
API-Level Attacks on Embedded Systems

Mike Bond Ross Anderson

2nd May 2001

Abstract

A whole new family of attacks has recently been discovered on the
application programming interfaces (APIs) used by security processors.
These extend and generalise a number of attacks already known on au-
thentication protocols. The basic idea is that by presenting valid com-
mands to the security processor, but in an unexpected sequence, it is
possible to obtain results that break the security policy envisioned by its
designer. Such attacks are economically important, as security processors
are used to support a wide range of services, from automatic teller ma-
chines through pay-TV to prepayment utility metering. Designing APIs
that resist such attacks is difficult, as a typical security processor needs
a substantial command set with several dozen commands that allow it to
service a number of external and internal protocols. The attacks are also
scientifically interesting; preventing them may become an important new
application area for formal methods and design verification tools generally.

1 Introduction

A large and growing number of embedded systems make use of security proces-
sors to distribute control, billing and metering among devices with intermittent
or restricted online connectivity. The more obvious examples include:

• the smartcards used to personalise mobile phones and to manage sub-
scribers to satellite-TV services;

• microcontrollers used as value counters in postal meters and in vending
machines to prevent fraud by maintenance staff; and

• cryptographic processors used in networks of automatic teller machines
(ATMs) and point-of-sale equipment to encipher customers’ personal iden-
tification numbers (PINs).

Behind these visible applications there may also be several layers of back-end
systems which must prevent fraud by distributors, network operators and other
participants in the value chain.

A good example is given by the prepayment electricity meters used to sell electric
power to students in halls of residence, in the third world, and to poor customers

1



in rich countries [4]. They are typical of the many systems that once used coin-
operated vending, but have now switched to tokens such as magnetic cards
or smartcards. The principle of operation is simple: the meter will supply a
certain quantity of energy on receipt of an encrypted instruction, then interrupt
the supply. The instructions are created in a token vending machine, which
knows the secret key of each local meter. One of the design goals is to limit
the loss if a vending machine is stolen or misused; this enables the supplier to
entrust vending machines to marginal economic players, ranging from student
unions to third-world village stores.

The common solution is to build the vending machine round a tamper-resistant
cryptographic processor, which contains the meter keys and a value counter.
The value counter enforces a credit limit; after that much electricity has been
sold, the machine stops working until it is reloaded. This requires an encrypted
message from a controller one step higher up the chain of control – it would
typically be issued by the distributor after payment by the machine operator.
If an attempt is made to tamper with the value counter, then the cryptographic
keys should be erased so that the token vending machine will no longer work
at all. Without these controls, fraud would be much easier, and the theft of a
vending machine might compel the distributor to re-key all the meters within its
vend area. There are other security processors all the way up the value chain,
and the one at the top – in the headquarters of the power company – may be
controlling payments of billions of dollars a year.

A similar arrangement can be found in networks of automatic teller machines
(ATMs) and point-of-sale (POS) devices; a tamper-resistant processor called a
security module contains the cryptographic keys used for communicating with
terminal equipment and also for verifying PINs in the incoming transactions.

No matter what the application of the security processor, its API sits on the
boundary between trusted and untrusted environments, and is the point where
cryptography, protocols, access controls, and operating procedures must all
come together to enforce its security policy. Thus, understanding threats to
these APIs is essential.

2 Attacks on Cryptographic APIs

Our research into attacks on cryptographic APIs started off with an examina-
tion of ways in which banking security modules can be manipulated [3], and
proceeded to a study of attacks on more general-purpose tamper-resistant pro-
cessors [6]. Recently, we have also found attacks on security processors used in
utility prepayment applications.

It will be convenient to explain these attacks in historical order, but the attacks
on both old and new systems support a number of more general interests:

• First, there has been a good deal of work on verifying crypto protocols,
which are typically sets of 3-5 transactions exchanged by two principals.
But in many real systems, these techniques must be extended to the dozens
or even hundreds of transactions supported by the actual cryptographic
service provider (whether smartcard, cryptoprocessor, or software library).

2



• Second, designing a secure and robust API is a fundamental challenge,
which has until recently been overlooked by both formal methods and
software engineering researchers – the bulk of whose work has been on
avoiding implementation errors in the API, or verifying the correspon-
dence of the API implementation to its specification. So API design and
verification looks set to be the next basic research challenge.

