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Drowning Incidents are a Pressing Public Safety Concern

Boy, 8, drowns in public pool in China despite other
swimmers metres away

LOCAL NEWS

2 young brothers drown in pool in Roseville,
police say

Ashley Tan

Law and Crime

Hong Kong police investigate after girl drowns in swimming pool
of upmarket Harbourside residential building

- Staff call police after two girls, both aged under 10, found unconscious while swimming in clubhouse
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- In separate incident, woman in her 40s certified dead at scene after body found floating in reservoir

@ Christy Leung | +FoLiow |




What We Imagine about Drowning

The swimmer will splash and yell for help



In Reality...

Drowning is silent and fast



Existing Vision-based Drowning Monitoring Systems

* Already suffocate
e Cannot call for help actively

SWIMMER
IN DIFFICULTY

Triggering an alert when the swimmer keeps motionless
at the bottom for 10 seconds

Poseidon - Drowning detection system for swimming pools. https://poseidon-tech.com/en-GB/technology-2/.



AquaHelper: SOS Transmission with Wearable Devices

[SenSys’23] Yang, Qiang, and Yuanging Zheng. "AquaHelper: Underwater sos transmission and detection in swimming pools."
Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems. 2023.



SOS Transmission and Detection: Acoustic Chirps

* Frequency band: 1.5~3.5 kHz, duration: 1s

Received chirp

o

i
|

|

iy

—

%a.c—’

m'ﬂ" i

J».w%"c, M

200 400 600 800
Time (ms)
[l

! ‘“ \W y | I
) i ]m

Ml

Frequency (kHz)
(6] l\) (.NH w (6)]

—_—

Frequency (kHz)

M \"m ..,‘;.‘J"

200 400 600 800
Time (ms)
Gaussian noise

!W | 'J :,nﬂﬁr .J"' | i)l i

‘M

J"

Xcorr

Frequency (kHz)

Frequency (kHz)

-—

N
o

-—

N
o

e
w o

g N

w

3.5
2 - i -
5 -

200 400 600 800

20
m
40 T
60 2
(@]
80 &

200 400 600 800

Time (ms)

Clear chirp

o))
o
Power (dB)

Time (ms)




Frequency (kHz)

Frequency (kHz)

—

o

N

—_

w

N

Challenge: Unbalanced Noise Distribution

e Most underwater noise is below 2.5 kHz
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Challenge: Bursting Noise

* Powerful noise from water pumps and splashing
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NeuSOS: SOS Detection with Deep Learning

* Opportunity: the (partial) chirp signal can be observed in the spectrogram!
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Using deep learning to examine the unique chirp track in the image
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Physics-informed Deep Learning

* Explicitly enhancing and detecting the chirp pattern
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Radon transform: projecting the spectrogram to a specific angle
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Physics-informed Deep Learning

* Deep learning as a signal denoiser and enhancer

200 400 600 800

2 N o U oo N R
O < ™ <
o < 5 e
= <
< gl gl
0o S B S
’;Z|‘3-5 ® —p| O =P O =P O
T ® @ ®
X 3 —~ w o
St o X N X N
> ) w 5 0% 5
e 25 © Radon ) U d U
o ‘ 2 projection _ _ _ _ _ — — — — — —
= 2 , LI o l
Lt 15 i .! .‘ IL“H' :
|

Time (ms)

Signal-aware kernel design

)

uslle|4

(sz ® |ood xew) (

)

usne|d

(

((¥eot) @suaq)

4
((t)asuaq)

I
(om=suea)

Output

12



Physics-informed Deep Learning

* Deep learning as a signal signal denoiser and enhancer
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Experiment

Swimming pool in operation hours
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Evaluation
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e Overall accuracy: 97.2%
* NeuSOS outperforms cross-correlation by 9.2% with the same FPR of 1%.



Conclusion and Takeaway

* Drowning incidents can happen even with the professional lifeguards
present.

* We propose NeuSOS, a robust underwater SOS system that can detect SOS
signal in dynamic underwater noise and bursting interference.

* We develop an explicit signal-aware deep learning model to effectively
capture the SOS chirp signals, outperforming the traditional xcorr method.
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