
Exploiting Tightly-Coupled Cores
Daniel Bates, Alex Bradbury, Andreas Koltes and Robert Mullins

Computer Laboratory, University of Cambridge, UK
Email: {Daniel.Bates, Alex.Bradbury, Andreas.Koltes, Robert.Mullins}@cl.cam.ac.uk

Abstract—The individual processors of a chip-multiprocessor
traditionally have rigid boundaries. Inter-core communication is
only possible via memory and control over a core’s resources is
localised. Specialisation necessary to meet today’s challenging
energy targets is typically provided through the provision of
a range of processor types and accelerators. An alternative
approach is to permit specialisation by tailoring the way a large
number of homogeneous cores are used. The approach here
is to relax processor boundaries, create a richer mix of inter-
core communication mechanisms and provide finer-grain control
over, and access to, the resources of each core. We evaluate one
such design, called Loki, that aims to support specialisation in
software on a homogeneous many-core architecture. We focus
on the design of a single 8-core tile, conceived as the building
block for a larger many-core system. We explore the tile’s ability
to support a range of parallelisation opportunities and detail
the control and communication mechanisms needed to exploit
each core’s resources in a flexible manner. Performance and a
detailed breakdown of energy usage is provided for a range of
benchmarks and configurations.

I. INTRODUCTION

Current multi-core approaches provide a rigid target for the
programmer and compiler. This inflexibility and the prede-
termined partitioning of resources complicates the writing of
parallel programs. The hard boundaries given to cores also
exposes the limitations described by Amdahl’s law by forcing
the mix of sequential and parallel capability to be fixed at
design-time. Furthermore, computation and communication
are often controlled by general-purpose hardware mechanisms,
making it difficult to streamline the implementation of a
particular program to overcome increasingly severe power
constraints. Perhaps surprisingly, while such concerns persist,
the architecture of most multi-core chips diverge little from
older multi-node machines, even though the design space on-
chip is far less constrained.

We explore a new approach to embrace the abundance of
new parallel programming and compilation techniques and
to achieve the necessary step-change in energy efficiency.
Through allowing greater control over the placement of data,
placement of execution, and of how communication takes
place, higher performance and more energy-efficient solutions
can be built than is possible on a traditional multi-core
architecture. We suggest the programmer and compiler specify
an application-specific virtual architecture or overlay for their
target application. This is a network of the best processors,
helper engines, accelerators, memories and routers for that

This work was supported by EPSRC grant EP/G033110/1.

application. The ability to describe this overlay purely in
software offers further advantages, as it becomes possible
to dynamically adapt it in response to changing conditions
at run-time. This saves power by minimising superfluous
switching activity, for example by providing a direct low-
cost communication path between certain components or by
specialising the computation resources (and their control) to a
particular task.

This approach requires an architecture that is able to provide
a sea of resources that can be combined into the required
overlay. We achieve this by allowing a large number of simple
cores and memory blocks to communicate freely and at low-
cost over a single (logical) on-chip network. This design must
allow cores and memories to be composed to form larger
computation structures, and must also allow more direct access
to on-chip resources, effectively exposing individual datapath
components to others on the network. To achieve the desired
level of flexibility while maximising energy efficiency, the
design must additionally support bypassing of resources when
they are not required.

The choice of a homogeneous design means Loki is also
well placed to tackle emerging challenges as we move to
future fabrication nodes. This decision makes many aspects
of the design simpler, including fault tolerance, design and
verification, optimisation and scaling. Loki’s support for soft-
ware specialisation narrows the gap between its homogeneous
structure and an optimised heterogeneous architecture. We
aim to provide flexibility without imposing the limitations
of reconfigurable architectures, such as FPGAs and CGRAs,
in terms of limited virtualisation capabilities, poor control-
intensive code performance and rigid on-chip communication
structures.

Much as an FPGA provides a substrate for logic-level
emulation, Loki and similar architectures provide a flexible
processing substrate for executing software efficiently. These
arrays of processing elements may provide support for a
broader range of applications, where individual cores may
be programmed as traditional processors but also viewed
as configurable circuit-level components which perform a
single task. Loki differs from other polymorphic chip multi-
processors in its finer granularity and its greater scope for
flexibly using datapath resources. The flexibility of the sea of
cores and memories can also be exploited at run-time rather
than requiring that overlays are static during execution or
requiring an explicit reconfiguration phase.

Loki’s novelty lies in the breadth of virtual architectures
which can be implemented efficiently and the speed at which

978-1-4799-0103-6/13/$31.00 ©2013 IEEE 296

Memory controller

Memory controller

I/O

Tile interconnects Router

8 x core

8 x L1 cache bank

Fig. 1. Loki’s tiled architecture. Left: chip with one tile highlighted. Right:
tile block diagram.

FETCH DECODE EXECUTE
WRITE
BACK

Input
buffers

Output
buffers

Register
write

ALU

Register
read

Immediate
sign-extend

Decode

IPK
cache

In
st

ru
ct

io
n

b

u
ff

e
r

CMT
read

CMT
write

Scratch-
pad

Fig. 2. Loki core microarchitecture block diagram. IPK: Instruction Packet
– atomic group of instructions similar to a basic block. CMT: Channel Map
Table – mapping between logical and physical network addresses.

they can be configured. This is achieved by exposing many
hardware elements through the instruction set and performing
all specialisation in software. This main contributions of this
paper are:

• An overview of the Loki architecture; one instance of the
class of communication-centric architectures we describe
(Section II);

• A framework for high-level energy modelling, and a
detailed performance, energy and area characterisation for
the Loki architecture (Section III);

• Demonstration that tightly-coupled cores, through the
provision of compiler-controlled interconnect, allow a
broad range of parallelisation techniques (Section IV).

