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Figure 1: An illustration of SmarTeeth, an earphone-based toothbrushing monitoring system using in-ear microphones that
augments manual toothbrushing by integrating brushing surface tracking, a feature typically found in high-end electric
toothbrushes. SmarTeeth is based on a key observation–toothbrushing sounds that travel along bones from the oral cavity to
ear canals can be captured by in-ear microphones for toothbrushing monitoring. The distinct propagation paths of brushing
sounds from various dental locations to each ear canal provide the foundation for our methods to accurately identify different
brushing surfaces. As long as the user wears a pair of earphones while brushing their teeth, SmarTeeth can alert users through
earphones if they brush their teeth for too short or too long and can also evaluate the overall brushing performance, even with
manual toothbrushes.

Abstract
Improper toothbrushing practices persist as a primary cause of
oral health issues such as tooth decay and gum disease. Despite
the availability of high-end electric toothbrushes that offer some
guidance, manual toothbrushes remain widely used due to their sim-
plicity and convenience. We present SmarTeeth, an earable-based
toothbrushing monitoring system designed to augment manual
toothbrushing with functionalities typically offered only by high-
end electric toothbrushes, such as brushing surface tracking. The
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underlying idea of SmarTeeth is to leverage in-ear microphones on
earphones to capture toothbrushing sounds transmitted through
the oral cavity to ear canals through facial bones and tissues. The
distinct propagation paths of brushing sounds from various den-
tal locations to each ear canal provide the foundational basis for
our methods to accurately identify different brushing locations. By
extracting customized features from these sounds, we can detect
brushing locations using a deep-learning model. With only one reg-
istration session (∼ 2𝑚𝑖𝑛𝑠) for a new user, the average accuracy is
92.7% for detecting six regions and 75.6% for sixteen tooth surfaces.
With three registration sessions (∼ 6𝑚𝑖𝑛𝑠), the performance can
be boosted to 98.8% and 90.3% for six-region and sixteen-surface
tracking, respectively. A key advantage of using earphones for mon-
itoring is that they provide natural auditory feedback to alert users
when they are overbrushing or underbrushing. Comprehensive
evaluation validates the effectiveness of SmarTeeth under various
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conditions (different users, brushes, orders, noise, etc.), and the
feedback from the user study (N=13) indicates that users found the
system highly useful (6.0/7.0) and reported a low workload (2.5/7.0)
while using it. Our findings suggest that SmarTeeth could offer
a scalable and effective solution to improve oral health globally
by providing manual toothbrush users with advanced brushing
monitoring capabilities.

CCS Concepts
• Human-centered computing→ Ubiquitous and mobile comput-
ing design and evaluation methods.
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1 Introduction
Oral diseases pose a significant public health challenge for countries
and populations worldwide, with tooth decay and severe periodon-
tal disease being the most common conditions affecting millions
of people [61]. According to WHO statistics [59], more than one-
third of the world’s population lives with untreated tooth decay.
Toothbrushing is a simple and effective strategy to prevent these
conditions. The established Bass toothbrushing technique empha-
sizes that all dental surfaces should be brushed for an adequate
amount of time, however overbrushing for long periods can lead
to enamel erosion and gum recession [1]. Therefore, some high-
end smart electric toothbrushes offer features such as brushing
timers and surface detection [5] to guide users’ brushing. However,
a substantial portion of the world’s population still prefers manual
toothbrushes because of their simplicity and convenience. Accord-
ing to the US Census in 2020 [66], more than 250 million Americans
still resort to manual toothbrushes. As a result, improving oral
hygiene practices for manual toothbrush users remains a pressing
and significant issue.

Although several approaches have been explored to empower
manual toothbrushes with various toothbrushing monitoring ca-
pabilities, existing work has various limitations. Camera-based
systems [12, 23], which place cameras in front of the user’s mouth,
although capable of capturing coarse-grained brushing activity,
suffer from occlusions caused by hands and the mouth, limiting
detection granularity and raising privacy concerns. IMU-based so-
lutions [13, 22, 38], which integrate IMUs into manual toothbrushes
or leverage IMUs in wearable devices like smartwatches, exhibit
sensitivity to hand and head movements, imposing constraints on
users’ hand movements and postures while brushing [25, 48]. Some
alternatives utilize toothbrushing sounds collected from a nearby
smartphone [45] or external earpiece microphones [60] to monitor
the toothbrushing process. However, these methods are vulnerable

to interference from ambient noise sources such as running water,
compromising their reliability [52].

In recent years, the market for Active Noise Cancellation ear-
buds has experienced significant growth, with an estimated market
size of USD 17.88 billion in 2024, projected to reach USD 34.42 bil-
lion by 2029 [2]. This rapid proliferation has led to the widespread
adoption of ANC earbuds, which are equipped with various sen-
sors (e.g., in-ear and out-ear microphones), for various applications,
including health monitoring [63]. A recent work, ToothFairy [71],
demonstrates the feasibility of using these smart earbuds (Earables)
to explore the intensity levels of in-ear sounds caused by electric
toothbrush vibration to detect brushing locations. However, it can-
not work with manual toothbrushes. Therefore, in this paper, we
introduce SmarTeeth, an earable-based tooth-brushing monitoring
system using in-ear microphones that augments manual tooth-
brushing by integrating functionalities typically found in high-end
electric toothbrushes, such as brushing surface tracking. Using com-
mercially available earphones to augment manual toothbrushing
eliminates the need for users to procure additional purpose-made
electric toothbrushes. The earphones, positioned at the upper ex-
tremity of the body, are free from interference from limb motions
(unlike sensors on the arm/wrist/hand) [80]. Also, the in-ear mi-
crophones exhibit high resilience to environmental noise due to
effective noise occlusion [53]. Moreover, a key advantage of using
earphones for monitoring is that they provide a natural auditory
interface to promptly alert users when they are overbrushing or
underbrushing. As illustrated in Fig. 1, the high-level idea of Smar-
Teeth is to utilize the on-board in-ear microphones of earphones
to capture brushing sounds. These sounds originate from friction
between the brush bristles and the tooth surface and then transmit
through bones and facial tissues to the ear canal. Since brushing
different dental locations involves distinct bone-conduction path-
ways, the captured in-ear audio reveals specific characteristics for
each teeth. This provides the foundational basis from which we can
extract relevant features from the audio signals and employ deep
learning techniques to accurately predict the brushing locations.
With continuous tracking the brushing areas, it can provide timely
audio feedback to inform the user if underbrushing or overbrushing
is detected.

Turning the intuitive concept of SmarTeeth into reality needs
to address the following challenges. First, variations in brushing
locations, combined with differences in brushing force, speed, and
toothbrush types, result in significant discrepancies in brushing
sounds [13]. Achieving fine-grained toothbrushing tracking using
sound features must account for these area-specific variations while
remaining unaffected by these external factors [45, 60]. As a result,
there is a need for a method to customize features that inherently
characterize different brushing locations. Secondly, the sounds cap-
tured in the two ear canals vary significantly when brushing at
different times due to changes in the wearing seal state [53], which
can lead to performance degradation. To address this, we need to
develop a method to unify the feature distribution across varying
wearing conditions to eliminate this effect. Lastly, because of the
similar brushing sounds of adjacent teeth surfaces, it is extremely
challenging to distinguish them, since they only have slight differ-
ences in their sound properties and transmission paths.
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To overcome these challenges, we propose the following techni-
cal approaches. First, we establish a signal propagation model to
characterize how toothbrushing sounds travel from various teeth
positions to both ear canals. Based on that, we customize features
related to the propagation channel, which inherently reflects dif-
ferent brushing locations. Secondly, we extract the coherence level
and phase from the propagation channels to unify the feature dis-
tribution, thereby minimizing the impact of variations caused by
different wearing states. Lastly, given the temporal continuity inher-
ent in the toothbrushing process, we exploit modified audio features
and smoothing techniques to enhance the recognition results to
differentiate surfaces in close proximity, achieving fine-grained
toothbrushing tracking.

We collaborate with a dentist on this study design to ensure
that it addresses clinically-relevant aspects of toothbrushing. We
designed a custom pair of earphones and introduced a feedback
mechanism that alerts users when overbrushing or underbrushing
of a certain surface is detected. Additionally, we developed an app
that visualizes the brushing score and duration for each dental sur-
face to provide users with comprehensive feedback. We conducted
a comprehensive evaluation and user study of SmarTeeth (N=13).
The participants and the dentist also provided suggestions on form
factor optimization and functionality enhancement to ensure that
SmarTeeth integrates seamlessly into users’ daily routines with
better use experience (Sec. 6.6). To summarize, this paper makes
the following contributions:

• To the best of our knowledge, SmarTeeth is the first tooth-
brushingmonitoring system using in-earmicrophones, which
augments manual toothbrushing to provide fine-grained
toothbrushing tracking, a feature originally owned by high-
end electric toothbrushes. Our experiment shows the tech-
niques of SmarTeeth can also be applied to low-end electric
toothbrushes that do not have tracking functionality.

• The comprehensive evaluation (N=13) shows that SmarTeeth
achieves an average accuracy of 92.7% for detecting six re-
gions and 75.6% for sixteen tooth surfaces with only one
registration session (2𝑚𝑖𝑛𝑠) for a new user. With three reg-
istration sessions, the performance can be boosted to 98.8%
and 90.3% for six-region and sixteen-surface tracking, respec-
tively.

