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Abstract—Voice assistants are widely integrated into a variety
of smart devices, enabling users to easily complete daily tasks
and even critical operations like online transactions with voice
commands. Thus, once attackers replay a secretly-recorded
voice command by loudspeakers to compromise users’ voice
assistants, this operation will cause serious consequences, such as
information leakage and property loss. Unfortunately, most voice
liveness detection approaches against replay attacks mainly rely
on detecting lip motions or subtle physiological features in speech,
which are limited within a very short range. In this paper, we
propose VoShield to check whether a voice command is from
a genuine user or a loudspeaker imposter. VoShield measures
sound field dynamics, a feature that changes fast as the human
mouths dynamically open and close. In contrast, it would remain
rather stable for loudspeakers due to the fixed size. This feature
enables VoShield to largely extend the working distance and
remain resilient to user locations. Besides, sound field dynamics
are extracted from the difference between multiple microphone
channels, making this feature robust to voice volume. To evaluate
VoShield, we conducted comprehensive experiments with various
settings in different working scenarios. The results show that
VoShield can achieve a detection accuracy of 98.2% and an Equal
Error Rate of 2.0%, which serves as a promising complement to
current voice authentication systems for smart devices.

Index Terms—Voice Assistant, Liveness Detection, Microphone
Array, Replay Attack

I. INTRODUCTION

Background. Voice assistants (e.g., Google Now, Alexa,

Siri, etc.) are becoming increasingly popular and facilitate user

interaction with smart devices these days. Voice interaction

allows users to quickly complete daily tasks in a hands-free

way, such as controlling home appliances and ordering food

online. Recently, voice assistants have been in connection with

a variety of smart gadgets, which serve as an entrance into

the smart home network. As a result, voice assistants have

been empowered to perform more sophisticated and critical

functions, such as online transactions, home surveillance, and

even door unlocking [1].

Motivation. To protect voice assistants, they typically use

voiceprint-based automatic speaker verification (ASV) [2], [3]

to authenticate legitimate users. Voice commands, however,

can be secretly recorded by others. As a matter of fact, attack-

ers can easily obtain user voice clips from online meetings,

phone calls, live presentations, or video recordings. Recent

advances in deep-fake technologies can also synthesize and

reproduce voice commands at will. A study [4] demonstrates

that ASVs are vulnerable to replay attacks because replayed

voice commands originate from a legitimate user. Moreover, it
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Fig. 1: Application scenario of VoShield. Attackers can steal

voice clips from a sneak recording or public videos to employ

remote replay attacks. VoShield is designed to protect voice

assistants by blocking such loudspeaker-played attacks.

is reported that many smart home appliances are less protected

and suffer from security flaws [5], which make it possible for

attackers to remotely play malicious voice commands over the

Internet by hijacking the smart devices. As such, attackers

can intentionally replay or inject unauthorized commands

into popular music or YouTube videos to attack users’ voice

assistants, as illustrated in Fig. 1. Therefore, we urgently

need to protect voice assistants against replay attacks to avoid

serious consequences such as privacy leakage, property loss,

and even worse.

Limitation of existing solutions. To defend against such

attacks, existing works enhance ASV systems with liveness

detection. If a voice command passes the ASV, it has to be

examined in terms of liveness. Specifically, as replay attacks

are played by loudspeakers, we can distinguish such attacks

by checking whether a voice command originates from a real

human being or a loudspeaker. Prior arts build side channels

to detect the voice liveness with additional devices, such

as motion sensors [6]–[8], Wi-Fi radios [9]–[12], earbuds

[13], [14]. However, these works require extra hardware and

limit application scenarios. Some recent works emit inaudible

acoustic signals to sense users’ movement when speaking (e.g.,

lip motion or breath) and hereby detect the voice liveness [15]–

[18]. Although effective, high-frequency acoustic signals can

be audible and disruptive to babies and pets. To address these

practical challenges, many researchers attempt to passively

detect vital clues within the received voice commands only

[19]–[21]. However, they require users to hold the devices

with fixed gestures at very close locations to capture the

subtle physiological sounds. Therefore, these methods are not

capable of interacting with distant devices, such as smart



speakers and smart lamps.

Our insight. This paper aims to develop a passive acoustic-

based liveness detection method without restricting users to

certain fixed gestures or positions. The high-level idea of our

system, VoShield, is simple. We observe that the intrinsic

difference between humans and loudspeakers is aperture size

variation. Specifically, humans need to dynamically open and

shut their mouths to speak voice commands, while loudspeak-

ers always keep a fixed aperture size. Intuitively, the time-

varying mouth aperture of humans leads to a more dynamic

sound field than loudspeakers. By examining the dynamic level

of sound fields, we can distinguish the voice liveness, i.e.,

whether a voice command is from a real user’s mouth or a

loudspeaker, to combat replay attacks.

