
EchoWrite: An Acoustic-based Finger Input System
Without Training

Yongpan Zou∗, Qiang Yang∗, Rukhsana Ruby∗, Yetong Han∗, Sicheng Wu∗, Mo Li‡, Kaishun Wu∗†
∗College of Computer Science and Software engineering, Shenzhen University

†PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China
‡School of Computer Science and Engineering, Nanyang Technological University

{yongpan,wu}@szu.edu.cn; rukhsana.afroz@gmail.com; limo@ntu.edu.sg

{yangqiang2016,wusicheng2016}@email.szu.edu.cn; kynehhh@foxmail.com

Abstract—Recently, wearable devices have become increasingly
popular in our lives because of their neat features and stylish
appearance. However, their tiny sizes bring about new challenges
to human-device interaction such as texts input. Although some
novel methods have been put forward, they possess different
defects and are not applicable to deal with the problem. As
a result, we propose an acoustic-based texts-entry system, i.e.,
EchoWrite, by which texts can be entered with a finger writ-
ing in the air without wearing any additional device. More
importantly, different from many previous works, EchoWrite
runs in a training-free style which reduces the training overhead
and improves system scalability. We implement EchoWrite with
commercial devices and conduct comprehensive experiments to
evaluate its texts-entry performance. Experimental results show
that EchoWrite enables users to enter texts at a speed of 7.5
WPM without practice, and 16.6 WPM after about 30-minute
practice. This speed is better than touch screen-based method on
smartwatches, and comparable with previous related works.

Index Terms—Acoustic signals, Texts input, HCI

I. INTRODUCTION

Due to the limited sizes of screens, wearable devices bring

about new challenges for human-device interaction such as

texts entry. Researchers have proposed various novel ap-

proaches for entering texts on mobile devices. But they possess

different shortcomings. Speech recognition enables people

to convey commands without touching, but leaks privacy

in public, degrades performance in noisy environment and

is inconvenient in certain occasions. Radio-frequency (RF)

signals and inertial sensors have also been utilized to design

texts-input systems [1]–[9]. But they either need specialized

hardware, or requiring users to attach/carry devices with them.

Prior works have also proposed to use acoustics to track finger

motion precisely [10]–[12]. Nevertheless, they require multiple

microphone-speaker pairs which are not available for most

commercial devices especially tiny smart devices. As a result,

we ask such a question: can we design a novel text-input
interface for existing commercial devices that does not require
any additional hardware and works in a device-free style?
Besides entering texts on tiny devices, such a system can also

handle cases where hands are wet or oil-scalded. Fig. 1 shows

the possible application scenarios.

In response to this question, we propose EchoWrite in

this paper, a system that enables users to enter texts without

(a) (b) (c)() ()

Fig. 1. Possible scenarios where EchoWrite can be applied. EchoWrite cannot
only be on wearable devices such as smartwatches and smartglasses to deal
with the inconvenience caused by small screens, but also on mobile devices
such as smartphones and tablets to handle the cases where hands are wet or
oil-scalded.

touching a device, wearing additional hardware and conduct-

ing system training. The high-level idea is to construct a

mapping between simple gestures and English letters, and infer

texts by recognizing fine-grained finger gestures via pervasive

acoustic sensors (i.e., microphone and speaker). However,

there are three challenges to deal with in order to transform

the idea into a practical system. First, it deserves great effort

to design an input scheme mapping English letters to finger

gestures with high learnability and efficiency. Second, for the

sake of comfort, the designed input gestures should be fine-

grained. But this in turn induces challenges to analyze subtle

signal changes for accurate finger gesture recognition. Third,

considering possible errors in performing and recognizing

gestures, it is required to conduct appropriate correction. But

how to design an efficient method is not straightforward since

there are exponential possible cases.

In the design of EchoWrite, we have taken the following

measures to resolve the above challenges. First, we decompose

basic letters into six basic strokes and groups them according

to their first or second strokes when they are written naturally.