• We propose a deep learning approach using customized
channel-related features for fine-grained toothbrushing track-
ing, which is robust to the variability in brushing habits
and the wearing states of earphones. We also design three
feedback mechanisms to improve users’ brushing habits:
underbrushing/overbrushing alerting, brushing duration vi-
sualization, and brushing score evaluation. The subjective
user study (N=13) demonstrated that our system is highly
useful (6.0/7.0) and has a low workload (2.46/7.0).

2 Related Work
2.1 Toothbrushing Monitoring
2.1.1 Vision/light-based Approaches. Vision-based solutions em-
ploy cameras to track brushing processes. For instance, Playful
Toothbrush [23] utilized a web camera placed in front of the user’s
mouth to track an LED-coded toothbrush extension, aiding users

in learning proper brushing techniques. Akifusa et al. [12] attached
a tiny camera within the head of a UV-LED toothbrush to visualize
the plaque removal efficacy of electric toothbrushes. LiT [25] adopts
two photosensors in commercial LED toothbrushes to monitor the
toothbrushing process. However, camera-based systems are sus-
ceptible to occlusions caused by the hand and mouth, and privacy
concerns may arise due to the invasive nature of video recording.
Additionally, some LEB-based work also requires modifications to
attach dedicated sensors on toothbrushes, limiting their usability.

2.1.2 IMU-based Approaches. Another subset of the literature lever-
ages IMUs to track brushingmotions. IMUs can be used on themodi-
fied toothbrush handle to estimate brushing motions [24, 40, 44, 47].
Social Brush [22] utilized an IMU attached to the brush handle to
detect different brushing regions. Li et al. [48] attached an IMU
sensor and five pressure sensors on the brush handle to estimate
brushing regions and forces with Random Forest models. How-
ever, integrating IMUs may require modifying the toothbrushes.
Another approach is to utilize the IMU of the smartwatch on the
user’s wrist to monitor the toothbrushing process. Huang et al. [38]
employed a Naive Bayes classifier to recognize brushing surfaces
using accelerometer, gyroscope, and magnetometer data from a
wristwatch. MET [39] tracks brushing coverage for 15 surfaces of
teeth with a magnetic sensor array. Hygiea [52] exploits wrist-worn
IMUs to achieve fine-grained toothbrushing activity recognition
with an LSTM model. Similarly, mORAL [14] can detect oral health
behaviors such as brushing and flossing passively from wrist-worn
IMUs. mTeeth [13] detects teeth surfaces being brushed with a
manual toothbrush in the natural free-living environment using
wrist-worn inertial sensors. BrushBuds [78] uses IMU sensors on
earphones to track six toothbrushing regions but struggles with
tracking fine-grained surfaces. While using wrist/earable-IMU does
not need toothbrush modification, these systems are sensitive to
hand or head movements, posing a constraint on the natural brush-
ing posture. Additionally, the accumulation drift and vibrations of
electric toothbrushes negatively affect detection accuracy [25, 48].

2.1.3 Audio-based Approaches. Compared to the IMU-based ap-
proaches, audio-basedmethods are resilient to the effects of usermo-
tion. Korpela et al. [45, 46] applied hidden Markov models (HMM)
to recognize brushing surfaces based on audio collected from smart-
phones placed nearby. Ouyang et al. [60] utilized two throat mi-
crophones and the external microphones of an earphone for tooth-
brushing monitoring. However, the external microphone can be
easily disturbed by ambient noise [52]. ToMoBrush [83] embeds a
microphone in the brush head to record toothbrushing sounds and
detect dental diseases. EarSense [62] utilizes in-ear audio to recog-
nize tooth activities and validate the feasibility of toothbrushing
monitoring, but it can only distinguish coarse-grained horizontal
areas. Inspired by EarSense, ToothFairy [71] explores the intensity
levels of in-ear sounds caused by electric toothbrush vibration to
detect brushing locations. However, it relies on the vibration of
electric toothbrushes and cannot work on manual toothbrushes. In
comparison, SmarTeeth augmentsmanual toothbrushing with a new
modality, in-ear audios, to achieve 16-surface (including both inner
and outer teeth surfaces) fine-grained toothbrushing monitoring
also works properly on electric toothbrushes.
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Figure 3: Feedback from 359 individuals in the motivational survey.

2.2 Earable Applications with In-ear
Microphones

Various sensingmodalities have been widely explored for numerous
IoT applications, such as RF [26, 41, 77], camera [19], LoRa [81, 82],
and IMU [50, 51]. Among them, acoustic sensing has gained signifi-
cant attention [33, 37, 75, 79, 85], with in-ear microphones in ear-
phones being utilized as an effective tool for human sensing [21, 29].
OESense [53] leverages the occlusion effect of the sounds inside
the human ear to recognize human gestures and activities. Authen-
tication systems such as HeartPrint [20], EarEcho [34], EarGate
[32], and EarDynamic [73] authenticate users based on unique
acoustic signatures in the ear canals. Additionally, researchers have
also explored the use of in-ear microphones to measure physiolog-
ical parameters, including respiratory [49, 54], heartrate [18, 67],
dietary [17], and lung function [76]. Using an in-ear speaker and
microphone, Amesaka et al. [16] propose a system that detects facial
gestures based on ear canal deformations. ToothSonic [72] utilizes
in-ear tooth-tapping sounds as a fingerprint to perform earable
authentication. Aligned with the advancements in earphone-based
sensing and computing platforms, our proposed work harnesses
widely-used earphones to augment manual toothbrushing for fine-
grained brushing surface detection, bringing intelligent toothbrush-
ing monitoring technologies to a substantial portion of manual
toothbrush users.

3 Preliminaries
3.1 Oral Anatomy and Structure
As shown in Fig. 2, the human oral cavity typically contains 32 teeth
in adults, including incisors, canines, premolars, and molars [55].
Incisors are located at the front and are used for cutting, while
canines are pointed teeth adjacent to the incisors, serving to tear
food. The premolars and molars are located toward the back of
the mouth and are used to grind and chew food. Oral medicine
typically divides the dentition into six regions (sextants, R1 to
R6) [28]: left, middle, and right, for both the upper and lower dental
arches. The left or right side contains premolars and molars, and the
middle region includes four incisors and two canines. As a result,
most toothbrushing monitoring systems [13, 25, 38, 60] detecting
brushing activity across these six regions. In addition, each region
consists of multiple surfaces, totaling 16 surfaces overall (S1 to S16
in Fig. 2). For instance, the left and right sides include three surfaces:
inner, outer, and chewing surfaces, while the middle region only

has inner and outer surfaces. This fine-grained division enables a
comprehensive assessment of brushing coverage.

3.2 Toothbrushing Duration and Quality
Incomplete coverage and insufficient brushing time are the pri-
mary causes of dental diseases. Failure to adequately clean all tooth
surfaces can lead to the accumulation of plaque and tartar, increas-
ing the risk of tooth cavities, bleeding gum, and other oral health
issues [8]. Conversely, excessive brushing, or overbrushing, can
lead to gum recession and enamel erosion, leading to dental sen-
sitivity [1]. The Bass technique, recommended by the American
Dental Association (ADA) [8], involves placing the toothbrush at
a 45-degree angle to the gumline and using short back-and-forth
or circular motions to clean both the teeth and gums effectively.
This brushing technique should touch all surfaces—inner, outer, and
chewing-ensuring the removal of plaque from all the tooth surfaces
and along the gumline for optimal oral hygiene. The consensus
recommendation is that people should brush their teeth twice a day
each for two minutes, and each surface should be brushed for an
even time [8].

As highlighted in related works [13, 25, 38], monitoring brushing
regions/surfaces and ensuring sufficient brushing time are founda-
tional steps in improving oral hygiene. Many commercial high-end
electric toothbrushes, such as OralB io10 [58], also use surface track-
ing to guide users toward better brushing cleanness and ensure all
areas are brushed adequately, thereby enhancing overall brushing
quality [9]. The dentist collaborator highlighted that brushing time
and coverage directly link to the brushing quality and detecting
brushing regions/surfaces and duration is the most important as-
pect for addressing poor brushing habits, which are particularly
critical for manual toothbrush users, who often lack guidance on
coverage and timing.

4 Survey: Understanding Toothbrushing
Practice

To better understand user habits, preferences, the challenges asso-
ciated with current toothbrushing practices, and the potential for
the adoption of (ANC) earphones, we conducted a survey (N=359)
through the university online forum. This survey aimed to assess
several key aspects: participants’ oral health status, brushing habits,
preferences between manual and electric toothbrushes, and their
openness to adopting new technologies for monitoring toothbrush-
ing. We report key findings from the following perspectives.
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Figure 4: The system overview of SmarTeeth.

• Demographics. The survey included 359 participants aged
between 18 and 65, with a balanced gender distribution of
47% men, 49.6% women, and the remainder identifying as
non-binary or preferring not to say. The largest age group
was 25–34 years (43.1%), followed by 18–24 years (20.2%),
and 35–44 years (13.2%). Additionally, 11.7% of participants
were aged 55 or older. The responses provide good gender
and age diversity.