Challenges. However, implementing our idea involves a

series of challenges. The first is how to characterize the dy-

namic level of the sound field. Traditionally, people use a large

number of microphones distributed around a room to measure

the sound pressure and then interpolate them into a sound field,

which is impossible for the small microphone array used in

daily smart devices. Meanwhile, The sound field fluctuation

depends on not only the size variation of sound sources

but also other factors (e.g., the voice content and volume).

Secondly, given there are typically several microphones in an

array, cooperating different microphone channels to facilitate

the measurement, needs to be handled properly. Finally, based

on the feature we measured, designing an effective approach to

discriminate between humans and loudspeakers also remains

a challenge.

Our solution. In this paper, instead of directly measuring

the sound field, we propose Sound Field Dynamics (SFD), a

new feature that indirectly characterizes the dynamic level of

sound fields, which captures the intrinsic difference between

the sound fields generated by loudspeakers and real humans.

SFD is based on the temporal fluctuation of the energy ratio

between different microphones. This inter-microphone ratio

eliminates the effect of the absolute sound intensity, so the

SFD is independent of the sound volume. Moreover, the SFD

is essentially determined by the physical aperture size varia-

tions of a sound source, hence resistant to source locations.

To make full use of all microphones in an array, we present a

multi-channel fusion approach to facilitate SFD measurement.

Based on the extracted SFD features, we design a deep

learning model with a self-attention mechanism to further fuse

multiple channels and differentiate humans and loudspeakers.

The key contributions of this paper are summarized as follows:

• We propose VoShield to protect voice assistants against

replay attacks at room scale without relying on extra

hardware.

• We introduce the notion of sound field dynamics, an

effective feature that indicates voice liveness and hereby

distinguishes humans and loudspeakers.

• VoShield is implemented on commercial microphone

arrays, and evaluation in various settings demonstrates

its applicability and effectiveness.
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(a) Sound field illustration. (b) Diffraction effects.

Fig. 2: Sound field and diffraction effect.

We want to point out that VoShield is a complement, not

a replacement, to the existing voice authentication solutions.

The security of voice commands cannot be overemphasized.

To protect voice assistants, VoShield will not work alone but

will cooperate with other voice authentication approaches to

provide a more reliable protection service.

The rest of the paper begins with the explanation of sound

field dynamics (Sec. II), followed by system design (Sec. III),

implementation (Sec. IV), and evaluation (Sec. V). We sum-

marize the related work in Sec. VI, discuss some limitations

and future directions in Sec. VII, and finally conclude this

paper.

II. UNDERSTANDING SOUND FIELD DYNAMICS

In this section, we first introduce the basic concept of sound

field and sound directivity, then explain the rationale behind

VoShield: the varied source size leads to the variant sound

directivity and further results in the sound field dynamics.

A. Sound Fields and Directivity

The sound field describes the energy diffusion of an acoustic

source over a space. Fig. 2(a) illustrates the sound field of a

sound source (15 cm aperture, emitting 2 kHz sine tone) with

the k-Wave simulation [22]. As the heat map shows, there are

different sound power at different positions, forming the sound

directivity. This is because its different parts vibrate simulta-

neously, and the generated sound waves will constructively or

destructively interfere with each other at different locations

[20]. Additionally, sounds have the diffraction effect, which

depends on the physical aperture size of the sound source

relative to the wavelength of the sound wave [23]. As shown

in Fig. 2(b), with the same wavelength (i.e., frequency), the

larger aperture leads to a weaker diffraction effect and higher

directivity than the small one. Similarly, we can infer that the

shorter wavelength (higher frequency) has higher directivity

for the same aperture size. As a result, the diffraction effect, in

conjunction with sound superposition and interference, brings

about sound directivity.

In short, the sound directivity depends on two factors:

signal frequency f and the aperture size a. Mathematically,

the signal amplitude Amp at a position in the sound field can

be expressed as follows [24]:

Amp =
ua2

2vr

√
1 +

1

k2r2

∣∣∣∣2J1(ka · sinθ)
ka · sinθ

∣∣∣∣ (1)



2 kHz

2 kHz

Window index
0

0

Fig. 3: SFD illustration. Looking at the energy ratio in the

time-frequency domain, we obtain the sound field dynamics.

where u is the vibration velocity of the source. k = 2πf
v ,

where f is the signal frequency and v is the sound speed. r
denotes the distance to the source, and θ represents the angle

relative to the x-positive direction. J1 is the one-order Bessel

function [25].

B. Modeling Sound Field Dynamics

The sound directivity leads to different power levels at

different positions in the sound field. That means, if sound

directivity changes, the power level at the same position will

also change. Therefore, the temporal change of power at one

position indirectly depicts the variation of sound directivity.

However, the power level is also proportional to the sound

volume. Given that a microphone array consists of multiple

microphones, we perform energy division between two mi-

crophones to cancel the volume effect. Specifically, suppose

two microphones at the polar coordinates (r1, θ1) and (r2, θ2).

