

NeuSOS: Neural Enhanced Underwater SOS Detection

Qiang Yang¹², Yuanqing Zheng¹ ¹The Hong Kong Polytechnic University, Hong Kong SAR ²University of Cambridge, UK

Drowning Incidents are a Pressing Public Safety Concern

Boy, 8, drowns in public pool in China despite other swimmers metres away

He struggled for around a minute before sinking to the bottom of the pool.

Hong Kong / Law and Crime

BY RICHARD RAMOS OCTOBER 9, 2023 / 4:33

Hong Kong police investigate after girl drowns in swimming pool of upmarket Harbourside residential building

Staff call police after two girls, both aged under 10, found unconscious while swimming in clubhouse

• In separate incident, woman in her 40s certified dead at scene after body found floating in reservoir

T Why you can trust SCMP

What We Imagine about Drowning

The swimmer will splash and yell for help

In Reality...

Drowning is silent and fast

Existing Vision-based Drowning Monitoring Systems

- Already suffocate
- Cannot call for help actively

Triggering an alert when the swimmer keeps motionless at the bottom for 10 seconds

Poseidon - Drowning detection system for swimming pools. https://poseidon-tech.com/en-GB/technology-2/.

AquaHelper: SOS Transmission with Wearable Devices

One-button SOS transmission

[SenSys'23] Yang, Qiang, and Yuanqing Zheng. "AquaHelper: Underwater sos transmission and detection in swimming pools." Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems. 2023.

SOS Transmission and Detection: Acoustic Chirps

• Frequency band: 1.5~3.5 kHz, duration: 1s

Challenge: Unbalanced Noise Distribution

• Most underwater noise is below 2.5 kHz

Challenge: Bursting Noise

• Powerful noise from water pumps and splashing

NeuSOS: SOS Detection with Deep Learning

• Opportunity: the (partial) chirp signal can be observed in the spectrogram!

Using deep learning to examine the unique chirp track in the image

Physics-informed Deep Learning

• Explicitly enhancing and detecting the chirp pattern

Radon transform: projecting the spectrogram to a specific angle

Physics-informed Deep Learning

• Deep learning as a signal denoiser and enhancer

Signal-aware kernel design

Physics-informed Deep Learning

• Deep learning as a signal signal denoiser and enhancer

Experiment

Swimming pool in operation hours

Evaluation

- Overall accuracy: 97.2%
- NeuSOS outperforms cross-correlation by 9.2% with the same FPR of 1%.

Conclusion and Takeaway

- Drowning incidents can happen even with the professional lifeguards present.
- We propose NeuSOS, a robust underwater SOS system that can detect SOS signal in dynamic underwater noise and bursting interference.
- We develop an explicit signal-aware deep learning model to effectively capture the SOS chirp signals, outperforming the traditional xcorr method.

THANKS

Qiang Yang The Hong Kong Polytechnic University University of Cambridge qiang.yang@cl.cam.ac.uk