• Oral Health Status and Brushing Habits. The majority
of respondents (76.5%) brush their teeth twice a day, while a
smaller percentage brush once (17.7%) or three times (5.9%)
a day. 59.4% of respondents have had cavities, and 40.7%
have had sensitive teeth, reflecting a significant prevalence
of dental issues within the surveyed group (in total 72.7%).
However, regular dental visits are not a common practice,
with only 43.1% visiting a dentist yearly and 33.9% going
only when they have a dental problem. This indicates that
although the majority of the participants presented with a
history of dental needs, preventative dental care does not
appear to be a common practice. Therefore, there is a need
for a method that can help themmonitor their dental practice
on a daily basis.

• Toothbrush Type and Limitations. As shown in Fig. 3(a),
A slight majority of participants use manual toothbrushes
(50.4%) due to reasons such as simplicity (43%) and/or feel-
ing that electric toothbrushes are unnecessary (17%). Other
reasons mentioned include "I have implants", "do not want
to charge", "more eco-friendly", "I find the vibration of an
electric toothbrush extremely annoying", and "electric tooth-
brush makes me dizzy". In addition, as shown in Fig. 3(b),
among all participants, only 9.1% of them used toothbrushes
with tracking features, highlighting a gap in brushing moni-
toring capabilities in both manual and most electric tooth-
brushes.

• Awareness of Brushing Practices. Figure 3(c) shows while
47.7% of manual toothbrush users think they are aware of
their brushing duration, 20.6% of them tend to overbrush
their teeth (3∼5𝑚𝑖𝑛) and 10.9% of them tend to underbrush
their teeth (< 2𝑚𝑖𝑛), and only 68.5% of them brush teeth
with a proper duration (2∼3𝑚𝑖𝑛). Furthermore, among these
answers, most (71.8%) of participants are uncertain if they
spend equal time on different areas of their mouth. However,
interestingly, 90.7% of them believe the time spent on brush-
ing is related to oral health issues. These results show many

participants do not brush their teeth with a proper duration
but recognize the importance of proper brushing habits.

• Adoption of Earphones. In recent years, the market for
Active Noise Cancellation earbuds has experienced signifi-
cant growth, with estimated market size of USD 17.88 billion
in 2024, projected to reach USD 34.42 billion by 2029 [2].
As shown in Fig. 3(d), a substantial 89.9% of participants
of our survey own earphones, with 61.1% featuring ANC
functionality. Additionally, 85.7% use their earphones daily
or several times a week, indicating high potential for inte-
grating earphone-based solutions into daily routines. 67.4%
of the respondents said that they would be willing to wear
earphones while brushing, and a substantial 89.9% think
that they will benefit from our system if their earphones
can help improve their oral health. This result demonstrates
that participants are open to adopting earphones for daily
toothbrushing monitoring.

In summary, our motivational study clearly indicates a signif-
icant gap in current oral hygiene practices. Daily monitoring of
dental practices is needed to improve oral health status. Despite the
availability of high-end electric toothbrushes with sophisticated
features, the majority of individuals still rely on manual brushes or
low-end electric toothbrushes without tracking functions due to
their simplicity and cost-effectiveness. However, this choice leaves
people vulnerable to improper brushing, which can lead to potential
oral health problems. Fortunately, from the survey result, people
convey a high openness to adopt a system that can enhance their
brushing habits, especially one that integrates seamlessly with de-
vices they already use daily, such as earphones, which motivates
our work. SmarTeeth addresses this need by offering an accessi-
ble and innovative solution that empowers users to improve their
oral hygiene practices with a pair of earphones, bridging the gap
between manual and advanced smart toothbrushing technologies.

4.1 System Overview
The primary objective of our work is to detect which tooth re-
gion/surface the user is brushing to provide brushing feedback and
evaluation to the user. Most existing smart electric toothbrushes
typically achieve brushing monitoring at a four (left/right side plus
upper/lower jaw) or six-region level. Only a few high-end models
like the Oral-B io10 (550 USD) [15] can detect all 16 surfaces [58].

Our aim is to leverage the in-ear microphone of widely available
ANC earphones to augment manual toothbrushing for achieving
effective 6-region and even 16-surface toothbrushing monitoring,
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thereby promoting oral hygiene and preventing dental diseases.
Since no commercial earphones allow open access to the raw audio
data [76], we designed and fabricated a custom pair of earphones
for our evaluation (detailed in Sec. 6).

5 SmarTeeth System Design
Figure 4 shows the system overview of SmarTeeth. The toothbrush-
ing sounds in ear canals will be recorded by the in-ear microphones
of earphones and then forwarded to the preprocessing module. The
preprocessing module (Sec. 5.1) is responsible for filtering the noise,
detecting the toothbrushing events, and segmenting audio with
sliding windows. After that, the feature extraction module (Sec. 5.2)
will extract the audio features from the left and right channels and
extract the channel-related features between both channels. Fol-
lowing this, the extracted features are fused in the classification
module (Sec. 5.3) and used to predict the brushing regions/surfaces.
Then, the prediction results are fed into the postprocessing mod-
ule (Sec. 5.4) to refine the output with temporal constraints. For
new users, they need to follow the video instructions for several
toothbrushing sessions to personalize the model (Sec.5.5). Finally,
the system visualizes the brushing habit and provides feedback for
users (Sec. 5.6).

5.1 Signal Preprocessing
After collecting the toothbrushing sounds in the ear canals, we first
perform preprocessing to filter the noise and detect the brushing
activities. Figure 5 illustrates the spectrogram of a toothbrushing au-
dio clip. We can see that most sounds are distributed below 2.5 kHz,
and hardware causes strong noise interference below 100 Hz. There-
fore, we design a 20-order bandpass Butterworth filter [57] with
the cutoff frequencies of [100, 2500] Hz. SmarTeeth uses the short-
time energy-based approach [84] to detect toothbrushing events.
Specifically, we segment audio signals into 300𝑚𝑠 sliding windows
(the time spent on a typical back-and-forth brushing stroke) with a
50% overlap. The sounds travel through bones and soft tissues at
speeds up to 1000𝑚/𝑠 , causing an extremely short delay between
two ears [62], which will not affect the sliding windows. Then, the
short-time energy is calculated for each window. We use the silence
period upon starting as the reference to calculate the energy mean
𝜇 and standard deviation 𝜎 of each window. If the signal energy
𝐸 exceeds 𝜇 + 8𝜎 and lasts for one second in both left and right
channels, we detect the last window of that second as the start point.

Similarly, if 𝐸 is lower than this threshold for one second in both
channels, we regard the last window of that second as the endpoint.
The list of windows between the start point and the endpoint will
be fed into the feature extraction module for surface detection.

5.2 Feature Extraction
Upon detecting the toothbrushing sound, we can extract audio fea-
tures from each sliding window and perform classification. Previous
audio-based works [45, 60] typically directly utilize traditional au-
dio features like Mel-frequency cepstral coefficients (MFCC) and
time/frequency-domain statistic features (mean, deviation, etc.),
which are vulnerable to many external factors, such as brushing
force levels, bristle firmness, and wearing states. In this section,
we make a key observation of the signal propagation model and
extract the channel-related features, inherently characterizing dif-
ferent propagation paths from the teeth to both ear canals, which
are more robust to the external variance.

5.2.1 Signal Propagation Model. As shown in Fig. 6, the fraction
sound 𝑥 (𝑡) between the tooth and brush bristle during toothbrush-
ing will propagate through the bone and face tissues to the ear
canals. Subsequently, the in-ear microphones can capture the tooth-
brushing sounds 𝑦𝐿 (𝑡) and 𝑦𝑅 (𝑡) for the left and right channels,
respectively. We can model the propagation process as a Linear
Time-Invariant (LTI) system [56] as follows:[

𝑦𝐿 (𝑡)
𝑦𝑅 (𝑡)

]
= 𝑥 (𝑡) ∗

[
ℎ𝐿 (𝑡)
ℎ𝑅 (𝑡)

]
+
[
𝑛𝐿 (𝑡)
𝑛𝑅 (𝑡)

]
(1)

where 𝑛𝐿 (𝑡) and 𝑛𝑅 (𝑡) are noise. ∗ is the convolution operation.
ℎ𝐿 (𝑡) and ℎ𝑅 (𝑡) are the impulse response of the propagation chan-
nels between the tooth locations and both ear canals. Given different
propagation paths, the channel information ℎ𝐿 (𝑡) and ℎ𝑅 (𝑡) fun-
damentally characterize the difference among the toothbrushing
sounds of different teeth.

Ideally, we can use the Least Squares (LS) algorithm [43] to
calculate ℎ(𝑡) with 𝑥 (𝑡) and 𝑦 (𝑡). However, the problem is that we
cannot capture the original fraction sounds 𝑥 (𝑡) occuring on the
tooth surface during toothbrushing, which hinders us from using
ℎ(𝑡) as a feature to predict toothbrushing surfaces. In this paper,
instead of directly calculating the two separated channel responses,
we utilize the redundancy of binaural audio outputs and propose to
calculate the cross-channel responses, which implicitly characterize
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Figure 7: An illustration of cross-channel features.

the properties of both channels and, more importantly, without the
need for original fraction sounds 𝑥 (𝑡).

