Modelling Cubical Type Theory in Agda

Ian Orton
(joint work with Andrew Pitts)

UNIVERSITY OF CAMBRIDGE
Computer Laboratory

Workshop on HoTT/UF ’16, Porto
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:

- The internal type theory of a topos
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:

- The internal type theory of a topos
- Translating this into Agda
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:

- The internal type theory of a topos
- Translating this into Agda
- Our axiomatisation
Overview

This material in this talk is based on our paper:

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:

- The internal type theory of a topos
- Translating this into Agda
- Our axiomatisation
- Why this is a good approach
The internal type theory of a topos
The internal type theory of a topos

- Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos \mathcal{E} (with families over $X \simeq \mathcal{E}/X$).
The internal type theory of a topos

- Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos \mathcal{E} (with families over $X \sim \mathcal{E}/X$).
- The subobject classifier Ω becomes an impredicative universe of propositions with logical connectives, equality and quantifiers.
The internal type theory of a topos

- Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos \mathcal{E} (with families over $X \simeq \mathcal{E}/X$).
- The subobject classifier Ω becomes an impredicative universe of propositions with logical connectives, equality and quantifiers.
- The universal property of Ω gives rise to comprehension subtypes...
Comprehension subtypes

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

$$\Gamma, x : A \vdash \varphi(x) : \Omega$$

$$\Gamma \vdash \{x : A \mid \varphi(x)\}$$

whose terms are those $t : A$ for which $\varphi(t)$ is provable.
What do we need in Agda?

In order to apply the same reasoning that we use in the paper we need to extend Agda with:
What do we need in Agda?

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

- An impredicative universe of (mere) propositions
 – to model the subobject classifier Ω
What do we need in Agda?

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

- An impredicative universe of (mere) propositions – to model the subobject classifier Ω
- Comprehension subtypes
What do we need in Agda?

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

- An impredicative universe of (mere) propositions – to model the subobject classifier Ω
- Comprehension subtypes
- Function extensionality
An impredicative universe of propositions

We use an idea of Martin Escardo1:

1 \url{www.cs.bham.ac.uk/~mhe/impredicativity/}
An impredicative universe of propositions

We use an idea of Martin Escardo1:

```agda
{-# OPTIONS --type-in-type #-}
-- the following definition relies on type-in-type,
-- which is switched on only in this module

record Ω : Set where
  constructor prop
  field
    prf : Set
    equ : (u v : prf) → u ≡ v
```

1. www.cs.bham.ac.uk/~mhe/impredicativity/
Comprehension subtypes

We simply form the sigma type:

$$\text{set} : (A : \text{Set})(P : A \to \Omega) \to \text{Set}$$

$$\text{set } A \ P = \Sigma \ x \in A \ , \ \text{prf } (P \ x)$$

syntax \text{set } A \ (\lambda \ x \to P) = [\ x \in A \mid P]
Comprehension subtypes

For example:

\[\text{Evens} : \text{Set} \]
\[\text{Evens} = [\, n \in \mathbb{N} \mid \exists \, m \in \mathbb{N} \, , \, 2 \cdot m \approx n \,] \]

\[\text{four} : \text{Evens} \]
\[\text{four} = (4 \mid 2 \mid \text{refl} \mid 1) \]
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos \mathcal{U}
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos \mathcal{U}
- An interval object \mathcal{I}
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos \mathcal{U}
- An interval object I

Paths in A are maps $I \to A$
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos \mathcal{U}
- An interval object \mathbf{I}
- A subobject $\text{Cof} \rightarrow \Omega$ of “cofibrant" propositions

Paths in A are maps $\mathbf{I} \to A$
Overview of axiomatisation

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos \mathcal{U}
- An interval object \mathcal{I}
- A subobject $\text{Cof} \hookrightarrow \Omega$ of “cofibrant" propositions

Internalisation of the face lattice \mathcal{F}. Think of elements of Cof as propositions such as $(i = 1)$, $(i = 0) \lor (j = 1)$, $(i = 0) \land (j = 0)$ etc.
Modelling Kan filling

How do we model the Kan filling operation from cubical type theory?

\[\Gamma, \ i : I \vdash fill^i A [\varphi \mapsto u] \ a_0 : A \]
Modelling Kan filling

How do we model the Kan filling operation from cubical type theory?

\[\Gamma, i : I \vdash fill^i A [\varphi \mapsto u] a0 : A \]
Modelling Kan filling

How do we model the Kan filling operation from cubical type theory?

$$\Gamma, \ i : I \vdash \text{fill}^i A \ [\varphi \mapsto u] \ a0 : A$$
Modelling Kan filling

How do we model the Kan filling operation from cubical type theory?

$$\Gamma, i : I \vdash \text{fill}^i A [\varphi \mapsto u] a_0 : A$$
Modelling Kan filling

How do we model the Kan filling operation from cubical type theory?

\[\Gamma, i : \mathbb{I} \vdash \text{fill}^i A [\varphi \mapsto u] a0 : A \]
Modelling partial terms/types

How do we model partial types?

\[\Gamma, \varphi \vdash A \]

And partial terms?

\[\Gamma, \varphi \vdash a : A \]
Comprehension subtypes again

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

$$\Gamma, x : A \vdash \varphi(x) : \Omega$$

$$\Gamma \vdash \{x : A \mid \varphi(x)\}$$

whose terms are those $t : A$ for which $\varphi(t)$ is provable.
For any type $\Gamma \vdash A$ we can form **comprehension subtypes**:

$$\Gamma, x : A \vdash \varphi(x) : \Omega$$

$$\Gamma \vdash \{ x : A \mid \varphi(x) \}$$

whose terms are those $t : A$ for which $\varphi(t)$ is provable.

