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ABSTRACT
This paper presents the design and implementation of mmRipple,
which empowers commodity mmWave radars with the commu-
nication capability through smartphone vibrations. In mmRipple,
a smartphone (transmitter) sends messages by modulating smart-
phone vibrations, while a mmWave radar (receiver) receives the
messages by detecting and decoding the smartphone vibrations
with mmWave signals. By doing so, a smartphone user can not
only be passively sensed by a mmWave radar, but also actively send
messages to the radar using her smartphone without any hard-
ware modifications to either the smartphone or the mmWave radar.
mmRipple addresses a series of unique technical challenges, includ-
ing vibration signal generation, tiny vibration sensing, multiple
object separation, and movement interference mitigation. We im-
plement and evaluate mmRipple using commodity mmWave radars
and smartphones in different practical conditions. Experimental
results show that mmRipple achieves an average vibration pattern
recognition accuracy of 98.60% within a 2𝑚 communication range,
and 97.74% within 3𝑚 on 11 different types of smartphones. The
communication range can be further extended up to 5𝑚 with an
accuracy of 91.67% with line-of-sight path. To our best knowledge,
mmRipple is the first work that allows smartphones to send data to
COTS mmWave radars via smartphone vibrations and will enable
many new applications such as vibration-based near field commu-
nication and pedestrian-to-sensing-infrastructure communication.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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Figure 1: Application scenarios ofmmRipple.

1 INTRODUCTION
Integrated Sensing and Communication (ISAC) is envisioned as
a key part of future wireless networks (e.g., beyond 5G and 6G),
which effectively utilizes the same wireless spectrum and hardware
components to support sensing and communication. Traditional
communication technologies (e.g., RFID,Wi-Fi, and LoRa) have been
re-purposed for a variety of sensing tasks [5, 11, 20, 26, 32, 57, 58],
while radars mainly designed for wireless sensing are also aug-
mented with communication capabilities. Among them, millimeter
wave (mmWave) radars have been widely deployed because of i)
unprecedented sensing resolution, and ii) robustness to various
weather conditions and poor lighting conditions.

These sensing-oriented radars are empowered with communica-
tion capabilities mainly by integrating additional communication
modules or generating dual-functional waveforms [6, 24, 59]. For
example, recent work [14] uses radar’s main lobe for sensing, while
its side lobes can send data by modulating its transmitting power. In
addition, other works [4, 40] use reconfigurable intelligent surfaces
(RIS) to communicate with mmWave radars. For example, ROS [34]
designs a passive mmWave tag whose layout can be configured to
embed data, thus conveying richer information to modern vehicles
with mmWave radars and enabling infrastructure-to-vehicle (I2V)
communication. These solutions, however, require hardware ex-
tension, dedicated mmWave tags, or significant modifications to
COTS radars. Therefore, a natural question arises: can we empower
COTS mmWave radars with the communication capability for ISAC
without any hardware modifications?

In this paper, we presentmmRipple which builds a direct commu-
nication channel from smartphones to mmWave radars without any
hardware modifications to either mmWave radars or smartphones.
Specifically, mmRipple leverages a vibration motor (widely avail-
able in almost all smartphones) as a transmitter. The vibra-motor
vibrates according to user-defined messages, while the mmWave
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Table 1: Comparison with related works.

Type Technologies
& Works Tx-Rx Non-contact No Hardware

Modification
No Link

Establishment
Motion

Robustness
Multi-object
Communication ISAC

Visual QR Code Image to Camera ✓ ✓ ✓ × × ×

Wireless
Bluetooth Bluetooth Tx

to Bluetooth Rx ✓ ✓ × ✓ ✓ ✓

Wi-Fi Wi-Fi Tx
to Wi-Fi Rx ✓ ✓ × ✓ ✓ ✓

Acoustic
Dhwani [33] Speaker

to Microphone ✓ ✓ ✓ × × ×

Chirp [23] Speaker
to Microphone ✓ ✓ ✓ ✓ × ×

Vibration

Ripple II [37] Vibra-motor
to Microphone × × ✓ × × ×

MotorBeat [46] DC motor
to Microphone ✓ × × × ✓ ×

mmRipple
Vibra-motor

to mmWave radar ! ! ! ! ! !

radar senses such vibrations and decodes these messages. Moreover,
mmRipple supports multiple objects to send messages simultane-
ously to a mmWave radar, and each received message implicitly
carries the location context of the corresponding object thanks to
the spatial information from sensing.

Compared to related works summarized in Table 1, mmRipple
provides a contactless communication without any hardware modifi-
cation or link establishment before direct communication. Meanwhile,
it supports multiple object communication and is robust to hand and
body movements. To our knowledge,mmRipple is the first mmWave
ISAC system that enables a mmWave radar to capture smartphone
vibration messages while sensing its surroundings.

We envision some applications that could benefit from the com-
munication functionality enabled by mmRipple: 1) Pedestrian-
to-infrastructure (P2I) communication. As shown in Fig. 1(a),
pedestrians can leverage their smartphone vibrations to send mes-
sages to the traffic light with mmWave radars and actively influence
traffic control decisions. For example, after receiving the "cross-
ing" message from an elderly, the traffic light can track her cross-
ing progress to extend the flashing green time for her safety. 2)
Location-based services (LBS). Smart appliances equipped with
mmWave radars can provide personalized services based on the
location of the sender. As shown in Fig. 1(b), the sweeping robot
can locate the user and clean the area around her upon request. 3)
Multiple object interaction. mmRipple allows mmWave radars
to track multiple users and simultaneously collect their messages
in a contact-free manner, which can be used for ticket checking
(e.g., COVID-19 vaccine passport checking) to reduce the risk of
the virus spreading and shorten the queuing time.

Multiple practical challenges need to be addressed to communi-
cate with mmWave radars through smartphone vibrations. On the
transmitter side, a smartphone needs to generate vibration patterns
that can be detected and decoded by a mmWave radar. When the
vibra-motors of multiple smartphones vibrate concurrently, the
reflection signals interfere at the receiver, making it challenging to
separate and decode the concurrent vibrations. Furthermore, as a
smartphone can be held in hand during communication, hand and
body movements may distort smartphone vibrations.

We address the above challenges and develop mmRipple. On the
transmitter side, we conduct experimental studies to understand
smartphone vibrations and design orthogonal vibration patterns
that can be easily separable from each other and reliably detected
by mmWave radar. On the receiver side, to support multi-object
communication, mmRipple leverages the spatial diversity of multi-
ple objects to separate the mixed vibration signals in both range and
angle with joint Range-FFT operation and beamforming technique.
The diversity of vibration frequency of vibra-motors in smartphones
is also employed as a feature to separate multiple objects. Further-
more, we mitigate hand and body movements by tracking and
recovering integrated vibration signals along target trajectories.

We evaluate the performance of mmRipple in various settings.
The experimental results on 11 different types of smartphones show
that mmRipple achieves the average vibration pattern recognition
accuracy of 98.60% within a 2𝑚 communication range, and 97.74%
within 3𝑚. The communication range can be up to 5𝑚 with an
accuracy of 91.67%, when the smartphone is equipped with a Z-axis
vibra-motor and has the line-of-sight path to the mmWave radars.
The main contributions are summarized as:

• mmRipple builds a communication channel from a smart-
phone to a mmWave radar through smartphone vibrations,
without any hardware modifications. To our knowledge, it is
the first work that allows COTS mmWave radars to receive
smartphone messages, empowering mmWave radars with
the communication capability.

• mmRipple builds on prior works and makes new scientific
contributions by developing novel solutions to address practi-
cal challenges: i) understanding and modulating smartphone
vibrations; ii) separating multiple objects in mixed reflected
signals for multi-object communication; and iii) mitigating
movement interference for mobile objects.

• Webuild a prototype ofmmRipple using a commoditymmWave
radar and different types of smartphones. Comprehensive
experiments and evaluation results demonstrate the effec-
tiveness and robustness of mmRipple.
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2 BACKGROUND
2.1 Vibration Motor
Vibration motors (vibra-motors) are widely used for haptic feed-
back in smartphones, tablets, and game controllers. Among these
vibra-motors, linear resonant actuator (LRA) is the most popular as
it supports a faster response time. There are two common types of
LRA-based vibra-motors depending on their vibration directions,
i.e., Z-axis LRA, and X-axis LRA. The magnetic mass of a Z-axis
LRA vibra-motor oscillates back and forth along the direction per-
pendicular to the smartphone screen. In contrast, an X-axis LRA
vibra-motor (e.g., Taptic Engine of Apple) vibrates laterally.