II. LOKI ARCHITECTURE

Loki is a homogeneous, tiled architecture, composed of
cores and memories connected through an on-chip network
(Figure 1). Each core has a relatively simple 32-bit scalar
pipeline (Figure 2). A traditional RISC instruction set is
augmented with the facility to provide most instructions with

direct access to the on-chip network. The studies in this paper
focus on a single tile of the Loki architecture.

A. Software specialisation

Loki aims to permit a programmer to exploit a wide-
range of execution patterns, mirroring the techniques used by
many different architectures, e.g. SIMD, fine-grain dataflow,
task-level pipelines, ILP, etc. Such patterns are exploited at
run-time through software rather than with the aid of an
explicit configuration. The aim is to tailor the execution
and communication patterns to each program or phase of a
program. Software management of each core’s instruction and
data stores is possible (though not compulsory), and network
buffers are exposed to software through the instruction set.

B. Network-centric design

The network is central to the design and provides the basic
mechanism by which resources can be accessed and composed
in a low-cost fashion. The buffers that hold incoming data
from the network are register mapped and the instruction set
extended to allow instructions to place their results directly
onto the network. The network is used to carry both instruc-
tions and data and allows arbitrary communication between
both cores and memories.

A tile has a local network allowing communication between
its constituent cores and memories. Each tile is also attached to
a global chip-wide network. The local network is implemented
as a collection of networks each optimised for a particular
communication pattern. Cores and memories communicate
with each other over two fast crossbars (one in each direction)
with half-cycle latencies to minimise memory latency. Each
core also has a dedicated bus to which it can write to
communicate with arbitrary subsets of other cores on the tile
within one clock cycle. L1 cache banks are connected by
a ring network to satisfy requests (e.g. for some instruction
packets) that overflow into neighbouring cache banks. For
the global interconnect we use a simple placeholder packet-
switched mesh network, with a router in each tile providing
single-cycle hops to neighbouring tiles.

Access to memory from each core is provided over the
network in a decoupled fashion. This differs from the provision
of a blocking memory access stage in a typical pipeline. A load
instruction requests data from memory which is written into
one of the core’s input buffers. The pipeline will only stall if
a subsequent instruction attempts to read this buffer when no
data is present.

Instructions are grouped into atomic blocks called instruc-
tion packets (IPKs), which roughly correspond to basic blocks
in the program. This approach is suited to the networked
design: it allows a single memory request to result in a
large transfer of instructions; and it makes prefetching sim-
ple, making it easier to hide memory latencies. Instruction
packets may also be sent directly between cores, enabling
the execution of short instruction sequences at remote cores
(e.g. to access or store data in a remote tile). This is achieved
either by requesting that memory sends a packet to a remote

297

uint32_t updateCRC32(uint8_t ch,
uint32_t crc)

{
return crc_32_tab[(crc ˆ ch) & 0xff] ˆ

(crc >> 8);
}

(a) C code

setchmapi 1, r11
[...]
fetch r10
xor r11, r14, r13
lli r12, %lo(crc_32_tab)
lui r12, %hi(crc_32_tab)
andi r11, r11, 255
slli r11, r11, 2
addu r11, r12, r11
ldw 0(r11) -> 1
srli r12, r14, 8
xor.eop r11, r2, r12

(b) Loki assembly code

Fig. 3. CRC code example showing features of Loki’s instruction set.

core or by sending an inlined instruction sequence to a
remote core’s instruction buffer. When an instruction packet
is fetched, it does not execute immediately, as in the case of
a traditional branch instruction, but is queued up to execute
when the current packet has completed. This behaviour is
similar to the atomic instruction blocks used by the SCALE
architecture [13]. Loki also supports predicated execution to
reduce the amount of control flow, increasing the average size
of instruction packets.

Channels are a fundamental design feature which allow
components to communicate. Each core and memory has
associated with it a number of channel-ends, to which it can
read and write. Each channel connects a single source to one or
more destinations. Channels are typically allocated at compile-
time, though it is also safe to perform run-time allocation if it
is known that messages from different sources will not collide.
Attempting to read from an empty input buffer, or channel-end,
will cause the pipeline to stall. Writes also stall if the network
is blocked or, in the case of longer distance communications,
if no buffer space is available at the receiving core (end-to-
end flow control). A layer of indirection is provided when
writing to a channel in the form of a channel map table (CMT).
This small table, present in every core, holds the full network
addresses that data will be sent to, avoiding the need to encode
these at the instruction level. The channel map table is also
used to specify multicast groups and enable communications,
and hence threads if necessary, to be remapped transparently
at run-time.

Figure 3 lists a fragment of the kernel of the CRC bench-
mark. Before the kernel begins, setchmapi associates the
logical network address 1 with the physical network address
held in r11. The function itself begins with an instruction
fetch: the next instruction packet to be executed is known
immediately, and is fetched in advance. The load instruction
(ldw) demonstrates the ability to send data onto the network
with the -> notation; most instructions are able to store their

results locally, send them over the network, or both. The
load works by sending a memory address over the network
to the appropriate cache bank. The cache bank also has a
channel map table which has been configured to send data
back to channel 2 of the core. This data is used in the final
instruction: registers 2-7 are mapped to the input buffers. The
.eop marker denotes the end of the instruction packet and
triggers the start of execution of the packet fetched previously.