According to Eq. 1, we can calculate the energy ratio R
measured at two microphones:

R(f, a) =
Amp21
Amp22

=

(
r2

r1

)4 k2r21 + 1

k2r22 + 1

(
J1(ka · sinθ1)sinθ2
J1(ka · sinθ2)sinθ1

)2

(2)

We can see that the energy ratio R is irrelevant to the

vibration velocity u (i.e., the absolute sound volume). For

different time frames of a voice command, r and θ are

constants. Therefore, R only depends on the source aperture

a and the signal frequency f (recall that k = 2πf/v). Then,

we can define the sound field dynamics SFD of a voice

command as the energy ratio fluctuation along time in the
whole frequency band:

SFDf (a) = [Rf
1 (a), R

f
2 (a), ..., R

f
N (a)] (3)

where N is the frame number of the voice command in

the time domain. Here, we transform voice signals into the

frequency domain for each short frame, so the variable f can

be deemed a constant frequency vector f , and the aperture size

a becomes the only variable. By doing so, we can indirectly

profile the dynamics of the sound field, which only depends

on the aperture size, a key difference between humans and

loudspeakers over time.

Remarks. The key observation on the difference between

the real human voice and the loudspeaker-generated one is that

the size of a human mouth is time-variant. On the contrary,

the aperture size of a loudspeaker is permanently fixed. As
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Fig. 4: Overview of VoShield (the colored parts). Components

with a grey background are existing APIs.

a result, the sound field produced by human mouths is more
dynamic than that generated by loudspeakers, because the size

a of the human mouth always varies during speaking.

To illustrate a basic idea, we performed a simulation in

which a sound source plays a 2 kHz sine tone. The source

aperture is fixed to 5 cm to mimic a loudspeaker. Then, we

also randomly vary the aperture size within 5 cm to simulate

a time-variant human mouth. Fig. 3 shows the normalized

energy ratio between two microphones. We can see that the

energy ratio R of the human fluctuates rapidly due to the

changing size of the mouth. In comparison, the loudspeaker

has a pretty stable energy ratio since its aperture size is fixed

all the time, which is consistent with our expectations. One

may argue that, in practice, the voice includes complicated

frequency components, and the time-variant voice content of

a loudspeaker will also cause a fluctuant energy ratio. This

is why we should look into the energy ratio not only in the

time domain but also in the frequency domain. Specifically, we

transform the signal per window into the frequency domain,

as shown in Fig. 3, and hereby we can obtain the SFD. In

a broad sense, we can regard a voice command clip as the

composition of multiple single-frequency signals. As such, we

can decompose the energy ratio into SFD patterns on different

frequency bins. We illustrate the SFD of a real voice command

in Fig. 5, and more details will be explained in the next section.

III. SYSTEM DESIGN

A. Threat Model and System Overview

Our threat model assumes that attackers can obtain victims’

voice clips from various sources, such as online meetings.

We also assume that attackers can hack vulnerable Internet-

connected loudspeakers and hijack these devices to play

sounds. In brief, attackers can remotely play pre-recorded

voice commands via loudspeakers to fool voice assistants.

As shown in Fig. 4, the voice activity detector [26] will

capture the arrival of the voice command. Then, a user recog-

nition module [27] can identify whether the voice comes from

a legitimate user (i.e., user authentication). Further, VoShield is

responsible for checking if it comes from a living human being

or an electronic loudspeaker (i.e., liveness detection). VoShield

consists of three components: Pair Fusion (Section III-B),

SFD Pattern Extraction (Section III-C), and Liveness Detection

(Section III-D). In the Pair Fusion module, VoShield checks
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Fig. 5: The spectrograms of the signals of microphones 1 and 2, as well as the normalized SFD patterns of different microphone

pairs. The time unit is ms. We recommend readers see the colored version of this figure.

the microphone array layout and selects several microphone

pairs to cover all possible incoming voice directions. Then, the

SFD Pattern Extraction component extracts the SFD patterns

from these microphone pairs. To deal with voice diversity,

we also perform data augmentation and use both collected

and augmented data to train the model. Next, SFD patterns

are fed to a classifier to detect voice liveness. Finally, if the

voice command is classified as one from a real human, the

voice signal will be forwarded to the application backend.

Otherwise, the voice command is blocked. Note that the user

recognition module can also provide the user identity, which

enables VoShield to use his/her personalized model to enhance

the liveness detection performance.

B. Pair Fusion

This component selects the most effective microphone pairs

to facilitate SFD feature extraction and model training. Ac-

cording to Eq. 2, if two microphones and the source are

colinear (i.e., θ1 = θ2), or the source is perpendicular to two

microphones (i.e., θ1 + θ2 = 180◦), the energy ratio R of

two microphones will be constant and therefore independent

of the aperture size a. The Angle of Arrival (AoA) estimation

is a possible way to first detect the voice’s incoming direction.