Considering that most current earbuds can fit the user’s ear
canal very well (some earbuds can even detect the wearing seal
state [3, 27]), the inward-facing in-ear microphone mainly captures
the sound in the ear canal and is less susceptible to external noise
due to the occlusion effect [53]. Therefore, we can omit the noise
component in Eq. 1 and transform this equation to the frequency
domain:

𝑌𝐿 (𝑓 ) = 𝑋 (𝑓 )𝐻𝐿 (𝑓 ) (2)

𝑌𝑅 (𝑓 ) = 𝑋 (𝑓 )𝐻𝑅 (𝑓 ) (3)
where 𝑌 (𝑓 ), 𝑋 (𝑓 ), and 𝐻 (𝑓 ) are the frequency representation of
𝑦 (𝑡), 𝑥 (𝑡), and ℎ(𝑡) after Fast Fourier Transform (FFT), respectively.
If we divide the Eq. 2 by the Eq. 3, then the original fraction sounds
𝑋 (𝑓 ) can be canceled out as the common terms:

𝑌𝐿 (𝑓 )
𝑌𝑅 (𝑓 )

= ���𝑋 (𝑓 )𝐻𝐿 (𝑓 )

�
��𝑋 (𝑓 )𝐻𝑅 (𝑓 )

=
𝐻𝐿 (𝑓 )
𝐻𝑅 (𝑓 )

= 𝛼𝐻𝐿 (𝑓 )𝐻𝑅 (𝑓 ) = 𝐻𝐿𝑅 (𝑓 ) (4)

where𝛼 is a constant,𝐻𝑅 (𝑓 ) is the conjugate operation, and𝐻𝐿𝑅 (𝑓 )
is the obtained cross-channel frequency response.

5.2.2 Cross-channel Feature Extraction. As the cross channel𝐻𝐿𝑅 (𝑓 )
is a complex matrix, we can use its magnitude and phase as the fea-
tures. The cross-channel magnitude indicates the correlation level
between the left and right channels at different frequencies, in other
words, how the left channel aligns with the right channel in differ-
ent frequency components. The cross-channel phase reflects the
time lag between the sound propagating through two channels [42].
Figure 7(a) and Figure 7(b) illustrate the cross-channel magnitude
and phase of 16 different surfaces in a complete toothbrushing cy-
cle. We can observe that the frequency responses when brushing
different surfaces are different, especially for the surfaces belonging
to separated regions. For example, the cross-channel phases of S1,
S2, and S3 in Fig. 7(b) have a majority of positive values since they
are located at the left side of the mouth. Accordingly, most negative
values are observed in the cross-channel phases of S11, S12, and
S13, which are on the right side. We note that the cross-channel
response is the superposition of all multipath between left and right
channels, which is also the reason why it can be used as the feature
to perform brushing surface classification.

However, we cannot directly use the cross-channel features in
Eq. 4. This is because the cross-channel magnitude is sensitive
to the signal amplitude variation between left and right channels.

Considering the user may brush teeth while wearing the earphones
with different occlusion levels, the amplitude of in-ear sounds of
two channels may vary up to 40𝑑𝐵 [53]. Thus, the cross-channel
magnitude will also differ across different wearing attempts. To
deal with this problem, instead of directly using the absolute cross-
channel amplitude, we calculate the cross-channel coherence to
normalize it into [0, 1]:

𝐶𝐿𝑅 (𝑓 ) =
|𝐻𝐿𝑅 (𝑓 ) |2

𝐻𝐿𝐿 (𝑓 )𝐻𝑅𝑅 (𝑓 )
, 𝑃𝐿𝑅 (𝑓 ) = angle(𝐻𝐿𝑅 (𝑓 )) (5)

where 𝐻𝐿𝐿 (𝑓 ) (𝐻𝑅𝑅 (𝑓 )) is the cross-channel feature but with two
identical left (right) channels, i.e., the amplitude of the left (right)
channel. The angle(·) is the function to get the phase value of
complex numbers. In this way, we can unify the cross-channel
amplitude to [0, 1] and the phase to [−𝜋, 𝜋]. Moreover, we use
Welch’s overlapped averaged periodogram method [74] to calculate
cross-channel features to reduce the non-stationary variance.

5.2.3 Advantages of Cross-channel Features. Compared to tradi-
tional statistic audio features, cross-channel features offer several
advantages: (1) Independence from the original toothbrushing sound.
Our approach does not require knowledge of the original tooth-
brushing sound. Instead, it extracts features from its propagation
path, thus alleviating the impact of variations in brushing force,
toothbrush material, and other factors on the toothbrushing sound.
(2) Normalization for consistency. By normalizing cross-channel
features to a uniform distribution, we eliminate the influence of
different wearing conditions on sound intensity, enhancing the
robustness of the features across varied scenarios. To validate it,
we conducted a study involving a user brushing teeth with the
toothbrushes of different firmness levels (i.e., soft and medium).
This study was repeated three times, with the user removing and
re-wearing the earphones between each attempt (i.e., A1, A2, and
A3). Figure 8 provides a visualization of the MFCC feature and cross-
channel features reduced to 2D using t-SNE [69]. We can see that
the MFCC features exhibit clustering into three different groups
across the three different attempts, while the cross-channel features
have a consistent distribution. The same observation goes to the
different bristle firmness, since the cross-channel features charac-
terize the channel properties, robust to the variation of original
brushing sounds.

5.2.4 Feature Formulation. After extracting the cross-channel fea-
tures, we can use them to predict the brushing regions/surfaces.
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Figure 8: Feature visualization (MFCC v.s. cross-channel features) for different attempts (a, b) and bristle firmness (c, d).
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Figure 9: Intra-region and inter-region cross-channel features.

However, we observe that the intra-region difference of the cross-
channel features is relatively less than the inter-region difference.
As shown in Fig. 9(a), while the cross-channel phase features of
different surfaces (S4, S5, and S6) in the same region R2 have some
extent of difference, it is much smaller compared to the surfaces
(S1, S4, and S12) in the different regions (Fig. 9(b)). This aligns
with our expectations because cross-channel features characterize
the propagation path between the teeth and the ear canal. Even
though the different surfaces of the same tooth have slightly dif-
ferent propagation paths, they are still relatively similar compared
to the different-region case. Considering that different surfaces
have different shapes and textures, we also include MFCC and
Gammatone Cepstral Coefficients (GTCC) features [68] from both
channels to incorporate cross-channel features to recognize the
surfaces close to each other. GTCC is derived from the gamma-
tone filterbank, which is a set of auditory filters that mimic the
frequency selectivity of the human auditory system, which have
been found to be robust to audio noise and interference [64]. Given
the significant variance in the sound intensity caused by different
wearing conditions, we remove the first dimensions of MFCC and
GTCC, which are directly related to sound energy. Therefore, we
name them MMFCC (Modified MFCC) and MGTCC, which are con-
catenated together as a 24-dimensional feature for each channel.
We conducted an ablation study to evaluate the performance con-
tributions of channel-related features and modified MFCC/GTCC
features in Sec. 6.5.

5.3 Classification
With the feature extracted in the previous step, we can perform
deep learning to classify them into different regions/surfaces. Fig-
ure 10 shows the structure of the deep learning model. For each
300ms sliding window, we first concatenate the extracted MMFCC
and MGTCC features of both channels together to a 48-dimension
feature vector. For cross-channel features, since we need a high
frequency resolution to capture the detailed response of the propa-
gation channel, the feature dimension is 228 with a 10 Hz frequency
resolution. Given the high feature dimension, we first use a dense
layer to encode the cross-channel coherence and phase into two
48-dimensional embeddings. Recall that cross-channel coherence
indicates the correlation level between both channels at different
frequencies, so we can naturally regard the coherence as a weight
to the cross-channel phase at different frequencies. Thus, we use
the softmax and relu as the activation functions for coherence and
phase embeddings, respectively, and multiply them as the final
cross-channel features. Next, the cross-channel features extracted
from both channels as well as the MMFCC and MGTCC features
extracted from separated channels are fused by concatenation to
generate a 96-dimension feature vector for classification. We use
three dense layers as the classification backbone. To prevent over-
fitting, each dense layer is followed by a batch normalization layer
and a dropout layer with a dropout rate of 0.2.

5.4 Postprocessing
To further enhance tracking performance, we propose a postpro-
cessingmethod for calibrating sudden intra-region shifts and outlier
classification results. Figure 11(a) shows the classification results
from the learning model for a complete toothbrushing cycle. We
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Figure 11: Postprocessing with temporal constraints.

can see that the classification results exhibit some sudden shifts due
to the inherent channel ambiguity caused by the adjacent tooth sur-
faces and occasional prediction outliers. Given that the prediction
results represent a continuous time series of brushing surfaces, we
can impose temporal continuity constraints to address these sudden
shifts and outlier points. Specifically, it is unlikely for the brushing
surface to shift dramatically between different regions within a
very short time frame (e.g., 150𝑚𝑠). By smoothing out these abrupt
changes and anomalies, we can enhance the overall coherence and
accuracy of the toothbrushing monitoring system.