C. Instruction and data supply

Instruction packets can be stored in each core’s 64-entry
level-0 (L0) instruction packet cache to take maximum ad-
vantage of any available locality. Effective use of such L0
instruction caches has the potential to significantly reduce
power consumption [1], [2]. The cache is fully associative
and has a FIFO replacement policy to minimise the number
of conflict misses and maximise utilisation of such a small
store.

Each core also has a 16-entry instruction buffer. The buffer
is used for instructions which will only need to be read once
and for specialised code sequences which fit in the smaller
store. This includes simple tasks sent between cores, but also
includes code regions for which the cache will perform poorly,
allowing the relatively expensive cache to be bypassed and
reducing instruction supply energy. The buffer has priority
over the cache: if there are pending packets in both structures,
the one from the buffer is selected. Once an instruction
packet from either source begins execution, it continues to
completion.

A 256-word compiler-managed scratchpad is provided in
each core to reduce the cost of accessing small tables of
data, constant values, and sometimes sections of the stack.
The scratchpad has the advantage that when a table is stored,
element x of the table can often be stored at index x of
the scratchpad, eliminating the need to generate a memory
address.

D. Memory system

Each tile holds eight 8kB memory banks which make up
the unified L1 cache. To increase uniformity and flexibility,
memory banks are also accessed over the network. This allows
cores to masquerade as memories, e.g. in order to apply
a transformation to memory addresses before accessing the
banks themselves. This could be useful for implementing vir-
tual memory, memory protection, and transactional memory,
for example. It also makes the memory banks easily accessible
to multiple cores. In order to reduce the impact of the network
latency when accessing memory, arbitration is done in parallel
with computation or memory access – the total time required
to access what is effectively a 64kB banked L1 cache is two
clock cycles in a zero-load system.

The L2 memory system is left undefined for this work as it is
outside of the local tile. We are currently experimenting with
a configurable L2 memory system that would allow the L2
cache memory to be used in a number of different ways. Loki

298

does not currently support hardware cache coherence between
tiles.

III. METHODOLOGY

A. Performance modelling

The architecture is modelled in SystemC. Together with
performance data, fine-grain event counts are collected in
order to estimate energy consumption. Simulation is cycle-
accurate apart from the modelling of system calls, which
complete instantaneously. For this reason, we lightly patch
some benchmarks to remove system calls from inner loops,
to reduce their impact on performance results.

The L2 cache is not fully modelled: it has a latency of
ten cycles (beyond the L1), consumes no energy, and is large
enough to hold all data required to execute a benchmark. The
impact of this on our current compute intensive benchmark
suite is minimal.

B. Benchmarks

Our experiments are performed using the MiBench bench-
mark suite [3]. We use only integer benchmarks, since Loki
doesn’t yet have hardware floating point support, and we
use only those benchmarks which compile (some require
libraries which are not yet supported on Loki). We simulate ten
benchmarks in total covering all six of the MiBench categories:
automotive, consumer, network, office, security and telecom.

All benchmarks are compiled using the settings suggested
by the MiBench makefiles and are executed using the “small”
inputs. We execute the benchmarks with the aid of the
Newlib [4] C standard library implementation.

We use a custom LLVM-based [5] compiler. Since the
compiler is not yet able to perform some optimisations, we
hand-modify the most frequently executed regions of each
benchmark. The modifications are expected to be within
reach of a standard optimising compiler, and include simple
optimisations such as removal of no-ops and filling branch-
and load-delay slots.

C. Energy modelling

We describe all of the major datapath main components
in SystemVerilog and implement them using the Synopsys
Design Compiler and IC Compiler tools. Parasitics are ex-
tracted using StarRC and power is measured on a cycle-by-
cycle basis using Primetime. Simulation event logs are then
combined with energy consumption data in order to form an
energy model using a multiple regression analysis for each
component. Events of interest include the types of operation
performed and number of bits toggled. Power is estimated
assuming perfect clock-gating at the datapath component level.
Energy models for interconnects are extracted in a similar way
for fast, slow, well spaced and congested scenarios. We use
Orion 2.0 [6] to model the high-level clock tree and validate it
against a 1-bit bus of comparable length. We use a commercial
memory compiler to obtain energy models for each of the
SRAMs.

All results are obtained for a commercial 40nm low-Vt pro-
cess. We select only low-Vt cells and leakage is subsequently
low and is not reported here. Timing is closed using a multi-
corner PVT analysis where 0.99V and -40◦C is usually the
worst-case corner. Energy results are reported for the typical
case (1.1V, 25◦C). We target a 435MHz clock rate due to
simultaneous constraints from the instruction packet cache,
register file, and memory bank. The design is conservatively
margined at the WC corner including foundry recommen-
dations for OCV and clock jitter. Our clock period is ∼42
FO4 delays, within the typical range of 40-60 FO4 delays
for modern system-on-chip designs. We note that synthesizing
and modelling each datapath component separately will likely
overestimate costs slightly.

