
like graph structure which can be easily decomposable or be
already reduced to a small component (see Figure 2).

(a) Tree-like structure (b) Small components

Fig. 2. Example graphs with n = 21 and d(G) = 2. The largest connected
component in the graph G has (a) a tree-like graph structure or is already
reduced to (b) a small component when d(G) = 2.

In Section V we will explore the relationship between
the size of the largest connected component and the average
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degree through intensive simulation results on various network
topologies.

V. SIMULATION RESULTS

Because of highly nonlinear characteristics of network
structures, it is very difficult to establish mathematical models
with a closed form solution. So, we use the simulation model
as an alternative to the theoretical model. We experimentally
tested the attack and defense strategies discussed in Sec-
tion III-A and III-B on three real-world and twelve synthetic
networks for evaluating the performance of the strategies as
follows:

1) Random graphs (G%%%%, G%°! — we denote as G% the
random graph with the linking probability z): Random
graphs are fundamental and useful for modelling prob-
lems in many applications.

2) Barabdasi-Albert scale free networks [6] (GQB A G}g A —
we denote as G 4 the Barabdsi-Albert network where
each new node is connected to x existing nodes): Scale-
free networks are abundant in nature and society, de-
scribing such diverse systems as the world wide web, the
web of human sexual contacts, or the chemical network
of a cell. Albert, Jeong and Barabdsi [3] showed that
scale-free networks are resistant to random failures but
vulnerable to targeted attacks since a few hubs dominate
their topology.

3) Chord networks [7] (GZ,G¢ — we denote as G, the
Chord network where z is the minimum degree of each
node): Chord network is a typical structured peer-to-peer
overlay network. Chord network is simple and useful
to build a fault-tolerant and decentralized peer-to-peer
structure.

4) Hypergrid graphs [8] (G}, G§; — we denote as G%
the Hypergrid network where x is the maximum degree
of each node): Hypergrid graph is built for peer-to-peer
systems by enforcing low graph diameter and fixed node
degree.

5) Transit-Stub graph [9] (Grg): The Transit-Stub model
is a hierarchical graph generation model that produces
graphs having a structure similar to the Internet.

6) Watts-Strogatz small world network [10] (Gé{/osl
we denote as GipYs the Watts-Strogatz small world
network with the initial x neighbours and the linkine
probability y): The Watts-Strogatz model is a rand
graph generation model that produces graphs with sm
world properties, including short average path leng
and high clustering.

7) Content-Addressable network [11] (Gc4): Content-
Addressable network is designed for a distributed and
scalable peer-to-peer systems.

8) PRU network [12] (G;Oélg’z — we denote as G
the PRU network with the initial ¢ nodes in cache, the
minimum degree y of nodes and the maximum degree z
of nodes): PRU networks are suggested by Pandurangan
et al. to produce graphs having a structure similar to the
unstructured P2P networks.

9) Email network [13] (Gararr): The Email network is

obtained by collecting mutual email communication

interactions through email logs from a company.

Blog network [14] (Gprog): The Blog network is

obtained by analysing the network structure of politi-

cal blogs published around of the time the 2004 US

Presidential election.

11) Airport network [15] (Garr): The Airport network is
obtained by analysing routes between all the United
States airports in 2010.

10)

The network topologies are shown in Figure 3.

We summarize the properties of the networks used in the
experiments in Table I. Given a graph G, let s(G) and d(Q)
be the average shortest path length among all pairs of vertices
and the average degree, respectively. Network diameter is
the maximum distance between nodes in the network [20].
Network density is a normalized version of the average number
of neighbours, which indicates the overall level of interaction
between all nodes in a network [21].

@ Grs

(&) GY,

M G

k) Groa 1) Garr

() Gmarr

The Networks used in the experiments.

Fig. 3.

For our simulations, starting with an original graph G in
Figure 3, at each round (1) we remove k, nodes and their
adjacent edges following the attack strategy and then (2) we
add kg new nodes such that each of the added nodes is
connected with m new edges to m existing nodes. We set
m to be the nearest integer rounded from w - d(G) where
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Gerocs | 1,224 | 19,025 — | 0022 | 27312 | 2.738
Galr 1574 | 28236 — | 0014 | 21.874 | 3.115
TABLE I

THE PROPERTIES OF THE NETWORKS

w is the edge construction weight. These parameters are
summarized in Table II. The aim of the experiments is to
evaluate feasibility and usefulness of each strategy and to find
the optimal parameter values (e.g. w) of each strategy at the
same time.

Parameters | Description
ka The number of the removed nodes in an attack phase
kq The number of the added nodes in a defense phase
w The edge construction weight
d(G) The average degree in a graph G
The number of the added edges per node in a defense
m phase: Round(w - d(G))

TABLE I
SUMMARY OF PARAMETERS IN SIMULATION. WHEN kq = kg AND
w = 1.0, AN ATTACKER’S DAMAGE ABILITY IS APPROXIMATELY EQUAL
TO A DEFENDER’S REPAIR ABILITY IN TERMS OF THE NUMBER OF
CONNECTIONS.

