
DeepEar: Sound Localization with
Binaural Microphones

Qiang Yang, Yuanqing Zheng
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

{csqyang, csyqzheng}@comp.polyu.edu.hk

Abstract—Binaural microphones, referring to two microphones
with artificial human-shaped ears, are pervasively used in hearing
aids and humanoid robots to improve sound quality. In many
applications, it is crucial for such devices to interact with humans
by finding the voice direction. However, sound source localization
with binaural microphones remains challenging, especially in
multi-source scenarios. Prior works utilize microphone arrays to
deal with the multi-source localization problem. Extra arrays yet
have more space constraints for deployment in many scenarios
(e.g., hearing aids). However, human brains have evolved to locate
multiple sound sources with only two ears. Inspired by this fact,
we propose DeepEar, a binaural microphone-based localization
system that can locate multiple sounds. To this end, we develop a
neural network to mimic the acoustic signal processing pipeline of
the human auditory system. Different from hand-crafted features
used in prior works, DeepEar can automatically extract useful
features for localization. More importantly, the trained neural
networks can be extended and adapt to new environments with
a minimum amount of extra training data. Experiment results
show that DeepEar can substantially outperform the state-of-the-
art deep learning approach, with a sound detection accuracy of
93.3% and an azimuth estimation error of 7.4 degrees in multi-
source scenarios.

Index Terms—Binaural localization, Multi-source localization,
Earable computing.

I. INTRODUCTION

Sound localization can provide context information to im-
prove user experience and enable a variety of innovative
applications such as gaming, smart environment, and human-
computer interaction. As shown in Fig. 1, people with hearing
difficulties could also benefit from sound localization. If the
hearing aids they wear can distinguish the sound location, then
the binaural microphones in the ears can amplify the sound
from this direction and substantially improve their quality of
life when talking with others as well as their safety when
walking outside. Moreover, humanoid service robots with
binaural microphones and speakers can interact with users to
promote products, give directions, and take care of kids and
elders. When a user talks to a service robot, it would be great
if the robot can figure out the voice direction, turn to the user,
and provide customized location-aware services.

Currently, many microphone array-based sound localiza-
tion technologies have been proposed, such as beamformer-
based SRP-PHAT [1], spectral estimation-based MUSIC [2],
triangulation based approach [3], and deep learning based
methods [4, 5]. However, an extra microphone array brings
about additional deployment costs, making hearing impaired
users inconvenient to wear hearing aids. Moreover, the above
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Fig. 1. Application scenarios. (a) Binaural microphones in hearing aids can
localize the sound location and amplify the sound for hearing impaired people
and improve their life quality. (b) Humanoid robots are equipped with artificial
ears. When a user calls the robot, it should be able to locate the voice and
turn around to the user.

microphone array-based solutions cannot be directly applied
to binaural microphones due to very few microphones. For
example, the correlation-based time difference technique can
estimate the AoA of a sound with multiple (e.g., 4) micro-
phones. However, using only two microphones will lead to
the cone of confusion problem [6], which means the sound
source can be located in multiple locations with the same time
difference. In horizontal 2D space, this problem causes front-
back confusion. Moreover, when more than one sound source
is present, they will interfere with each other, raising more
challenges to separate multiple sound sources.

Existing binaural microphone-based solutions train machine
learning models on the raw audio data directly [7] or hand-
crafted features (e.g., interaural time difference (ITD) or
interaural level difference (ILD) [8, 9]). However, these works
can only locate one source, or they assume the number of
sound sources is known beforehand. In real usage scenarios,
such assumptions are hard to guarantee and their performance
degrades since they cannot handle the interference of multiple
sources. On the other hand, the human auditory system has
naturally evolved to locate multiple sounds simultaneously.
In this paper, we aim to imitate the human auditory system
and achieve multiple-sound localization with binaural micro-
phones. To enable such human-like sound localization, we
identify the following key objectives and design requirements:

• Full-field localization. Different from the existing meth-
ods (e.g., correlation-based methods) which suffer the
cone of confusion problem, human beings can normally
differentiate whether the sound is from the front or from
the back. Accordingly, we expect that our target system
should be able to avoid such a confusion problem and
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support full-field localization.
• Multi-source localization. Previous works typically for-

mulate the single sound localization task as a single-
label classification problem [10]. They estimate the most
likely one direction among several pre-defined degrees.
However, it is nontrivial to extend such a single source
localization method to multi-source scenarios, especially
when the number of sound sources is not known.

• New environment adaptation. We observe a substantial
performance decrease of previous works when they work
in a new environment. For example, neural network-based
source localization methods suffer dramatic performance
degradation when estimating new data collected in un-
seen environments (i.e., unseen data). Ideally, our system
should evolve and adapt to new working environments
with minimum extra training.