• Third, many of the things that go wrong with secure systems happen at
an interface between two or more kinds of protection mechanism. Crypto
protocol failures tangle up the boundary between cryptography and access
control; operating system security failures (and limitations) mean that
applications often cannot exploit the protection features supported by a
processor. In the same way, design flaws in crypto APIs occur at the
even more complex interface between crypto, protocols, operating system
access controls and specialist services such as value counters.

• Finally, a tamper-resistant device can be considered as just a high-quality
implementation of an object that can only be invoked using its official
methods, and whose internal variables remain inaccessible. Given that
the object-oriented programming model is becoming popular, there may
be more general lessons to be learned for robust programming.

So learning how to design security APIs properly is important, and especially so
if we are to realise the potential of systems that distribute trust across a hetero-
geneous set of processes. It may thus be fundamental for large scale embedded
systems. Mistakes can be horrendously expensive to rectify afterwards; once a
system is as well entrenched as ATMs are, with over 600,000 devices from over
a dozen vendors operated worldwide by perhaps 20,000 banks, changes may
be next to impossible. Even in 2001, there is still a lot of fielded technology
from the late seventies, and systems being designed today will remain in use for
decades to come.

2.1 Early systems

ATMs were the ‘killer application’ that got cryptography into wide use outside
of military and diplomatic circles. Following card forgery attacks on early ma-
chines in the late 1960s and early 1970s, IBM developed a system whereby the
customer’s PIN was computed from their account number by encrypting it using
a key called the PIN derivation key. This system was introduced in 1977 with
the launch of the 3614 ATM series [7] and is described further in [1, 2].

At the host end, some thought was given to the problem of protecting cryp-
tographic keys against the bank’s own systems staff. Merely embedding the
cryptography in an application, and protecting it with access control mecha-
nisms, was felt to be insufficient, as many programming and operations staff
would be able to get at the key. So vendors started building cryptoprocessors
that kept keys in tamper-resistant hardware and limited what could be done
with them. The IBM 3848, for example, supported encrypted communications
between a mainframe and a terminal without letting the mainframe program-
mers get at the key material [3, 9]. It was also adapted to control ATM networks,
and evolved into the IBM 4758 product, described below.

3



The 3848 and similar devices contained tamper-resistant memory, implemented
as RAM that was battery powered but had its power supply interrupted when-
ever the equipment was opened. This secure memory was not sufficiently sized
to hold all the crypto keys that an application might use, and in any case had to
be reloaded by hand after maintenance. So instead the secure RAM retained a
small number of master keys, under which working keys were encrypted for stor-
age outside the device. For example, the 3848 had three master keys; a working
key encrypted under the first master key could be used to encrypt or decrypt
data without restriction, while working keys encrypted under the other two were
limited to ‘local’ and ‘remote’ use respectively. We’ll give concrete examples of
transactions involving restricted-use encrypted keys in the next section.

2.2 The Visa Security Module

The first generation devices such as the 3848 gave way in the mid 1980s to
second generation products including the Visa Security Module (VSM), which
was one of the most widely adopted. This is a cryptoprocessor whose function
is to protect PINs transmitted over bank ATM networks. It was designed in the
early eighties, and has many clones – including a software-compatible product
analysed during the course of this research.

VISA’s goal in promoting this technology was to persuade member banks to
hook up their ATMs to VISA’s network, so that a customer of one member
bank could get cash from an ATM owned by another member. To do this,
VISA had to make it harder for any of its member banks to lose money as
a result of the dishonesty or negligence of someone at another member. This
meant, inter alia, that no single employee of any bank in the network should
learn the clear value of any customer’s PIN. If PINs in transit to the verifying
bank were simply managed in the software running on the banks’ mainframes,
then system programmers could learn the PIN of any customer who passed a
transaction through their bank. They might then forge a card; or a customer
could successfully defraud the bank by falsely disputing a transaction, claiming
that some bank insider must be responsible. So the cryptographic systems used
to compute and verify PINs had to support a policy of shared control [1, 2].