2.2 Primer on mmWave Sensing
Range estimation byRange-FFT.mmWave radar transmits FMCW
signals (i.e., chirp signals) to sense objects. The transmitted chirp
signal 𝑥 (𝑡) can be represented as:

𝑥 (𝑡 ) = 𝑒𝑥𝑝 [ 𝑗 (2𝜋 𝑓𝑐𝑡 + 𝜋𝐾𝑡2 ) ] (1)
where 𝑓𝑐 is the starting frequency of the chirp and 𝐾 represents
the chirp slope. After being reflected by the object at distance 𝑑 ,
the received signal 𝑦 (𝑡) can be represented as 𝑦 (𝑡) = 𝛼𝑥 (𝑡 − 𝑡𝑑 ),
where 𝛼 is path loss, time delay is 𝑡𝑑 = 2𝑑/𝑐 , and 𝑐 is the speed of
light. Then the mmWave radar mixes 𝑥 (𝑡) and 𝑦 (𝑡) and outputs
the Intermediate Frequency (IF) signal 𝑠 (𝑡) which consists of a tone
with a beat frequency 𝑓𝐼𝐹 as [19]:

𝑠 (𝑡 ) = 𝑥∗ (𝑡 )𝑦 (𝑡 )
= 𝛼 exp[− 𝑗 (2𝜋𝐾𝑡𝑑𝑡 + 2𝜋 𝑓𝑐𝑡𝑑 − 𝜋𝐾𝑡2

𝑑
) ]

≈ 𝛼 exp[− 𝑗 (2𝜋 𝐾2𝑑
𝑐︸︷︷︸
𝑓𝐼𝐹

𝑡 + 4𝜋𝑑
𝜆︸︷︷︸
𝜙

) ] (2)

where 𝜆 is the wavelength. We notice that the value of beat fre-
quency 𝑓𝐼𝐹 contains the distance information. Hence, we can de-
termine the beat frequency 𝑓𝐼𝐹 by taking FFT (Range-FFT) on the
received IF signal 𝑠 (𝑡), and then the distance 𝑑 between the object
and the radar can be calculated by 𝑐 𝑓𝐼𝐹 /2𝐾 .

Micro-displacementmeasurement based on phase changes.
The range resolution of radar 𝑑𝑟𝑒𝑠 is limited by the chirp bandwidth
𝐵, i.e., 𝑑𝑟𝑒𝑠 = 𝑐/2𝐵. For example, 𝑑𝑟𝑒𝑠 = 3.75𝑐𝑚 when 𝐵 = 4𝐺𝐻𝑧. It
means a micro displacement (<3.75cm) will not cause detectable
changes in the beat frequency 𝑓𝐼𝐹 , i.e., peak shift in FFT bins. Fortu-
nately, such a subtle change can still be captured in the phase value
𝜙 . In Eq. 2, the phase value of IF signal 𝜙 (𝑡) is 4𝜋𝑑/𝜆. If the object
distance changes by Δ𝑑 , the phase value will change accordingly.
Hence, Δ𝑑 can be derived from phase change Δ𝜙 , i.e., Δ𝑑 = 𝜆Δ𝜙/4𝜋 .
Hence, mmWave radars can track the phase changes in chirps to
capture the micro-displacement above 10𝜇𝑚 [19].

3 SMARTPHONE VIBRATION
3.1 Modelling Smartphone Vibration
To intuitively understand how to recover the smartphone vibra-
tion with a mmWave radar, we first show a basic vibration model
in Fig. 2. We set the mmWave radar as the coordinate system’s
origin. The initial location of the vibration source (smartphone) is
𝑆0 (𝑥0, 𝑧0) with the initial range of 𝑅0 to the mmWave radar. When
the smartphone vibrates, it will follow a typical harmonic motion

mmWave 
radar

x

z
smartphone

projection

R0 β

δ(t)

δ'(t)

δ(t)
δ'(t)

sensing 
direction

vibration 
direction

Figure 2: Model.

and produce a time-varying micro-displacement 𝛿 (𝑡) as:
𝛿 (𝑡 ) = 𝐴 cos(2𝜋 𝑓𝑣𝑡 ) (3)

where𝐴 is the vibration amplitude and 𝑓𝑣 is the vibration frequency.
Due to the misalignment between the smartphone’s vibration

direction and the mmWave radar’s sensing direction with angle 𝛽 ,
the measured displacement denoted as 𝛿 ′ (𝑡) is a projection along
the sensing direction, i.e., 𝛿 ′ (𝑡) = cos 𝛽 · 𝛿 (𝑡). The smartphone
range 𝑅(𝑡) sensed by the mmWave radar is 𝑅0 +𝛿 ′ (𝑡). If we rewrite
the object distance 𝑑 as the smartphone range 𝑅(𝑡) in Eq. 2, the
received IF signals from the smartphone 𝑠 (𝑡) can be represented as:

𝑠 (𝑡 ) = 𝛼𝑒𝑥𝑝 [− 𝑗 ( 4𝜋𝐾
𝑐
𝑅 (𝑡 )𝑡 + 4𝜋

𝜆
𝑅 (𝑡 ) ) ] (4)

Then we extract the reflected signal 𝑆𝑟 (𝑡) from this target range by
performing a Range-FFT on the IF signal as:

𝑠 (𝑡 )
Range-FFT

−−−−−−−−−−−−−→
in object range bin

𝑆𝑟 (𝑡 ) = 𝛼 exp[− 𝑗 4𝜋
𝜆
𝑅 (𝑡 ) ] (5)

The corresponding phase measurements from the target range bin
can be represented as:

𝜙𝑟 (𝑡 ) =
4𝜋
𝜆

(𝑅0 + cos 𝛽 · 𝛿 (𝑡 ) ) 𝑚𝑜𝑑 2𝜋 (6)

Thus, phase measurements 𝜙𝑟 (𝑡) can reflect smartphone vibrations.

3.2 Characterizing Smartphone Vibration
We conduct empirical studies to investigate the characteristics of
smartphone vibrations. We select 11 popular smartphones and
use a mmWave radar (TI AWR1642) to capture their vibrations.
In each experiment, one smartphone is placed directly in front of
the radar 1𝑚 away, and its vibrating direction is well-aligned with
the mmWave sensing direction, i.e., 𝛽 = 0. The ground truth is
measured by a piezoelectric vibration meter [2].

Vibration frequency. Fig. 3(a) shows the distribution of the vi-
bration frequencies of the 11 smartphones detected by the mmWave
radar. Compared to the ground truth, the measurement error is
within 5𝐻𝑧, indicating that the mmWave radar can accurately cap-
ture smartphone vibrations. In addition, we have two observations:
(1) Each smartphone vibrates in a narrow frequency band. This is
because vibra-motors are usually set to vibrate around the resonant
frequency to produce a better vibration performance [38]. There-
fore, we can assume that the smartphone vibration is limited to a
single frequency. (2) We also observed that smartphones from differ-
ent vendors have various vibration frequencies. iPhones vibrate at
around 150Hz, while Huawei smartphones vibrate at around 230Hz.
Although there are slight differences, the vibration frequencies are
generally in the range between 100𝐻𝑧 and 300𝐻𝑧.

Vibration amplitude and inertia. The peak-to-peak vibra-
tion amplitude of the smartphone vibra-motor is typically around
9𝜇𝑚∼248𝜇𝑚, resulting in 0.029𝑟𝑎𝑑𝑠∼0.8𝑟𝑎𝑑𝑠 phase change for the
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Figure 3: The characteristics of smartphone vibration.
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Figure 4: Overview ofmmRipple.