To this end, we propose DeepEar, a multi-source local-
ization system with binaural microphones. DeepEar mimics
the signal processing pipeline of the human auditory system.
First, the audio data is transformed into the time-frequency
domain on the equivalent rectangular bandwidth (ERB) scale.
Then, a temporal encoder network is designed to extract
the latent representation of sounds. To enable multi-source
fullfield localization, we partition the 2D horizontal space into
a number of sectors, and model the multiple sound localization
as a multi-label classification problem. The number of subsec-
tors can be configured and changed according to application
requirements. To adapt the model to new environments, we
first train a global model on a large amount of readily available
public data sets. Note that during the training of the global
model, we do not need to collect any data from end-users
or their working environments such as their homes or offices,
which dramatically simplifies data collection and global model
training. To bootstrap the training process, DeepEar harnesses
a transfer learning strategy and fine-tunes the global model
with a small amount of new data collected in the target
environments during the usage of end-users. In this way, our
method can reduce the data collection overhead involved in
training a global model, as well as cope with the heterogeneity
of working environments with the minimum effort of end-
users. The contributions of this paper can be summarized as
follows.

To highlight the contribution of this paper, we propose
DeepEar, the first bionic sound localization system for bin-
aural microphones that can locate multiple sources without a
priori knowledge of the number of sources. Comprehensive
experiments are conducted in both anechoic and reverberant
environments. The results show a 93% sound detection accu-
racy and 7.4◦ azimuth estimation error in the multiple-source
scenario, which outperforms the deep learning-based state-of-
the-art in various experiment settings. A real-world case study
also illustrates that the ears of binaural microphones play
a pivotal role in disambiguation, which can improve sound
localization performance significantly.

The paper is organized as follows. In Sec. II, we briefly
introduce the background and present the empirical results
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(a) Left ear. (b) Right ear.

Fig. 2. Frequency response with and w/o ears.

of our feasibility study. We elaborate the detailed design in
Sec. III. Then, Sec. IV and Sec. V describe the implementation
and evaluation results. Related works are summarized in
Sec. VI. Finally, Sec. VII concludes this paper.

II. BACKGROUND AND EMPIRICAL STUDY

Human-shaped outer ears are an important part of the human
auditory system, which helps in locating sound sources. We
first conducted a feasibility study to evaluate the influence of
artificial human-shaped ears on acoustic signals. As shown in
Fig. 3, we placed a miniDSP EARS binaural microphone at the
center of a meeting room. Then, we used a portable speaker
to play an exponential sweep sine as the excitation signal
1m away in front of the binaural microphone. This excitation
signal was recorded with the microphones to calculate the
Binaural Room Impulse Response (BRIR), which describes
the acoustic channel from the speaker to the microphone in
this room. After that, we kept all settings unchanged but only
detached the two artificial human-shaped ears from the micro-
phones and repeated the measurement. As shown in Fig. 2,
the frequency responses with the artificial ears substantially
differ from those without ears. Specifically, we can see an
amplification with ears at the voice frequency region (< 10
kHz), since ear canals act as tubes and amplify the frequency
band where human voices mainly reside. Besides, there is a
noticeable frequency notch in a high-frequency band (10 kHz
∼ 20 kHz). That is because the ears with many wrinkles can
cause special multipath reflection and destructive interference
as reported in the literature [11]. This result validates that
ears can significantly distort and filter the sound in certain
frequencies.

180°
Loudspeaker

Binaural microphone
0°

Fig. 3. Preliminary experiment setting.

As shown in Fig. 3, we conducted another experiment where
we measured the BRIR before and after rotating the binaural
microphones with ears around by 180◦. We note that in the two
measurements, the distances between the sound source to the
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(b) Right ear.

Fig. 4. Frequency response in the front/back.
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Fig. 5. Illustration of the human
auditory system [16].

DeepEar
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Fig. 6. Sound localization with
binaural microphones.

two microphones remain the same. Intuitively, we expect that
these two responses will be similar since all settings are kept
fixed but only with the small ears orientation rotated. However,
we see that the frequency responses significantly differ from
each other in Fig 4. The reason is that, when the sound wave
travels to a user, it will be scattered, reflected, and diffracted by
the body, head, and especially the ears of the user (which can
be described by the Head-Related Transfer Function, HRTF ).
The ears and head shape the acoustic signals by filtering and
absorbing different frequency bands, thus the HRTF is both
frequency and direction-dependent [12]. Therefore, our brain
can learn to associate these subtle difference patterns with
certain spatial locations, which helps resolve the ambiguity and
perform source localization, even in multi-source scenarios
[13].