The implementation of this policy was that each node in the system had to
contain an approved cryptographic device to protect the customer PINs passing
through, between which key material had to be set up under dual control. The
PINs themselves were generated on printers attached physically to the security
modules, and mailed out separately from the cards. Key shares for both ATM
and interbank key setup were printed with these printers on the same sort
of tamper-evident envelope stock as used for PIN issue. In the case of a link
between a bank and an ATM, the bank’s central security module would generate
two or more key shares, to be carried by separate people to each ATM when it
was initially brought online. These were combined together by bitwise exclusive-
or to create a terminal master key (conventionally known as KMT), and further
encryption keys would then be sent to the device encrypted under this master
key. In a similar way, interbank keys were set up by hand-carrying three shares
from one bank’s security module to the other’s.

4



2.3 Known-key attack

The upshot was that most bank security modules had a transaction to generate
a key share and print out its clear value on an attached security printer. It also
returned this value to the calling program, encrypted under a master key (which
we’ll call KM) which was kept in the tamper-resistant hardware:

Host −→ VSM : “Generate Key Share”
VSM −→ printer: KMTi

VSM −→ Host: {KMTi}KM

The VSM had another transaction which combined two of the shares to produce
a terminal key:

Host −→ VSM: “Combine Key Share”, {KMT1}KM , {KMT2}KM

VSM −→ Host: {KMT1 ⊕ KMT2}KM

To generate a terminal master key, a programmer would use the first of these
transactions twice followed by the second, giving KMT = KMT1 ⊕ KMT2.
This version would be used by the host program to talk to the ATM, while the
ATM created KMT directly when the two shares were entered manually.

The protocol failure is that the programmer can take any old encrypted key and
supply it twice in the second transaction, resulting in a known terminal key (the
key of all zeroes, as the key is exclusive-or’ed with itself):

Host −→ VSM: “Combine Key Share”, {KMT1}KM , {KMT1}KM

VSM −→ Host: {KMT1 ⊕ KMT1}KM

= {0}KM

There are now several ways in which an exploit can be implemented. One of the
simplest uses a transaction that enables a programmer to encrypt the PIN key
under a terminal master key, so that an ATM can verify customer PINs while
the network is down. So now the programmer can obtain the PIN key encrypted
under the all-zero key, decrypt it using his own computer, and is then able to
compute any customer’s PIN.

2.4 A ‘two-time type’ attack

While the above attack was found by inspection, the following one was found by
formal methods – by writing a program that mapped the possible key and data
transformations between different key types, computing the transitive closure
under these, and scanning the composite operations for undesirable properties.

Like the 3848, the VSM enforces a type system on working keys. An interbank
master key can only do certain transactions, different from those permitted for a
terminal master key. As in the 3848, this is enforced by having separate master
keys to encrypt separate key types.

The VSM has nine key types rather than the 3848’s three, but these are still not
really enough to express the syntax of the underlying application. For example,

5



terminal master keys and PIN derivation keys are treated as the same type.

It turns out that reusing a key type can be as dangerous as reusing a key in a
one-time cryptosystem. Just as the Soviet re-use of key material during World
War 2 led to what Bob Morris beautifully describes as the ‘two-time pad’, so
the re-use of the terminal master key type for PIN generation keys makes it into
a ‘two-time type’ that opens up another neat attack. One use of the terminal
master key is to protect the transmission of a terminal communications key (KC)
to an ATM from the host VSM. This type of key is used to compute MACs on
messages, and as the message cleartext is assumed to be freely available anyway,
there are no restrictions on the use of a KC for encryption or decryption. So, for
convenience, there is also a transaction that allows a clear key to be entered into
the system as a KC (that is, encrypted under the relevant master key, which for
simplicity’s sake we’ll call KMC).

However, there is also a transaction that allows a KC to be decrypted from
KMC and re-encrypted under any terminal master key. This is designed to
allow existing KCs to be sent out to ATMs in the field following re-keying.
However, taken together with the fact that a PIN derivation key can be passed
off as a terminal master key, it sets up an attack. Recall that a customer PIN
is, in effect, their primary account number (PAN) encrypted under the PIN
derivation key (say, KP): PIN = {PAN}KP . So an attacker will enter the
PAN into the system as a KC, by encrypting it under KMC:

Host −→ VSM : “Encrypt Comms Key” , PAN
VSM −→ Host: {PAN}KMC

The second step is to get the VSM to take the encrypted PAN (which is now
considered to be a KC) and re-encrypt it under a terminal master key. However,
instead of supplying {KMT }KM , we supply the PIN key {KP}KM :

Host −→ VSM : “Translate Comms Key to KMT”, {PAN}KMC , {KP}KM

VSM −→ Host: {PAN}KP

The answer, {PAN}KP , is just the PIN.