Specifically, to enforce temporal continuity in the predicted re-
sult, we employ a modified 1D Symmetric Nearest Neighbor (SNN)
filter [36]. This filter originally aimed to smooth out sudden vari-
ations in an image by replacing each pixel with the average of
its nearest symmetric neighbors. Given the discrete time series of
surface prediction, we introduce a 1-D modification to the SNN
filter: if the values of the nearest neighbors of a data point on both
sides are equal, we replace the data point with this common value;
otherwise, we retain the original value. The advantage of this filter
is that it maintains continuity within a surface while preserving
the boundaries between different surfaces. Mathematically, we can
formulate the filter as follows:

𝑠′𝑖 =

{
𝑠𝑖−𝛿 , if ∃𝛿 < 𝑘 and 𝑠𝑖−𝛿 = 𝑠𝑖+𝛿
𝑠𝑖 , otherwise

(6)

where 𝑠′
𝑖
is the filtered value of 𝑠𝑖 at position 𝑖 , 𝑘 is the filter window

size, and 𝛿 is the nearest neighbors of 𝑖 . We apply the SNN filter
with varying window sizes of 1, 3, and 5 sequentially to filter the
classification results at different temporal scales.

Figure 11(b) shows the filtered result after the temporal con-
straints compared to ground truth. We can see that most abrupt

variances and outliers are filtered out. We note that this continuity-
based postprocessing method is also applicable to other toothbrush-
ing orders since it only utilizes the temporal continuity within a
short time. By leveraging temporal constraints, we achieve signifi-
cant improvements in the accuracy and consistency of the classifi-
cation results, thereby enhancing the utility and reliability of our
proposed approach for real-world applications.

5.5 New-user Registration
Since we primarily utilize propagation channels as features, which
depend on the physiological structure (e.g., head size, head bone,
and facial muscles) of a person, these features vary among different
users. As shown in Fig. 12, user 1 and user 2 have different cross-
channel coherence and phase when brushing the same teeth surface
S1. Consequently, we cannot directly apply a model trained on one
user’s data to a completely new user. To address this, we employ
a transfer learning strategy to personalize the trained model for
new users. As shown in Fig. 4, a new user can follow these steps to
complete the registration process:

(1) Before brushing, the user downloads the global model and
SmarTeeth instructional video.

(2) During brushing, the user follows the video’s animated in-
structions (i.e., surface and duration) to label their tooth-
brushing data.

(3) After brushing, the few-shot labeled data is used to fine-tune
the pretrained model, personalizing it for the new user.

(4) For higher tracking accuracy, the user can repeat the regis-
tration process with additional sessions as needed.

Figure 15 shows the guide video. There is a blue line flashing to
indicate the surface to brush and a countdown clock to remind the
user of the time left for this surface. The animation video guides
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Figure 12: Cross-channel features of different users.

users to brush all 16 dental surfaces, with an 8-second brushing time
for each surface. The total time for one brushing session is about 2
minutes, which aligns with the recommendations of ADA [8]. We
provide a preset brushing sequence, but users can also customize
the order to suit their preferences. The new user is asked to brush
their teeth following the video instructions strictly: this "script"
serves as the labeled ground truth. During this registration, the
guide video also serves as an opportunity for users to learn how to
achieve comprehensive toothbrushing.

Theoretically, incorporating multiple registration sessions leads
to higher performance, as it allows themodel to capture a more com-
prehensive characterization of the user’s physiological structure
and brushing habits. In real-life scenarios, users have the flexibility
to decide the number of sessions they want to contribute based on
the desired performance. These sessions do not require users to
brush consecutively in one day; instead, users can simply enable
the app and follow the guide video during their regular brushing
routines. The SmarTeeth system will automatically incorporate
the data for fine-tuning. This approach delivers substantial im-
provements while imposing minimal additional effort, achieving a
balance between accuracy and user convenience for effective new-
user registration. In Sec. 6.4, we evaluated the system performance
with different numbers of registration sessions.

5.6 Toothbrushing Feedback
Based on the brushing surface detection results, we design feedback
strategies to improve users’ brushing habits by providing timely
alerts and visualization. This section elaborates on the three primary
feedback mechanisms: over-brushing feedback and under-brushing
reminder, brushing duration visualization, and brushing score.

5.6.1 Overbrushing Alert and Underbrushing Reminder. Overbrush-
ing can lead to enamel erosion and gum recession. Hence, timely
alerts help prevent these adverse effects. Our system utilizes in-ear
microphones to monitor the brushing locations and identify if any
specific area is being overbrushed. Typically, the recommended
brushing time is 2 minutes (e.g., 8 seconds for each surface or 20
seconds for each region [8]), but sometimes dentists advise patients
to brush a specific area for a slightly longer period to clear stub-
born plaque or stains caused by smoking. Therefore, the users can
customize this parameter based on their dentist’s advice. The ear-
phone used by SmarTeeth provides a natural feedback interface
to users. When overbrushing is detected or a region has brushed
for the customised duration, a gentle alert through the earphone

speaker prompts the user to move to another area. Conversely,
brushing teeth for insufficient time will accumulate dental plaque
and could lead to tooth decay and periodontal diseases. SmarTeeth
also identifies areas that have been underbrushed. The system an-
alyzes the tracking results to pinpoint regions that were brushed
for insufficient duration (e.g., 5 seconds for each surface [39]). The
system reminder through the earphone speaker encourages them
to rebrush these areas and ensure a mimimum brushing duration.
This audio feedback mechanism helps maintain proper brushing
practices, preventing underbrushing.

5.6.2 Brushing Score. Collaborating with a dentist, we introduce
a brushing score to quantify the quality of each brushing session.
The overall score will be displayed on the app and is composed
of three sub-scores: time score, distribution score, and coverage
score. The time score evaluates the overall duration of the brushing
session. A total timewithin the recommended range results in a high
score, encouraging users to brush for an adequate amount of time.
Conversely, if the user’s brushing time exceeds or does not reach
the recommended time, the score decreases. This score is calculated
as 1 minus the absolute difference between the actual brushing
time and the recommended time, divided by the recommended
time; The distribution score evaluates the distribution of brushing
time across different areas (surfaces). It ensures that no particular
area is neglected or overly focused on. This score takes the average
brushing time score for all separate dental areas (surfaces); The
coverage score indicates how completely the user has brushed
different areas of the mouth. It ensures that all areas, including hard-
to-reach spots, receive sufficient attention. The coverage score is
defined as the ratio between the number of brushed areas (surfaces)
and total areas (surfaces). Only if the brushing time exceeds half
of the required duration will it count as an effective brushed area
(surface).

The overall toothbrushing score integrates all three aforemen-
tioned scores into a weighted sum. We have set the weights to
0.35, 0.4, and 0.25 to emphasise the importance of brushing all sur-
faces for sufficient time [30]. Users can adjust these weights based
on their dentist’s recommendations. Fig. 1 showcases an overall
brushing score and its sub-scores for one brushing cycle. This score
helps users evaluate their brushing quality and identify areas for
improvement. Over time, users can track their scores and observe
improvements in their brushing habits, fostering better oral prac-
tice.
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5.6.3 Brushing Duration Visualization. Likemany commercial smart
toothbrushing apps [9], SmarTeeth generates a visualization to indi-
cate the brushing score and the brushing duration for each area of
the mouth to enhance user awareness and improve brushing habits.
As shown in Fig. 1, this visualization is accessible via a companion
app on the web or smartphones, providing a clear visual represen-
tation of which areas received adequate attention and which did
not. The heatmap uses color coding to indicate different brushing
durations – for instance, blue for underbrushed areas, green for
adequately brushed, and red for overbrushed zones. This visual feed-
back of the brushing score and duration enables users to quickly
assess their brushing patterns and adjust their brushing habits in
subsequent sessions. By consistently using the toothbrushing visu-
alization, users can develop a more balanced and effective brushing
routine, ensuring that all areas of the mouth receive proper care.
We will further analysis the brushing habit conveyed by this figure
in Sec. 6.5.

6 Implementation and Evaluation
6.1 Implementation
Hardware. It is becoming increasingly common for ANC ear-
phones to contain in-ear microphones, but no commercial ear-
phones allow open access to the raw audio data [76]. Therefore, we
designed and fabricated a prototype earphone for our evaluation.
As shown in Fig. 13, we encapsulate a Knowles SPU1410LR5HQB
microphone [7] within a 3D-printed ear-mounted housing case. We
designed a custom PCB to connect the microphones in each ear
to a HiFiBerry DAC+ADC pro audio HAT [4] installed on a Rasp-
berry Pi 4B. The in-ear sound is sampled at a rate of 44100 Hz. The
whole system is powered by a 5V power bank to ensure portability.
Figure 14 shows the experiment scenario. During toothbrushing
sessions, users wear custom ear-mounted earphones and fit them
into the ear canal, so that the in-ear microphone can capture the
inner-ear sound signals during toothbrushing.

Software. We deployed SmarTeeth on a Raspberry Pi 4B, where
the signal processing functions are implemented in Python, tak-
ing approximately 40.8 𝑚𝑠 per 300 𝑚𝑠 audio window. The deep
learning model, implemented using TensorFlow, was trained on a
PC with the Adam optimizer, a learning rate of 0.001, and a batch
size of 200. The model converged quickly within 20 epochs, with
a final model size of 59𝐾 . Inference takes 47𝑚𝑠 per window. The

total processing time remains under 100𝑚𝑠 , ensuring that Smar-
Teeth delivers real-time feedback, providing users with immediate
brushing surface detection and guidance without noticeable delays.
This prototype serves as proof of concept. Modern smartphones,
however, far surpass the computational power and hardware infer-
ence capabilities of the Raspberry Pi used here. If we can access
in-ear microphone data from commercial earphones and deploy
the system on a smartphone, the processing speed could be further
improved.