With the help of ears, human beings can perform accurate
sound localization. Fig. 5 shows a basic human auditory
system. Two ears capture and filter the sound, and then the
sound wave strikes the eardrum, leading the vibration in the
spiral-shaped cochlea, which transduces the sound wave to
neural stimulus signals [14]. As neural activity moves along
the pipeline, several brainstem nuclei encode the stimulus to
perception [14, 15]. Finally, the auditory cortex in the brain in-
terprets sound spatial information. We refer interested readers
to the literature [14] for more detailed human auditory mech-
anisms. Inspired by this fact, we utilize binaural microphones
with human-shaped ears to capture sounds, and develop a
deep learning model to mimic the functions of the human
auditory system and locate sound sources as illustrated in
Fig. 6. In the following, we describe the design consideration
and implementation detail of DeepEar.

Air vibration
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Electrical stimulus

Encoding

PerceptionMechanical pressure

Gammatone Filterbank Sound location

Cognition

Air vibration

Dummy head

ADC

Digital signal

Encoder

t-f representation

Neural network

Output

Eardrum

Cochlea Auditory cortexBrainstem nuclei Sound location

DeepEar

Human Auditory System

Fig. 7. System overview: an analogy between the human auditory system
and DeepEar.

III. DEEPEAR DESIGN

In this section, we first give a system overview of DeepEar,
and then introduce the detailed components of the human-like
sound processing pipeline.

A. System Overview

Fig. 7 presents a system overview of DeepEar. The up-
per part depicts the pipeline of the human auditory system.
DeepEar is inspired by the human auditory system and we
design and implement components to mimic the key functions
to locate sound positions. We first utilize binaural microphones
with human-shaped ears to capture sounds. Then, a Gamma-
tone filterbank is used to transform the audio signals into
the time-frequency domain, which mimics the function of a
cochlea in the human auditory system. After that, we train an
encoder to extract the high-level representation. Finally, these
sound features are input to a neural network to estimate sound
locations. In the following, we introduce each component in
detail.

B. Data Collection and Preprocessing

Human beings perform sound localization by learning the
sound spatial patterns caused by the head, torso, and ears.
Inspired by this fact, we utilize binaural microphones with
human-shaped ears to capture acoustic signals. A dummy head
can also be used to better capture the acoustic signals.

In the human auditory system, the cochlea is a spiral
structure that is essential for frequency analysis. Along with
this spiral, its different parts vibrate in response to different
frequencies and convert sound waves into electrical stim-
uli. During this process, sounds are decomposed into many
constituent frequency components. Such a frequency-selective
vibration varies exponentially along the cochlea [17]. DeepEar
imitates the function of a cochlea with a Gammatone filter-
bank, which is widely used in the literature of auditory system
modeling [18]. We empirically set the number of filters as
100 to strike a balance between computational efficiency and
representative sufficiency. To preserve sound temporal context,
we frame the audio signals using a 100 ms Hamming window
with 50 ms overlap. In this way, the output of preprocessing,
Gammatone spectrogram coefficients, is a 2D matrix with size
[filter size × frame number].
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Fig. 8. Illustration of GRU VAE.

C. Feature Extraction

Before a neural stimulus reaches the auditory cortex in
the brain, it passes through many stages of processing by
several brainstem nuclei as depicted in Fig. 5. Although
the understanding of the specific processing accomplished in
this stage remains not totally clear yet [19], it is commonly
believed that these nuclei perform a function similar to feature
mapping and encoding for sound localization and recognition
[15]. Such a compressing and extraction process is able to
prevent the overload of information in a short time [20].

This neural coding procedure inspires us to exploit an
autoencoder to automatically extract compact sound represen-
tations. An autoencoder is trained to compress or encode data
to a high-level latent feature space, which can be reconstructed
back into the original input data without much information
loss. An autoencoder consists of two parts: an encoder and a
reversed structure named decoder. As the preprocessed result
is a 2D time series, we use the seq2seq framework [21]
to encode the data. As shown in Fig. 8, we build a Gated
Recurrent Unit (GRU) variational autoencoder (VAE), which
reads the Gammatone spectrogram coefficients and maps them
to a fixed-length feature vector z. Two GRU layers are used
to form an encoder. Similar to LSTM (Long Short-Term
Memory), it can also learn the long and short-term temporal
context, while it has fewer parameters and better generalization
capability. Moreover, instead of coding the latent features from
the input independently, we use a variation autoencoder to
map the data into a multivariate normal distribution. This
constrains the encoder to learn a smoother representation,
which is more generalizable to reconstruct unseen data. After
the training process, the decoder part can be cut off and only
the encoder is used in DeepEar. Fig. 9 illustrates the original
and reconstructed Gammatone coefficients of one sample. We
can see that GRU VAE can extract representative high-level
features from the original input.

