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Abstract—Every day, one person loses his life due to drowning
in swimming pools, even with professional lifeguards present.
Contrary to what the public might assume, drowning swimmers
can hardly splash or yell for help. This life-threatening situation
calls for a robust SOS channel between the swimmers and
the lifeguards. This paper proposes Neusos, a neural-enhanced
underwater SOS communication system based on commercial
wearable devices and low-cost hydrophones deployed in the
swimming pool. Specifically, we repurpose popular wearable
devices (e.g., smartwatches) as SOS transmitters, which can send
a distress signal when the user is in an emergency. In response,
an underwater hydrophone in the swimming pool can detect SOS
signals and make alerts immediately to facilitate a timely rescue.
The main technical challenge lies in reliably detecting weak SOS
signals in non-stationary underwater scenarios. To achieve so, we
thoroughly characterize the properties of underwater channels
and examine the limitations of the traditional correlation-based
signal detection method in underwater communication scenarios.
Based on our empirical findings, we developed a robust SOS
detection method enhanced with deep learning. By fully embed-
ding signal characteristics into networks, Neusos outperforms
traditional signal processing-based underwater SOS detection
methods. In particular, our experiments in a real swimming pool
show that Neusos can detect SOS signals with a detection rate of
98.2% under various underwater conditions. Given the increasing
popularity of smartwatches among swimmers, our system holds
immense potential to enhance their safety in swimming pools.

Index Terms—Underwater communication, Signal detection,
Wearable devices, Machine learning

I. INTRODUCTION

Drowning remains a serious public health threat, with an

average of 390 people losing their lives in swimming pools

every year in the USA alone [1]. Surprisingly, even with

professional lifeguards present, roughly one-third of drowning

deaths still occur [2]. This is partly due to a common mis-

conception among the public that drowning swimmers would

wave their hands and call for help, while lifeguards could

notice and intervene in a timely manner [3]. In practice,

however, some drowning swimmers in panic often struggle

to reach the surface and cannot call for help, while others

could experience sudden cramps or severe discomfort and

sink underwater quickly and quietly [4]. Moreover, lifeguards

can be distracted and unable to stay alert and continuously

monitor every individual in a large swimming pool [3]. To

prevent these tragedies, it is crucial to equip swimmers with an

effective method to seek timely help in emergencies. By doing

so, lifeguards can be promptly alerted and respond swiftly to

rescue those in distress.

To provide timely assistance, international rescue standards

require lifeguards to quickly identify drowning swimmers

within 10 seconds [5]. However, the average detection time

of a drowning person is unfortunately around 69 seconds [6].

To address this critical issue, several existing solutions rely

on multiple cameras to monitor swimmers and alert lifeguards

when a swimmer sinks to the bottom of a swimming pool

or remains still for an abnormally long period of time [7–

10]. Nevertheless, these solutions face significant practical

challenges, including poor performance in weak lighting con-

ditions, swimmer occlusions, and highly dynamic backgrounds

[10], which could lead to delays in alerting lifeguards or

even false negatives. As a result, relying solely on vision-

based systems, many swimmers in distress can miss the critical

window for rescue. Therefore, we believe that a more effective

and responsive SOS communication system could complement

existing drowning detection and rescue systems.

The prevalence of waterproof wearable devices, such as

smartwatches, has become increasingly popular among swim-

mers for exercise assessment and health monitoring. This

prompts us to ask: can we harness these wearable devices
as underwater SOS transmitters? We consider acoustics as

the SOS signal medium due to the significant attenuation of

RF signals in water [11], and the susceptibility of light to

occlusion and limited view field. Thus, we give an affirmative

answer by designing and implementing Neusos, an acoustic

underwater SOS transmission and detection system. Neusos

can offer an API that integrates with existing wearable-based

drowning detection systems [12–14], enabling the transmission

of SOS signals as soon as a swimmer is detected in a

state of drowning. In addition, a swimmer can also manually

activate the SOS transmission by pressing a button on the

smartwatch in the event of an emergency like cramps. The

smartwatch will immediately broadcast acoustic SOS signals,

which will be captured by underwater hydrophones deployed

in the swimming pool. Receiving the SOS signals, Neusos will

promptly alert lifeguards on duty or the emergency medical

center through alarm sounds and messages, facilitating a swift

and effective rescue.