6.2 Study Design
Ground Truth. Given that camera-based acquired ground truth
is often compromised by hand and mouth obstruction [13, 25],
many prior studies have required participants to brush their teeth
following guide instructions to ensure accurate ground truth col-
lection [31, 40, 48, 62]. In line with this, we also use video-guided
brushing instructions to collect ground truth data, as described in
Sec. 5.5. This instructional video is integrated into the companion
app, allowing new users to easily follow the brushing steps for
quick data registration and seamless use of our system.

Data Collection. We recruited 13 volunteers (7 female and 6
male) to participate in our experiment, which was approved by the
Ethics Committee of our institution. Before data collection, partici-
pants underwent a brief training session to familiarize themselves
with the video instructions. They wore the earphone prototype and
brushed their teeth five times on five separate workdays (one ses-
sion per day). Each session involved two rounds of brushing—once
with a soft-bristle toothbrush and one with a medium-bristle tooth-
brush (Fig. 16). During data collection, we also instructed partici-
pants to vary their brushing order, introduced different levels of
ambient noise in the room, and conducted a case study using low-
end electric toothbrushes. This dataset is collected in the laboratory
setting to design and benchmark the model (Sec. 6.3∼6.5)

Open Settings. To evaluate SmarTeeth’s feedback and perfor-
mance in open settings, after system development, we re-invited all
participants to use the SmarTeeth prototype while brushing freely
according to their own habits for two sessions. In this evaluation,
users did not follow video instructions, so another method of ob-
taining ground truth was necessary. We observed that line-of-sight
obstructions from the user’s hands and mouth make visually distin-
guishing all 16 individual surfaces challenging [13, 25], whereas six-
region identification remains reliable. Consequently, an observer
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Figure 17: Overall performance of SmarTeeth. The values in cells are percentages (%).

manually recorded ground truth data for six regions andmade every
effort to annotate the specific 16 fine-grained surfaces. Compared
to regions, we note that these surface annotations serve only as a
"silver" standard rather than a definitive ground truth, providing
an approximate reference for comparing SmarTeeth’s 16-surface
recognition results under realistic conditions (Sec. 6.5).

Evaluation Procedure.Many electric toothbrushes on the mar-
ket offer tracking capabilities which are limited to six regions of
the mouth, such as Oral-B iO Series 5, 6, 7 & 8 [6]. Only a few
high-end models like the Oral-B io10 (550 USD) [15] can detect all
16 surfaces [58]. Therefore, we first evaluate SmarTeeth’s tracking
performance across the six regions and then assess its performance
in tracking all 16 surfaces. Since SmarTeeth aims to provide com-
prehensive tracking of all 16 surfaces for manual toothbrush users,
we subsequently analyze the impact of various factors based on its
16-surface performance in the following sessions. We also invited
users to brush their teeth with and without activating the audio
feedback function to visualize and analyze their brushing habits.
After the experiment, all users were invited to rate the usability and
satisfaction of our system’s monitoring performance and feedback
mechanisms. We report the findings of this user study in Sec. 6.6.

6.3 Overall Performance
In this evaluation, we trained the model on data from 12 users and
then fine-tuned it using different numbers of random sessions from
a new user. The model was then tested on the remaining sessions
from that user. This protocol assesses the model’s adaptability to
new users with minimal registration data, reflecting a realistic
deployment scenario where the system needs to adapt to new users
after brief calibration. We first illustrate the performance with
one-session registration and then gradually increase the fine-tune
sessions to find a balance between the registration overhead and
the performance.

Six-region Detection. Figure 17(a) shows the confusion matri-
ces for the 6-region classification. In the cross-user case, SmarTeeth
achieves an overall accuracy of 92.7%, demonstrating its effective-
ness in detecting 6 distinct dental regions. We observe that perfor-
mance is slightly lower for the middle regions (R3, middle upper,
and R4, middle lower) compared to the left and right regions (e.g., R2
and R5). This is likely because, when brushing the middle region,

the brush head may inadvertently contact parts of the adjacent
left and right regions due to limited space in the mouth and cause
ambiguity. In addition, we observed zero values along the matrix
edges, suggesting that our postprocessing techniques help to reduce
occasional misclassifications and outliers.

Sixteen-surface Detection. Figure 17(b) shows the confusion
matrix for the 16-surface classification task. The observations from
this evaluation closely align with those from the six-region detec-
tion experiments. Specifically, the system achieved an accuracy of
75.6% under the cross-user evaluation. We can observe that am-
biguity occurs between neighboring surfaces and regions, where
adjacent brushing locations with similar propagation channels can
lead to misclassification. For example, the precision for S2 (upper
left inner) is 72.4%, with 12.1% and 14.6% of samples misclassified
to S1 (upper left outer) and S3 (upper left chewing), respectively.
Compared to the six-region evaluation, SmarTeeth performs less
effectively on 16-surface detection. This difference is expected due
to the greater complexity of this task and the heightened ambigu-
ity among adjacent surfaces within the same region, which makes
accurate tracking more challenging.

Registration with More Sessions. In the previous evaluation,
we used only a single registration session (2 mins) to fine-tune the
pretrained model for new users to evaluate minimum calibration
effectiveness. Figure 17(c) further shows the accuracy with one
to four registration sessions. We observe a steady improvement
in performance as the number of registration sessions increases.
After applying postprocessing, the accuracy of six-region tracking
increases from 92.7% using one session to 99.4% using four ses-
sions, highlighting the benefit of additional registration data. For
16-surface tracking, the accuracy increases from 75.6% with one
session to 92.4% with four sessions. With three registration sessions
(∼ 6𝑚𝑖𝑛𝑠), the performance can be boosted to 98.8% and 90.3% for
six-region and sixteen-surface tracking, respectively.

Remarks. Our results demonstrate that just three sessions (a
total of six minutes) are sufficient to achieve superior performance.
These sessions do not require users to brush consecutively in one
day; instead, users can simply enable the app and follow the guide
video during their regular brushing routines. The SmarTeeth sys-
tem will automatically incorporate the data for fine-tuning. This
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Figure 20: Ablation study.

approach delivers substantial improvements while imposing min-
imal additional effort, making three sessions an optimal balance
between accuracy and user convenience for effective new-user
registration.

6.4 Impact of Practical Factors
Impact of Users. Figure 18 shows the performance across different
users. When we directly applied for the leave-one-user-out analy-
sis, the average accuracy is only 34.2%. This result was expected,
given the channel-related features used in our system, which are
inherently related to individual physiological characteristics. Since
each user has a unique oral anatomy and head structure, directly
testing the model on new users leads to significant bias. After model
fine-tuning with one registration session, we observed a significant
improvement in accuracy, with performance increasing to 60.1%.
This fine-tuning method helps calibrate the feature distribution of
the new user. Then, by employing postprocessing techniques (i.e.,
temporal constraints), we were able to further refine the model’s
predictions and enhance its accuracy. As a result, the accuracy
was boosted to 73.9%. This evaluation demonstrates the efficacy
of the fine-tuning approach in enhancing the model’s adaptability
to different users. Note that this result is averaged over 13 users
rather than across all samples. It is somewhat inconsistent with
the cross-user performance in Sec. 6.3, as the number of samples is
different between users.

Interestingly, we observed that the performance of users 7 and 8
was notably lower compared to other users. This is because these
users had relatively smaller ear pinnae, making it challenging to
securely fit the in-ear microphone in the ear canal. In such cases, the
in-earmicrophone is susceptible to interference, and the assumption
of omitting noise term in Eq. 1 cannot hold, leading to inaccuracies
in the extracted channel-related features. Upon excluding users 7
and 8 from the analysis, we observed a substantial improvement in
performance, with average accuracy reaching 80.1%. In the future,
we plan to print custom earphone casings of varying sizes. By
offering users earphone casings tailored to their ear shape and size,
the secure fit could mitigate interference and enhance the accuracy
of these users. Moreover, current earphones are lightweight and
come with ear tips of different sizes. Some of them can even detect
the seal state of the earphone [3], which can effectively address this
challenge.

Impact of Brushes. To evaluate the impact of different tooth-
brushes, we divided all the data into two groups according to the
toothbrush type (i.e., soft and medium). The model was then trained

on one toothbrush (e.g., soft) and tested on another (e.g., medium),
and vice versa. As shown in Fig. 19, the accuracies for soft and
medium brushes are 70.1% and 68.8%, respectively. Yet, after ap-
plying postprocessing techniques, the performance is improved to
81.3% and 81.7%, respectively, which shows the robustness of our
system to different brush bristles due to cross-channel features.

Impact of Brushing Orders. Different individuals may have
their own brushing orders and habits. Despite the diversity across
users, the methodology of SmarTeeth remains applicable. To val-
idate it, we collected the data using the instruction videos with
different brushing orders as shown in Fig. 21. We directly use the
model trained with the data following the order in Fig. 11(b) to
evaluate these two new brushing orders. Figure 21 illustrates the
comparison between ground truth and predicted outcomes of two
brushing cycles. The respective performances are 82.8% and 79.4%,
showing no significant deviation from our previous results. This
is because the SNN-based smoothing method only constrains the
temporal continuity within a short time frame while preserving the
boundaries between different surfaces. As a result, the detection
accuracy remains consistent regardless of the sequence in which
the surfaces are brushed. We also further validate this through an
in-the-wild case study in Sec. 6.5.