As we mentioned before, the human brain perceives the
spatial patterns in sound to perform localization. On the
one hand, different propagation paths cause subtle sound
differences between the two ears [22]. For example, the
interaural time differences (ITD) can help us to infer the sound
azimuth. As such, we perform cross-correlation GCC-PHAT
[23] between the signals of two ears. The distance between
two ears determines the maximum time difference from a
sound source. Considering extra multipath caused by the head
and body, we take the middle 100 coefficients instead of all
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(b) VAE output.

Fig. 9. GRU VAE can effectively extract the latent features from original
data and reconstruct back with it.

correlation results as a part of features. However, there is no
one-to-one mapping between ITD to sound direction or sound
location because of ambiguities as we discussed. On the other
hand, the ears produce micro-echoes to the arriving sound,
leading to spectral distortion associated with certain spatial
locations. These two patterns jointly help humans to locate
sound signals. Therefore, along with the encoded features
from the left and right ears, we also subtract two outputs and
measure the feature differences between the two ears. Finally,
all of these features are concatenated to form the final feature
representation.

D. Sound Localization

DeepEar first detects whether a sound is present in a specific
sector, and then estimates its AoA and distance if a target is
present. We introduce the neural network design as follows.

1) Network Structure Design: With the extracted features,
we construct a neural network to perform multiple sound
localization. A subsector-based output is used to facilitate
simultaneous multiple source localization with arbitrary spatial
resolution. In this paper, we set the number of sectors to 8, and
we release the assumption of previous work that the number
of sound sources is known beforehand. Instead, we assume
that there is at most only one source in a sector. This also
means that DeepEar supports up to 8 simultaneous acoustic
sources localization. We can increase the number of subsectors
to increase the spatial resolution and the maximum supporting
number of concurrent sources according to application require-
ments.

Fig. 10 shows the network design of DeepEar. The extracted
features of binaural channels are subtracted in the subtract
layer to obtain the difference between the two ears. After that,
all features are concatenated to a feature vector and input to
the sound localization network. We only use several dense
layers to construct this network. To prevent overfitting, dropout
layers are attached after each dense layer with a drop rate
of 0.2. We formulate the full-field localization as a multi-
task learning problem. The first three layers learn a general
shared spatial pattern of the sound, followed by eight subnets
that are responsible for each subsector. In each subnet, three
task sub-networks share a common dense layer. The first task
subnet is SoundNet, which detects whether an acoustic source
is present in this sector and outputs a binary result indicating
the presence of a target. The second task subnet AoANet
predicts the AoA of the target. AoANet is a regression net,
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Fig. 10. DeepEar network design.

whose output is a normalized value in (0,1] indicating the
minimal and maximal degree in the sector. For example, 0
and 1 represent 1◦ and 45◦ in sector 1, respectively. If there
is no sound source in the sector, this value is set to 0 in the
corresponding target label. DisNet is the third task subnet,
which estimates the distance between ears and the target
source. Note that humans perform distance estimation with
sound loudness and the ratio of direct to reverberant sound,
which is much worse compared with AoA estimation [24].
Therefore, we classify the sound distance into five classes,
and among them the last category represents the no-source
case.

2) Loss Function: Overall, DeepEar has a 56-dimension
output, and the whole network can be trained by minimizing
the loss between the network output and ground truth. All
SoundNets can be regarded as a multilabel classification
problem, so the activation function is sigmoid and binary
cross-entropy are used as the loss function:

Ls = −y · log (ŷ)− (1− y) · log (1− ŷ) (1)

where y is the ground truth, and ŷ is the prediction prob-
ability. As for AoANets, the mean squared error is used to
qualify this regression task:

La = (y − ŷ)2 (2)

where ŷ is the regression output of AoANet. Since DisNet
is designed for a multiclass classification problem, we use the
softmax activate function and formulate its loss function as
the cross-entropy:

Ld = − 1

C

C∑
i=1

wi · yi · log ŷi (3)

where C is the number of categories (i.e., 5), and wi is
the weight for each category. yi is the i-th one-hot encoding
ground truth bit of this instance.

As a result, the loss of one sector subnet is constructed as
a weighted sum of the losses of three task subnets:

Lsector = αLs + βLa + γLd (4)

where α, β, and γ are weights for different task subnets.
The most important requirement for DeepEar is detecting the
concurrent sound sources, while we also expect better AoA
estimation than distance estimation. Thus, we empirically set
these weights to 0.4, 0.35, and 0.25 respectively. Then we can
average the losses of all sector subnets and obtain the overall
loss of the DeepEar network:

L =
1

N

1

M

N∑
n=1

M∑
m=1

Lsector(m) (5)

where M is the sector number, and N is the number of
training data in a batch.