When keys are used for complex purposes, their security assumptions can also
become complex and escape the untutored intuition. For example, there is a
tendency to assume that encrypted data is no longer sensitive. But in this
case, where the key is for PIN derivation, the result is a sensitive value – the
customer’s PIN.

A general problem with many common key-typing systems is that once a single
key of a given type is compromised, all material at the next level down the
hierarchy (i.e. encrypted with a key of this type) can be compromised too. For
example, once any KMT or any KP is found, all keys output by a transaction
that encrypts under this key type could be compromised. It is difficult to avoid
this sort of vulnerability without a radical redesign. In the specific case of the
VSM it is worse: because there is a transaction which encrypts one terminal
master key under another, compromising a single KMT will also compromise
all its neighbours at the same level.

6



The Prism security module [12], which is widely used in utility metering ap-
plications, is most successful in limiting damage from this threat. Each child
key is bound together with the register number of its parent, so compromise
of a parent only compromises the parent’s direct children. There are flexibility
and scalability issues with this approach (the module has a limited number of
internal registers), but it is a step in the right direction.

Compromises may also cross type boundaries. For example, the VSM allows
the export of PIN derivation keys over interbank links so that VISA can do
stand-in PIN verification for a bank whose network is down. The result is that
the compromise of an interbank key can allow a programmer to extract PIN
generation keys (an incident of this nature is mentioned in [2]).

Type system design touches on a number of issues familiar from elsewhere in
security engineering. Information-flow-based security policy models are an ex-
ample. The policy statement ‘the value of KP must never become known’ is
broadly equivalent to the statement that KP is at High in a multilevel secure
system. Thus, if KP can be encrypted under KMT , KMT is also High. One
is indeed reminded of the problems encountered by the designers of multilevel
secure systems, in that classification schemes tend to classify either so little that
the system is insecure, or so much that it is not usable. However, the analogy is
not perfect, as an opponent who can get a known value of some KMT can break
the system. ‘Write-up’ can be as dangerous as ‘write-down’, and the extent to
which information flow policy ideas can be applied to key management systems
appears to be an interesting open research problem.

2.5 Meet-in-the-Middle Attacks

The meet-in-the-middle attack exploits the fact that to abuse all the keys of a
certain type, it’s usually only necessary to get one of them. This leads to a
natural time-memory tradeoff in keysearch.

Legacy cryptoprocessors typically use DES for all but a small number of high-
level transactions, and many modern ones offer it as a backwards-compatibility
mode. So a key can be found with an effort of about 255. Systems are therefore
vulnerable to anyone who can organise a few thousand people to donate spare
cycles to a keysearch effort. But it is often much worse than that! Many
cryptoprocessors will happily generate a lot of keys of the target type. 216 key
generation transactions take somewhere between a few minutes and a few hours
on the devices examined, and this can reduce the work involved in finding one
of these keys to 239, which takes only a few days on a home PC.

The attack itself is straightforward. An identical test pattern is encrypted under
each key, and the results recorded. The same test pattern is encrypted under
each trial key and the result is then compared against all versions of the en-
crypted test pattern. Checking each key will now take slightly longer, but there
will be many less to check. It is much more efficient to perform a single encryp-
tion and compare the result against many different possibilities, than it is to
perform an encryption for each comparison. Using a hash table, the comparison
stage can be made almost free.

In effect, the keysearch machine and the cryptoprocessor attack the key space

7



from opposite sides, and the effort expended by each meets somewhere in the
middle.

This attack can compromise eight out of the nine types used by the VSM, as
there are no limits or special authorisation requirements on key generation.
The Prism security module permits an interesting variation, which even allows
a top-level master key to be cracked with circa 239 effort. The module’s master
key is manually loaded from multiple shares, and a test vector returned after
the loading of each share, to ensure that it has been received correctly. The
flaw is that any user can continue to XOR in chosen shares, receiving the same
test vector encrypted under each in the response. With a few hours access, 216

different variants of the master key can be created, along with the set of test
vectors required for a meet-in-the-middle attack. We implemented this as an
experiment and succeeded in extracting the master key from a device.