However, such a method introduces an additional computation

workload. Using only one pair is also unreliable due to

noise. Therefore, we cannot completely rely on one pair of

microphones to extract SFD patterns. Fortunately, commercial

microphone arrays typically consist of several microphones.

However, directly using all microphone pairs leads to redun-

dancy of information and increases model training overhead,

since many pairs are paralleled and quantify the same SFD

pattern.

Mic 4Mic 1

Mic 2 Mic 3

Fig. 6: Mic pairs.

We adopt a simple but effective way

to cover all spatial directions, as well

as eliminate the impact of redundant

pairs. In particular, we select only one

from each paralleled pair. As shown in

Fig. 6, we choose Pair〈1, 4〉 but exclude

Pair〈2, 3〉 because they are paralleled. As

a result, we select four pairs (Pair〈1, 2〉, Pair〈1, 3〉, Pair〈1, 4〉,
and Pair〈2, 4〉) to make full use of the microphone pairs

to improve the SFD measurement. This method brings the

following advantages: (i) we can always extract useful features

using these non-parallel pairs no matter where the sound

location is, remitting the AoA estimation. (ii) It unifies the

channels of the model input for effective training. Besides, we

will also introduce another pair fusion method in Sec. III-D.

Note that this pair selection principle is capable of other array

layouts. What we need is to remove one of the pairs that can

be regarded as the two opposite sides of a rectangle from

all pair combinations. Next step, we can extract SFD patterns

from selected microphone pairs and combine them to facilitate

liveness detection.

C. SFD Pattern Extraction

This part is responsible for extracting SFD patterns from

multi-channel audio signals. Specifically, we first perform

Short Time Fourier Transform (STFT) on the signal of each

microphone channel to obtain time-frequency spectrograms.

When performing STFT, window size selection is a trade-

off between time resolution and frequency granularity. On the

one hand, we need a high time resolution to capture the rapid

variation of the mouth size. On the other hand, we also require

a fine-grained frequency resolution to observe SFD pattern

distributions in more frequency components. To this end, we
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empirically set the sliding window size as 50 ms with a 75%

overlap. Then, the spectrograms will be subtracted pairwise

to obtain SFD patterns (the energy ratio is equivalent to the

logarithmic energy subtraction).

Fig. 5 shows the spectrograms and SFD of a voice command

”OK, Google” received by a 4-microphone array. As shown

in Fig. 5(a) and 5(b), we illustrate the spectrograms of two

microphone channels (i.e., Mic1 and Mic2) for human-uttered

speech and loudspeaker-played commands. We observe that

the spectrograms of the two microphones look almost the same

since these two microphones share similar voice content. In

addition, the spectrograms of the human voice and the replayed

sound also look very similar, as they represent the same voice

command from the same user. It is also the reason why ASV

systems are vulnerable to replay attacks.

However, when we subtract the spectrograms in pairwise

order, the SFD patterns differ significantly. Fig. 5(a) and 5(b)

show the SFD patterns of four microphone pairs. Evidently,

the SFD patterns of human voices are pretty random due to the

changing size of the mouth. In comparison, the SFD patterns of

the loudspeakers are rather stable, exhibiting visible horizontal

strips due to the fixed aperture size. After this step, we obtain

an SFD feature tensor I ∈ R
F×T×P for a voice command

clip, where F is the number of frequency bins, T is the time

windows, and P is the number of selected microphone pairs

(channels) in Sec. III-B.

D. Liveness Detection

After extracting the SFD feature, VoShield examines

whether this command was spoken by a user or from a loud-

speaker. Intuitively, we can use traditional image processing

techniques to detect the strip-like pattern in the SFD spectrum,

which is the key difference between the voice command from

loudspeakers and real users. However, translating this intuitive

idea into a concrete implementation involves several technical

challenges. First (C1), we observe some breaks along these

strips due to noise and short pauses in the voice, which makes

the strip patterns much less prominent and hard to detect.

Second (C2), the SFD of different microphone pairs may have

different significance due to their angles relative to the sound

source. For example, Pair〈1, 2〉 exhibits clearer strip patterns

than Pair〈1, 3〉 in Fig. 5. Third (C3), the voice content contains

various phonemes, and hence the strip pattern may appear in

different locations (i.e., different frequency bands at different

times) in the SFD spectrogram.
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Fig. 8: Kernel response and feature visualization. We recom-

mend readers see the colored version.