E. Adaptation to New Environments

Humans have the ability that locates sound in various
environments by continuous learning from childhood [25].
This ability indicates that humans can transfer the knowledge
learned from a previous environment to new contexts. There-
fore, we first build a global model for DeepEar, then we can
apply transfer learning [26] to make DeepEar adaptive to new
environments with a small number of new data.

DeepEar network can be divided into three components.
The first one is the feature extraction module, including
VAE and feature concatenation layer. Then three dense layers
are used for learning the general spatial pattern knowledge.
Finally, eight subnets are responsible for learning specific
context information and performing localization tasks. Thus,
based on the pre-trained global model, we freeze the first
two parts and fine-tune subnets with a small amount of data
from new environments. In this way, DeepEar can adapt to
different working environments quickly, saving redundant and
burdensome training overhead for users.

IV. IMPLEMENTATION

System Implementation. We implemented DeepEar with
Python and TensorFlow. The neural network and VAE were
trained on a workstation with an Nvidia GeForce RTX 2080
Ti. Early-stopping was applied to prevent overfitting if no
performance improvement on the validation set was observed
for more than 5 epochs. The loss of VAE is the mean square
error between input Gammatone coefficients and reconstruct
output.

Data Synthesis. Same as the previous binaural localiza-
tion work [7–9], we synthesized binaural spatial sounds by
convolving clean speech audio recordings with the binaural
room impulse responses (BRIR) of different locations. The
clean speeches were randomly chosen from a corpus named
TIMIT [27], containing the recordings of 630 speakers with
eight major dialects of American English, each reading ten
sentences. We choose a publicly available BRIR dataset named
TU Berlin [28]. This dataset was measured with a KEMAR
dummy head (i.e., binaural microphones) in three different
rooms, including an anechoic chamber, a small meeting room
named Spirit, and a mid-size lecture room called Auditorium3.
Considering that the maximal number of concurrent sound
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Table I. Dataset summary.

Dataset Anechoic-training Anechoic-validation Anechoic-testing-seen Anechoic-testing-unseen Spirit-testing Auditorium3-testing
BRIR convolved Anechoic Anechoic Anechoic Anechoic Spirit Auditorium3

Sample size 72000 9000 9000 9000 9000 9000
Usage Training Validation Testing Testing Testing Testing
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Fig. 11. Performance comparison between DeepEar and WaveLoc on seen data in the anechoic environment.

Metircs Sound detection (%) Hamming score (%) AoA (degree) Distance (%)
Source # ave 1 2 3 ave 1 2 3 ave 1 2 3 ave 1 2 3
DeepEar 91.9 99.8 92.5 83.5 80.5 99.1 78.2 64.1 8.0 2.3 7.7 10.1 81.6 95.2 81.2 68.4
WaveLoc 80.4 90.9 80.0 70.3 43.2 56.7 39.3 33.7 14.5 13.2 15.2 14.5 75.0 87.5 75.0 62.6

Table II. Performance comparison between DeepEar and WaveLoc on unseen data in the anechoic environment.

sources is typically small in the real world, we set it as 3.
The number of sources, AoA, and distance are all randomly
generated but with a constraint that only one source presents
in a sub-sector. All synthesized data were sampled at 16 kHz
and sliced to 1-second instances.

V. EVALUATION

A. Experiment Setup

We first train a global model for DeepEar only with the pub-
licly available data. After that, DeepEar can be customized and
adapted to the real-world application environments by transfer
learning with a minimum amount of new data collected in
target working environments.

The clean speech recording corpus consists of two portions,
TRAIN, and TEST. We randomly selected speeches in the
TRAIN portion, convolved with Anechoic BRIR to get the
anechoic synthesized data for training a global model. These
data were divided into training-validation-testing three parts
with the ratio 8:1:1. Given that these training data and testing
data are split from the same dataset, the evaluation result will
be overestimated since the trained model may have seen the
test data. Therefore, we then separately took random clean
speech recordings in the TEST portion and synthesized a new
testing dataset, denoted Anechoic-testing-unseen. Moreover,
we similarly convolved clean speeches in the TEST portion
with the real-world BRIRs of the meeting room (Spirit)
and lecture room (Auditorium) to generate other two testing
datasets. Overall, we have six datasets: one for training, one
for validation, and four for model testing. We summarize the
names, sizes, usages of all datasets in Tab. I.