Transforming Neusos from a concept into a practical system

involves several technical challenges. First, lightweight smart-

watches are limited by their transmission power due to small

form factors. Substantial attenuation of underwater signals

leads to a low signal-to-noise ratio (SNR) [11]. Second, un-

derwater environments are characterized by dynamic noise and

varying channel conditions over time [11]. Third, underwater



200 400 600 800
Time (ms)

1.5

2

2.5

3

3.5

Fr
eq

ue
nc

y 
(k

H
z)

-100

-80

-60

-40

-20

Po
w

er
 (d

B)

(a) Chirp signals

200 400 600 800
Time (ms)

1.5

2

2.5

3

3.5

Fr
eq

ue
nc

y 
(k

H
z)

-20

-10

0

10

Po
w

er
 (d

B)

(b) A chirp in noise

-1 -0.5 0 0.5 1
Lag (s)

0

1

2

|X
co

rr|

104

(c) Xcorr with the noisy chirp

-1 -0.5 0 0.5 1
Lag (s)

0

5000

10000

|X
co

rr|

(d) Xcorr with Gaussian noise

Fig. 1: Cross-correlation-based signal detection with Gaussian noise.

noise, such as water flow and bubbles, combined with channel

fading effects, introduces fluctuations in received signals. Con-

sequently, traditional threshold-based cross-correlation meth-

ods, which rely on detecting peaks above a hand-crafted

threshold, are not suitable for practical implementation [15].

In specific, setting the threshold too low makes the detection

system over-sensitive and susceptible to noise, while setting

it too high may miss SOS signals, which can have severe

consequences in emergencies. Furthermore, swimming pool

environments are prone to various sources of interference,

such as pump operation and intense splashing, which generate

wideband disturbances that severely hinder signal detection.

To achieve reliable SOS detection in low-SNR underwater

scenarios, we utilize acoustic chirps as SOS signals, which

are robust to channel selective fading and Doppler effects.

Moreover, we develop a short-time dechirp transform to en-

hance the SOS signal. By doing so, the linear pattern of the

SOS chirp becomes more prominent in the frequency domain,

making it easier to distinguish it from background noise.

Furthermore, instead of detecting SOS signals with traditional

correlation methods, we build an explicit deep-learning model

incorporating the prior knowledge of chirps to learn the

distinctive linear pattern of SOS signals in the spectrogram.

This enables automatic detection at low SNR and eliminates

the requirement for a fixed threshold. Benefiting from this

signal characteristic-aware design, the model can achieve good

generalization performance by training only on synthesized

data, which alleviates the workload of data collection. Upon

detection of the SOS signal, Neusos will immediately alert

lifeguards or the emergency center by alarms to facilitate

faster rescue operations. By integrating these methods, Neusos

balances the false positive and false negative rates, making

underwater acoustic SOS detection more practical and robust.

In summary, this paper makes the following contributions:

• We propose Neusos, a robust underwater SOS detection

system that provides an underwater communication chan-

nel between swimmers and lifeguards, effectively making

alerts in early response time and enhancing the safety of

swimmers.

• We develop an explicit signal-aware deep learning model

to effectively capture the features of SOS signals, which

balances the system reliability and sensitivity, thereby

improving the practicality of the SOS detection system.

• Real-world evaluation in a swimming pool shows that

Neusos can achieve a detection rate of 98.2%, out-

performing the traditional correlation-based baseline by

9.2% with the same false positive rate.

The rest of this paper is organized as follows. Sec. II in-

troduces the challenges and opportunities of SOS detection in

underwater scenarios. We provide a comprehensive description

of our proposed solutions and the design of Neusos in Sec. III.

The implementation and evaluation of Neusos are detailed in

Sec. IV. We give a literature review in Sec. V, and conclude

this paper in Sec. VI.

II. PROBLEM AND MOTIVATION

This section first examines the traditional cross-correlation

based detection method widely adopted in previous works in

the context of underwater communication [11]. We then sum-

marize its pros and cons in our target problem of underwater

SOS detection, and motivate our design of neural enhanced

detection.

A. Signal Detection with Cross-correlation

Weak signal detection in the presence of complex back-

ground noise has been extensively explored in wireless com-

munication systems. For example, weak signals can be de-

tected with matched filter [16] which essentially performs

cross-correlation (xcorr). This technique involves comparing

the received signal with the known transmitted signal and

assessing their similarity [17]. Due to the excellent correlation

property, chirp signals are widely used for underwater commu-

nication [18–20]. As depicted in Fig. 1(a), chirp signals spread

across a frequency band with a linearly increasing frequency

and offer good correlation properties. Chirp signals are also

robust to frequency-selective fading and Doppler shift [21].

The cross-correlation rxy(n) between the known signal

x(n) and the received signal y(n) is defined as:

rxy(n) =

N−1∑

�=0

y[n+ �]s[�] (1)

where � denotes the sample shift. When the received sig-

nal y(n) aligns with x(n) at time n′, the cross-correlation

produces a maximum peak with height of
√
BT in theory

[15], where B is the bandwidth and T is the chirp duration.

Fig. 1(b) illustrates a chirp signal overwhelmed by strong

Gaussian noise with an SNR of -20dB . After performing
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Fig. 2: Cross-correlation-based signal detection with underwater noise (the upper row) and bursting noise (the lower row).

cross-correlation (Fig. 1(c)), a peak stands out from the noise

floor, indicating the presence of a chirp signal.