To deal with the first challenge (C1), we utilize a deep

learning model to let VoShield automatically learn the strip

patterns by leveraging its superior feature extraction and

representation capability. Fig. 7 shows the architecture of our

network. We first apply three convolution layers to learn the

feature embedding. To overcome the pair significance problem

(C2), a Squeeze-and-Excitation (SE) block [28] is used as a

self-attention mechanism to learn a weight vector as global

information. By doing so, we can further fuse the information

between different channels and selectively emphasize infor-

mative ones. To address voice diversity (C3), we perform data

augmentation [29] with random scale and horizontal/vertical

translation to simulate the SFD patterns at different temporal

and spectral locations. This operation doubles the size of the

training data, enhancing the robustness of the model.

To normalize the input size, we use the first one-second clip

of a voice command to extract the SFD, in which each mi-

crophone pair corresponds to an input channel. Since liveness

detection is a binary classification problem (i.e., human (0)

vs. loudspeaker (1)), the output of the sigmoid function in the

last layer is the likelihood that a voice command is from a

loudspeaker. Therefore, we can change the threshold to adjust

the confidence of the classification result. The default threshold

is 0.5, but we can lower it for sensitive voice commands (e.g.,

financial operations) to reduce the false acceptance rate (i.e.,

wrongly accepting an attack command as a real user).

To understand the effectiveness of representations learned

by our model, we adopted kernel response visualization [30] to

illustrate what the kernels have learned during model training.

Fig. 8(a) shows the input response of a kernel in the last

convolution layer. We can observe several strip-like patterns

(in dashed boxes) with different widths, which indicates that

our model can learn such a pattern in SFD as an indicator

to detect voice liveness. It is noted that this kernel response

comprises four channels, and hence this figure is a true color

image after conversion with color distortion. Furthermore, we

adopted t-distributed Stochastic Neighbor Embedding (t-SNE)

[31] to visualize high-dimensional embeddings extracted in

the second-last dense layer. We randomly selected 100 testing

voice samples, fed them into the trained model, and extracted

corresponding embeddings. Then, we used t-SNE to reduce

the representation dimension from 64 to 2 and visualized these

audio samples in Fig. 8(b). We can see that samples belonging
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Fig. 9: Experiment setting.

to the same class are closely clustered, whereas samples from

different categories are pushed far away. This result indicates

that our model can extract effective features to detect the

liveness of voice commands.

IV. IMPLEMENTATION

We implemented VoShield with a Respeaker USB 4-

microphone array with a typical circular layout in commercial

smart devices (e.g., Amazon Echo). The deep learning model

is implemented with TensorFlow and trained on a workstation.

We add a Batch Normalization layer and a 2×2 Max Pooling

layer after each Convolution layer. To prevent over-fitting, we

add a Dropout layer with a 0.2 drop rate following the second-

last dense layer. The voice command will be forwarded to a

laptop to execute the model. VoShield takes approximately

240 ms to perform liveness detection for a voice command

sample.

Data Collection. We recruited 12 volunteers from our

university (six males and six females) and conducted various

experiments in a meeting room, as shown in Fig. 9(a). Par-

ticipants were asked to speak 30 common voice commands

used in [32]. Each command was repeated three times for

one session. A smartphone is placed near the user’s mouth to

record clean speech. Fig. 9(b) shows the loudspeakers used for

replaying recorded voice commands, including four different

brands and sizes: the built-in speaker in a smartphone Mi 11

pro (12 mm × 16 mm), an EARISE AL-202 loudspeaker (72

mm × 72 mm), a Philips SPA20 loudspeaker (80 mm × 122

mm), and a Dell AX510 soundbar (335 mm × 41 mm). We

used a Respeaker microphone array to record human speeches

and replayed commands. Each collection session was repeated

with different distances, locations, head orientations, and other

various settings, detailed in Sec. V. In total, we collected about

13000 samples.

Baseline. We choose CaField [20], a state-of-the-art liveness

detection system based on the sound field, as the baseline.

CaField uses the sound directivity value as a feature and trains

a Gaussian Mixture Model (GMM) to verify legitimate users.

However, sound directivity is sensitive to different positions.

Thus, CaField requires users to hold the devices with a fixed

gesture. By comparison, VoShield utilizes the variation of the

consecutive sound directivity measurements, which is resistant

to different positions.
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Fig. 10: Overall performance of VoShield.

V. EVALUATION

A. Evaluation Metrics

Same as previous works [9], [20], [32], we use the following

metrics to evaluate our system.

• Accuracy. Accuracy is the probability of how well the

system can correctly discriminate between live users and

loudspeakers.

• False Acceptance Rate (FAR). FAR is the likelihood that

the system wrongly accepts an attack as a legitimate voice

command.

• False Rejection Rate (FRR). FRR characterizes the rate

at which the system mistakenly declares a live user as a

replay attacker.

• Equal Error Rate (EER). To balance FAR and FRR,

we can adjust the classification threshold (Sec. III-D)

to make a trade-off between the probability of incorrect

classification for loudspeakers and legitimate users. EER

is the value where FAR equals FRR during threshold

tuning.

• True Rejection Rate (TRR). TRR is the probability that

a command from the loudspeakers is correctly classified.