Impact of Environmental Noise. To evaluate the impact of
environmental noise, we conducted experiments where three users
with good occlusion states brushed their teeth while a nearby loud-
speaker played music at a typical daily noise level ranging from 50
to 60 dB. We use the model trained with data in quiet scenarios to
test these brushing sessions. The accuracy is 73.4%, which improved
to 80.8% after postprocessing. This is because of the sealing effect
of the eartips, which effectively isolates external sounds. Conse-
quently, any residual noise within the ear canal became negligible.
Additionally, the toothbrushing sound propagates through bone
conduction, which inherently offers higher fidelity compared to
subtle external interference transmitted through the air and the
attenuation caused by the eartips.

6.5 Method Evaluation and Extension
Ablation Study. To understand the individual contributions of
different components, we conducted an ablation study. We repli-
cated the 16-surface evaluation in Sec. 6.3 for the users with good
seal states while excluding various modules: modified audio fea-
tures (AF), cross-channel features (CF), and postprocessing (Post).
The performance of the system without ablation (N/A) was 80.1%.
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Removing modified audio features resulted in the performance de-
creasing to 64.8%. This reduction can be attributed to the sound
timbre information captured by these features, which aids in dis-
tinguishing between adjacent surfaces in the same region. Without
them, the system encounters more ambiguity in surface classifi-
cation. When removing cross-channel features, the performance
significantly drops to 41.8%. This decline highlights the sensitivity
of sole audio features to variation between sessions, which can in-
troduce bias as we discussed in Sec. 5.2.2. Excluding postprocessing,
the system has a substantial performance decrease to 63%. This
significant drop underscores the importance of postprocessing in
mitigating ambiguity and handling the outlier effect effectively.

Baseline Comparison. BrushBuds [78] leverages IMU sensors
on earphones to track toothbrushing locations. To establish a base-
line for performance comparison, we attached two IMU sensors
to our earphone prototypes and implemented BrushBuds. We col-
lected data from five users, with five sessions per user, to ensure
a fair comparison. Figure 22 compares the performance of Brush-
Buds and SmarTeeth at both 16-surface and 6-region tracking levels.
BrushBuds achieves an accuracy of 40.6% for 16-surface classifica-
tion and 82.2% for six-region classification, which is 41.2% and 11.4%
lower than SmarTeeth’s respective accuracies. The ineffectiveness
of the earable IMU-based approach in tracking 16 surfaces can be
attributed to several factors. First, the differences in IMU signals
caused by brushing different regions are minimal because IMUs
on earphones primarily capture coarse head motions incurred by
brushing rather than fine-grained vibrations, and they become even
smaller when distinguishing between individual surfaces. Second,
we observed that users often unintentionally move their heads
while brushing, introducing noise that further degrades IMU signal
quality. In contrast, SmarTeeth utilizes in-ear toothbrushing sounds,
which can effectively capture the distinct friction sounds through

bone conduction from different surfaces and is inherently more
robust to head movements, enabling superior tracking performance.

Extending to Electric Toothbrushes. Considering that many
low-end electric toothbrushes also do not have the brushing moni-
toring function, we also conducted a case study to evaluate whether
SmarTeeth could also augment low-end electric toothbrushes. We
note that our experiments with electric toothbrushes are primarily
to validate the feasibility of the method; however, the main focus
of SmarTeeth remains on manual toothbrushes. Participants were
asked to use the Mijia T300 electric toothbrush (20 USD) [10] for
three sessions. As shown in Fig. 23, the brushing sound using elec-
tric toothbrushes exhibits distinct patterns compared to that of
manual toothbrushes. We can observe the fundamental frequency
and multiple harmonics of toothbrush vibrations in the frequency
domain. As electric toothbrushes do not require manual brushing
strokes and users only need to position the brush head at different
teeth, no stroke-related signals were observed.

As shown in Fig. 24, we first tested the model trained on manual
toothbrush audio directly on the electric toothbrush data (Direct),
and the accuracy significantly reduces to 22.5%. This result is ex-
pected since we use the propagation-channel features as well as the
brushing sound features (i.e., MFCC/GTCC) to achieve fine-grained
toothbrushing monitoring. Even though these features work well
across different manual brushes, the powerful excitation vibra-
tion of electric toothbrushes, several orders of magnitude higher
than manual toothbrushing sounds, has significantly disturbed the
MFCC/GTCC features, leading to a performance drop without any
finetuning. Subsequently, we conducted model fine-tuning with one
electric toothbrushing registration session, and the performance
increased to 79.7% (FT). After postprocessing (Post), the accuracy
improved to 92.4%. These results indicate that in addition to manual
toothbrushes, the methodology of SmarTeeth is also applicable to
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Figure 27: A brushing cycle in the wild.

Figure 28: Plaque test. The tablet stained
residual plaque red.

electric toothbrushes, which yields even better performance com-
pared to manual toothbrushes. We speculate that the performance
improvement may be attributed to the stronger excitation vibra-
tion of electric toothbrushes, resulting in more stable and accurate
channel-related features.

We also compared our system’s performancewith BrushBuds [78]
on electric toothbrushes. BrushBuds achieved an accuracy of 37.6%
(IMU in Fig. 24), which is significantly lower than our system. This
inferior performance can be attributed to two factors: first, unlike
manual toothbrushes, electric toothbrushes do not require back-
and-forth brushing. Users generally simply hold the brush against
the teeth. Thus, the differences in IMU signals caused by brush-
ing different surfaces are minimal, making fine-grained surface
tracking challenging. Second, IMU signals are highly susceptible
to interference from the strong vibrations generated by electric
toothbrushes, further degrading their reliability [25].

Another work specifically designed for electric toothbrushes,
ToothFairy [71], reports an accuracy of 92.4% for identifying dental
quadrants (four regions). For a direct comparison, we evaluated
SmarTeeth by dividing the teeth into the same four regions as well.
The accuracy of SmarTeeth is 98.8%, which outperforms Tooth-
Fairy [71] by 6.4%. We attribute this improvement to fundamental
differences in methodology. ToothFairy relies on fitting parameters
based on the vibration energy generated by electric toothbrushes,
which can be influenced by various factors such as brushing style
(e.g., the force applied, brushing speed, and motion patterns) and
toothbrush condition (e.g., wear and tear, and battery life). In con-
trast, SmarTeeth leverages propagation-channel features, where the
distinctions between left, right, upper, and lower channels are inher-
ently more pronounced, enabling more robust region classification.

Toothbrushing In-the-wild. To evaluate the performance of
SmarTeeth in more realistic settings, we conducted an in-the-wild
case study as described in Sec. 6.2. Figure 25 shows the confusion
matrix for the six-region detection performance in the wild. The
overall accuracy is 97.1%, which is slightly higher than our previous

results. The detection accuracy for some regions like R3 and R5
even reaches 100%. This is because the participants become more
accustomed to using our system and achieve better ear canal oc-
clusion. We also compared the 16-surface detection results in the
wild with observer-annotated reference. Fig. 27 shows the surface
tracking result of a participant. Figure 26 presents the confusion
matrix for 16-surface tracking in this setting, with an overall ac-
curacy of 81.6%. Overall, SmarTeeth’s detection results generally
align well with the observer’s annotations, which serve as a silver
reference rather than a definitive ground truth. We can observe
some discrepancies between the SmarTeeth predictions and the
annotations. For example, samples identified as S6 by SmarTeeth
were sometimes annotated as S5, and similar mismatches occurred
between S1 and S2, as well as S12 and S13. These cases are likely
caused by the observer’s line-of-sight obstructions while recording
the data. Despite with silver reference, the results demonstrate that
SmarTeeth performs effectively in a real-world and open setting.

Plaque Test. The plaque test is a common method used to help
identify areas of teeth that have beenmissed after toothbrushing. To
intuitively visualize brushing effectiveness, we conducted a plaque
test where users chewed a disclosing tablet after brushing freely.
The tablet stained residual plaque red, providing a clear visual of
areas that were insufficiently cleaned. Fig. 28 and Fig. 29 show both
a (mirrored) photo taken after the plaque test and the toothbrush-
ing report generated by SmarTeeth. According to the SmarTeeth
tracking results, the user did not spend sufficient time brushing
the left side, particularly on the outer surfaces. This observation is
supported by the plaque test results, which reveal residual plaque
in the left outer areas (highlighted with boxes in Fig. 28). This indi-
cates that insufficient brushing time in certain areas leads to plaque
buildup. Interestingly, we found that this user is left-handed and
tends to focus more on the right side, which feels more natural to
brush. Conversely, the left side, particularly the outer and inner
surfaces, is less accessible and often brushed only briefly. The user
admitted to not being aware of this habit before and noted that
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the feedback provided by SmarTeeth was highly useful in helping
improve his brushing habits.

6.6 Evaluation of User Experience
After system development, we re-invited all participants to use
the SmarTeeth prototype during toothbrushing and rate the usabil-
ity and satisfaction of our system’s monitoring performance and
feedback mechanisms. The results and users’ comments provide
valuable insights for further development and optimization of the
system.