In particular we can take $A = 1$ to get:

$$[\varphi] \triangleq \{ _ : 1 \mid \varphi \}$$
Comprehension subtypes again

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

\[
\Gamma, x : A \vdash \varphi(x) : \Omega \\
\Gamma \vdash \{x : A \mid \varphi(x)\}
\]

whose terms are those $t : A$ for which $\varphi(t)$ is provable.

In particular we can take $A = 1$ to get:

\[
[\varphi] \triangleq \{_ : 1 \mid \varphi\}
\]

We will make extensive use of these types in connection with partial elements.
Partial elements

A partial element of a type A is a pair:

- $\varphi : \Omega$, called the extent
- $f : [\varphi] \to A$.
A partial element of a type A is a pair:

- $\varphi : \Omega$, called the extent
- $f : [\varphi] \to A$.

Later we will want to talk about extending a partial element to a total one:
Partial elements

A partial element of a type A is a pair:

- $\varphi : \Omega$, called the extent
- $f : [\varphi] \to A$.

Later we will want to talk about extending a partial element to a total one:

We say that a partial element (φ, f) extends to $a : A$ if the following relation holds:

$$(\varphi, f) \xrightarrow{a} \triangleq \forall (u : [\varphi]). f u = a$$
Filling in the internal TT

The notion of Kan filling in our internal type theory:
The notion of Kan filling in our internal type theory:

The type of filling structures for I-indexed families of types, $\text{Fill} : (e : \{0, 1\})(A : I \rightarrow \mathcal{U}) \rightarrow \mathcal{U}$, is defined by

\[
\text{Fill}_e A \triangleq \\
(\varphi : \text{Cof})(f : [\varphi] \rightarrow \Pi_I A) \\
(a : \{a' : A e \mid (\varphi, f) \circ @ e \Rightarrow a'\}) \\
\rightarrow \\
\{g : \Pi_I A \mid (\varphi, f) \Rightarrow g \land g e = a\}
\]
\[
\text{Fill } e A \triangleq \\
(\varphi : \text{Cof}) (f : [\varphi] \rightarrow \Pi_i A) \\
(a : \{a' : A e \mid (\varphi, f) @ e \rightarrow a'\}) \\
\rightarrow \\
\{g : \Pi_i A \mid (\varphi, f) \rightarrow g \land ge = a\}
\]
\[\text{Fill} e A \triangleq \]
\[(\varphi : \text{Cof})(f : [\varphi] \rightarrow \Pi I A) \]
\[(a : \{ a' : A e \mid (\varphi, f) @ e \rightarrow a' \}) \]
\[\rightarrow \]
\[\{ g : \Pi I A \mid (\varphi, f) \rightarrow g \land g e = a \} \]

\[
\text{Fill} e A = \\
(\phi : \text{Cof})(f : [\phi] \rightarrow \Pi A) \\
(a : \llbracket a' \in A \langle e \rangle \mid (\phi, f) \cdot \langle e \rangle \rightarrow a' \rrbracket) \\
\rightarrow \\
\llbracket g \in \Pi A \mid ((\phi, f) \rightarrow g) \land (g \langle e \rangle \approx \text{fst} a) \rrbracket
\]
General approach to constructing models
General approach to constructing models

- Start with a candidate topos \mathcal{E}
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
 - prove these externally
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
 - prove these externally
- Express these properties in the internal type theory
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
 - prove these externally
- Express these properties in the internal type theory
 - postulate them in Agda
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
 - prove these externally
- Express these properties in the internal type theory
 - postulate them in Agda
- Construct proofs internally
General approach to constructing models

- Start with a candidate topos \mathcal{E}
- Identify the key properties of \mathcal{E}
 - prove these externally
- Express these properties in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
General approach to finding models
General approach to finding models

- Start with some candidate axioms in the internal type theory
General approach to finding models

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
General approach to finding models

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
General approach to finding models

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
General approach to finding models

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
- Look for models of these axioms
General approach to finding models

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
- Look for models of these axioms
 - e.g. classifying topos for the theory
Thanks for listening!

Axioms for Modelling Cubical Type Theory in a Topos

Ian Orton and Andrew Pitts, CSL 2016

Paper and Agda:
http://www.cl.cam.ac.uk/~rio22/

Ian.Orton@cl.cam.ac.uk
Andrew.Pitts@cl.cam.ac.uk