From the above metric definition, we know that the higher the

accuracy/TRR and the lower the FAR/FRR/EER, the better the

performance.

B. Overall Performance

In this experiment, we randomly chose 85% of all data

for model training and validation, and the remaining 15%

were used for performance testing. Fig. 10(a) shows the

confusion matrix. Specifically, the overall liveness detection

accuracy is 98.2%, and the FAR is 2.1%, indicating that

VoShield can effectively distinguish human voice commands

from loudspeakers. Fig. 10(b) plots FAR and FRR varying

with the threshold changes. We obtain an EER with 2.0%

when the threshold is 0.45. In other words, we can set the

threshold as 0.45 to strike a balance between the detection

ability of loudspeakers and humans. Naturally, we can tune

this threshold to adapt VoShield for different purposes. For

example, for financial commands, we can lower the threshold

a little, and consequently, VoShield has a lower FAR to block

replay attacks better. We note that there is no free lunch.

A lower threshold also leads to a higher FRR. As a cost,

we may need to speak a command several times to pass the
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VoShield check. But then, it is still acceptable since a repetitive

confirmation is required in the financial context, even for the

voice assistants without VoShield.

C. Impact of Users

We then investigate the impact of different users on

VoShield performance, shown in Fig. 11.

Mixed-user case. We first break down the overall evaluation

result and analyze the performance of different users. As we

mentioned before, the overall accuracy is 98.2% when the data

of all users are mixed together. The highest accuracy is 100%

for user 2, and the worst case is 92.4% (user 12). The variance

is 0.03%, which indicates VoShield performs stably among

twelve different users.

Per-user case. Given that voice interaction is a highly-

personal scenario, we also conducted another experiment

where a personalized model was trained for individual users.

In this setting, for each user, we only used his/her data for

model training and testing (similarly, the proportions are 85%

and 15%, respectively). We can see that the overall accuracy

increases to 98.9%. Therefore, in our system design (Fig. 4),

we add a user recognition module so that VoShield can call

a personalized model according to different users to improve

liveness detection performance.

Cross-user case. Despite the high performance of personal-

ized models, sometimes a user is not always enrolled in model

training (e.g., a guest visiting at home). Thus, we also exper-

imented to evaluate the performance of VoShield on unseen

users. In this experiment, we trained the model with the data

of eleven users and tested it with the remaining one unseen

user’s data. As the cross-user case shows in Fig. 11, most users

still present good performance (approximately 90%), while

some users (e.g., 1 and 9) experienced a large degradation.

Accordingly, the average accuracy drops to 86.2%. It is in our

expectation since although the SFD removes the voice content

by doing division between two microphones, it remains the

impact of the pause, rhythm, and mouth shape, which are

determined by the physiological factors of difference between

users. These domain factors prevent current liveness detection

systems from high user-independent performance.

Enhanced cross-user case. To partially alleviate this issue,

a practical solution is providing some human voice samples

of new users to calibrate the model since loudspeaker data

collection is not always feasible. In this case, we used the

data of eleven participants plus 2 mins of real human voice

samples from an unseen user for model training. As shown
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in Fig. 11, the average performance is improved for all users

from 86.2% to 90.1%. This promising result indicates that

introducing only voice samples can help the model adapt to

unseen users and improve its performance. Thus, we can infer

that the performance will be further improved if sufficient

voice samples are provided, for example, 5-minute data, which

is not a heavy burden for new users. Actually, the performance

degradation with unseen users is still an open problem in

the area of liveness detection [33]–[36], and we will discuss

some possible solutions in Sec. VII-A. We note that VoShield

is a complement to current voice authentication systems.

Current cross-user performance can still significantly improve

the security of voice assistants.

D. Impact of Distances

We collected voice commands at different distances from

0.5 m to 4 m with a step of 0.5 m. Fig. 12 illustrates the

results in terms of different distances. Visibly, the accuracy

decreases from 98.9% at 0.5 m to 89.1% at 4 m, and the EER

accordingly increases from 0.8% to 10.3%. This is because the

array has a small size. As the distance increases, the angles

of the two microphones relative to the sound source become

very close. As a result, the energy ratio between the two

microphones tends to be stable, making it hard to differentiate

live humans and loudspeakers with SFD patterns. But say,

we can observe that the accuracy remains 92.9% when the

distance is 3 m. Considering that users prefer to speak voice

commands within 3 m of smart speakers [16], this result shows

the promising room-scale detection performance of VoShield.

According to this result, users are suggested to speak sensitive

commands near the device to obtain more reliable protection.

E. Impact of Orientations

We also conducted an experiment with different orientations

while keeping the distance between the array and the user

fixed at 1 m. 0◦ and 180◦ represent that the user is facing

forward and backward to the array. We used the same data

partition scheme as before for model training and testing.

The performance in different orientations is shown in Fig. 13.