For comparison, we implemented a binaural localization
state-of-the-art WaveLoc [7]. WaveLoc decomposes binaural
signals into 32 frequency bands, and then employs CNN

(convolutional neural network) on the raw waveform in each
band to classify the AoA. Noted that WaveLoc only supports
one source azimuth classification, so we replaced the last layer
of WaveLoc with the sector-subNets of DeepEar to enable
multiple sound localization. To illustrate the importance of
ears, we also conduct a real-world case study with a binaural
microphone to locate the sound with and without the presence
of ears.

B. Evaluation Metrics

We evaluate DeepEar with the following metrics:

• Sound detection accuracy. It measures the binary classi-
fication accuracy of SoundNet in detecting whether there
is a sound source or not.

• Hamming score of sound detection. Hamming score is
defined as the proportion of the predicted correct labels
to the total positive labels (predicted and actual) for that
instance:

H =
1

N

N∑
n=1

sum(yn & ŷn)

sum(yn | ŷn)
(6)

where yn is the ground truth of eight SoundNets of
the n-th instance. ŷn is the corresponding classification
result. & and | represent bit-wise AND and OR operation,
respectively. Compared to binary accuracy, Hamming
score ignores the true negative (i.e., a no-source case
is correctly detected) as well as penalizes false-positive
cases (i.e., a no-source case is detected as an active source
by mistake).

• Mean absolute degree error of AoA (MAE). MAE means
the absolute degree error between prediction AoA and
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Fig. 12. Performance comparison in Spirit meeting room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.
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Fig. 13. Performance comparison in Auditorium lecture room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.

ground truth. We average MAE of all AoANet as the
overall MAE of DeepEar.

• Distance classification accuracy. This metric refers to the
averaged accuracy of all DisNets.

C. Anechoic Environment

1) Seen Data: Fig. 11 shows the performance of the global
model on the seen data in the anechoic environment. Overall,
the sound detection accuracies of DeepEar and WaveLoc are
93.3% and 80.9%, respectively. Surprisingly, DeepEar has a
high detection accuracy of 99.8% in the one-source scenario.
In comparison, the performance of WaveLoc is a little lower
with the detection accuracy of 90.9%. We can see that the
performance of both models decreases with the increasing
number of sounds. When three sources coexist, the detection
accuracy of DeepEar drops to 85.3%, and WaveLoc’s accuracy
decreases to 70.6%.

In general, the Hamming score of DeepEar is 83.5%,
which is slightly lower than the binary accuracy since all
no-source cases are excluded. However, the performance of
WaveLoc drops by almost a half and decreases to 44.6%. This
degradation indicates that WaveLoc makes more false-positive
sound detection.

For AoA estimation, the mean absolute degree error of
DeepEar is 7.4◦, which is nearly a half of WaveLoc’s. In
the one-source case, DeepEar can even predict AoA within
2.3◦ error. However, the MAE of WaveLoc is 13.2◦, much
larger than DeepEar. It is because that WaveLoc performs
CNN directly on raw waveform data, missing the key time
difference information between binaural channels. With the
number of sources increasing, multiple sounds may interfere
with each other so that time differences will be confused,
leading to a higher estimation error.

The average distance accuracies of all source-cases are
82.9% and 75.6% for DeepEar and WaveLoc, respectively.

There is no large gap between them like before due to narrow
possible categories. Same as before, the larger number of
active sources is, the lower the estimation performance is.

2) Unseen Data: We also evaluate DeepEar on the unseen
data. This dataset is generated separately instead of splitting
from the original training data. The result is listed in Tab. II.
Overall, the sound detection accuracy and Hamming score of
DeepEar are 91.9% and 80.4% respectively. This performance
is almost the same as that on the seen data, so are AoA
MAE (8◦) and distance accuracy (82%). The performance of
WaveLoc presents similar trends like DeepEar, indicating that
both systems generalized well to anechoic unseen data. The
reason is that we synthesized massive training data, which
describes the data space to a great extent.

D. Reverberant Environment
We know that an anechoic environment is hardly possible

in real life, so it is our turn to examine DeepEar on the data in
real reverberant rooms, including a small meeting room and a
larger lecture room.

1) Evaluation in a Small Meeting Room: Fig. 12 illustrates
the performance of a small meeting room. Directly testing the
global model on the reverberant data brings about a dramatic
performance deterioration as we expected. The benchmark
WaveLoc also performs poorly. The average sound detection
accuracy and Hamming score of DeepEar are 65.6% and
24.7%, while WaveLoc achieves 67.5% in sound detection
and 14.3% in Hamming score, respectively. Although the
sound detection accuracy of WaveLoc is slightly higher than
that of DeepEar, the Hamming score of DeepEar is much
higher than WaveLoc. Similarly, the performance of AoA and
distance estimation also drops. The reason is that signals in a
reverberant environment differ substantially from the anechoic
room.