3 Breaking Current Cryptoprocessors

Third-generation cryptoprocessors such as the 4758 aim to achieve much more
with their APIs than their predecessors. The 4758 is supplied with a default
financial architecture – the Common Cryptographic Architecture (CCA) – which
has 150 or so transactions, supporting a great range of banking applications; it
is designed to be backwards compatible with the 3848 and to provide much of
the functionality of the VSM as well [8, 10, 11]. Prism supplies crypto modules
which all support a default transaction set (of 25 or so commands) and can
then provide application specific extensions if required by their clients [12]. Of
course, the more complex and customisable the transaction set is, the more the
opportunity for designers to make mistakes.

Roger Needham called this process “the inevitable evolution of the Swiss army
knife”. There is a tendency for any computer architecture to become so versatile
that it becomes difficult or impossible to follow the principle of least privilege, or
even to understand which architectural features are security-relevant. Crypto-
processors are unsettlingly like word-processing macro languages in this respect!
The existence of backwards compatibility modes also complicates matters; they
not only perpetuate old problems, but cause new problems too.

3.1 Type casting attacks

We mentioned that interbank keys are typically carried from one security module
to another in the form of three shares, which in legacy equipment are simply
xor’ed together to give a single DES key. In the case of the Prism device, the
master key could be broken by running the further shares through a range of
values, but the VSM was not vulnerable in this way, as a check value on the
combined key was generated along with the key shares and had to be entered
along with them to activate the new combined key (we’ll discuss this in more
detail later). One might think that the problems of managing key shares were
by now understood.

The IBM 4758/CCA supports a key transfer procedure of this type, but there
are a few strings attached. The transaction Key_Part_Import is used, in inde-

8



pendently authorisable modes – Load_First_Key_Partand Key_Part_Combine.
By assigning permission for each of these modes to different users, a dual con-
trol policy can be implemented. When n > 2, things are not quite so sim-
ple. The first user is given Load_First_Key_Part and the remaining users
Key_Part_Combine. One might think that this gives n-fold shared control, as all
n shareholders can collude to discover the value of the communications key; but
any single Key_Part_Combineholder can collude with the Load_First_Key_Part
holder, in order to enter a chosen key into the cryptoprocessor. So it really gives
only dual control.

But that is not all. CCA introduced a new key type mechanism known as key
control vectors, with the laudable aim of supporting more key types, and more
flexible key types, than previous products [10, 11]. For present purposes, a con-
trol vector is simply a string containing key type information that is exclusive-
or’ed with the master key. The working key KW of type CV is stored under
master key KM as the token {KW}KM⊕CV ; when it is presented to the crypto-
graphic processor, the claimed control vector is xor’ed with the current master
key, the token is decrypted, and the parity of the result is checked to ensure that
it is a valid key. Some control vectors are pre-specified (such as ‘PIN generation
key’), while new ones can be specified by the application designer.

The goals of this design included providing a reasonable amount of backwards
compatibility with processors such as the 3848 and the VSM. One of the tricks
that can be used to import encrypted keys from other systems is known as
pre-XOR type-casting which allows the types of transferred keys to be modified
during import: it involves simply XOR’ing the difference between the two con-
trol vectors to a key-importing key used to import the chosen key. In normal
operation, the difference is introduced with an extra Key_Part_Combine oper-
ation once the final key is present. The vulnerability we noticed is that any
individual key share holder can modify his key share at will, so although the
absolute value of the key would remain unknown, the key share holder would
be able to set up the keys required for a type-casting attack.

In response to an early draft of this work, IBM suggested that testing keys for
integrity on import is the route to avoid the latter attack. But it’s not at all
obvious how to do this.

One approach would be for one bank to generate a key and test vector, split
the key into three shares, and send each by courier to bank B, where they are
reassembled and the test vector checked. If any shareholder had modified his
key share (accidentally or deliberately), the test vector would not match, and
the key exchange process could be aborted.

The difficulty comes in binding the testing operation to the completion of the
import process. If you let the final shareholder test the key, he might approve
a modified key into the system. So the verification must be done by somebody
else. For example, one might require anyone who uses a key to test it first. But
then a type-casting attack can be performed when any one user colludes with
any one key share holder. When the size of either these sets increases, the risk
of collusion attacks is increased, not decreased! So the security of the system
decreases as the key is split into more parts, and as we add more users.

A deeper objection to IBM’s proposed solution is that even if all keys are checked

9



before use, this still doesn’t stop the final key share holder from generating two
complete keys, one true key and one key with the intended difference. The true
key would then be passed on for testing and use, and the bogus one used for an
attack.