Meanwhile, we design a finger gesture for each group by

directly utilizing the first stroke or making slight modification.

As a result, all letters are classified into different groups and

mapped with basic stroke gestures. Since this mapping rela-

tionship is constructed based on users’ writing habits, it enjoys

benefits of favorable learnability, memorability and efficiency.

Second, we transform time-domain signals into spectrogram

and extract unique Doppler shift profiles for stroke gestures.

778

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00081

By carefully designing signal processing flowchart, we can

track frequency shifting along with finger movements. More

importantly, the extracted profiles are intrinsically related with

gestures themselves, which makes EchoWrite get rid of labor-

intensive training overhead. Third, we propose a stroke correc-

tion method and adopt reasonable simplification to improve its

efficiency based on physical insights and experimental results.

By this means, we can achieve a good trade-off between

performance and efficiency. We have implemented a prototype

of EchoWrite on a Huawei Mate 9 and conduct extensive

experiments to evaluate its performance. The results show that,

with EchoWrite, users can enter texts at a speed of 7.5 WPM

(i.e., word per minute) without repetitive practice, and the

speed increases to 16.6 WPM after about 30-minute practice.
Compared with existing texts-entry methods for smartwatches,

EchoWrite exceeds them not only in speed but also in user

experience. In a nutshell, the contributions of our work can be

summarized as follows.

• We propose a device-free texts-input system based on

pervasive acoustic sensors in smart devices. It is scalable

to devices of different form factors, robust to background

noises, and requires no system training process.

• We propose an input scheme that matches basic English

letters with simple finger gestures with high learnability.

We also develop effective data processing methods to ex-

tract minute Doppler shifts caused by fine-grained finger

gestures, and design accurate texts inference method.

• We implement a prototype, i.e., EchoWrite, on a smart-

phone and conduct comprehensive experiments to eval-

uate its performance. The results demonstrate that our

system enables users to enter texts at a favorable speed

up to 16.6 WPM.

The remainder of this paper is organized as follows. In

Sec. II, we give an overview of EchoWrite. Following that,

we give details of system design in Sec. III. We describe

the implementation and experiments in Sec. IV, and display

performance evaluation in Sec. V. Last in Section VI and

Section VIII, we discuss related work and conclude the paper

respectively.

II. SYSTEM OVERVIEW

A. Input Scheme Design

The key idea of our input scheme is similar to T9 soft

keyboard in which each key represents a set of English letters

and texts can be recognized in a fuzzy way. Inspired by the

fact that uppercase English letters can be decomposed into six

basic strokes as shown in Fig. 2(a) [5], we design the input

scheme by assigning 26 letters to basic strokes following two

principles. The first one is high learnability. That means, the

input scheme should incur as light mental workload as possible

for users. Thus, the matching relationship between letters and

strokes should be natural and memorable, such as grouping

letters according to their first or second strokes as shown

in Fig. 2(b) recommended for kid’s learning English [13].

The second principle is the uniqueness of Doppler profiles

S1 S2 S3 S4 S5 S6
(a) Basic strokes of English letters

1 2

3

1 2

3

1 1 2 1 3

4

2

1 2

3

1

2

1 2

3

1 2

3

1 2 1 2

3

1

2

1 3 24

1 3 2 1 1 2 1

2

1 2

3

1 1 2 1 1 2 1 2 3 4 1 2 1 2

3

1 2

3

(b) The stroke order of English letters

Fig. 2. The design of input scheme.

(see Sec. III-B) of different strokes, which means each stroke

should induce unique Doppler shift pattern. Taking the above

into account, we design an input scheme as shown in Fig. 3.

We also conduct a preliminary user study to evaluate the

learnability and efficiency our input scheme in which we

assume that our system recognizes strokes with an accuracy

of 90% 1. We recruit 6 participants with 3 females and 3
males from our campus without knowledge of our project

before. Before experiments, we spend time to introduce the

input scheme until they have fully understood. And then we

request them to write out stroke sequences corresponding to

300 most frequent and randomly shuffled words selected from
Corpus of Contemporary American English (COCA) [14].