The floorplan of a single tile is shown in Figure 4. A tile size
of 1mm2 permits 8 cores and 8×8kB memory banks, with a
crossbar latency of half a clock cycle and a multicast latency of
one cycle. A larger tile would increase the latency and energy
costs of communication, while a smaller tile would reduce
the gains from coupling cores, as more communication would
involve traversing a higher level of the network hierarchy. It is
interesting that the network structures consume such a small
area – this highlights the opportunities for dense interconnects
and a rich variety of communication patterns. Each core was
configured as follows after a simple exploration of the design
space: 64-entry instruction cache (with 16 cache tags); 32-
entry register-file; 7 network buffers of 4 entries each; 256-
entry scratchpad memory; 16-entry channel map table.

IV. EVALUATION

In this section we explore some of the many parallel
execution patterns possible when fast and efficient inter-core
communication is available. Mapping code across multiple
cores can be used to increase both performance and energy
efficiency. Three case studies are performed into different
types of parallelism, using subsets of the benchmarks which
are able to make use of each. Small studies are performed
to identify the effects of additional hardware changes which
could further improve the profitability of particular execution
patterns.

A. Baseline

Energy consumption for each benchmark running on a
single Loki core is shown in Figure 5 – data supply consists
of register and scratchpad accesses, and the network interface
consists of the channel map table and network buffers. Energy
per operation varies between 10.2pJ and 20.6pJ, and is usu-
ally dominated by the supply of instructions from the cache
hierarchy. In general, the benchmarks with the highest energy
consumption per operation are those for which the L0 instruc-
tion cache performs poorly: adpcm consists mainly of a single
loop which is too large to fit in the local instruction store, and
jpeg, qsort and stringsearch contain extensive control-intensive
code sections.

An ARM1176JZF-S processor in the same process con-
sumes approximately 140pJ/operation (scaled from published

299

Crossbars

Multicast
buses

Router
Arbiters

1000 μm

8 x 8kB memory bank

8 x Loki core

500 μm

(a) Tile

360 μm

125 μm

IP
K

 c
a
ch

e
 t

a
g
s

IP
K

 c
a
ch

e

R
e
g
is

te
r

fi
le

N
e
tw

o
rk

 b
u
ff

e
rs

A
LU

M
u
lt

ip
lie

r

S
cr

a
tc

h
p
a
d

C
h
a
n
n
e
l
m

a
p
 t

a
b
le

M
is

ce
lla

n
e
o
u
s

2
0

%
 e

x
tr

a

Decoder Pipeline registers

(b) Core

Fig. 4. Floorplans for tile and core after all major subcomponents have been
placed and routed. The tile occupies an area of 1mm×1mm and each core
occupies 360µm×125µm.

a
d

p
c
m

c

a
d

p
c
m

d

b
it
c
o

u
n

t

c
rc

d
ijk

s
tr

a

jp
e

g
c

jp
e

g
d

q
s
o

rt

s
h

a

s
tr

in
g

s
e

a
rc

h

p
J
/o

p
e

ra
ti
o

n

0

5

10

15

20

alu

data supply

decode

instruction supply

memory (data)

memory (inst)

network

network interface

pipeline registers

Fig. 5. MiBench baseline energy distribution.

data at 65nm [7] and confirmed through measurement) and
consumes an area of approximately 1mm2 with 32kB cache
and a double-precision floating point unit. Dynamic instruction
counts are 1.4-2.2× higher on Loki than the ARM processor at
present. Overall execution on a single Loki core is typically 1-
1.8× slower than the ARM core clocked at the same frequency.
In most cases, Loki is able to close the performance gap when
exploiting additional cores. The large difference in energy per
operation suggests that it is possible to execute many Loki

0
1

2
3

4
5

6

Cores used

R
e
la
ti
ve

p
e
rf
o
rm

a
n
c
e

1 2 3 4 5 6 7 8

adpcmc

bitcount_inner

bitcount_outer

dijkstra

jpeg_color

jpeg_dct

jpeg_huff

stringsearch

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Cores used
R
e
la
ti
ve

e
n
e
rg
y

1 2 3 4 5 6 7 8

adpcmc

bitcount_inner

bitcount_outer

dijkstra

jpeg_color

jpeg_dct

jpeg_huff

stringsearch

Fig. 6. Performance and energy consumption as the number of data-parallel
cores changes, relative to the baseline sequential implementation.

instructions in place of each ARM instruction to improve
performance, while still consuming relatively little power.

B. Data-level parallelism (DLP)

When all iterations of a loop are independent (DOALL),
executing them in parallel is trivial; the iterations can be sliced
in whichever way is most convenient, and distributed across
the cores.

When there are fixed cross-iteration dependencies
(DOACROSS), it is necessary to set up communication
channels before the loop begins, and modify the loop body
to use the network when appropriate. On Loki, this can
usually be done with zero performance overhead, as reading
from the network replaces a register read, and sending onto
the network is an optional feature of most instructions. The
exception is that data must be copied into a register if it is
needed multiple times since reads from network buffers are
destructive. Also required are an initialisation phase to send
the initial live-ins, and a tidying phase where any superfluous
values are drained after the loop completes.