B. Challenges for Underwater Channels

In previous works, the wireless channel is commonly mod-

elled as an Additive White Gaussian Noise (AWGN) channel

for simplicity, where the noise follows a Gaussian distribution

[22]. In such cases, as illustrated in Fig. 1(c) and Fig. 1(d), a

prominent peak appears when correlating the received signal

with the known signal. In contrast, when correlating the chirp

with Gaussian noise, there is no peak clearly standing out

from the noise floor. As a result, the signal can be detected by

examining if a peak exceeds a preset threshold u = r̄+ασ(r),
where r̄ and σ(r) are the mean and standard variation of r(n).
α is the threshold parameter. However, unlike the assumption

of the AWGN channel, the unique properties of underwater

channels introduce significant challenges for SOS detection.

Unbalanced noise distribution. In underwear scenarios,

the noise distribution is unbalanced, with most of the noise

concentrated in the low frequency band. Fig. 2(a) illustrates the

power Cumulative Distribution Function (CDF) of underwater

noise in a typical swimming pool, revealing that 95% of under-

water noise, such as water flow and air bubbles, is distributed

below 1 kHz, and 99% of noise is less than 1.5 kHz. Moreover,

underwater noise is much stronger than the weak SOS chirp

signals. As depicted in Fig. 2(b), the residue underwater noise

remains more significant than the chirp signals at frequencies

higher than 1.5 kHz. Although one might consider using chirp

signals in higher frequency bands less affected by noise, the

frequency band above 3.5 kHz experiences severe underwater

attenuation [23]. This limitation confines the SOS chirp signals

to the frequency band of [1.5, 3.5] kHz [23]. As such, with

the same SNR level (i.e., -20 dB), the signal peaks resulting

from cross-correlation will be heavily influenced by noise

interference, making it challenging to distinguish the SOS

signals from noise, as illustrated in Fig.2(c). Moreover, strong

interference and noise can also generate high correlation peaks,

possibly leading to false positives (Fig. 2(d)).

Low SNR. The signal strength of received chirps can

become significantly weakened due to the joint effects of

low transmission power and severe channel attenuation. As a

result, the correlation peak generated by cross-correlation can

be very weak and overwhelmed by noise. As mentioned in

Sec. II-A, the height of the signal peak after cross-correlation

is directly related to the bandwidth and chirp duration. In the

context of underwater scenarios, the bandwidth is limited to

2 kHz due to the unbalanced noise distribution and severe

attenuation. Enlarging the chirp duration is one way to increase

the SNR. However, this comes at the cost of a longer detection

time, which is critical for the timely detection and rescue of

drowning swimmers. To balance efficiency and effectiveness,

we have set the chirp duration to one second. This duration

enhances the SNR while maintaining a reasonable detection

time in real-world rescue scenarios.

Non-stationary channel state. The underwater channel is

subject to dynamic water flow, rendering it non-stationary

and possessing a very short coherent time [11]. Consequently,

the SNR of received signals fluctuates over time, making the

use of a pre-defined threshold impractical. Moreover, cross-

correlation requires a precise alignment between the known

and received signals. However, the presence of strong noise

can heavily corrupt a fragment of the chirp signal and render

the chirp signals undetected as illustrated in Fig. 2(b).

Bursting noise. The underwater environment, such as

swimming pools, is characterized by the presence of strong

noise sources, including pump operations and water splashing,

which can cause a sudden burst of energy within a very

short time. As shown in Fig. 2(e), the bursting noise spreads

across the spectrum with much higher power than the chirp

signal. Fig. 2(f) illustrates a chirp signal that interfered with
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the bursting noise at an SNR of -20 dB. Similarly to strong

underwater noise, the signal peak in the cross-correlation

between the chirp signal and the received signal can hardly

be distinguished from the noise (Fig. 2(g)). Figure 2(h) shows

the correlation result between the bursting noise and the clean

chirp signal, and we can observe that the powerful bursting

noise can cause false alarms if a preset threshold is adopted.

C. Opportunities for Underwater SOS Detection

The challenges discussed above make traditional cross-

correlation unsuitable for reliable underwater SOS detection.

However, despite the powerful nature of underwater noise,

it does not completely overwhelm the entire chirp signal as

illustrated in Fig. 2(b) and Fig. 2(f). This observation provides

us with an opportunity to detect weak SOS chirp signals. For

example, as illustrated in Fig. 2(b), a fragment of the SOS

chirp remains distinguishable from the noise, particularly in

the high-frequency band (within the dashed box). This is due to

the dynamic nature of underwater noise and the short duration

of bursting noise events. Consequently, we can exploit these

dynamic underwater characteristics as an opportunity rather

than a hindrance to detect weak SOS signals. As such, rather

than detecting the signal with cross-correlation, we cast this

task as line pattern detection in the spectrogram of the received

signal, inherently corresponding to chirp signal detection. This

approach aligns well with the prominent strength of deep

learning methods, which have demonstrated their efficacy in

feature extraction and pattern recognition in computer vision

tasks.