77𝐺𝐻𝑧 mmWave radar. We select Samsung S9+ and let its vibra-
motor vibrate for 100𝑚𝑠 with the maximum amplitude and stop.
Fig. 3(b) plots the vibration signal collected by ammWave radar. The
phase measurements exhibit sinusoidal patterns with larger vari-
ance when the smartphone vibrates, while the pattern disappears
when the vibration pauses. The measured maximum peak-to-peak
amplitude is about 34.1𝜇𝑚 (0.11𝑟𝑎𝑑𝑠). The result is accurate and ac-
ceptable, which deviates from the ground truth by 3𝜇𝑚. In addition,
we observe that the vibra-motor takes a rise time 𝑇𝑟𝑖𝑠𝑒 to reach
its maximum vibration amplitude due to inertia. It also requires
a fall time 𝑇𝑓 𝑎𝑙𝑙 to stop vibration. Typically, the rise/fall time of
smartphone vibra-motors is between 4𝑚𝑠 and 120𝑚𝑠 .

Vibration effect under different placements. The vibrating
smartphone in different placement conditions may produce dif-
ferent vibration effects. Hence, we use the piezoelectric vibration
meter (ground truth) that directly touches the smartphone (Sam-
sung S9+) to measure its vibrations in five conditions: (1) on the
table, (2) on a tripod, (3) held with fingers, (4) held in the whole
palm, and (5) in a pocket. Fig. 3(c) shows the measurement results.
Although some additional vibration echos are introduced [7, 17],
we can see the measured vibration frequency is not drifted under
different placements. In contrast, the measured vibration intensity
1 is indeed affected as the softer contact surface will absorb more
vibrations. We also noticed that the vibration effect on a tripod is
similar to that held with fingers. Hence, we put a smartphone on a
tripod to simulate user habits under laboratory conditions.

4 TRANSMITTER DESIGN
Fig. 4 illustrates the overview of mmRipple. In this section, we first
elaborate on the design of the transmitter side.

4.1 Vibration Pattern Design
In mmRipple, different smartphone vibration patterns are designed
to send different messages. Therefore, we need to carefully design
the vibration patterns with the following design considerations:

1Vibration intensity is measured in 𝑚2/𝑠 , which is proportional to vibration
displacement.

i) High separability. Designed vibration patterns should be easily
separable from each other to reduce recognition errors. ii) High
reliability. Designed vibration patterns should be accurately and
reliably detected by mmWave radars under background noise and
interference. To this end, we design a set of patterns with inter-
pattern orthogonality and intra-pattern repetition:

Inter-pattern orthogonality means that different vibration
patterns are orthogonal to each other, i.e., the cross-correlation
between any two patterns is minimized, so that we can differentiate
them and reduce matching errors. In particular, we adopt Walsh
codes [15], which are widely used in CDMA systems, to guide the
pattern design. Table 2 illustrates a set of 4-bit Walsh codes 2. Each
code can be used to generate one pattern.

Table 2: 4-bit Walsh codes
Index Walsh sequences Index Walsh sequences

𝑊 4
1 1111 𝑊 4

3 1100
𝑊 4

2 1010 𝑊 4
4 1001

Intra-pattern repetition requires that a vibration pattern will
be repeatedly transmitted several times, thereby improving com-
munication reliability. In this case, one transmission will send 𝐾
consecutive and identical vibration patterns (𝐾 ≥ 1) to form a pat-
tern frame. Fig. 5 shows a pattern frame, which consists of two
consecutive and identical vibration patterns based on the Walsh
code𝑊 4

2 (1010). A unique delimiter is used to separate two con-
secutive patterns and avoid the ambiguity introduced by the intra-
pattern repetition. Specifically, we adopt the on-off keying (OOK) to
modulate the pattern frame. One symbol duration 𝑇𝑠𝑦𝑚 is divided
into 2 smaller time slots 𝑇𝑠𝑙𝑜𝑡 . Data-1, data-0, and the delimiter are
encoded into vibration modes "on-on", "off-off", and "off-on-off",
respectively. Therefore, we can leverage multiple orthogonal codes
to design different vibration patterns.

4.2 Vibration Signal Generation
The next issue is how to generate the expected vibration signals.
Current smartphones provide APIs [3] to control vibra-motors by

2mmRipple uses the inverse-ordered Walsh code.
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Figure 5: A vibration frame containing two consecutive and
identical vibration patterns based on the Walsh code𝑊 4

2 .

vibration time 𝑇𝑣𝑖𝑏 in milliseconds and vibration amplitude 𝐴𝑣𝑖𝑏 in
the range [0, 255]. Therefore, we can use a series of duration and
amplitude pairs {⟨𝑇𝑣𝑖𝑏 , 𝐴𝑣𝑖𝑏⟩} to control the vibra-motor.

We specify the minimum unit of vibration duration 𝑇𝑠𝑙𝑜𝑡 should
be greater than or equal to the rise time 𝑇𝑟𝑖𝑠𝑒 of the vibra-motor
to overcome inertia and reduce inter-symbol interference. For the
vibration amplitude, we use 𝐴𝑣𝑖𝑏 = 255 to encode the "on" state,
and 𝐴𝑣𝑖𝑏 = 0 to encode the "off" state. As such, in the vibration
"on" state, the motor can vibrate at its highest amplitude in a fully
activated state. Conversely, themotor dampens in the vibration "off"
state. For example, the vibration pattern in Fig. 5 can be represented
by the sequences {⟨60, 255⟩ , ⟨60, 0⟩ , · · · , ⟨30, 0⟩ , ⟨30, 255⟩ , ⟨30, 0⟩}
when 𝑇𝑠𝑙𝑜𝑡 = 30𝑚𝑠 .

5 RECEIVER DESIGN
In this section, we present the technical details of the receiver side.

5.1 Object Detection
On the receiver, we first detect surrounding objects, including both
transmitters (i.e., vibrating smartphones) and other co-existing
objects. To elaborate our system, we conduct a feasibility study
in an office, where a mmWave radar is placed at location (0, 0) to
sense two objects: a static metal plate at (0𝑚, 2𝑚) and a vibrating
smartphone at (0.3𝑚, 1𝑚).

Step 1: Range-Doppler spectrum acquisition.We first per-
form the Range-FFT on the received ADC samples to detect objects
in range and then perform a second FFT (Doppler-FFT) on all chirps
in a frame to separate objects in the rate of phase change, i.e., veloc-
ity [19]. Hence, we obtain a Range-Doppler spectrum as shown in
Fig. 6(a). We observe that there are two bright spots around 1𝑚 and
2𝑚 with a velocity of 0, indicating that the objects (i.e., vibrating
smartphone and static metal plate) exist at the corresponding range
and velocity. Note that although the smartphone is a vibrating ob-
ject, its vibration velocity is smaller than the velocity resolution
(about 0.15𝑚/𝑠). Thus, its velocity is reported as 0 in the spectrum.

Step 2: CFAR-based object bin detection. This step exploits
a constant false alarm rate (CFAR) detection algorithm to search
for the bright spots (i.e., candidate objects) in the Range-Doppler
spectrum based on an adaptive threshold. Once the magnitude of a
bin exceeds a threshold, there can be a candidate object in this bin.
We further leverage a moving window to merge neighbor peaks
in candidate object detection. As shown in Fig. 6(b), we detect 2
candidates from the Range-Doppler spectrum in Fig. 6(a).

Step 3: Object location extraction. To get the exact object
location, we exploit the phase difference of received signals at mul-
tiple antennas to calculate the angle of arrival (AoA). Specifically,
the distance difference from the object to multiple antennas results
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Figure 6: Illustration of object detection.
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Figure 7: Illustration of transmitter identification.

in a phase change 𝜔 , which is related to the AoA 𝜃 [12, 18], i.e.,
𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝜆𝜔/2𝜋𝑑𝐴), where 𝑑𝐴 is the antenna spacing. Suppose
an object is in range bin 𝑟 and its AoA related to the mmWave radar
is 𝜃 , the object location (𝑥, 𝑧) can be calculated as: 𝑥 = 𝑟 𝑠𝑖𝑛(𝜃 ) and
𝑧 = 𝑟 𝑐𝑜𝑠 (𝜃 ). Fig. 6(c) demonstrates the result of object location
extraction. We can see that the difference between calculated object
location and real object location is negligible (≤ 6𝑐𝑚), meaning that
mmWave radars can accurately locate the candidate objects.