A number of loops exhibiting data-level parallelism were
selected from the benchmarks. adpcmc contains DOACROSS
parallelism, and all others are DOALL. Figure 6 shows how
performance and energy scale as the number of cores used
increases. The loops display a wide range of behaviours: some,
such as stringsearch scale well, achieving a 5.4× speedup on
8 cores, and others such as jpeg dct do not scale well because
there are too few loop iterations for the execution pattern to be
worthwhile. adpcmc converges on a speedup of approximately

300

0
1

2
3

4
5

6

Cores used

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

2 3 4 5 6 7 8

bitcount_inner

bitcount_outer

jpeg_color

jpeg_dct

jpeg_huff

0
1

2
3

4

Cores used

R
e

la
ti
ve

 e
n

e
rg

y

2 3 4 5 6 7 8

bitcount_inner

bitcount_outer

jpeg_color

jpeg_dct

jpeg_huff

Fig. 7. Performance and energy consumption as the width of the number
of data-parallel changes, when making use of a helper core, relative to the
baseline sequential implementation.

2 when it uses 3 cores; this is limited by the dependencies
between iterations and is not helped by the addition of further
cores. For many of the benchmarks, energy remains roughly
constant as more cores are used. This is because the same
work is being done, but spread across more cores. The height
of the line on the energy graph represents the overhead of the
execution pattern: bitcount inner has very tight loops, so the
overhead is proportionally higher. For jpeg dct and jpeg huff,
energy increases because there are not enough loop iterations
to overcome the overheads of filling multiple L0 caches.

When mapping data-level parallelism across multiple cores,
much work is duplicated. This includes repeated computation
or access of data, and repeated fetching of identical instruc-
tions. We explore using one core as a helper core to provide
common data required by all other cores. This reduces the
work done by the data-parallel cores and contention at L1
banks, at the cost of reducing the number of cores processing
the input data by one. This process of extracting redundant
work is known as scalarisation [8].

The impact of such helper cores is shown in Figure 7.
dijkstra and stringsearch are excluded as they are too control-
intensive to benefit from a helper core. adpcmc is excluded
because it makes use of DOACROSS parallelism, so the
cores require more decoupling than the helper core allows.
In most cases, energy consumption decreases from the plain
DLP implementations because less work is being done in
total. For bitcount inner, bitcount outer and jpeg color, total
energy consumption reduces as the number of cores increases

b
it
c
o

u
n

t_
in

n
e

r

b
it
c
o

u
n

t_
o

u
te

r

d
ijk

s
tr

a

jp
e

g
_

c
o

lo
r

jp
e

g
_

d
c
t

jp
e

g
_

h
u

ff

s
tr

in
g

s
e

a
rc

h

p
J
/o

p
e

ra
ti
o

n

0

5

10

15

20

25

30

Default

Large cache

Multicast to buffers

Multicast direct

Lower bound

Fig. 8. Energy consumption of various instruction sharing strategies. Results
are for 8 cores.

because the helper core is able to provide data to more cores at
once, so needs to do so fewer times. The performance impact
depends on the amount of work which can be offloaded onto
the helper core and the number of cores being used, and ranges
from a 20% decline for jpeg dct to a 16% improvement for
jpeg color. Energy consumption for 8 cores is an average of
11% lower than without the helper core.

In practice, the helper core could take a variety of forms,
i.e. it could itself be a virtual processor composed of multiple
cores to take advantage of further parallelism.

We also perform a limit study on the possibility of each
instruction being cached by only a single core, and dis-
tributed to all others when necessary (Figure 8). Instructions
are distributed before being decoded: Loki’s decode logic
is very simple, and existing buses can be used, rather than
requiring a wider bus for decoded instructions. In the limit
case (Lower bound), this will cut instruction supply costs
(including memory accesses and network activity) by the
number of cores. More realistic implementations are also
presented: Multicast direct includes the cost of communicating
the instructions directly to other cores’ pipeline registers, and
Multicast to buffers uses the existing core-to-core network to
send instructions to cores’ instruction buffers.

With no duplicate instructions in the cores’ L0 caches, the
L0 cache capacity of the group scales up by the number of
cores. Access costs remain constant, however, since only a
single cache is accessed at a time. Larger cache shows the en-
ergy impact of L0 caches which are 8 times larger but have the
same access costs. Techniques for switching between different
cores’ instruction caches have been demonstrated previously
by the Elm architecture [9]. The extra cache capacity improves
performance by an average of 14% for 8 cores.

The technique is only suitable for DOALL parallelism, since
the cores all execute the same instruction at (roughly) the same
time. We assume that it is possible for data to be arranged in

301

memory such that the effects of additional contention at the
L1 banks are negligible.

The two optimisations described in this section—the helper
core and instruction sharing—can be applied in combination
to further reduce energy consumption.

Modern embedded processors often have SIMD extensions
to their instruction sets to improve performance and reduce
power consumption. We believe that Loki’s flexibility allows
us to increase coverage and accelerate a higher fraction of
code.

C. Dataflow

Dataflow is an execution paradigm where a change in the
value of a variable automatically forces recomputation of any
variables which depend on it.

Dataflow can be implemented on Loki by setting up the
required communication network, and placing a small number
of instructions on each core for repeated execution. We call
these persistent instruction packets, and they are executed
by using a special version of the fetch instruction which
specifies that the packet should execute repeatedly until a next
instruction packet command is received or a new packet is
fetched. Loki’s blocking network accesses mean that cores
wait to receive new data before processing it. One of the
advantages of the dataflow execution pattern is that it reduces
switching activity in each pipeline. If the persistent instruction
packet contains a single instruction, it can remain in the
execute stage and much of the pipeline can be clock gated
after the first access: the entire fetch pipeline stage (including
pipeline register); decoder; channel map table; and register file
(if nothing is written to it).