Compared with traditional correlation-based detection meth-

ods, deep learning-based SOS detection can potentially enjoy

several benefits. First, the deep learning model can discern

subtle patterns and distinguish chirp signals with a very low

SNR, which makes it robust to unbalanced and dynamic

underwater noise. Second, deep learning methods can detect

the fragment of a chirp by examining the linear pattern as

long as it appears in the spectrogram, which reduces the

crucial rescue time. Third, deep learning methods can adapt to

different SNR levels and automatically examine the presence

of SOS chirps. This eliminates the need for the predefined

thresholds α, enhancing the reliability of SOS detection while

minimizing unnecessary false alarms.

However, translating these potential opportunities into con-

crete gains entails two primary challenges. Chirp fragments in

3.5 kHz
100 Hz

Dechirp FFT

t

f

(a) STFT spectrogram. (b) Short time dechirp spectrogram.

Fig. 4: SOS pattern enhancement.

the received signal may be significantly weaker than the sur-

rounding strong noise interference, making it difficult for mod-

els to accurately extract the line pattern from the spectrogram.

Second, training an effective deep-learning model requires

a large dataset of SOS chirp signals in various underwater

conditions. However, collecting such a dataset can be labor-

intensive and time-consuming. To address these challenges, we

propose several techniques to enhance linear pattern extraction

and detection in the spectrogram. In addition, we introduce

the chirp characteristic as a prior knowledge into the deep

learning model to ensure the network can utilize the linear

pattern to perform signal detection. Finally, we perform data

augmentation to synthesize a large amount of training data

based on the noise data collected in swimming pools to

bootstrap model training and enhance their performance in

chirp signal detection.

III. SYSTEM DESIGN

In this section, we introduce Neusos, a neural-enhanced

underwater SOS system that utilizes deep learning to overcome

practical challenges and achieve reliable SOS signal detec-

tion. In the following, we first present the system overview

of Neusos before delving into the details of key technical

components.

A. Neusos Overview

Figure 3 illustrates the system overview of Neusos. The

process starts with short-time dechirp on the received audio,

which enhances the spectrogram of SOS signals. The enhanced

spectrogram is then fed into a Convolutional Neural Network

(CNN) to extract high-level features. Additionally, a Radon

transform is applied to extract chirp shape-related features

from the spectrogram, which are forwarded to another CNN.

The outputs from the dual-CNN branch are concatenated to

form the input to a Multi-Layer Perception (MLP), which

detects the presence of SOS signals as a binary classification

task. We synthesize massive training data with variations in

time shifts, SNR levels, and noise types to train the deep

learning model, so that the trained model can adapt to diverse

channel conditions while minimizing the workload involved

in data collection.

B. SOS Signal Enhancement

As depicted in Fig. 4(a), the SOS chirp signal appears very

weak when submerged in underwater noise, posing a challenge
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for deep learning models to learn the linear chirp patterns in

the spectrogram. This is primarily because the spectrogram is

calculated using Short Time Fourier Transform (STFT). If a

long window is used for STFT, the frequency resolution is

higher, but the power of the chirp signals gets dispersed into

multiple frequency bins. Consequently, the chirp pattern in the

spectrogram appears blurry and is easily confused with the

noise. Conversely, using a smaller window for STFT reduces

the frequency resolution, leading to fewer pattern observations

in the frequency domain.

To enhance the clarity of the chirp pattern, we propose a

short-time dechirp transform (STDT) approach to enhance the

original linear chirp pattern in the spectrogram. Similar to

STFT, STDT operates on a sliding window of the received

audio. For each window, the dechirp process is performed,

which concentrates the signal energy into a single tone [24].

As a result, the chirp pattern becomes more discernible and

focused, appearing stronger and thinner in the spectrogram. As

shown in Fig. 4(b) (especially in the red box), the enhanced

spectrogram exhibits a clearer and more pronounced chirp

pattern compared to the original STFT spectrogram, although

they have the same parameters (i.e., window size, overlap,

and FFT point). This improvement in clarity enables deep

learning models to track and identify the linear chirp pattern

more effectively, facilitating reliable SOS signal detection.

The dechirp process is a frequency domain equivalent of

cross-correlation and has distinct advantages over the latter due

to its insensitivity to different chirp time shifts [24]. In other

words, the dechirp can be performed effectively even when the

sliding window is not aligned with the chirp. Mathematically,

a chirp with a time shift can be represented as follows:

S(f ′, t) = C(t) · ej2πf ′t = ej2π(f0+
k
2 t)t · ej2πf ′t (2)

where C(t) = ej2π(f0+
k
2 t)t denotes the base chirp, starting

with a frequency of f0. k = B
T is the increasing rate of the

frequency. S(f ′, t) is a time-shifted chirp, starting from f0 +
f ′. When performing dechirp, we multiply the received chirp

S(f ′, t) by the conjugate of the base chirp, denoted by C−1(t):

S(f ′, t) · C−1(t) = C(t) · ej2πf ′t · C−1(t) = ej2πf
′t (3)

Consequently, we can observe that all samples’ power will be

accumulated at the initial frequency f ′ by performing an FFT

operation, irrespective of the time shift.