5.2 Transmitter Identification
After detecting candidate objects, we analyze the reflected signals
from each candidate object to detect whether a candidate object is
a real transmitter with defined vibration patterns (i.e., a vibrating
smartphone) or a static object in the environment.

Fig. 7(a) plots the raw phase measurements of the two objects
in Fig. 6(c). Compared to the static object, the vibrating object has
a larger variance in phase values. However, phase changes hardly
show clear vibration patterns due to the impact of background
noises. In the frequency domain (Fig. 7(b)), we observe that both ob-
jects suffer from the impact of the Direct Constant (DC) component
and low-frequency noises. Unlike static objects, the frequency spec-
trum of the vibrating object exhibits a sharp peak corresponding to
the smartphone vibration frequency range of 100𝐻𝑧 to 300𝐻𝑧.

Therefore, we can leverage a threshold to identify the vibration
objects (transmitters) that vibrate in the vibration frequency band.
Once the average amplitude of frequency components in this band
exceeds the threshold, the object is detected as a vibration target.
We empirically set the threshold as the mean value of noise plus
three standard deviations of noise (i.e., 99.7% confidence level).

5.3 Vibration Signal Separation and Recovery
After locating the vibration target, we can leverage a band pass
filter (BPF) to recover the expected vibration signal while filtering
out noises. Based on our characterization study, we empirically
set the lower and the upper stopping frequencies as 100𝐻𝑧 and
300𝐻𝑧, respectively, which cover the vibration frequencies of most
smartphones. Fig. 7(c) plots the vibration signal extracted from
the reflection signals. We observe that the recovered vibration sig-
nals from the vibrating smartphone clearly exhibit the transmitted
vibration pattern, i.e., "1010" followed with a delimiter (D) in Fig. 5.
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Figure 8: Illustration of multi-object communication.

In practice, multiple smartphones may communicate with a
mmWave radar concurrently, leading to interference and collision
at the receiver. To tackle this problem,mmRipple separates multiple
objects in three dimensions: range, angle, and frequency.

Separating multiple objects in range. When multiple objects
are vibrating simultaneously in different ranges and each range has
only one target, we can directly separate them by the Range-FFT
(Eq. 5). Suppose there is a vibrating object in range bin 𝑟 . Based
on Eq. 6, its phase measurements 𝜙𝑟 (𝑡) extracted from the target
range bin 𝑟 can be represented as:
𝜙𝑟 (𝑡 ) =

4𝜋
𝜆

(𝑅0 + cos 𝛽 · 𝛿 (𝑡 ) ) = 4𝜋
𝜆
𝑅0︸︷︷︸

DC

+ 4𝜋
𝜆

cos 𝛽 · 𝐴 cos(2𝜋 𝑓𝑣𝑡 )︸                          ︷︷                          ︸
vibration signal Y(t)

(7)
The𝑚𝑜𝑑 operation can be ignored, since smartphone vibration is
generally very small. We name the second term as vibration signal
𝑌 (𝑡) and exploit a BPF to extract it, i.e., 𝑌 (𝑡) = 𝐵𝑃𝐹 [𝜙𝑟 (𝑡)]. There-
fore, we can extract the phase measurements of each transmitter
from its corresponding range to separate the mixed signals.

We place two vibrating smartphones (Samsung S8 and S9+) in
different ranges and capture their vibrations. Fig. 8(a) shows the
vibration spectrograms and vibration levels extracted from different
ranges. The vibration spectrogram is generated from the vibration
signals by Short-Time Fourier Transform (STFT). The vibration level
is the normalized energy profile of the target frequency band. When
the vibration level is higher, the vibra-motor is in the vibration "on"
state; otherwise, it is in the "off" state. We observe from Fig. 8(a) that
the vibration signals from different ranges show different vibration
patterns, demonstrating that the objects can be separated in range.
Note that the range resolution 𝑑𝑟𝑒𝑠 will limit the ability to resolve
multiple objects in range, which is determined by chirp bandwidth
𝐵, i.e., 𝑑𝑟𝑒𝑠 = 𝑐/2𝐵 where c is light speed. In our setting, the range
resolution is about 5𝑐𝑚. This means thatmmRipple cannot separate
two objects if their range spacing is less than 5𝑐𝑚.

Separating multiple objects in angle. Fortunately, when two
vibrating objects locate in the same range, we can exploit the beam-
forming technique to spotlight on each target. For the object in

range bin 𝑟 and direction 𝜃 , we perform beamforming on the re-
flected signals 𝑆𝑘𝑟 (𝑡) from the object range across all 𝐾 Rx antennas:

𝑆𝑟,𝜃 (𝑡 ) =
𝐾∑︁
𝑘=1

𝑆𝑘𝑟 (𝑡 ) · exp[− 𝑗 (𝑘 − 1)2𝜋𝑑𝐴 sin(𝜃 )/𝜆] (8)

where𝑑𝐴 is the antenna spacing. 𝑆𝑟,𝜃 (𝑡) is the reflected signals from
direction 𝜃 and range 𝑟 . In this way, we can separate objects in both
range and angle, and extract the specific reflected signals 𝑆𝑟,𝜃 (𝑡)
for the target located in range 𝑟 and direction 𝜃 . Then, we can
extract the phase measurements 𝜙𝑟,𝜃 (𝑡) for each target to recover
the corresponding vibration signals.

Here, we place the two smartphones in the same range (1𝑚)
but in different directions (i.e., 0◦ and 30◦). Fig. 8(b) shows that
the vibration signals extracted from different beam steering angles
present different vibration patterns. Note that beamforming also
increases the SNR of vibration signals and mitigates the multi-
path effect, by coherently combining desired signals and randomly
adding up background reflections across multiple antennas.

Angular resolution 𝜃𝑟𝑒𝑠 depends on the number of receive an-
tenna 𝑁 , antenna spacing 𝑑𝐴 as well as the AoA of object 𝜃 , i.e.,
𝜃𝑟𝑒𝑠 = 𝜆/𝑁𝑑𝐴𝑐𝑜𝑠 (𝜃 ). In our setting, the angular resolution is about
28.65◦ in front of the mmWave with 4 Rx antennas and 1 Tx an-
tenna. If two objects are too close in range and angle, it is hard to
separate the two objects. Fig. 8(c) shows the vibration signals of
two objects located in the same range 1𝑚 and different directions
(0◦ and 10◦). Since their angular spacing is less than the angular
resolution, the vibration signals cannot be separated.

Separating multiple objects in vibration frequency. mm-
Ripple can exploit the diversity of vibration frequency (Fig. 3(a))
among different smartphones to further separate multiple objects.
To verify this, two smartphones (Huawei Mate 30 and Samsung S8)
with different vibration frequencies are placed 1𝑚 away from the
radar and their angular spacing is 10◦. As shown in Fig. 8(d), the
vibration signals extracted from the corresponding vibration fre-
quencies show the expected vibration patterns. Hence, when these
two close objects cannot be separated in either range or angle, the
vibration frequencies can be used as another dimension to resolve
their collisions. The vibration frequency resolution is determined
by the window size in STFT. In our setting, the window size is set
to 51.2𝑚𝑠 with a frequency resolution 𝑓𝑟𝑒𝑠 of about 2𝐻𝑧.

Overall, mmRipple can separate multiple objects in range, angle,
and vibration frequency. As long as two vibrating objects differ
in one dimension (5𝑚 in range, 28.5◦ in angle or 2𝐻𝑧 in vibration
frequency), their vibration signals can be separated and extracted.

(a) vibration signal

(b) vibration level

(c) after matched filter

(d) decoding

(e) correction  

1111 1010 1100 1001 1111 1010 1100 1001

1   0     1     0 1  0   1    0

Figure 9: Illustration of decoding process.
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Figure 10: Illustration of vibration signal refinement.