In this process, participants are allowed to see each word

for only once, and are reminded but not permitted to make

correction when they make errors. Each participant writes

words continuously for 15 minutes. After that, we can obtain

the accuracy of writing stroke sequences every one minute as

shown in Fig. 4. As we can see, after 15 minutes’ practice,

participants can write out stroke sequences of different words

with an average accuracy up to 98%. Moreover, we also

investigate participants’ words-input speed and accuracy after

15 minutes’ practice as shown in Fig. 5 and Fig. 6 It is clear

that participants can enter words with our scheme at a speed of

11 WPM and achieve a word-recognition accuracy of 90%2.

B. The System Flowchart

Fig. 7 displays the flowchart of EchoWrite. When users

intend to enter texts, they write a sequence of strokes with

a finger near a device. Meanwhile, a built-in speaker emits in-

audible single-tone audio signals of 20 KHz and a microphone
samples echoes at 44.1 KHz simultaneously. Then we perform
short time Fourier transform (STFT) with Hanning window

on audio sequence to obtain corresponding spectrogram. To

reduce noises in spectrograms and enhance Doppler shifts

caused by finger movement, we apply a series of image

processing techniques such as smoothing and binarization.

After that, we propose a mean value-based contour extraction

algorithm (MVCE) to figure out outlines of Doppler shifts

1Since we only evaluate the learnability of input scheme instead of the
whole system, it is acceptable to make such an assumption.

2It is noted that this accuracy is obtained by multiplying assumed stroke-
recognition accuracy (90%) by word sequence accuracy.

779

I T Z J
E F H K L
A M N
V W X Y
C G O Q S U
B D P R

S1
S2
S3
S4
S5
S6

Fig. 3. The design of letter assign-
ment scheme

1 3 5 7 9 11 13 15
Time (min)

80

90

100

Ac
cu

ra
cy

 (%
)

Fig. 4. The accuracy of stroke se-
quence along with practice time

U1 U2 U3 U4 U5 U6
 User ID

0

4

8

12

 W
or

ds
 p

er
 m

in
ut

e

Keyboard
Feasibility Study

Fig. 5. The words-input speed of dif-
ferent participants in learnability study

U1 U2 U3 U4 U5 U6
 User ID

40

60

80

100

 A
cc

ur
ac

y
(%

)

Keyboard
Feasibility Study

Fig. 6. The stroke-input accuracy of
participants in learnability study

Fig. 7. The work flowchart of EchoWrite.

based on cleaned spectrograms as profiles of different strokes.

At last, we perform dynamic time warping (DTW) to recognize

strokes and utilize Bayesian language model to infer inputed

texts (i.e., words and sentences) by a list of candidates with

corresponding probabilities. It is noted that the Doppler profile

in our work is different from that in [15], since it is extracted

from reflected signals instead of direct propagations.

III. SYSTEM DESIGN

A. Doppler enhancement

After receiving echoes, we perform short-time Fourier trans-

form (STFT) with a Hanning window on signal sequence in

order for framing audio files and extracting Doppler shifts

caused by finger movements. To balance the time-frequency

resolution and real-time performance of motion analysis, we

empirically set the frame length (i.e., FFT size) and window

step size to be 8192 and 1024 samples (corresponding to 0.186
s and 0.023 s), respectively. Consequently, we can obtain

the spectrogram of raw signals which displays the Doppler

shifts of writing strokes as shown in Fig. 8(a). Then we

concatenate the STFT results of every 5 frames and obtain

the spectrogram of corresponding signal sequence. To reduce

following computation overhead, we estimate the frequency

range of interest by considering the Doppler shifts calculated

by

Δf = f0 × |1− vs ± vf
vs ∓ vf

| (1)