The core of the problem is that having a separate and final testing stage can
only work if testing is necessary before use. For example, one may build the key
internally within the cryptoprocessor, and require a correct test vector before
releasing it, so that partial, unverified keys are not returned to the host. (This
is how the VSM works – although the test vectors are only six decimal digits.)
Alternatively, one could make a type distinction between verified and unverified
keys. Indeed, key verification appears to have been introduced as a measure
against accidental errors in key share entry, rather than malicious modification
of keys. It requires more careful attention in future designs.

One conclusion to draw is that whenever we use a combining function with
arithmetic properties, all dependent protocols should be checked for potentially
unpleasant side-effects of these properties. In other words, IBM’s choice of
combining function raised the complexity of transaction set verification.

3.2 How to import key shares properly

So how can we import key shares safely, in such as way that the only attack
requires collusion between all n shareholders? The first solution that comes to
mind is to use a cryptographic hash function instead of XOR to combine the
shares. With this method, a shareholder who modifies his keypart can only
introduce a random difference between the loaded key and the intended key.

K = H(S1, S2, S3)

However, this method is not suitable where an already existing key must be
shared – the Si cannot be calculated from an already chosen K. In that case,
one possible approach might be to decrypt K under two successive shares and
use the result as the third share – a verification value. No single key share holder
can introduce a known difference between the loaded key and the intended key.

K = {{{S1}S2}S3

One can come up with many variant schemes, some with distinct testing stages,
detailed contextual information in each share (e.g. share number, destination
module, timestamp . . . ), but there is an important requirement to put upon
the key share entry method, before we are home and dry. No matter what the
key share combination method, the transaction for each share entry must be
distinct and independently authorisable. If any two users were to share the same
transaction for key share entry, then the work of the former would reproducible
by the latter, so n− 1 key share holders could collude to mount an attack in an
n share system. The 4758/CCA method uses the same transaction for all but
the holder of the first key share, so the maximum n is 2. The transaction set
must allow the cryptoprocessor to keep track of how many distinct users have
contributed to the key.

10



The procedure used with some VSM clones remains a model of good practice.
When an interbank key is generated, three officials stand round the machine;
a special ‘security manager’ key is inserted to put the equipment into a highly
authorised state; three key mailers are produced, each with a key component
and the (same) check value on the (combined) key; these mailers are taken to
the correspondent bank and entered; if the three keys combine into one with
the check value, the key becomes live.

However, optimisations of this simple procedure seem to be dangerous. If key
shares are not entered simultaneously in an atomic transaction, then binding the
component transactions becomes a problem. The situation is further confused
where the confidentiality and integrity of the key are treated separately. For
example, any system with a single user authorised as the tester allows a key to
be damaged by collusion between the tester and any key share holder.

3.3 Backwards compatibility and the key binding attack

Since the 3848, concerns about the vulnerability of DES to keysearch have
led cryptoprocessor designers to support triple DES (3DES), often with two
keys and sometimes with three. 3DES has the property that, if the multiple
input keys used are the same, it performs exactly as single DES, thus providing
backwards compatibility. Export licensing pressures originally limited 3DES to
top-level master key operations and to irreversible operations such as computing
the check digits for use on bank card magnetic strips, but it is now used for more
and more functions.

The 4758 CCA has a subtle implementation problem with 3DES, in that it
does not properly bind together the halves of its 3DES keys. Each half has an
associated type, which distinguishes between left halves, right halves, and single
DES keys. However, the type system does not specifically associate the left and
right halves of a particular key. The result is that one can use keysearch to
discover the halves of a 3DES key one at a time. For example, if we know KAL
and KAR, and wish to discover KXL and KXR, then we can encrypt test
values under (KAL, KXR) to recover KXR and then under (KXL, KXR)
to discover KXL. It turns out that our meet-in-the-middle technique works
well with this attack. Provided we can find out the value of a single key half,
and encrypt a reasonable number of known test vectors, we can break all the
DES keys of interest in the device (including keys which do not have export
permissions).

A 4758 backwards-compatibility feature allows us to get the known key half
we need for this attack. This feature gives the option to generate replicate
3DES keys – keys with both halves having the same value. Again, the meet-
in-the-middle attack cuts the effort from about 255 to about 240. The attacker
generates 216 replicate keys sharing the same type as the target key, and then
searches for the value of two of them. The halves of the two replicate keys can
then be exchanged to make a 3DES key with differing halves.