5.4 Vibration Signal Decoding
This step aims to decode and recognize the vibration patterns.

(1) Segmentation.We first locate the delimiter to split a consec-
utive vibration signal into multiple vibration pattern signals, each
of which is only modulated by one vibration pattern without a
delimiter. Unlike data-0 and data-1 which are both represented by
two consecutive chips, the delimiter is denoted by three chips "off-
on-off". Thus, we exploit a matched filter with the known pattern (a
delimiter) to infer the delimiter location. Fig. 9(c) shows the result
of applying the matched filter to the recovered vibration level. The
highest correlation value reveals the delimiter location. After that,
multiple vibration pattern signals are extracted before a delimiter.

(2) Decoding. Since we adopt the OOK modulation, vibration
pattern signals can be directly decoded based on the difference
in vibration levels in Fig. 9(d). For each vibration pattern signal,
we empirically set the threshold to half the maximum vibration
level amplitude of its delimiter. Then in each symbol duration, if
the majority of vibration level amplitudes (e.g., 80%) are above the
threshold, this symbol is mapped to data-1; otherwise, it is data-0.

(3) Error correction. Due to noise and vibration inertia, the
extracted vibrations may have some distortion, causing decoding
errors. For example, the vibration pattern "1111" may be incorrectly
decoded as a non-defined code "1110". In this case, we will further
correct the decoding results using the inter-pattern orthogonality.
Specifically, we calculate the cross-correlations to measure the
similarity between the extracted vibration pattern levels with the
pattern templates in Fig. 9(e). Since our designed vibration patterns
are orthogonal, we expect the highest cross-correlation value when
the vibration patterns match against themselves. Thus, we leverage
the Walsh code corresponding to the maximum cross-correlation
value to correct the decoding result and output the final result.

6 SIGNAL REFINEMENT AND MOTION
SUPPRESSION

6.1 Signal Refinement
In practice, besides the target vibrating smartphone, other static
reflectors (e.g., walls) also reflect signals. Hence, in Fig. 10(a), the
received signal from this target ®𝑆 is a superposition of the static
component ®𝑆0 and the vibrating component ®𝑆𝑣𝑖𝑏 . If the static compo-
nent is not suppressed, the extracted phase 𝜙 cannot represent the
actual vibration-induced phase changes 𝜙𝑣𝑖𝑏 , degrading the sens-
ing resolution [19]. Therefore, after extracting the reflected signals
from the target (Eq. 8), we first perform circle fitting to eliminate
the static component, and then extract the ideal vibration-induced
phase measurements. In Fig. 10(b), we can see that the vibration
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Figure 11: Illustration of motion suppression.

signal extracted from the refined phase measurement without the
static component presents a better vibration amplitude.

6.2 Motion Suppression
In practice, a smartphone can be carried by a user in hand. Hand
motion and body movement will affect the detection of smartphone
vibration signals.We invite a user to move his arm and hand holding
the vibrating smartphone towards the mmWave radar from 1𝑚 to
0.7𝑚. The smartphone faces towards the radar. The user’s location
is fixed and his arm moves at a relatively constant speed.

Fig. 11(a) shows the phase values 𝜙𝑟,𝜃 (𝑡) from the detected target
location where 𝑟 = 1𝑚 and 𝜃 = 1.79◦. We notice that the smart-
phone movement results in the phase change from −𝜋 to 𝜋 , drown-
ing out the tiny smartphone vibrations. In the frequency domain,
such minute vibration signals are also dominated by the movement
(Fig. 11(b)). Even after applying a band pass filter, vibration patterns
can no longer be observed in the vibration spectrogram (Fig. 11(c)).

To combat the transmitter motions, we propose a frame-aware
motion suppression method. Suppose there is a vibrating smart-
phone located in (𝑟 , 𝜃 ) with a moving speed 𝑣 . Considering that the
moving speed of transmitter 𝑣 can be approximated as a constant
within a short frame (e.g., 12.8𝑚𝑠 in our setting), we first remove
the static component for each frame through the circle fitting and
obtain the refined phase measurement that can be represented as:

𝜙𝑟,𝜃 (𝑡 ) =
4𝜋
𝜆

(𝑅0 + 𝑣𝑡 + cos 𝛽 · 𝛿 (𝑡 ) )

=
4𝜋
𝜆
𝑅0︸︷︷︸

DC

+ 4𝜋
𝜆
𝑣𝑡︸︷︷︸

movement

+ 4𝜋
𝜆

cos 𝛽 · 𝐴 cos(2𝜋 𝑓𝑣𝑡 )︸                          ︷︷                          ︸
vibration signal Y(t)

(9)

Next, to extract the vibration signal while eliminating the impact
of movement as well as DC, we take the first-order derivative of
phase measurements 𝜙 ′

𝑟,𝜃
(𝑡) for every frame as:

𝜙 ′
𝑟,𝜃

(𝑡 ) = 4𝜋
𝜆
𝑣︸︷︷︸

movement

− 2𝜋 𝑓𝑣 ·
4𝜋
𝜆

cos 𝛽 · 𝐴 sin(2𝜋 𝑓𝑣𝑡 )︸                                   ︷︷                                   ︸
vibration signal 𝑌 ′ (𝑡 )

(10)

In this way, the DC component is removed and the impact of smart-
phone movement is transformed into a new DC component. More-
over, the expected vibration signals is amplified by a scaling factor
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Figure 12: Illustration of vibration signal stitching.

of 2𝜋 𝑓𝑣 . Then, we correct the discontinuity at every two consec-
utive frames [43] and extract the corresponding vibration signal
𝑌 ′ (𝑡) from 𝜙 ′

𝑟,𝜃
(𝑡) with a band pass filter.

In practice, we use the phase difference of two consecutive mea-
surements to approximate the first-order derivative of the phase.
Fig. 11(d) shows the change of phase difference. Although the phase
difference changes are very small and drift because of movement,
its frequency spectrum (Fig. 11(e)) exhibits a sharp peak in the
smartphone vibration range of 100𝐻𝑧∼300𝐻𝑧. After applying a
band pass filter and STFT, we can observe a clear vibration pattern
in the vibration spectrogram (Fig. 11(f)).

6.3 Vibration Stitching along Target Trajectory
In the above discussion, we extract the vibration signal from a
specific location of a target. In practice, however, the target location
is constantly changing when it is moving, making it impossible to
extract the whole vibration signal from one specific location.

Fig. 12(a) exhibits the vibration spectrograms extracted from
different locations. We see that the extracted signals from one
location only measure the smartphone vibrations when the phone
is in that particular location. If the smartphone is not present in
that location, the measurements are mainly noise. To handle the
movement, we need to track the location of the vibration object
and stitch the vibration signals along its moving trajectory.

In a frame, mmWave radar will report a set of points (detected
objects in § 5.1). We define the 𝑖-th point in 𝑗-th frame as 𝑝𝑖, 𝑗 , which
is a 4D state vector composed of coordinates on 𝑥 , 𝑧 axis, velocity 𝑣
and the reflection intensity 𝜖 , i.e., 𝑝𝑖, 𝑗 := [𝑥, 𝑧, 𝑣, 𝜖] ∈ R4. Note that
the coordinates on 𝑦 axis will also be reported on advanced radars.
Once a vibration target is detected (§ 5.2), we record its current
state as the initial state 𝑜0 := [𝑥0, 𝑧0, 𝑣0, 𝜖0] and then track it by
monitoring the following consecutive frames. Specifically, in frame
𝑛, we first calculate the Euclidean distance between the latest target
state 𝑜𝑛−1 and the states of other candidate objects in this frame
𝑝𝑖,𝑛 . Then, the Hungarian algorithm [22, 39] is adopted to find the
associated object 𝑜𝑛 with a minimum total Euclidean distance in
frame 𝑛. Meanwhile, we use the Kalman Filter [49, 60] to further
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Figure 13: Experiment setting.

predict and correct the target tracks by analyzing the measurements
observed over time. Therefore, we can obtain the target state set
𝑂 = {𝑜0, 𝑜1, ..., 𝑜𝑛, ..., 𝑜𝑁−1}𝑇 ∈ R𝑁×4 across 𝑁 frames and extract
its moving trajectory {𝑋,𝑍 } ∈ 𝑂 .