In our setting, the sampling rate Fs is 48 kHz. We set the

size of the sliding window to 2400 with an overlap of 80%.

Time shift

Underwater noise
SNR

Bursting noise
Noise time

…

…

… Synthesized 
dataset

Fig. 6: SOS signal synthesis process.

The starting frequency f0 and the duration t of the base chirp

used for dechirp are 3.4 kHz and 2400
48000 = 50ms (correspond-

ing to a bandwidth of 100 Hz), respectively. The FFT point is

equal to the window size, resulting in an enhanced spectrogram

of the size R
100×100. This STDT approach enhances the visual

representation of the chirp pattern, enabling deep-learning

models to effectively learn and identify the linear chirp pattern

in the spectrogram.

C. SOS Signal Transformation

To further assist models in detecting the linear chirp pattern,

we perform the Radon transform on the enhanced spectrogram

to explicitly extract the linear features. The Radon transform

is commonly used for line detection in images by projecting

the image from Cartesian coordinates to the (θ, ρ) parameter

space, where θ represents the projection angle, and ρ is the

radial axis orthogonal to the projection direction [25]. As

shown in Fig. 5(a), the Radon transform is the projection of the

image intensity along a radial line oriented at a specific angle

θ. Figure 5(b) shows the Radon transform of the enhanced

spectrogram with a size of R145×91. We can observe that the

linear chirp pattern in the enhanced spectrogram is transformed

into the brightest point (45◦, 0) at the red circle in the

Radon space. In this way, the Radon projection serves as a

pattern indicator, guiding the deep learning model to detect

the presence of SOS chirps.

D. SOS Signal Synthesis

Training an effective deep learning model requires a large

amount of diverse data to generalize to real-world scenarios.

However, collecting such a diverse dataset can be labor-

intensive and time-consuming. To address this challenge, Neu-

sos utilizes a large amount of synthesized data with signal

varieties and performs pattern-aware model training to ensure

system generalization. Figure 6 illustrates the data synthesis

process. To create the synthesized data set, we collected a

variety of underwater noises and swimming interference by

placing hydrophones in swimming pools. This data augmen-

tation process does not require SOS signal transmission or

user participation. Subsequently, we can synthesize SOS chirps

with different time shifts between [0s, 1s], add different

underwater noises at various SNR levels between [−20dB,

0dB], and randomly add the chirp with or without bursting

noise at different time instances. In total, we synthesize a

dataset with 20,000 SOS chirps for model training.
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E. SOS Signal Detection

As illustrated in Figure 8, a dual-CNN backbone is used to

build the deep-learning model. The enhanced spectrogram of

received signals s ∈ R
100×100 is fed into a four-layer CNN

branch to extract the high-level chirp features. To ensure that

CNN can effectively capture linear patterns in the spectrogram,

we explicitly provide the network with prior knowledge about

the expected patterns. Specifically, we initialize the kernels of

these layers with identity matrices, which naturally correspond

to the linear chirp pattern1. The 3×3 and 5×5 kernels are used

to capture the fine-grained and coarse-grained linear patterns,

which are repeated two times. After that, we freeze these

layers to force the network to magnify the chirp pattern and

suppress the impact of noise in the spectrogram. A pooling

layer is used to reduce the feature size, and the following

dense layers are trainable to learn the extracted chirp patterns

to perform classification. As mentioned in Sec. III-C, the

Radon transform of the spectrogram also explicitly contains

the linear pattern. Therefore, we adopt a two-layer CNN to

1The chirp linearly increasing with the frequency shows a back-diagonal
shape in visualization, but the frequency order is reversed in the actual
spectrogram matrix, which is a diagonal pattern instead.

encode the Radon transform and concatenate its output with

the high-level representations from the bottom-branch encoder.

The concatenated features are then passed through an MLP

consisting of two dense layers to predict whether the SOS

chirp exists or not (a binary result). A batch normalization

layer is attached to each convolution layer in this network.

The loss function used for training the model is binary cross-

entropy.

Figure 7 provides insights into the feature maps obtained

after applying different convolution layers to the spectrogram

input. It demonstrates that the identity kernels employed in

the convolution layers can effectively capture and enhance

the chirp patterns while significantly suppressing the noise

in the spectrogram. This pattern-aware network design is

crucial in distinguishing SOS chirps from interference and

noise, allowing the model to generalize to a variety of unseen

conditions and achieve robust SOS detection. As shown in

Fig. 7(g), the received signal contains high-energy bursting

noise, which would cause a false positive peak with cross-

correlation method (Sec. II-B). After convolution with identity

kernels, the bursting noise is effectively eliminated, since

it does not follow a diagonal pattern in the spectrogram.