With fixed k,, k4, and m, we can observe how the size of
the largest connected component and the average degree in a
graph evolve. For example, with k, = k4 = 10 and w = 1.0,
Figure 4 shows how these values in G%"%5 are changed
under iterated attack and defense operations. The size of the
largest connected component in each round is normalized by
dividing by the size of the largest connected component in
the original graph. From this figure, we can see that De/amce
only performed well against A%9"°¢ or A" the size
of the largest connected component in the graph remained
unchanged during the 100 rounds against these attacks while
Drandom and PP are not effective — within 40 rounds
the size of the largest connected component has fallen by a
half. Interestingly, there exists a relationship between the size
of the largest connected component and the average degree as
we discussed in Section IV: The size of the largest connected
component in G%%% started to drop dramatically when the
average degree of the network falls below 2.

In this paper, our research interest is finding the best attack
and defense strategies with varying k,, k4, and w rather than
observing how network connectivity evolves in a particular
network with fixed k,, kg, and w. Even if an attacker finds

Average Degree

[SEESPS
[SEECPEN

20 40 60 20 40 60 80 100
Rounds Rounds

(b) Adegree (C) Acent'ral

Changes in the size of the largest connected component and the
average degree in G%OOS over rounds. The first row graphs show the changes
in the size of the largest connected component and the second row graphs
show the changes in the average degree.

the ideal attack strategy for a given budget k,, a defender
may block this attack even with a naive defense strategy if
she can increase k4 and/or w without limit. In this context, an
attacker’s goal should be interpreted to find an attack strategy
maximizing the defense costs (k4 and/or w) while the defender
wishes to find a defense strategy minimizing them.

With the edge construction weight w ranging from 0.5 to
1.5, we first discuss the effects of w for each of the fifteen
graphs in Figure 3. To demonstrate this we fix k, = kg = 10
and analyse the size of the largest connected component and
the average degree in each graph after the 100th round. The
experimental results for each network are shown, respectively,
in Figure 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
and 19. The results for best attack and defense strategies with
w are summarized in Table III.

OR.OP.xB| OR.OP. xB,| OR.OP. xB,

1 1.0] 1.0]
Q Q Q
S S S
< 0.6 Z 0.6 = 0.6
5 <] S
@ o o
N N N
@ 0.2 ®0.2 0.2

05 07 09 11 13 15 0507 09 1.1 13 15 05 0.7 09 11 13 15
Weight w Weight w Weight w
OR.OP. xB| OR.OP.xB. OR.OP. xB|

8 8 8
o 6 o 6 o 6
o D @ @
54| >4 54|
53 © ©
a a a

&
8,5 07 09 1.1 13 15 é 85 07 09 11 13 15
Weight w Weight w Weight w

(a) Arandom (b) AdegTee (C) Acentral

Fig. 5. Random graph 1 with w: changes in the size of the largest connected
component in G%O% with w. In this figure, and in figures 6 through 16,
the first row graphs show the changes in the size of the largest connected
component and the second row graphs shows the changes in the average
degree.

From these figures, we can see D**%"¢ performed well

except for the case against A iy Grg (see Figure 13(c)).
When a defender uses D?®"°¢ even with a small w < 1.0,
most nodes in all networks except for Grs and Gy re-
main connected to each other. However, D"*"4™ and DPrefe"
are not sufficiently effective against A%9"°¢ or A"l jp
many network topologies. For example, when w = 1.0, the
graph G%°% is totally disconnected if D"*"@™ or DP"/" jg
used against either Adegree op Acentral (gee Figure 5(b) and
(c)). In fact, even when w = 1.5, there are not enough edges to
defend against A%97 (see Figure 5(b)). In particular, D"/
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(b)

©

(d)

Fig. 20. Performing A°®"*"%! and Db@l@nce on Gipg in the first round in the transit-stub graph. (a) The ten nodes (large circle) are selected to be removed
for Ac€™t7al (b) The graph is totally disconnected after the first attack. (¢) A new node and its connections are added by DP@!@™ce_This node plays a role
as the node connecting different clusters. (d) The ten nodes and their connections are newly created after the first defense. However, many nodes are still
disconnected from the largest connected component (the above subnetwork) in the graph.
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performed badly against A%°9"°°. Since most real networks
exhibit preferential connectivity [6], a real-world network may
be very vulnerable to high-degree node attacks even if the

Fig. 16. PRU gra{)h with w: changes in the size of the largest connected
component in G'p 7,/ with w.
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network has grown continuously up with new nodes over time.
Our results on real networks supported this conjecture (see
Figure 17(b), 18(b), 19(b)).
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Best Attack Best Defense w | Damage
G%005 Adegree’ Acentral Dbalance 0.8 None
G%Ol _ Dbalance 0.5 None
G%A Adegree’ Acentral Dbalance 0.9 None
ai — phelance 05 | None
G%’ Adegree’ Acentral Dbalance 0.7 None
G, — pbafance 0.5 | None
G4H Adegree’ Acentral Dbalance 07 None
G5 — pralance 05 | None
Grs Acent'ral prandom 0.9 Small
Gy — phalance 0.5 | None
GCA — Drandam’ Dbalance 0.5 None
G;OEIL?Q Adegree pbalance 15 Small
GmarL — pPalance 0.5 | None
GBroc — pbatance 0.5 | None
Galn — ppalance 05 | None
TABLE III