Then we stitch the vibration signal along the target moving
trajectory. At each location, we first extract the phase difference
measurements for recovering the vibration signals (Eq. 10). Fig. 12(b)
shows the phase differences captured at two adjacent locations.
Due to different initial phase values and noise, there is a slight gap
between the two measurements from adjacent locations, which
might cause errors. Hence, we align and stitch the discontinuous
phase difference measurements and output the integrated vibration
signal along the target moving trajectory. After that, the vibration
spectrogram in Fig. 12(c) shows continuous smartphone vibrations.
However, there are some distortions in the vibration level due to
various multipath effects and noise at different locations. Inspired
by peak normalization in audio processing, we adjust the recovered
vibration amplitude by normalizing the vibration peak magnitude
to a specified level. After normalization (Fig. 12(d)), smartphone
vibrations have a stable vibration amplitude that can be decoded.

7 EVALUATION
7.1 Experimental Methodology
Hardware and software.As shown in Fig. 13, we implement a pro-
totype of mmRipple using commercial off-the-shelf devices. For the
transmitter, we test 11 smartphones from 6 vendors equipped with
different types of vibra-motors, including traditional eccentric rotat-
ing mass (ERM) vibra-motors, X-axis and Z-axis LRA vibra-motors
as summarized in Table 3. The receiver is a commercial mmWave
radar, Texas Instruments AWR1642, working in the 76𝐺𝐻𝑧∼81𝐺𝐻𝑧
frequency band. There are 2 Tx and 4 Rx antennas on the radar
board. The ADC samples are captured through a TI DCA1000EVM
data acquisition board and then transmitted to a computer with an
Intel Core i7-10510U 2.30GHz CPU for processing. Data processing
algorithms are implemented in Matlab.

Table 3: Tested smartphones
Vibra-motor Type Smartphone

ERM vibra-motor HTC One M9+, LG V20, Xiaomi Mix
X-axis LRA vibra-motor Google Pixel 2, Xiaomi 11 Pro

Z-axis LRA vibra-motor Huawei Mate S, P20 Pro, P30 Pro;
Samsung Note3, S8, S9+

Experiment setting. On the transmitter side, we control vibra-
motors in smartphones to generate vibration patterns with different
coding bits, different vibration amplitudes and different time slots.
By default, smartphones are fixed on tripod mounts and transmit
4-bit Walsh codes as vibration patterns at maximum vibration am-
plitude. The vibration time slot is 40𝑚𝑠 and the vibration direction
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Figure 14: Overall performance.

of the smartphone is aligned with the mmWave radar’s sensing
direction. On the receiver side, we configure the Tx1 of mmWave
radar to send FMCW chirps at the starting frequency of 77𝐺𝐻𝑧 with
3𝐺𝐻𝑧 bandwidth, and Rx1 ∼ Rx4 to receive the reflected signals.
The ADC sampling rate of the mmWave radar is 5𝑀𝐻𝑧 with 256
samples per chirp and the chirp duration is 100𝜇𝑠 . Since we only
collect one vibration signal sample per chirp, the chirp sampling
rate is 10𝑘𝐻𝑧. The transmitted vibration patterns are recorded as
ground truth in the smartphones for performance evaluation.

Metrics.We evaluate mmRipple using three metrics: Signal-to-
Noise Ratio (SNR), Bit Error Rate (BER), and pattern recognition
accuracy. SNR measures the quality of recovered vibration signal,
which is defined as the ratio of the strength of vibration signal
to that of background noise. BER measures the accuracy of data
transmission after error correction. Pattern recognition accuracy
is defined as the rate that mmRipple correctly matches recovered
vibration patterns to their corresponding programmed patterns.
Unlike BER which refers to a single bit, it measures if mmRipple
can correctly recognize a pattern represented with multiple bits.

7.2 Overall Performance
Fig. 14(a) shows the overall performance ofmmRipple on 11 popular
smartphones at different communication distances varying from
0.5𝑚 to 3𝑚. To capture better vibrations, the screens of smartphones
with EMR or Z-axis LRA vibra-motors (vibrating perpendicular to
the screen) face towards the mmWave radar. In contrast, smart-
phones with X-axis vibra-motors vibrate laterally and we orient
their sides towards the mmWave radar. We see that mmRipple has
high accuracy across different types of vibra-motors in different
smartphones. Overall, mmRipple achieves the average vibration
pattern recognition accuracy of 98.60% within a 2𝑚 communication
range, and 97.74% within 3𝑚.

When the communication range is greater than 2𝑚, we observe
that recognition accuracy decreases. We compare the vibration sig-
nals extracted by three smartphones equipped with different types
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of vibra-motors at 3𝑚 (Fig. 14(b)) and notice that the vibration sig-
nal becomes less prominent as the distance increases. There are
two main reasons: 1) weaker reflected signals because of signal
attenuation over longer communication range and small form fac-
tors of smartphones; 2) more interference and noises from a larger
sensing area. In this case, tiny vibration signals are more likely to
be drowned by noises and interference. Besides, we also notice that
smartphones with LRA vibra-motors perform better than those
with traditional ERM vibra-motors. This is because ERM vibra-
motors generate vibration with unbalanced mass rotation, which
takes a longer rise time to reach the expected vibration amplitude
and frequency than LRA vibra-motors.

In addition, we evaluate the system performance at longer dis-
tances with Samsung S9+. The vibration direction is well-aligned
with the mmWave sensing direction. As shown in Fig. 14(c), we can
see that the pattern recognition accuracy decreases with distance.
At 5𝑚, the accuracy can still achieve 91.67%.

7.3 Orientation and Distance
Performance centered on the transmitter.Weplace themmWave
radar around the fixed smartphone to evaluate the performance
centered on the transmitter in Fig. 15. A Samsung S9+ is placed at
the origin of coordinates (0, 0). Its screen faces 0◦ and vibration
direction is along the Z-axis (the line of 0◦ and 180◦). A mmWave
radar captures the smartphone vibrations from different sensing
ranges (0.5𝑚∼3𝑚) and directions (0◦∼315◦).

We have the following key observations: (i) The performance of
mmRipple decreases as the communication range increases. When
the communication range exceeds 2𝑚, the reflected signal from the
smartphone will become weaker, leading to lower SNRs. In this
case, it is challenging to accurately discriminate the vibration states,
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Figure 17: Communication performance under different conditions.

leading to high BER (>10%). (ii) The performance of mmRipple will
degrade with the increase of misalignment between the mmWave
radar sensing direction and the smartphone vibration direction.
When these two directions are completely aligned (0◦ and 180◦),
the captured vibration signal has the largest vibration displacement
and thus a higher SNR and lower BER. When the misalignment
increases, the captured vibration displacement becomes smaller,
resulting in weaker SNRs and higher BERs. If the vibration direction
is orthogonal to the sensing direction (90◦ and 270◦), the amplitude
of the vibration signal is extremely tiny, but can still be detected
due to the distance changes in a near field range.

Overall, mmRipple can support 2𝑚 communication range in any
direction, with a BER of 0.893%.Within this communication range, a
user can hold the smartphone to send vibration signals in any direc-
tion. When the communication range is 3𝑚, the average BER is still
3.4% despite higher BERs in certain directions with misalignment.

Performance centered on the receiver. Next, we fix the radar
at (0, 0) and move the smartphone to different angles (−45◦∼+45◦)
and distances (0.5𝑚∼3𝑚). The radar always keeps facing towards
0◦ and the vibration direction is fixed along the Z-axis. When the
phone is at 0◦, its vibration direction is perfectly aligned with the
sensing direction of the radar.

In Fig. 16, we have the following findings: (i) The performance
of mmRipple also decreases as the sensing angle increases due to
the misalignment between the sensing direction and the vibration
direction and the non-uniform antenna radiation pattern. The limi-
tation of radar’s field of view (±45◦) results in a significant drop in
SNR, when the phone gets closer to the boundary of the field. (ii)
The performance of mmRipple near Tx antenna (left side) is better
than the other side. The reason for this might be that the limited
size of the smartphone makes its reflected signals susceptible to
the non-uniform radiation pattern of antenna and interference [47].
(iii) In the FOV of mmWave radar, it can correctly capture and
detect vibration signals from the smartphone, with a BER of 1.88%
within 2𝑚. As the range increases to 3𝑚, BER increases to 3.78%.
Enhanced by the error correction capability with orthogonal cod-
ing, the smartphone vibrations in the FOV of mmWave radar and
the communication range of 3𝑚 can be accurately captured by the
receiver of mmRipple. In practice, we can transmit consecutive and
identical vibration patterns and leverage intra-pattern repetition to
improve the reliability of communication.