To adapt to this meeting room, we perform a transfer
learning on this global model with 10% of new data. DeepEar
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Fig. 14. The transfer learning performance of DeepEar with different sizes
of new training data. Two subfigures share the same legend.

converges fast within 10 epochs and exhibits much better per-
formance. The sound detection accuracy increases to 91.9%,
while WaveLoc only achieves 82.1%. The Hamming score of
DeepEar increases by 53.3%, which almost doubles that of
WaveLoc. The DeepEar’s AoA MAE decreases by half to
8.8◦, which is very close to the anechoic case. Moreover,
the performance increase in terms of distance estimation is
24.4% for DeepEar and 15.1% for WaveLoc, respectively.
In this figure, we can see that both methods benefit from
transfer learning in testing the new reverberant data. Yet
DeepEar notably outperforms WaveLoc after the same re-
training procedure with the same amount of new data.

Note that the variation encoder has learned the feature distri-
butions of different locations. Therefore, the sub-network can
quickly adapt to the new data and increase the performance. In
contrast, WaveLoc uses CNN to learn a discrete feature space,
which is harder to adapt to new environments with a relatively
small number of additional training data.

2) Evaluation in a Large Lecture Room: In this experiment,
although both methods also suffer performance degradation
on this unseen dataset, DeepEar performs much better than
WaveLoc. As shown in Fig. 13, the overall sound detec-
tion accuracy of DeepEar is 81.5%, i.e., 6.2% higher than
WaveLoc. As for Hamming score, the performance gap is
even wider. In particular, WaveLoc decreases to 16.3%, which
is approximately one-third of DeepEar. Besides, the AoA
estimation errors of these two systems are 12.9◦ and 17.3◦,
respectively. This result shows that while WaveLoc cannot deal
with the reverberation interference, DeepEar can still achieve
a relatively better performance because of its robustness to the
highly reverberant new environment.

Transfer learning is effective in improving the performance
of both models. Yet, we see that DeepEar benefits more
from this than the benchmark method. Specifically, the sound
detection accuracy and Hamming score of DeepEar increase
to 89.4% and 71.7%, respectively. In contrast, the sound de-
tection accuracy of WaveLoc only has an increase of 1.8%. A
noteworthy aspect is that the Hamming score of WaveLoc de-
clines from 16.3% to 14.6% after transfer learning. The main
reason is that the lecture room is larger than the meeting room,
meaning that the lecture room has a longer reverberation time.
The CNN mechanism of WaveLoc relies more on discrete
data so that it cannot adapt to the reverberant environment. In
contrast, DeepEar benefits from the VAE design that enables
subnets to calibrate feature distribution accordingly with new
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Fig. 15. Localization performance with and without human-shaped ears.

data and thereby achieves a better performance.
The AoA MAE of DeepEar and WaveLoc decreases by

3.9◦ and 2.5◦, respectively. Furthermore, the distance accuracy
of DeepEar and WaveLoc increases to 91.7% and 76.4%,
respectively. Again, DeepEar still outperforms the baseline in
the distance and AoA estimation.

E. Transfer Learning Performance

The experiment results above show that transfer learning
effectively helps DeepEar adapt to new environments. We
also test DeepEar with different sizes of new data in transfer
learning. The result is illustrated in Fig. 14. We zoom into the
y-axis of accuracy for clear observation. We can see that only
2% of new data can essentially boost the DeepEar performance
in both the small meeting room and the large lecture room.
The Accuracy (MAE) steadily increases (decreases) with the
number of training data grows. In theory, if more new data is
used in transfer learning, we can achieve better performance.
Yet we need to balance the performance and the extra training
overhead, since collecting a large number of new data in
different environments could be practically challenging for
ordinary users. This experiment reveals that 2% of new data
(i.e., 180 one-second instances) is efficient for DeepEar to
yield a good adaption result in different new environments,
while with 10% of new data DeepEar can achieve higher
performance if needed.

F. Real-world Case Study

To further evaluate the importance of ears for sound local-
ization in practice, we performed a real-world localization ex-
periment. A binaural microphone (miniDSP EARS) is placed
in a meeting room as the recording device. Several speech
files were randomly selected from the public TIMIT corpus.
Then, we used a portable loudspeaker to play the selected
audio files at eight 45◦ evenly spaced directions 1m away
from the microphones with and without human-shaped ears
respectively. After that, audio recordings were sliced into one-
second samples and 20 Gammatone coefficients were extracted
from each 0.1 s frames as features.