This demonstrates the power of the pattern-aware convolution

layers in suppressing unwanted noise while enhancing the

linear chirp patterns. While theoretically stacking multiple

convolution layers could further enhance the chirp pattern

detection and extraction, our experiments have not shown sub-

stantial performance improvement with an increased number

of layers. In practice, we use four convolution layers to strike

a balance between model size and performance.

IV. IMPLEMENTATION AND EVALUATION

Implementation. We implemented Neusos and conducted

experiments using two commercial smartwatches: Huawei

Watch 3 and OPPO Watch 3 Pro. The SOS chirps will be

transmitted repeatedly once activated. We attempted to imple-
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ment Neusos on an Apple Watch 6, but encountered an issue

where audio playback was automatically interrupted when the

watch was submerged in water. For our experimental setup,

we deployed a Shuimi SN005 hydrophone (28 USD per unit)

around a swimming pool to receive SOS signals transmitted

by the smartwatch. The underwater receiver was connected

to Raspberry Pi devices, which forwarded the collected data

to a PC for further post-processing. The deep learning model

is implemented with TensorFlow running on this PC. With

an average processing time of approximately 60.7 ms per

detection window, Neusos achieved a maximum detection rate

of 16 Hz, which is sufficient for timely SOS signal detection.

Experiment setting. As shown in Fig. 9(a), the experiments

were conducted in a 6-lane, 25m × 15m swimming pool.

A user wears smartwatches and simulates drowning move-

ments, initiating SOS signals at different locations underwater

(Fig. 9(b)). Several swimmers swim freely nearby. Throughout

the experiments, professional lifeguards closely monitored

the process, and the study was approved by the university

authority. We evaluated the SOS detection performance of

Neusos under various conditions, including different distances,

depths, orientations, and potential interference scenarios.

Evaluation Metric. We evaluate SOS detection perfor-

mance of Neusos with the metrics of recall = TP
TP+FN and

specificity = TN
TN+FP . TP, FN, TN, and FP are true positives,

false negatives, true negatives, and false positives, respectively.

Recall is also known as Sensitivity , which indicates detection

ability of SOS signals. Specificity quantifies detection ability

of noise. For both metrics, the higher, the better. We also use

the Receiver Operating Characteristic (ROC) curve to illustrate

the trade-off between these two metrics [26]. The AUC (Area

Under the ROC Curve) is also used to quantify the overall

performance of our binary classifier, where a higher AUC

value indicates better performance [26].

A. Overall performance

We first compare the overall performance between Neusos

and cross-correlation based detection method. Figure 10 shows

the ROC curve of these two methods, plotted with the true

positive rate (TPR) on the y-axis and the false positive rate

(FPR) on the x-axis. The data for testing is collected in

the swimming pool and does not overlap with the training

data. The ROC curve of cross-correlation can be plotted by

varying the detection threshold α from 3 to 10 as introduced

in Sec. II-B. We can find the Optimal Operating Point (OOP)

of the two methods at (0.013, 0.974) and (0.048, 0.941).

This result indicates that Neusos outperforms cross-correlation

by 3.3% in detection recall with only a false positive rate

of one-third [26]. As shown in the dashed lines, with the

same FPR of 2%, Neusos has a 6.5% detection recall higher

than cross-correlation. Moreover, Neusos outperforms cross-

correlation by 9.2% with the same FPR of 1%. Overall, the

AUC of Neusos is 0.995, which is 1. 2% higher than the cross-

correlation (0.983).

For an SOS detection system, the mission-critical nature

prefers more reliable SOS detection at the cost of slightly in-

creased false positive rates. Therefore, we set a higher penalty

for misclassifying a positive class (SOS) as a negative class

(noise) when finding the OOP for Neusos to reduce the missing

rate below 2%. Figure 11 shows the classification confusion

matrix in this case. We can see that Neusos has a detection

recall and specificity of 98.2% and 96.2%, respectively. The

classification accuracy is 97.2%, which is efficient for SOS

detection in a continuous manner.

B. Impact of Distance

We conducted the experiment with varying distances rang-

ing from 5m to 29m between the receiver and the transmitter

in the swimming pool. The total number of chirps is about

1200. As shown in Fig. 12, the performance of Neusos at

5m is 100%, but decreases slightly at a distance greater than

15m. This is because the chirp energy attenuates fast with the

increasing distance, making it challenging to identify the chirp

pattern in the spectrogram. The result shows that Neusos can

still achieve 97.3% detection recall at the farthest distance in

the swimming pool (i.e., the diagonal line), with the capability

to detect most SOS chirp signals. We note that only a single

microphone is used in our evaluation. To ensure the full

coverage of a swimming pool, we can deploy a few more

underwater microphones. We leave the deployment planning

of multiple underwater microphones for future work.