Although much of the pipeline is superfluous when one
instruction is executed repeatedly, network buffers, arbiters
and interconnect see increased activity. Dataflow execution is
only beneficial if these costs are outweighed by the savings in
reduced pipeline activity.

Coarse-grained reconfigurable architectures (CGRAs) are
composed of a mesh of functional units and are designed to
execute dataflow graphs with low overhead. Loki can be seen
as similar to a CGRA, but with an entire processor instead of a
simple functional unit. This increases computation overheads,
but allows better performance in other cases, such as control-
intensive code. It is possible to map multiple instructions to
a single Loki core in cases where overheads of pure dataflow
are too high.

Figures 9 and 10 show how behaviour changes for two
benchmarks with tight loops which can make use of the
dataflow execution pattern. For each benchmark, a baseline
running on a single core is compared against a version where
instructions are spread across as many cores as possible to
mimic traditional dataflow (spread), and a version where all
instructions on the critical path are placed on a single core
(perf).

Figure 9 shows that energy spent on instruction and data
supply decreases as the application is spread across more
cores. This is because the average number of instructions on

b
it
c
o

u
n

t

b
it
c
o

u
n

t_
p

e
rf

b
it
c
o

u
n

t_
s
p

re
a

d

b
it
c
o

u
n

t_
d

ir
e

c
t

c
rc

c
rc

_
p

e
rf

c
rc

_
s
p

re
a

d

c
rc

_
d

ir
e

c
t

p
J
/o

p
e

ra
ti
o

n

0

2

4

6

8

10

alu

data supply

decode

instruction supply

memory (data)

memory (inst)

network

network interface

pipeline registers

Fig. 9. Energy distribution when using dataflow execution pattern.

b
it
c
o

u
n

t

b
it
c
o

u
n

t_
p

e
rf

b
it
c
o

u
n

t_
s
p

re
a

d

b
it
c
o

u
n

t_
d

ir
e

c
t

c
rc

c
rc

_
p

e
rf

c
rc

_
s
p

re
a

d

c
rc

_
d

ir
e

c
t

Relative operations

Relative cycles

Relative energy
0.4

0.8

1.0

0.6

0.2

0.0

Fig. 10. Relative performance when using dataflow execution pattern.

each core decreases, and it is possible to fit them into the
more-efficient instruction buffer and bypass the L0 cache. Data
supply energy is reduced due to fewer register accesses, but
is replaced by increased network costs. Components such as
the decoder and pipeline registers also show reduced activity.

Figure 10 shows that execution time and performance both
improve over the baseline in all cases. crc sees a reduction
in the number of operations due to the increased number
of available registers. Performance does not improve when
the application is spread across more cores because network
latency is introduced to the critical path, slowing execution.
Energy consumption doesn’t see any improvement in these
cases either. It was found that keeping a value in a local
register file was 3.7pJ cheaper than sending the value to
another core (assuming 50% of bits toggle). This is greater

302

than the 2.7pJ saved when a core repeatedly executes a single
instruction and is able to bypass many components in the
pipeline.

Both latency and energy consumption can be improved by
taking inspiration from CGRAs and providing direct links
between functional units of neighbouring cores. This would
bypass much of the network, and reduce latency to zero cycles,
at a cost of larger multiplexers at ALU inputs. Since each core
can consume two inputs and produce one output but has only
two neighbours, the worst case is that two-thirds of dataflow
communication can use these direct links. In practice, the
fraction is often much higher because of operations with fewer
inputs or outputs and instructions which use multicast instead.
75% of bitcount’s communication was between neighbouring
cores, and 88% for crc.

The results of using this technique are shown in the direct
entries in Figures 9 and 10. Network latency no longer adds
to the critical path, so performance matches the perf case, but
more cores are able to enter a low-energy state. bitcount’s en-
ergy reduces by 28% over the spread case to 4.5pJ/operation,
and crc’s energy reduces by 19% to 7.7pJ/operation.

D. Pipeline-level parallelism

Pipeline (or streaming) parallelism involves each core in-
dependently processing data, and passing the result onto the
next core. Locality is improved by having each core working
on a smaller section of the program, and at the same time
parallelism is exploited by executing multiple pipeline stages
simultaneously.

This can be implemented on traditional multi-core architec-
tures, but we have more flexibility on Loki: each pipeline stage
can be made parallel (useful for eliminating bottlenecks) and
cheaper communication allows finer-grained stages. We also
explore the use of pipelining for reasons other than improving
performance: energy consumption can be reduced by making
use of the increased cache and register capacity of multiple
cores.

Each pipeline stage can be mapped to a virtual processor
on the Loki fabric. The virtual processor can be a single
core, or it could be a group of cores, specialised for the
particular workload. The virtual processor can exploit any
form of parallelism, or could be optimised to reduce energy
consumption (or both).

Pipeline parallelism was manually extracted from applicable
MiBench applications by creating a function for each pipeline
stage whose result was the input for the next stage. Fig-
ure 11 presents the performance and energy impact of this
transformation. For stringsearch, performance improved by
4.2× with 6 cores, and for jpeg color, performance improved
by 1.8× with 3 cores. In both cases, energy consumption
rose at first, due to the overheads of the wrapper function
used to implement pipelining, but then fell as cores’ tasks
became small enough to fit in the L0 cache. We expect that
these overheads can be reduced with compiler optimisation,
improving the profitability of this execution pattern in the
process.