We implemented a one-layer LSTM network consisting
of 100 hidden units, stacked with a dense layer with soft-
max function to execute the sound localization task. Fig. 15
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shows the localization confusion matrix with and without ears.
Without ears, the localization accuracy is 58.6% as shown in
Fig. 15(a). We can see the model suffers from front-back con-
fusion. Moreover, although the directions on the left side and
right side can be easily detected, the model can hardly identify
the degrees on each side. In contrast, the overall classification
accuracy increased to 92% after mounting the ears as shown
in Fig. 15(b). The confusion problem was alleviated and the
accuracy of almost all directions is improved, which means
the human-shaped ears indeed help improve the localization
accuracy significantly.

VI. RELATED WORK

A. Sound Localization

DeepEar is most related to sound localization, especially
binaural localization. We summarise the related works in
literature in Tab. III and highlight the novelty of DeepEar.

The microphone array and distributed microphone arrays
have been widely used for sound localization. These works
mainly target a sound source emitting pre-designed signals
[29–31]. The human voice is generally unknown to micro-
phones, which brings about challenges for localization. Rich
bodies of research works utilize microphone arrays to estimate
the AoA of a sound, such as SRP-PHAT [1] or MUSIC [2].
VoLoc [32] and [33] locate the voice by nearby reflections
with only one microphone array. However, these methods are
not suitable for binaural microphones since they either suffer
the ambiguity problem, or require three microphones at least.
Previous works tried to tackle this problem via deep learning
techniques. WaveLoc [7] exploits a CNN on the raw waveform
and classifies sound into 37 directions. [34] also employs CNN
on interaural spectrograms to perform azimuth and elevation
classification. These works simply treat sound localization as a
classification problem, which cannot be generalized to multi-
source localization and different environments.

The interference from different sound sources raises practi-
cal challenges for locating multiple sources simultaneously. [3]
explores the microphone redundancy relationship to achieve
multi-source localization with a single microphone array.
Similarly, it requires several microphones to find the redundant
spatial pattern for each source, which cannot be applied to
binaural microphones. SMESLP [4] and [5] adopt a CNN
to localize multiple sources also with a microphone array.
[8] and [9] train a deep neural network for binaural multiple
sound localization. However, they assume that the number of
sources is known in advance. In contrast, DeepEar can achieve
multiple sound localization with binaural microphones with an
unknown number of sound sources.

B. Bionic Auditory Applications

Inspired by the powerful human auditory capability, many
researchers imitated the human auditory mechanism and de-
signed smart systems to deal with sound-related tasks. For
example, [35] proposed an auditory-like system to recognize
the type of musical instruments, and [36] designed a machine
hearing approach to predict the types of sounds. The powerful

Sound localization Mic array Binaural mics
One source [32, 33] [7, 34]

Multiple sources [3–5] Known number Unknown number
[8, 9] DeepEar

Table III. Comparison with related works. DeepEar is the first sound
localization method for binaural microphones that can locate multiple

sources without a priori knowledge of the number of sources.

perceptual capacity of humans is still the goal of AI technology
today. Same as the research on CNN and its breakthrough
in computer vision tasks, we believe modeling the human
auditory system will open a broad range of possibilities in
sound-related tasks.

C. HRTF Calibration

One might be concerned that ear-caused HRTF is unique
and cannot be applied to a different ear-shaped binaural
microphone. Recent research found that humans can get used
to new mold ears accurately within a few weeks [25], which
indicates that we may perform incremental learning strategies
to adapt the HRTF among different ears. Recent work UNIQ
[37] personalizes the HRTF for different users with a smart-
phone and in-ear microphones. [38] also proposed a regression
approach to estimate the HRTF based on the ear’s 3D shape.
We plan to study whether the DeepEar model can adapt
to different ear-shaped binaural microphones in the future.
DeepEar is more suitable for service robot manufacturing. This
problem certainly calls for more research in the future.

VII. CONCLUSION

In this paper, we propose DeepEar, the first sound lo-
calization system for binaural microphones that can locate
multiple sources without a priori knowledge of the number
of sources. DeepEar imitates the human auditory system to
transform acoustic signals and extract latent representatives.
A multi-sector deep learning neural network is designed to
estimate the locations of multiple sources. By leveraging a
large amount of readily available datasets, we train a global
model without collecting any data from end-users. To cope
with the heterogeneity of working environments, DeepEar
further exploits the transfer learning strategy and re-trains the
global model with a small number of new data collected in real
usage scenarios. Thanks to the variational encoder and novel
neural network architecture design, DeepEar can generalize
to unseen data and quickly adapt to new environments with
minimum extra training data. Experiment results show that
DeepEar substantially outperforms the state-of-the-art works
in terms of sound detection as well as localization accuracy.
The authors have provided public access to their code and data
at https://github.com/Qiangest/DeepEar.
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