Performance at various height differences. In this experi-
ment, we study the impact of height difference between the smart-
phone and mmWave radar. A Samsung S9+ and a mmWave radar
(AWR1642) are placed at a distance of 2𝑚 from each other and 1.5𝑚
off the ground. Then, we increase the height of the smartphone

with a step size of 10𝑐𝑚. Table. 4 shows that mmRipple can still
achieve a mean BER of 3.8% when the height difference is 50𝑐𝑚.
BER significantly increases when the height difference exceeds
50𝑐𝑚. This is because it exceeds the limit of the elevation angle of
the antenna (±15◦, i.e., 53.6𝑐𝑚 for 2𝑚) [1], so that the smartphone
vibrations cannot be captured. In practice, we can deploy more
radars to extend the sensing height.

Table 4: The impact of height difference.

Height diff. (cm) 0 10 20 30 40 50 60
BER (%) 0 0 0 0 3 3.8 11.4

7.4 Communication Performance
In this evaluation, the smartphone and a mmWave radar (AWR1642)
are placed 1𝑚 apart and we test the communication performance
at different conditions. By default, the smartphone is Samsung S9+.

Vibration time slot.We vary the vibration time slot from 10𝑚𝑠
to 60𝑚𝑠 to evaluate its impact on BER and bit rate on two types of
smartphones, i.e., Xiaomi 11 Pro (LRA-X) and Samsung S9+ (LRA-Z).
We can see from Fig. 17(a) that BER decreases as the vibration time
slot increases, since a longer vibration time slot ensures that the
motor has sufficient time to startup and shutdown to counteract
the effect of inertia. In this case, vibration states become more
prominent and easier to decode. When the vibration time slot is
20𝑚𝑠 , the average BER for these two smartphones is 1.90% and the
corresponding bit rate is about 18.18𝑏𝑝𝑠 . If the vibration time slot
is longer than the vibra-motor’s rise time (40𝑚𝑠 for Xiaomi 11 Pro
and 30𝑚𝑠 for Samsung S9+), the average BER is less than 1%. As
such, we recommend that the vibration time slot should be longer
than the smartphone’s rise time. On the contrary, a longer vibration
time slot will result in a lower bit rate. Therefore, this is essentially
a trade-off between decoding accuracy and data rate. In practice,
we empirically set the time slot to be 40𝑚𝑠 to strike a balance, since
a short time slot (e.g., < 40𝑚𝑠) leads to high decoding errors. We
believe such a bit rate is sufficient for mmRipple to support various
applications like pedestrian-to-infrastructure interaction.

Vibration amplitude. A stronger vibration amplitude means
that the displacement change is larger, which yields better recogni-
tion performance. In this experiment, we vary the vibration ampli-
tude level (as a percentage of maximum vibration amplitude, i.e.,
255) to evaluate its impact. In Fig. 17(b), the results demonstrate
that vibration amplitude indeed influences BER. When the vibra-
tion amplitude is set higher than 60% of the maximum amplitude,
mmRipple can accurately decode vibration signals. To optimize the
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Figure 18: Multiple object communication.

performance, we set the amplitude to the maximum in our experi-
ments if not specified otherwise. We leave the amplitude adaptation
and energy-efficient vibration modulation for future work.

Different Walsh codes. In mmRipple, different codes represent
different user requests. To investigate the performance of different
codes, we select 8 Walsh codes from 4-bit Walsh codes𝑊 4 and
8-bit Walsh codes𝑊 8 to generate different vibration patterns to
compare their pattern recognition accuracy. In Fig. 17(c), all Walsh
codes show good performance with a pattern recognition accuracy
of >96.47%. Hence, any of Walsh codes can be used to deliver a user
request and a user can choose the code according to his requirement.

Temporal stability. Given that a vibra-motor is essentially a
mechanical component, we next evaluate its temporal stability for
the purpose of vibration based communication. We set the vibration
time slot to 60𝑚𝑠 and let a smartphone vibrate at this low bit rate to
transmit longer packets for 300 seconds. The experiment is repeated
40 times and the BER is calculated every 15 seconds. We can see
from Fig. 17(d) the BER is less than 1% for 95% communication,
demonstrating the sufficient temporal stability of the vibra-motor.

7.5 Robustness of mmRipple
Multiple objects. One appealing characteristic of𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 is its
capability of separating vibration signals of multiple objects and
decoding their concurrent messages. As shown in Fig. 18(a), five
smartphones from different vendors are fixed on tripod mounts
and placed in an area of 2𝑚 × 1𝑚 in front of the mmWave radar
with no obstruction. Among them, object O3 and O4 have the same
communication range and different directions. These smartphones
transmit different vibration patterns based on 4-bit Walsh codes
with 40𝑚𝑠 vibration time slot.

Fig. 18(b) shows the pattern recognition accuracy of these five ob-
jects. As the number of objects increases, the pattern recognition ac-
curacy drops slightly. However, even for five objects,𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 can
still correctly separate multiple vibration objects at different ranges
and directions as well as extract the vibration signal for each target
independently, achieving a pattern recognition accuracy higher
than 91.6%. Moreover, mmRipple supports concurrent reception
from multiple transmitters, allowing the aggregated throughput to
be multiplied. In this experiment, the bit rate of each transmitter
is 9.09𝑏𝑝𝑠 with a vibration time slot of 40𝑚𝑠 . On the receiver side,
the aggregated throughput for receiving vibration messages from
five transmitters is approximately 5×.

Distance between objects. The capacity ofmmRipple to resolve
multiple objects is limited by the sensing resolution. To evaluate
its capacity, we place two smartphones (Samsung S8 and S9+) with
the same vibration frequency 1𝑚 away from the radar. We vary

the smartphone positions so that they are separated by 0𝑐𝑚∼30𝑐𝑚
in range and 5◦∼30◦ in AoA relative to the radar. In Fig. 18(c) and
Fig. 18(d), we observe that the average BER decreases with the
increase of the range and the angle. When the two objects are
separated by more than 5𝑐𝑚 in range or 28.65◦ in AoA, we can
accurately separate the two objects with a BER of less than 1%. We
repeat the experiment using two smartphones (Samsung S8 and
Huawei Mate 30) with different vibration frequencies. We see that
mmRipple shows better performance by separating the vibration
signals in the frequency domain. Even the two smartphones are
very close in range and angle, the average BER is less than 5%,
which indicates that the vibration frequency can be used as an
additional dimension to further separate objects.

Placement andmovement.To evaluate the ability of𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒
to handle objects in different placement and movement scenar-
ios, we conduct experiments in the following four scenarios: (1)
smartphones fixed on tripod mounts, (2) handheld smartphones, (3)
smartphones in pockets, and (4) handheld smartphones with arm
movement. The smartphone faces towards the mmWave radars and
the position of the user is fixed in Scenario (2)∼(4). In each sce-
nario, we invite three volunteers and collect 150 messages. Fig. 19(a)
illustrates the performance ofmmRipple in these scenarios. Overall,
𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 can effectively mitigate the impact of human movement
with a pattern recognition accuracy of >93.22%. When the vibrating
phone is in the pocket, we still capture the expected vibrations with
an accuracy of 96.44%. In addition, our proposed method based
on the first-order derivative of phases outperforms the method of
extracting the smartphone vibrations from raw phases. Especially
in the scenario of handheld smartphones with arm movement, the
pattern recognition accuracy has been improved by 20.33%. mm-
Ripple has demonstrated its effectiveness under the impact of hand
and arm movement. For larger body movements (e.g., walking and
running), the performance ofmmRipple will decrease as such larger
movements will produce a wide range of frequency components
spanning a long period of time, easily overwhelming the weak
vibration patterns [10]. We leave this for future improvement.