Strangely, the 4758 type system permits distinction between true 3DES keys and
replicate 3DES keys, but the manual states that this feature is not implemented,
and all share the generic 3DES key type. Now that a known 3DES key has been
acquired, the conclusion of the attack is simple; let the key be an exporter key,

11



and export all keys using it.

In the particular case of the 4758/CCA, generating a large number of keys is
essentially free. The IBM products have for years used key formats without any
plaintext padding, so that keys could be generated simply by choosing some
value and submitting it as an encrypted key. The decrypted result will thus be
an unknown pseudorandom value. The cryptoprocessor would then manually
adjust the parity. So our 216 test values can be computed as fast as we can
supply random (or counter) values to the device and store the responses. We
refer to this feature as key conjuring [6].

A non-exportable key can also be extracted by making two new versions of
it, one with the left half swapped for a known key, and likewise for the right
half. A 256 search would yield the key (looking for both versions in the same
pass through the key space). A distributed effort or special hardware would be
required to get results within a few days, but such a key would be a valuable
long term key, justifying the expense. In fact, a brute force effort in software
could search for all non-exportable keys in the same pass.

4 Possible Future Research

The latest cryptoprocessors have forsaken manual secret-key exchange and use
public key cryptography to exchange symmetric transport keys. It is not clear
how much things change; shared control is still required to achieve the same
level of assurance. Getting the procedural controls right for public key exchange
may turn out to be at least as difficult, because of the counterintuitive twists
introduced by the asymmetry of the underlying mechanism. The design of public
key protocols is notoriously hard, and their interaction with tamper-resistant
embedded devices is by no means fully explored.

A related issue is the design of formats for keying material. One might expect
that a key being transported should be padded with a checksum, and with
freshness information such as a nonce or date. However, many designs have
failed because keys are encrypted first and their contextual information tacked
on afterwards, often using mechanisms that break. For example, failures of
protocols that use public key encryption before signature are discussed in [5].
There may be a psychological factor at work here, in that designers feel a clear
key is ‘radioactive’ and must be shielded as soon as possible by encryption. Be
that as it may, the design of key formats is another opportunity for research.

Another related issue is trusted path. One of the reasons that top-level key
management seems more robust in the VSM than in the 4758 appears to be
that the former has a terminal physically attached to the device, at which man-
agement operations are conducted, as well as a printer at which key components
are output. The VSM has a supervisor password to control this access; one clone
goes further, with separate physical keys for routine security operations (such as
printing customer PINs and ATM keys) and top-level ones (such as generating
interbank keys). This means that the holder of the top-level key can ensure that
all three key share holders are physically present at the device while the whole
operation is done atomically.

12



The 4758, on the other hand, works as a PC peripheral, so it seems to have
been natural for the designers to make management operations more flexible.
However, the trust boundary for key management may also include operating
system access control, virus protection, network security and so on – so it’s less
clear what value a tamper-resistant cryptoprocessor adds! The interaction of
trusted path with shared control and environmental issues promises to be even
harder in a world of ubiquitous computing.

Another issue is understanding protection dependencies. A common cause of
real-life security failures is that an application evolves in some way that causes
assumptions to no longer hold. For example, we might not be too concerned
about card forgery attacks an electronic purse that only makes online transac-
tions to merchants, as the threat model is almost identical to that of magnetic-
strip card forgery; but if transfers are suddenly allowed between customer purses,
then the mechanisms of hot cards and floor limits break down, and large-scale
fraud is suddenly possible. Furthermore, the compromise of the master key
from a single card can now break the entire system, rather than do fraud on a
single account. This is a (deliberately) blatant example; there are many more
subtle ones [1]. Ideally, we want better tools for tracking dependencies between
protection goals, assumptions and mechanisms as systems evolve.

Finally, there are broader computer science issues. Given a number of embedded
processors that enforce different security properties – say, an electronic purse,
a postal meter and the SIM card of a mobile phone – how do we go about
building a secure system? In other words, given N processors each supporting a
different security policy, how do we compose them into something that supports
yet another security policy? This composition problem is an old chestnut. So
is the problem of the interaction of security and reliability: how can we built
a robust, secure system out of less dependable components? There is also the
related question of whether there any deep philosophical difference between ac-
cess control in a host CPU, in a cryptoprocessor, and in an application. Perhaps
this new space of application problems will give valuable new insights.