THE BEST ATTACK AND DEFENSE STRATEGIES FOR NETWORKS

On the other hand, A"*™™ is not effective from the
attacker’s point of view; the size of the largest connected
component remained unchanged and the average degree is
still greater than 2 after 100 rounds if any defense strategy is
used with w = 1.0. This is natural enough; the damage done
by random failures is not essentially greater than the level of
repair by random replenishment. So network connectivity will
be maintained well on most popular network topologies under
random node failure or removal if the same number of new
nodes can be continuously recruited.

To maintain network connectivity, a possible approach is to
increase network density. In our experiments, the half of net-
work topologies with a high network density > 0.009 (G%°1,
Gha GE. GY. Gy Goa. Guarr. Gproa. and Garg
— see Table I) is resilient against any attack strategies when
Dpbatance jg used with w = 0.5 only (see Figure 6, 8, 10, 12, 14
and 15). In fact, D"*"°™ s also adequate in these networks
except Gprog and G 41 if a defender can increase w to 1.0.
For the two real networks, Gproc and Garg, D""%™ is
not perfect against A°“"" even with a large w = 1.5.

Interestingly, D?*%"¢ is worse than the other defense
strategies against Al iy Grg (see Figure 13(c)). This
is because a small number of nodes connect different clus-
ters in Gpg. Since these nodes have high betweenness cen-
trality, transit-stub graphs are inherently very vulnerable to
Acemtral Unfortunately, D®%°¢ cannot change this weakness
of transit-stub graphs since nodes newly recruited in the
defense phase generally play a role as new gateway nodes
by connecting separated clusters. This trend can be observed
in Figure 20.

Another interesting observation is the relationship between
the size of the largest connected component and the average
degree in a graph. As we discussed in Section IV, in all
experiments, we can see that the size of the largest connected
component is not maintained well when the average degree of
the network falls below 2 regardless of defense strategy, but the
opposite is not true (see the counter example in Figure 13(c)).

Finally, we discuss how the performance of attack and
defense strategies may change when k, # k4. As kg increases,

network connectivity between nodes will increase over rounds.
Figures 21 (against high-degree node attacks) and 22 (against
betweenness centrality attacks) show the effects of varying kg4
from 7 to 13 with k, = 10 and w = 1.0. To demonstrate this
we plot the size of the largest connected component in a graph
at the 50th round.
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Fig. 21. The size of the largest connected component with kg against high-
degree node attacks.
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As kg increases, so does the size of the largest connected
component. This is natural enough, and is particularly clear

in low density networks (G%°%°, G%,, G%, G%;, Grs and
50,12,2
Gpro™)-

The performance of D®#%"°¢ is still better than those of the
other two defense strategies and is highly scalable in terms
of kq: the gap between them is clearly shown in low density
networks when kq > k, and in some networks (G%%!, G% 4,
G2, G4, and Grg) when kg < k,. Interestingly, Db@/ance
produced the best result in Grg against A" when kg >
k,; it is different from the case when kg = k.

VI. CONCLUSIONS

Barabasi, Albert and Jeong showed that while small-world
networks were resilient against random node failure, they were
very vulnerable to targeted attacks. Nagaraja and Anderson
extended this single-shot analysis to the dynamic case, so that
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Fig. 22. The size of the largest connected component with k; against
betweenness centrality attacks.
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attack and defense strategies could be measured against each
other. We have extended their work to a wide range of network
topologies including some real-world networks, and to account
for the costs of replacing edges as well as nodes. In summary,

« the best defense strategy in general is balanced replenish-
ment, ptaetance por high density networks with network
density > 0.009, it is enough to set w = 0.5.

« the best attack strategy in general targets vertex order or
betweenness centrality, that is Adearee o Acentral in the
sense that it maximizes the cost of defense. However,
when the network has a hierarchical tree-like structure, it
will often be better to use A"

o it is necessary but not sufficient for the defender to main-
tain the average node degree > 2 to maintain connectivity.

o a real-world network may be very vulnerable to A9°97°¢
or A°™"! even if the network has grown continuously
up with new nodes and connections over time.

In future work, we plan to develop better models of the
adversary. We may consider not only an adversary with
global knowledge of network topology but also a weaker
adversary with limited information (e.g. a local police force).
For example, we expect that D"*"%°™ jg secure against any
adversary with no knowledge of the network topology at all;

what strategies suffice against an attacker whose knowledge is
is local? Also, while adding more edges to a network may be
a viable strategy for a disease pathogen, it may not help an
insurgent group as a better-connected network may be more
vulnerable to insider threats.

As an extension to this work, we plan to consider a
theoretical study to formally generalize and verify our results.
We will also employ more advanced centrality metrics such
as bridging centrality [22] to improve the performance of
strategies.
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