Audio feedback. Figure 30(a) shows the brushing visualiza-
tion in our app of a user for a brushing cycle with audio feedback
disabled. The overall brushing score is 82. Specifically, the total
brushing duration was about 1.92 minutes, which is very close to
the recommended 2 minutes, resulting in a high time score of 96.
However, the distribution score is relatively low at 65, indicating
that the user did not brush each tooth surface evenly and properly.
Specifically, we can observe that this user brushed the lower re-
gions more thoroughly than the upper regions. Additionally, the
outer surfaces of the lower teeth were sufficiently brushed, while
certain inner surfaces (e.g., S5) and chewing surfaces (e.g., S16)
were underbrushed likely due to their harder-to-reach locations.
In addition, the user overbrushed the left lower chewing surface
(i.e., S6). In contrast, most of the upper surfaces were not brushed
for a sufficient duration, possibly because brushing the upper teeth
is more inconvenient than brushing the lower ones. Similar to the
lower teeth, the user also overbrushed two upper chewing surfaces.
Out of the 16 surfaces, 14 were brushed for more than half of the
required time, leading to a coverage score of 88. This brushing time
visualization allows the user to intuitively understand their brush-
ing habits and make necessary adjustments, such as shortening the
brushing time for some surfaces or dedicating additional time to
others.

We then invited this user to activate the audio feedback function
and brush their teeth again. Figure 30(b) shows the toothbrushing
visualization with the feedback enabled. The overall score signifi-
cantly improved to 93, indicating that the feedback helped the user
adopt better brushing habits. From the figure, we can observe that
the user performed notably better on the upper arch compared to
the previous session. As a result, the distribution score increased
from 65 to 87, and the coverage score improved from 88 to 94.
However, we noticed that the user still underbrushed the right-
upper-inner surface. Interestingly, when the system reminds the
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Figure 31: Usefulness and comfort evaluation.

user to brush the right-lower-chewing surface, they overbrushed
this area. The user said it is because he was concerned about not
brushing enough, leading him to continue brushing this area longer
a bit. This suggests that the user may need to continue using the sys-
tem over time in order to become more accustomed and confident
in following the audio feedback accurately.

Usefulness and Comfort. Participants rated the usefulness
and comfort of the SmarTeeth system on a 7-point Likert scale
[65], where 1 indicates "very low" and 7 indicates "very high". As
shown in Fig. 31, the average usefulness score was a strong 6.0/7.0,
indicating that users think the system is highly beneficial for im-
proving their toothbrushing habits due to the timely reminder and
brushing score evaluation. However, the comfort score of hardware
was lower, averaging 4.86/7.0. The lower comfort rating is primarily
due to the current prototype design, which includes wired over-ear
earphones that are heavier and more cumbersome than commercial
wireless earbuds. In this paper, we focus on the technical feasibility
validation of using earphones to enhance manual toothbrushing. In
the future, iterations of our system will focus on miniaturizing the
hardware or collaborating with commercial earphone companies to
integrate our techniques into their more ergonomic and lightweight
earbuds. This strategy is feasible due to the widespread availability
of in-ear microphones in commercial ANC earbuds.

Workload Evaluation.We combined a 7-point Likert scale and
The NASA Task Load Index (NASA-TLX) [35] to evaluate the work-
load of users when using our system. NASA-TLX is a widely used
tool to assess perceived workload across six dimensions: Mental
Demand, Physical Demand, Temporal Demand, Performance, Effort,
and Frustration. Each dimension is rated on a scale from 1 to 7,
with higher scores indicating greater perceived demand or effort.
Note that, contrary to other items, for performance, 1 represents a
high level, and 7 represents a low level.

As shown in Fig. 32, participants rated the overall workload score
as 2.46/7.0, indicating a low level of usage workload. Specifically,
participants rated the mental demand of using SmarTeeth at a low
level (2.42), suggesting that the system is reasonably straightfor-
ward to understand and use. However, the physical demand received
a higher score (3.99) compared to the mental demand. This is due to
the prototype design, which requires users to adjust the earphones
to achieve a proper occlusion state. Because of the additional weight
and wired constraints, some users said, "I feel weird when I brush
my teeth with earbuds, because they may drop." For the same reason,
the effort score is 3.13 slightly higher than ideal, mainly due to the
discomfort of wearing the prototype earphones. We believe that
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Figure 32: Workload evaluation of SmarTeeth.

optimizing the hardware size and weight can significantly allevi-
ate this issue. Additionally, we will integrate existing fit detection
technologies [3, 27] to ensure that users achieve proper sealing
and placement and avoid constant adjustments. Users feel the time
pace of using SmarTeeth was manageable (2.92), indicating that
the system does not significantly impact or slow down their tooth-
brushing routine. Participants also rated their performance very
high (2.3) while using SmarTeeth, indicating they felt successful in
following the system’s recommendations and effectively improving
their brushing habits. Additionally, the frustration level is rated
lower (2.35), indicating that while there were some discomforts
and adjustments needed, the overall experience was not highly
frustrating for most users due to the short brushing time per day.

User Suggestions. At the end of the questionnaire, we have a
blank to let participants provide feedback on the SmarTeeth system.
Common themes included concerns about the hardware size and
earphones potentially falling out during use. One user said, "A way
to know when proper sealing of earbuds and ear canal has happened
(is needed)." Another user found our system particularly useful: "I
took three big tooth surgeries in the past ten years. And I can’t use
the electric toothbrush. The toothbrush I use has certain requirements,
and the brushing time is controlled according to the state of the teeth
every day."

Feedback from the Dentist. After evaluation, we conducted an
interview with the dentist again. She indicated that our survey find-
ings are consistent with her clinical experience, noting that many
people have dental disease due to the lack of enough coverage and
timing of toothbrushing. She was impressed with the system’s per-
formance, particularly its ability to monitor fine-grained brushing
surfaces and ensure sufficient brushing time, which is a critical
issue for many kids and manual toothbrush users.

7 Limitation and Future Work
Hardware Improvement.While effective in detecting brushing
surfaces, the current SmarTeeth prototype needs to improve the
comfort level and sealing check. The wired overear design was
noted by users as inconvenient for daily use. Moving forward, we
will optimize the form factor by miniaturizing the hardware. Collab-
oration with established earphone manufacturers could allow us to
leverage existing advancements in wireless, lightweight, and com-
fortable earbuds, which would ensure good sealing and significantly
enhance user experience [3].

Toothbrush Degradation. In our current study, participants
used new toothbrushes over a period of one week, but toothbrush
bristles naturally degrade, becoming softer and more worn over
time. Although SmarTeeth relies primarily on channel-related fea-
tures, some audio features, such as MMFCC, may be affected by the
bristle condition. Dentists generally recommend replacing tooth-
brushes every three months [11]. Yet, bristle wear may impact
performance within this period. Therefore, we suggest periodic
recalibration of the model after extended use, such as one month,
using video-guided brushing instructions with minimal user effort.
Furthermore, by employing continuous learning techniques [70],
the model could be iteratively updated to adapt to gradual tooth-
brush degradation.

User Applicability. In the current stage, we have only evaluated
SmarTeeth with participants who have normal oral health condi-
tions. However, our system must be carefully considered across
different user demographics. For instance, older adults and children,
who may have missing teeth or dentures, could benefit from a more
flexible scheme for determining proper brushing duration. Addi-
tionally, for users with orthodontic braces, the presence of metal
wires and brackets could alter the propagation of sound within the
oral cavity. Therefore, these users may need to update their model
after prosthetic dental work to ensure accurate brushing surface
detection.

Potential Applications. Beyond toothbrushing tracking, the
in-ear brushing sound used in SmarTeeth has the potential to
be applied to other areas of oral health. For example, during the
post-evaluation interview, the dentist suggested that incorporating
brushing pressure detection would make the system even smarter,
with which we can prevent gum recession. We consider this for fu-
ture work by exploring the correlation between pressure and sound
intensity, aiming to bring even more intelligent and powerful func-
tionality to manual toothbrush/low-end electric toothbrush users.
In addition, root canals create cavities within the tooth that need
to be diagnosed by X-ray imaging which is not always accessible.
However, these cavities within the tooth can alter the way sound
propagates through the dental and surrounding bone structures.
By analyzing differences in sound patterns, it might be possible to
identify root canals and predict brushing pressure. Such capabilities
could make SmarTeeth a comprehensive tool for daily oral health
monitoring, and we leave them for future work.

8 Conclusion
We propose SmarTeeth, a pioneering fine-grained toothbrushing
monitoring system utilizing in-ear microphones of earbuds, revo-
lutionizing manual toothbrushes by providing users with detailed
brushing tracking information. By integrating cross-channel fea-
tures and modified audio features, SmarTeeth achieves high ac-
curacy in tracking dental regions and surfaces after refinement
through temporal constraints. The user feedback is also promising:
an majority of our participants have shown enthusiasm toward
adopting SmarTeeth, anticipating its seamless integration into their
daily toothbrushing routine. This system empowers the vast com-
munity of users who use manual toothbrushes and low-end electric
toothbrushes to attain the benefits of high-end smart toothbrushes
using just a pair of earphones, which holds significant promise
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for promoting public dental health. Since daily toothbrushing is
conducted naturally near the ear canal, the audio captured in the
ear could be extended to detecting more complex dental conditions
such as root canal infections and tooth cavities, further enhancing
oral healthcare practices with earables.
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