0
1

2
3

4
5

Pipeline stages

R
e

la
ti
ve

 p
e

rf
o

rm
a

n
c
e

1 2 3 4 5 6

adpcmc

jpeg_color

stringsearch

0
.0

0
.5

1
.0

1
.5

Pipeline stages

R
e

la
ti
ve

 e
n

e
rg

y

1 2 3 4 5 6

adpcmc

jpeg_color

stringsearch

Fig. 11. Relative performance and energy consumption when using software
pipelines of different lengths, relative to the baseline sequential implementa-
tion.

We further explored the effects of pipelining for improved
cache behaviour with the adpcmc benchmark; its main loop
body does not have an obvious point at which it can be split,
and there are dependencies between loop iterations which
prevent traditional pipeline parallelism. The loop body was
naively split at the basic block boundary closest to the halfway
point such that each section fit in an L0 cache, and register
contents were communicated across the network as necessary.
This transformation effectively creates a virtual processor
which is tailored to the application by providing sufficient
instruction cache space. A side effect is that the number
of registers and functional units also increase, allowing for
parallelism and reduced register pressure. After applying the
basic optimisations described in Section III-B, performance
improved by 153% and energy reduced by 69% to 9.6pJ/oper-
ation. These super-linear improvements were helped by a 15%
reduction in instruction count due to the extra registers, ILP
extraction, and improved caching. Mapping the code across
two cores outperforms a single core with twice as much cache
by 2× and improves energy consumption by 20%.

E. Summary

We have shown that it is possible to use tightly-coupled
cores to profitably exploit multiple forms of parallelism:
DLP, dataflow and task-level pipelines. This allows a broader
coverage of parallelism, as each application can only usefully
be parallelised using a subset of execution patterns. We also
suggest small modifications to the hardware which improve
performance and energy consumption further. SIMD execu-
tion with instruction sharing achieves an average of 3.6×
speedup with 8 cores with only 2% more energy consumed.

303

bitcount inner sees a 6.4× speedup and bitcount outer sees
a 20% energy reduction. Dataflow execution was able to
improve performance of crc by 4.7× using 5 cores, with
a 35% drop in energy consumption. Task-level pipelining
allows core resources to be used more efficiently, resulting
in a 2.5× speedup and 70% energy reduction with two cores
for the adpcmc benchmark – far better than when exploiting
DOACROSS parallelism in the same benchmark.

Also possible, though beyond the scope of this paper, is the
ability to exploit instruction-level parallelism across multiple
cores. This can be performed in a VLIW-like way, using
the low-latency network for data forwarding, or by assigning
decoupled instruction strands to each core.

The ability to use multiple cores to increase the resources
available to an application suggests that it may be sensible to
deliberately under-provision each core, with the expectation
that the appropriate number will be grouped together for the
task at hand. This would mean lower-power building blocks
for virtual architectures, and the ability to provide resources
at a finer granularity.

V. RELATED WORK

The Raw processor [12] also provides tightly coupled on-
chip networks. Raw’s static networks provide low-latency
communication between cores. Access to them is provided
by register mapped input and output FIFOs. The static routers
themselves execute programs that dictate the how the network
is configured on a cycle-by-cycle basis. In contrast, Loki
exploits statically allocated channel buffers and end-to-end
flow control when required. Loki also places a number of
cores within a single tile supported by local point-to-point and
multicast networks.

ACRES [10] explored the compilation issues and oppor-
tunities when programs are to be mapped spatially across a
homogeneous fabric. Loki is able to emulate many of the
capabilities of the ACRES proposal.

PPA [11] and Smart Memories [14] both allow an ar-
chitecture to reconfigure itself in software to adapt to an
application’s needs. Smart Memories is able to partition its
physical memory into virtual memories, each with different
capacities, line sizes, replacement policies, and so on. PPA is
able to dynamically adjust the number of functional units being
used, depending on the available parallelism in the program.
SCALE [13] and TRIPS [15] both introduce new ways of
executing programs. SCALE is an instantiation of the vector-
thread paradigm, which allows execution to move between
SIMD and MIMD depending on the type of parallelism
available. TRIPS makes use of the EDGE ISA to efficiently
exploit dataflow parallelism on a homogeneous fabric and blur
the boundaries between cores. Loki uses tightly-coupled cores
to provide further flexibility: as well as changing the number
of cores being used, it is also possible to change the type of
parallelism they exploit. Loki is able to efficiently emulate
the SIMD parallelism exploited by PPA, the master-slave and
independent execution patterns of SCALE and the dataflow
execution of TRIPS.

The Elm architecture [9] explores a number of techniques
that permits software to better control the movement of in-
structions and data in order to improve energy efficiency. Both
communication resources and the movement of instructions
and data through the storage hierarchies can be managed by
the compiler. Groups of four processors are grouped within
an Ensemble and local interconnects permit register-mapped
single-cycle communication (blocking and non-blocking) be-
tween the cores. SIMD execution is supported by allowing a
single core to broadcast instructions to others in the group.

There have also been a number of recent architectures de-
scribed that are able to dynamically compose a small number
of cores to create more powerful multiple-issue cores [16],
[17]. A related approach starts with a complex superscalar core
and make modifications to allow it to switch between single-
thread-high-performance and multiple-thread-high-throughput
modes [18]. These architectures are limited in the types of
parallelism they are able to exploit, so in some cases will
have to settle for a sub-optimal configuration.