C. Impact of SNR

To evaluate the performance of Neusos at different levels

of SNR, we conducted a trace-based experiment with data

collected at a distance of 1m from the transmitter in the

swimming pool and then synthesized the SOS chirps with

collected underwater noise with SNR from -14 dB to -24 dB.

As shown in Fig. 13, the performance of Neusos gradually

decreases along with the SNR. The detection accuracy is 100%

at -14 dB and decreases to 93.5% at -20 dB. A performance

drop of 19.5% occurs when the SNR reduces to -22 dB.
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This result aligns with our expectation since the noise may

overwhelm the chirp pattern when SNR is very slow. Another

reason may be that the SNR of these data is even lower than

the lowest SNR included in our training data. When the SNR

decreases to -24 dB, the model nearly deteriorates to a random

guess and only has an accuracy of 55.3%. Including more

low-SNR data in model training may improve the system

performance, but it is also limited by the visibility of chirp

patterns in the spectrogram.

D. Ablation Study

We conducted ablation studies to evaluate the contributions

of different components of Neusos. Figure 14 illustrates the

evaluation result. SOS detection accuracy decreases to 78.5%

if we train Neusos on the original spectrogram directly (w/o

ES). This is because the chirp energy in each short-time

window spreads into multiple frequency bins in the STFT

spectrogram, which is hard to capture and magnified by the

identity kernel. By contrast, the STDT-enhanced spectrogram

concentrates the chirp energy into a single frequency bin,

which aligns with the small pixel-level identity kernels. With-

out Radon projection, the performance slightly reduces by

1.3%, which indicates that Radon projection can also encode

the chirp patterns and help boost the accuracy. We also found

that when training networks with enhanced spectrograms and

Radon projection, the performance will converge four epochs

earlier than using the former alone. This observation confirms

the guidance effect of the Radon projection.

The system performs worst with a random kernel initializa-

tion. The kernel parameters are trainable. The performance

is close to a random guess with an accuracy of 52.1%.

Moreover, the network cannot converge, although we have

tried different hyper-parameters and training strategies. We

suspect this is because it is hard for the network to accurately

find the pattern formed by a series of pixels in a 100 × 100
image. To verify this, we initialize the kernel with the identity

matrix and also unfreeze all convolution layers. As shown in

Figure 14 (w/o freeze), the network converges and achieves

slightly lower (0. 7%) but comparable performance. This result

shows that identity kernel parameters are the key enabler of a

network to detect linear chirp patterns and achieve robust SOS

detection in various channel conditions. We did not observe

a performance gain using trainable kernels and even noticed

that the performance fluctuates occasionally, so we froze the

convolution layers to reduce the training workload and obtain

a stable performance.

E. Impact of Movement

Drowning swimmers struggling in the water will inevitably

introduce smartwatch movement, which may distort dechirp

patterns due to the Doppler effect. We conducted the exper-

iment to evaluate Neusos performance under different kinds

of movements. As shown in Fig. 15, the detection recall

is 97.9% where a swimmer waves his hands intensely and

arbitrarily to simulate drowning conditions, which is slightly

lower but comparable to the static cases (98.2%). The reason

behind this is the low center frequency of the SOS signals.

The frequency resolution of the enhanced spectrogram is

Δf = B
100 = ±10 Hz. According to the Doppler theory, we

can infer that the maximum speed that Neusos can tolerate

is Δfvs

f0+kt = 4.3 m/s, where vs is the sound speed in water

(1500 m/s). Therefore, the general smartwatch movement can

hardly distort the linear chirp pattern. An interesting finding

is that the detection recall when the user swims (96.6%) is

slightly lower than hand waving. We found that this is because

the arm of the swimmer will surface out of the water for a short

period, leading to fragment chirp patterns in the spectrogram.

F. Impact of Interference

We evaluated the impact of interference from other nearby

swimmers on the system recall. In this setting, the user wearing

the smartwatch is 10m away from the receiver, while a

swimmer (not wearing the smartwatch) as the interferer swims

and splashes water at a distance varying from 1m to 5m. As

shown in Fig. 16, Neusos achieves 100% detection recall when

the distance between the interferer and the receiver is 5m,

indicating that the impact of far interference was negligible.

When this interferer moves to 1m, the detection recall reduces

to 98.9% due to strong splashing interference. This result

indicates that Neusos can still detect SOS signals under splash

interference.