Environmental disturbance. To evaluate the environmental
disturbance in practice, we conduct experiments on seven work-
ing scenarios in Fig. 13. In each scenario, the distance between
the smartphone user and the mmWave radar is kept at 1𝑚∼1.5𝑚
and 120 vibration messages are collected. In Fig. 19(b), we see that
𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 has good performance on an open space lawn, as well as
in the multipath-rich office, canteen, and parking lot. Even in the
scenarios with moving object interference, e.g., near the shop door-
way where people frequently pass by, campus and urban roadside
with moving vehicles and pedestrians,𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 achieves a pattern
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Figure 19: Robustness ofmmRipple.

Receiver 

(mm Wave 

Radar) 

(a) Practical scenario.
1 2 3

Subject Index

60

70

80

90

100

P
a
tt
e
rn

 R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

(b) Accuracis of different subjects
Figure 20: Case study: multi-object communication.

recognition accuracy higher than 94.17%. The results demonstrate
that𝑚𝑚𝑅𝑖𝑝𝑝𝑙𝑒 can effectively filter out the interference and extract
vibration signals by leveraging the prior knowledge of vibration
frequencies and vibration patterns.

7.6 Case Study
We take a practical case to present the mmRipple performance in
a multi-object communication scenario. As shown in Fig. 20(a), a
mmWave radar is deployed at the entrance of a canteen to moni-
tor its surrounding objects and meanwhile receive messages from
vibrating smartphones. Three volunteers are invited to hold their
smartphones (1-Samsung S9+, 2-Samsung S8, 3-Xiaomi Mix) and
simultaneously interact with the mmWave radar within a com-
munication range of 2𝑚. These smartphones send different 4-bit
vibration patterns with a vibration time slot of 40𝑚𝑠 . We collect 30
vibration patterns from each experiment and repeated for 5 times.
Fig. 20(b) plots the pattern recognition accuracy of these three
subjects. We observe that mmRipple achieves an average pattern
recognition accuracy of 96.85% for three subjects demonstrating its
practicality. Subject 3 holding the smartphone with a traditional
ERM vibra-motor still has an accuracy of 91.67%. Therefore, we
believe that mmRipple can be deployed in real-world scenarios to
provide both multi-object sensing and multi-object communication,
enabling more innovative applications.

8 LIMITATIONS AND DISCUSSION
One-way communication.mmRipple only supports one-way com-
munication where a message is sent from a smartphone user to a
mmWave radar. In practice, same as a QR code scanner, mmRipple
can acknowledge to a user via an out-of-band channel (e.g., light,
sound, action and visual cues). For example, after receiving a valid
message from a user, a door can automatically open and allow ac-
cess, which implicitly acknowledges the successful reception of the
vibration message. Smart traffic lights can similarly acknowledge
the user by turning green.

Communication capacity. As the vibration frequency of the
vibra-motor in smartphones cannot be configured,mmRipple adopts
the OOK modulation, where the maximum amplitude vibration rep-
resents data-1 and no vibration represents data-0. Higher vibration
amplitude can support a longer communication range, while it will
also increase the rise time of the vibra-motor due to the inertia,
resulting in a lower bit rate. There is a trade-off between communi-
cation range and transmission rate. For a vibra-motor with a rise
time of 30𝑚𝑠 , its bit rate sending 4-bit patterns is 12.12𝑏𝑝𝑠 at the
maximum vibration amplitude. A message (e.g., crossing) takes only
0.33𝑠 . Hence, we believe such a bit rate is sufficient for some appli-
cations. For example, in P2I communication, the number and type
of requests from pedestrians are limited due to safety concerns and
resource allocation in the transportation system. Moreover,mmRip-
ple supports concurrent reception, allowing the receiver to collect
multiple messages from different transmitters simultaneously.

Communication range and coverage. mmRipple can enable a
5𝑚 communication range when the smartphone vibrates directly in
front of the radar with nomisalignment between vibration direction
and mmWave sensing direction. We believe such a communication
range can support short-range applications. In other directions with
misalignment and non-line-of-sight scenarios, weak and even no
vibrations can be detected. Therefore, wemay rotate or deploy more
mmWave radars to track the target and extend the communication
coverage. Once the response time exceeds a threshold (e.g., 5𝑠),
mmRipple can be switched to the intra-pattern repetition mode to
send the same message repeatedly, while prompting the user to
adjust his interactive gesture and position to avoid misalignment
and obstacles. Note that the communication range differs from the
sensing range, which is determined by the ADC sampling rate of
mmWave radar (about 12𝑚 in our setting).

Multi-object communication. mmRipple separates multiple
objects in time, range, angle, and vibration frequency, so that the
aggregated throughput on receiver can be multiplied by reading
concurrent messages. It is challenging to separate two objects that
are almost the same (below resolution) in all dimensions. One pos-
sible enhancement is to improve resolution by increasing chirp
bandwidth, the number of receive antennas as well as cascading
multiple radars [8]. Furthermore, we may exploit differences in
the vibration patterns from different transmitters (e.g., orthogonal
codes) to enhance the separation capability.

Energy consumption.mmRipple uses smartphone vibrations to
communicate with mmWave radars. On the receiver side, mmWave
radars are typically powered by dedicated power supplies. On the
transmitter side, motor vibrations indeed consume the energy of
smartphones. In contrast to other smartphone applications, mm-
Ripple only requires vibra-motors to work occasionally to complete
one communication in a short period of time (e.g., 0.33s). As such,
we believe the energy consumption of mmRipple is affordable for
infrequent usage scenarios.

9 RELATEDWORKS
mmWave sensing. Unlike other wireless sensing technologies
[9, 16, 27, 44, 45, 48, 52, 53], mmWave sensing can achieve a very
high sensing resolution and accuracy [13, 21, 29, 30, 35, 39, 51,
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54, 56]. Recent works have also demonstrated its excellent per-
formance in detecting vocal vibration for speech recognition and
micro-vibration in industrial scenarios. For example, WaveEar [50]
uses mmWave radars to build a noise-resistant speech sensing sys-
tem for voice-user interaction. Wavoice [28] fuses mmWave signals
and audio signals to facilitate accurate speech recognition under
complex conditions with noise and motion interference. mmVib
[19] measures the amplitude and frequency of tiny vibrations using
mmWave radars. Multi-Vib [55] designs a physical marker and lever-
ages mmWave radars to monitor multiple points’ vibrations. Unlike
these works that measure vibrations of fixed objects, our work
mmRipple leverages modulated smartphone vibrations to build a
communication channel between smartphone users and mmWave
radars. Besides, mmRipple addresses a few practical challenges,
such as human movement, multiple vibrators, etc. Recent works
[36, 41] have used radars to capture displacements of the water sur-
face caused by underwater acoustic signals, enabling cross-medium
communication. However, these works exploit some dedicated de-
vices and focus on communication across the water-air boundary.
In contrast, mmRipple allows smartphone users to send messages
to mmWave radars without any hardware modification.

Vibration based communication. Ripple [38] builds a com-
munication channel, which modulates messages using vibration
motors and decodes the messages with accelerometers. Ripple thus
requires physical contact with accelerometers to sense vibrations
and decode messages. Ripple II [37] builds a faster vibration commu-
nication channel by re-designing and optimizing the OFDM-based
PHY layer and the proactive MAC layer. VibSense [25] senses vi-
brations using touch screens. Similarly, capacitive touchscreens of
smart devices are exploited to build communication channels be-
tween objects (e.g., rings) and touchscreens for user authentication
[42]. Skin-MIMO [31] presents a MIMO vibration communication
over the skin using motors and piezo transducers. Unlike these
works where vibrations propagate through solid surfaces, mmRip-
ple aims to wirelessly sense smartphone vibrations using COTS
mmWave radars without any physical contact.

10 CONCLUSION
In this paper, we address a series of technical challenges in designing
and implementing mmRipple, which allows users to send messages
to mmWave radars through smartphone vibrations. mmRipple can
support concurrent reception of vibration signals from multiple
smartphones by leveraging the diversities of smartphone vibrations
in frequency, time, and location. mmRipple mitigates the impact of
device movement, noise and interference with novel signal process-
ing techniques. While future work is needed to further improve
mmRipple, we believe it is an important step towards demonstrating
the feasibility and practicality of building communication chan-
nels between vibrating objects (not limited to smartphones) and
mmWave radars.
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