In this paper, parallelism was extracted manually. There
has been a lot of recent work on automatic parallelisation,
however, and much of this could be applied to Loki. It is
possible to extract DOALL parallelism [19], DOACROSS par-
allelism [20], and pipeline parallelism [21]. Dataflow graphs
are standard intermediate representations within compilers,
and can be mapped to cores automatically. There also exist
transformations to increase the amount of time that an ex-
ecution pattern can be used; Zhong et al. use speculation to
extract more DOALL parallelism [22], and pipeline parallelism
can become an enabling transformation for other forms of
parallelism [23].

VI. CONCLUSION

The addition of low-latency and low-cost point-to-point and
multi-cast interconnect between cores provides an opportunity
to exploit a variety of parallel execution patterns on a rela-
tively simple low-power homogeneous platform. Streamlined
processor pipelines permit energy per operation to be reduced
to around 10pJ, more than an order of magnitude lower than
typical mobile application processors. Furthermore, many of
the execution patterns explored are able to simultaneously
improve performance and energy as more cores are employed.
Current work is on extending our compiler’s support for ex-
ploiting multiple cores given modest amounts of ILP, exploring
dynamic reconfiguration, and the ability to reconfigure more
of the design, such as network protocols.

Future mobile systems will be required to provide
1000GOPS at ∼1pJ/operation. This work is a step towards
many-core systems with more than 1000 cores which will,
we predict, be able to achieve this target without the need
for complex heterogeneous architectures. We suggest that
design and verification effort is better spent on optimising a
regular all-purpose architecture, rather than a wide-range of
programmable processors and fixed-function accelerators.

304

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their feedback and guidance.

REFERENCES

[1] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache:
an energy efficient memory structure,” in Proc. of MICRO 30.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 184–193.

[2] J. Park, J. Balfour, and W. J. Dally, “Maximizing the filter rate of L0
compiler-managed instruction stores by pinning,” Stanford University,
Tech. Rep. 126, 2009.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 3–14.

[4] J. Johnston and T. Fitzsimmons, “The newlib homepage,”
http://sourceware.org/newlib/, 2011.

[5] C. Lattner, “The LLVM compiler infrastructure,” http://llvm.org/.
[6] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: a fast

and accurate NoC power and area model for early-stage design space
exploration,” in Proc. of DATE ’09. 3001 Leuven, Belgium: European
Design and Automation Association, 2009, pp. 423–428.

[7] ARM Ltd., “ARM1176 processor,”
http://www.arm.com/products/processors/classic/arm11/arm1176.php,
2013.

[8] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovic,
“Convergence and scalarization for data-parallel architectures,” in Proc.
of CGO 2013, 2013.

[9] J. Balfour, “Efficient embedded computing,” Ph.D. dissertation, Stanford
University, May 2010.

[10] B. S. Ang and M. Schlansker, “ACRES architecture and compilation,”
Hewlett-Packard, Tech. Rep., April 2004.

[11] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a
flexible multicore accelerator with virtualized execution for mobile
multimedia applications,” in Proc. of MICRO 42. New York, NY,
USA: ACM, 2009, pp. 370–380.

[12] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The Raw microprocessor: A computational fabric for software circuits
and general-purpose programs,” IEEE Micro, vol. 22, pp. 25–35, March
2002.

[13] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic, “The vector-thread architecture,” in Proc.
of ISCA ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 52–.

[14] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: a modular reconfigurable architecture,” in Proc. of
ISCA ’00. New York, NY, USA: ACM, 2000, pp. 161–171.

[15] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team, “Scaling to the end of silicon with EDGE architectures,”
Computer, vol. 37, no. 7, pp. 44–55, Jul. 2004.

[16] M. Boyer, D. Tarjan, and K. Skadron, “Federation: Boosting per-thread
performance of throughput-oriented manycore architectures,” ACM
Trans. Archit. Code Optim., vol. 7, pp. 19:1–19:38, December 2010.

[17] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
accommodating software diversity in chip multiprocessors,” in Proc. of
ISCA ’07. New York, NY, USA: ACM, 2007, pp. 186–197.

[18] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N.
Patt, “Morphcore: An energy-efficient microarchitecture for high
performance ILP and high throughput TLP,” in Proc. of MICRO45,
2012.

[19] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy,
S.-W. Liao, E. Bugnion, and M. S. Lam, “Maximizing multiprocessor
performance with the SUIF compiler,” Computer, vol. 29, no. 12, pp.
84–89, Dec. 1996.

[20] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and
D. Brooks, “HELIX: automatic parallelization of irregular programs for
chip multiprocessing,” in Proc. of CGO ’12. New York, NY, USA:
ACM, 2012, pp. 84–93.

[21] G. Ottoni, R. Rangan, A. Stoler, and D. August, “Automatic thread
extraction with decoupled software pipelining,” in Proc. of MICRO-38,
nov. 2005, p. 12 pp.

[22] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke, “Uncovering
hidden loop level parallelism in sequential applications,” in Proc. of
HPCA14, 2008.

[23] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and
D. I. August, “Decoupled software pipelining creates parallelization
opportunities,” in Proc. of CGO ’10. New York, NY, USA: ACM,
2010, pp. 121–130.

305

	2013-IC-40