We also evaluated the impact of interference on system

specificity. In this experiment, the smartwatch does not trans-

mit signals, while the interferer keeps splashing. Figure 16

shows that Neusos achieves a false positive rate of 99.01%

when the distance between the interferer and the receiver is

5m. As the distance decreases to 1m, the false positive rate

decreases to 98.6%. One reason is that intense splash can

produce high-energy noise and another is that we trade the

specificity for a higher detection recall, because it is of utmost

importance to save a life. We believe occasional false alarms

are acceptable in practice. In real-world scenarios, users can

adjust the misclassification cost to find a proper OOP.
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G. Impact of Depth

We evaluated Neusos at different depths with 0.3 m to 1

m in the water. The swimmer wears the transmitter at 15m
away from the receiver. Figure 17 shows performance under

different depths. Neusos can achieve a detection recall of

100% at a depth of 0.3m. This value decreases to 98.2% as

the depth increases to 0.6m. When the depth continues to

increase to 1m, the detection recall drops to 96%. One reason

may be that the speakers of commercial smartwatches are not

designed for use in the water and have low transmission power.

Another reason is that the water pressure becomes higher as

the depth increases. Consequently, the vibration of the speaker

membrane will be confined, leading to a much lower SOS

signal strength. This result suggests that Neusos can effectively

detect SOS signals at the early stages of drowning. As the

depth increases, Neusos’s SOS detection ability will slightly

decrease. To mitigate this problem, we can deploy a few more

hydrophones at the bottom of the swimming pool to reduce

the communication range and achieve reliable SOS detection.

V. RELATED WORK

A. Drowning Monitoring

Vision-based drowning detection has been extensively ex-

plored in both industry [7, 8, 27] and academia [9, 28, 29].

Many of these methods rely on identifying if a person remains

stationary in the water for an extended period to detect

potential drowning incidents. Before such detection methods

recognize an incident, the drowning person could have been

suffocated for a long time. Some machine learning-based

approaches [30–32] extract motion features, such as speed and

posture to build supervised classifiers and recognize drowning

events. Nonetheless, the complex nature of drowning behavior

and the scarcity of training samples pose difficulties in achiev-

ing high detection performance [3]. Additionally, vision-based

methods are affected by various factors such as poor lighting

conditions, highly dynamic backgrounds, and limited visibility

of targets in the water [10].

Wearable sensor-based approaches [33–35] offer greater

resilience to lighting conditions. Some works [12–14, 33, 36]

monitor sensor readings related to human motion or vital signs

(e.g., oxygen level, respiration) to detect potential drowning

events and activate an airbag for safety. Another approach

involves utilizing water pressure sensors [37, 38] or RFID

technology [39] to monitor the duration a swimmer remains

underwater, triggering an alert if it surpasses a predefined

threshold. While these systems can detect the risk of drowning,

they typically require swimmers to wear bulky life kits [13, 36]

equipped with powerful acoustic transmitters, a setup that isn’t

practical or viable for the generic swimmer.
Neusos can offer an API that integrates with existing

wearable-based drowning detection systems, providing them

with a robust underwater communication channel to transmit

SOS signals. In this case, Neusis can serve as a complementary

solution to vision-based methods and facilitate early-stage

rescue operations. Moreover, Neusos empowers swimmers to

actively call for help in case of emergencies, such as severe

discomfort. In this research, we focus on SOS transmission

and detection, leaving the integration with wearable-based

drowning detection for future work.

B. Underwater Acoustic Communication
Acoustic signals have been widely used for human-device

interaction [40, 41] and localization [42–44] in the air. In fact,

underwater is where sound signals hold the greatest advan-

tage and find widespread application. In recent years, many

researchers aim to enable underwater acoustic communication

using commercial devices [11, 23, 45]. AquaApp [11], for

example, has designed an underwater messaging system that

utilizes commercial smartphones, providing a communication

range of up to 100m. However, AquaApp replies on traditional

cross-correlation to detect signal preambles, which requires

smartphones with strong transmission power, much higher than

that of commercial smartwatches. AquaHelper [23] achieves

reliable underwater SOS transmission and detection with wear-

able devices. However, AquaHelper requires multiple chirp

aggregation in the time domain to enhance the SNR and detect

weak SOS signals reliably. As a result, this process may result

in a longer duration for SOS detection in low-SNR scenarios

before initiating rescue operations. In contrast, Neusos ad-

dresses these challenges by efficiently training and deploying a

signal-characteristic-aware deep learning-based detector. This

innovation enables reliable underwater SOS detection using

lightweight smartwatches within a single detection window.

VI. CONCLUSION

Drowning incidents pose a critical public safety concern

worldwide. Many drowning swimmers have no effective way

to ask for help and get drowned, even with lifeguards present.

To remedy this life-threatening issue, we introduce Neusos,

an underwater SOS system with commercial smartwatches

and low-cost hydrophones. The unique property of the under-

water environment poses significant challenges in detecting

SOS signals with the traditional cross-correlation method. We

carefully observe this property and propose an explicit deep-

learning based detection method to achieve reliable underwater

SOS detection. Considering the increasing popularity of water-

proof smartwatches, we envision that this life-saving function-

ality can potentially become indispensable for swimmers and

swimming pools in the future.
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