We can observe that VoShield performs best when the facing

direction is 0◦ (Accuray=99.1%, EER=1.2%). Its performance

gradually decreases as the orientation increases. In particular,

the accuracy drops slightly to 98.3% when the facing direction

is 90◦. However, when users/loudspeakers continue to turn

their orientations, the performance presents a degradation.

The accuracy decreases to 91.5%, and EER increases to



TABLE I: Performance comparison with the baseline.

TRR(%) Accuracy (%) FRR(%) EER(%)

VoShield 99.5 98.9 1.7 0.8
CaField 91.7 83.9 28.0 15.7

TABLE II: Performance across different devices.

Loudspeaker Mi11 Pro AL-202 SPA20 AX510

TRR (%) 97.2 98.3 98.5 96.9

7.6% when the orientation is 180◦. Generally, when we

face the array, the direct-path component dominates in voice

recordings. Thus, the microphone array can easily capture the

sound field dynamics. However, when the orientation turns to

other directions, the array receives multiple voice reflections

and reverberations. After traveling along complex multipath,

these reflection components may add up constructively (in

phase) or destructively (out phase), leading to SFD pattern

distortions. Moreover, human mouths and loudspeakers are

both directional sound sources blocked by the head or the

enclosure case, and thus voice signals suffer from substantial

energy attenuation when the sound source turns its back to

the array [37]. As a result, the performance for indirect facing

directions is degraded.

F. Baseline Comparison

CaField [20] requires users to hold the devices, which works

in the near field (within 0.5 m). For a fair comparison, we

compare VoShield with CaField on data collected at 0.5 m.

The performance result is shown in Tab. I. We can see that the

TRRs of CaField and VoShield are 91.7% and 99.5%, respec-

tively, indicating that both systems can detect replay spoofing

attacks accurately. However, in terms of accuracy, CaField

(83.9%) performs worse than VoShield (98.9%). Looking in

detail, CaField has a 28% FRR, much higher than VoShield

(1.7%), which means that many legitimate voice commands

are rejected by mistake. This is mainly because CaField relies

on directivity features trained with a fixed gesture. Generally,

loudspeakers are easily kept static, so CaField can make a quite

accurate classification for loudspeakers (TRR). However, there

are inevitable head movements when speaking, not to mention

different orientations. In this case, many voice commands

from other directions may have totally different directivity

patterns from the samples used for model training. As such,

these human voice commands are prone to be misclassified as

illegal attacks, leading to a high FRR. In contrast, VoShield

relies on the internal dynamic level of the consecutive sound

directivities in multiple windows, which is more resistant to

source directions and locations. For the same reason, CaField

presents an EER much higher VoShield.

G. Impact of Devices

We also analyze the performance across different devices in

the evaluation results. As shown in Tab. II, four loudspeakers

also present similar performance because the energy ratio can
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eliminate the distortion caused by the frequency response of

different loudspeakers as well. But we note that the TRR

of AX510 is slightly lower than others. We suspect that the

soundbar has a large size (335 mm) so the two stereo sub-

speakers are apart pretty far. As a result, when the microphone

array is physically close to the soundbar, the sound fields

of two sub-speakers overlap and interfere with each other,

leading to a slight performance drop. Moreover, the first

loudspeaker in a cell phone has a small sound cavity and little

power output. Consequently, the Signal-to-Noise Ratio (SNR)

of voice commands collected at far positions is slightly low,

which also causes a lower TRR.

H. Impact of Speaking Speed

To evaluate VoShield at different speaking speeds, we

recorded several participants’ voices and played them at 1.5x

and 2x speeds to mimic the fast voice content. In this ex-

periment, the model was trained with voice commands at

the normal speed (1x). By comparison, we test the model

with high-speed replay samples. Fig. 14 shows the result. We

can see that the TRR is 96.1% when testing the model with

normal-speed replay commands. Interestingly, the performance

does not decrease with the increasing replay speed but climbs

slightly. When we replay voice commands with the 2x speed,

the accuracy increases to 96.9%. This may be because the

SFD characterizes mouth movements rather than voice content,

and VoShield detects strip patterns to examine voice liveness.

As such, the high-speed content narrows the gaps between

phonemes and words that may originally break strip patterns

to compromise VoShield. As such, we observe stable perfor-

mance when VoShield encounters fast voice commands.

VI. RELATED WORK

A. Liveness Detection with Additional Sensors

Most works detect voice liveness by building side channels

with additional devices or sensors. Camera-based approaches

[38], [39] are effective but challenged by poor light conditions.

Many works perform liveness detection by correlating voice

signals with other signal modalities from a variety of auxiliary

sensors, such as motion sensor [6], [7], throat vibrations [8],

air pressures in ear canals [14], body sounds in ears [13],

and oral flows when speaking [32]. Besides, some works

detect replay attacks with magnetometer [40], Wi-Fi [9]–[12],

and mmWave radar [41]. In closing, these proposals rely on

additional sensors and incur extra costs to build a side channel

to detect the liveness of voice commands.