5 Conclusions

The design of security APIs is a new field of research, of significant indus-
trial and scientific importance. The poor design of present interfaces prevents
many tamper-resistant processors from achieving their potential, and leaves
disappointing dependency on procedural controls – the design of which involves
subtleties that are likely to be beyond the grasp of most implementers.

In this article, we have touched on a number of specific design failures. Some
of these are new, such as the key binding problems with triple-DES, type cast-
ing attacks, subtle interactions with backward compatibility modes, and new
types of chosen-key attack and meet-in-the-middle attack. Others are variants
of problems already encountered elsewhere, such as trusted path issues and the
use of combining functions such as XOR that have exploitable mathematical
properties. Many involve the interface between different protection technolo-
gies, such as between type systems and cryptology, and between technical and
procedural mechanisms for shared control. Some were found by inspection, and

13



others by the application of crude formal methods to the published transaction
sets.

We are only starting to come to grips with the deeper, conceptual issues. It
is unclear that a ‘generalised’ API will work: as we have seen, the natural
accretion of functionality is one of the great enemies of security. Yet getting
the API right is relevant for much more than just cryptoprocessors. The API is
‘where the rubber hits the road’, as it is where the cryptography, the protocols,
the operating system access controls, and the operating procedures all come
together – or fail to. It truly is a microcosm of the security engineering problem;
a large number of tools can be brought to bear, and hopefully we will learn much
of value about our existing techniques by applying them in this new problem
space.

6 Acknowledgements

The authors wish to thank (alphabetically) Johann Bezuidenhoudt, Richard
Clayton, George Danezis, Steve Early, Peter Landrock, Larry Paulson, and
Don Taylor for input and feedback. The first author was supported by the UK
Engineering and Physical Sciences Research Council (EPSRC) and Marconi plc,
while the second author was a joint investigator on the EU-sponsored G3Card
project.

References

[1] RJ Anderson, ‘Security Engineering - a Guide to Building Depend-
able Distributed Systems’, Wiley (2001) ISBN 0-471-38922-6

[2] RJ Anderson, ‘Why Cryptosystems Fail’ in Communications of
the ACM vol 37 no 11 (November 1994) pp 32-40; earlier version
at http://www.cl.cam.ac.uk/users/rja14/wcf.html

[3] R Anderson, ‘The Correctness of Crypto Transaction Sets’, Secu-
rity Protocols – 8th International Workshop, April 2000 (proceed-
ings to appear in Springer LNCS series)

[4] RJ Anderson, SJ Bezuidenhoudt, ‘On the Reliability of Electronic
Payment Systems’, in IEEE Transactions on Software Engineering
vol 22 no 5 (May 1996) pp 294-301; http://www.cl.cam.ac.uk/
ftp/users/rja14/meters.ps.gz

[5] RJ Anderson, RM Needham, “Robustness principles for public
key protocols”, in Advances in Cryptology – Crypto 95 Springer
LNCS vol 963 pp 236–247; http://www.cl.cam.ac.uk/ftp/
users/rja14/robustness.ps.gz

[6] M Bond, ‘Attacks on Cryptoprocessor Transaction Sets’, in Work-
shop on Cryptographic Hardware and Embedded Systems (CHES
2001) (proceedings to appear)

14



[7] IBM 3614 Consumer Transaction Facility Implementation Plan-
ning Guide, IBM document ZZ20-3789-1, Second edition, Decem-
ber 1977

[8] IBM, ‘IBM 4758 PCI Cryptographic Coprocessor – CCA Ba-
sic Services Reference and Guide, Release 1.31 for the IBM
4758-001’, available through http://www.ibm.com/security/
cryptocards/

[9] CH Meyer, SM Matyas, ‘Cryptography: A New Dimension in
Computer Data Security’, Wiley, 1982

[10] SM Matyas, ‘Key Handling with Control Vectors’, IBM Systems
Journal v 30 no 2, 1991, pp 151–174

[11] SM Matyas, AV Le, DG Abraham, ‘A Key Management Scheme
Based on Control Vectors’, IBM Systems Journal v 30 no 2, 1991,
pp 175–191

[12] http://www.prism.co.za

15