B. Active Acoustic Liveness Detection

Acoustic signals have been widely used to detect users’

movement [29], [42], [43] and locations [44]. Thus, many

researchers attempt to utilize acoustic signals to sense user

movement for voice liveness detection. EchoSafe [45] trans-

mits an audio pulse to detect if the user is present in the

room when receiving a voice command. VoiceGesture [18]

sends high-frequency acoustic signals to check the Doppler

effect caused by the user’s articulatory gestures. LipPass [17]

and SilentKey [46] detect lip movements for authentication

when the user holds a smartphone. Similarly, SPEAKER-

SONAR [16] and ChestLive [15] incorporate body and chest

movements to examine the liveness of a voice command.

Although effective, high-frequency sounds are audible for

babies and pets, leading to potential hearing problems.

C. Passive Acoustic Liveness Detection

To overcome the disadvantages of active acoustic methods,

recent works detect voice liveness purely on voice commands

without actively transmitting sensing signals. VoiceLive [19]

and VoicePop [21] measure physiological indicators like the

time difference of phonemes and breathing pop sounds in the

human voice to detect voice liveness. These two works require

users to hold smartphones within a very close distance, so they

cannot be used for other devices, such as smart speakers. Blue

et al. [35] and Void [34] utilize the hardware imperfections

as the feature to design a voice liveness detection system.

However, their performance suffers from high-fidelity speakers

and artificial noise. Some approaches use acoustic features

and build deep learning models to combat replay attacks [47],

[48], but they extract deep features directly from the voice

content, which is easily compromised by attackers who can

intentionally manipulate similar voice [49], [50]. ArrayID [33]

assumes that the spectrum variance of different microphones is

constant, which requires arrays with a circular layout and many

microphones to hold the hypothesis. In addition, other features

it used, such as Linear Prediction Cepstral Coefficients (LPCC)

and frequency energy distribution, are extracted directly from

the original signal, which is susceptible to voice manipulation

[33].

CaField [20] is the most related work to VoShield. They

are both based on sound directivity and do not directly extract

features from the voice content. However, CaField takes the

absolute sound directivity values as a feature, which requires

users to hold the device with certain gestures. By comparison,

VoShield utilizes the relative dynamic level of the sound

directivity within a command period, which is resistant to

different positions and significantly extends the working range.

VII. DISCUSSION

A. User-independent Detection

User-independent liveness detection remains an open prob-

lem [34]–[36]. In this research, spectrum noise and some

user-relevant physiological features are inevitably involved in

model learning. This explains why VoShield cannot perform

well in cross-user scenarios (Sec. V-C). One possible way to

deal with this problem is to accurately characterize the strip

SFD pattern with conventional signal processing techniques.

Another solution is using data-driven domain adaption ap-

proaches such as adversarial learning to guide our model to

learn user-irrelevant features. Finally, few-shot learning and

meta-learning can also help the model quickly adapt to new

users with a small amount of data.

But thinking in another way, since SFD profiles the unique

mouth movement pattern of a human being, it also has

the potential for user identification. In this case, the tiny

physiological details in SFD, which initially prevent VoShield

from user-independent liveness detection, are converted to the

key features to identify different users. To validate this idea,

we simply retrained our model for the user identification task

with human voice samples, and the preliminary identification

accuracy is 87.6% among 12 different users. We believe this

result is promising and can be further improved. We leave

these interesting topics for future work.

B. Sound Field Fabrication Attack

One possible approach to circumvent our liveness detection

method might be physically changing the loudspeaker aperture

to mimic a human mouth. In addition, attackers can shake

or move the loudspeaker when performing attacks. Thus, the

sound field dynamics of loudspeakers will inevitably increase.

We admit that current VoShield cannot defend against this

kind of attack, but we also note that the attacker must be

physically present in a user’s home, which is beyond our

remote attack assumption. Moreover, any movements nearby

and the movements of the loudspeaker itself also disturb the

sound field, but users will be easily aware of it. Therefore,

we believe that remote replay attack with general-purpose

loudspeakers is the primary threat to users and is the main

focus of this paper.

VIII. CONCLUSION

Despite powerful functions and huge convenience, voice

assistants are exposed to the serious risk of replay attacks.

In this paper, we propose VoShield to protect voice assis-

tants through liveness detection. Specifically, VoShield can

distinguish a voice command spoken by a live user from its

loudspeaker-replayed counterpart. Benefiting from the novel

feature Sound Field Dynamics, VoShield extends the working

distance to room scale and can work at flexible positions. The

evaluation results confirm the applicability and effectiveness

of our system. As a complementary protection mechanism

to voice authentication, VoShield provides promising liveness

detection performance and can be readily integrated into

commercial smart devices.
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