where f0, vs and vf represent frequency of emitted signals

(20 KHz), speed of sound (340 m/s) and velocity of finger

movement (4 m/s at maximum [16]), respectively. Thus the

resultant frequency shift is about 470.6 Hz and the effective

frequency range should be within [19530, 20470] Hz. In this

way, the column size of spectrogram to be processed can be

reduced from 8192 to 350.
After that, we perform a 3 × 3 median filter to remove

random noises. Following this, we subtract STFT of static

frames (i.e., without finger movements) from each following

frame within a stroke in order to suppress static frequency

components of background noises, direct transmission and

multipath reflections. Specifically, we first compute the av-

erage STFT of initial 5 frames and subtract the corresponding
result from each frame within a stroke. The rationale is that

background noise and static multipath keep stable within

each stroke lasting no more than 1 seconds. Besides static

interference, there also exists bursting hardware noise whose

power is larger than background noise but lower than echoes

reflected from finger, which results in some random noisy

points in spectrogram after spectral subtraction. To deal with

this problem, we empirically define an energy threshold α
below which elements of the matrix are set to be zero,

and then apply a Gaussian filter with kernel size of 5 to

smooth the spectrogram as shown in Fig. 8(b). We observe

that α is closely related to hardware and set to be 8 in

our system design. Later on, we sequentially conduct zero-

one normalization to mitigate the effect of absolute amplitude

and perform binarization with a threshold of 0.15. Further
more, we also fill up the ”holes” in binary spectrogram by

performing a flood-fill operation on background pixels [17].

By the above operations, we can enhance the Doppler shifts

of finger movements and obtain a relatively clean spectrogram

as shown in Fig. 8(c).

B. Extracting Doppler profile

The next step is to extract the Doppler profile of writing

each stroke by figuring out the contour of spectrogram which

depicts the overall trend of each stroke. The challenge is that

due to multipath propagation, the received echoes are reflected

from different parts of a moving hand and other body parts,

which induces different Doppler shifts and makes it difficult

to pick out the finger component. We observe that reflections

from other parts except the finger possess lower frequency

shifts due to relatively slow moving velocities. Nevertheless, it

fails to work to simply select the frequency bin in a frame with

maximum shift value (i.e., Δf) considering random frequency

780

(a) The spectrogram of the whole
signal sequence with STFT

Time (s)
0.2 0.4 0.6 0.8 1 1.2 1.4

Fr
eq

ue
nc

y
(H

z)

�104

1.96

1.98

2

2.02

2.04

dB

0

2

4

6

8

(b) After spectral subtraction and
Gaussian smoothing

Time (s)
0.2 0.4 0.6 0.8 1 1.2 1.4

Fr
eq

ue
nc

y
(H

z)

�104

1.96

1.98

2

2.02

2.04

(c) After spectrogram normalization
and binarization

Sample index
0 20 40 60

Fr
eq

ue
nc

y
(H

z)

�104

1.96

1.98

2

2.02

2.04

Doppler profile
Acceleration

(d) The extracted Doppler profile af-
ter performing MVCE

Fig. 8. Different stages of extracting the Doppler shifts profile of writing stroke S2.

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(a) S1

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(b) S2

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(c) S3

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(d) S4

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(e) S5

0 50
Sample index

1.96
1.98

2
2.02
2.04

Fr
eq

ue
nc

y
(H

z) 104

(f) S6

Fig. 9. The extracted Doppler profiles of different strokes according to the final version of input scheme.

0 50 100 150 200 250 300 350 400 450 500 550
Sample index

1.96

1.98

2

2.02

2.04

Fr
eq

ue
nc

y

104

Doppler profile
Acc+20000

Fig. 10. The segmentation results for a series of writing strokes.

fluctuations. As a result, we propose a mean value-based

contour extraction algorithm (MVCE) which first compares the

average frequency shift with the center frequency to indicate

overall finger movement direction. After that, MVCE picks out

maximum frequency shift bin within positive or negative shift

range based on the above result. After performing MVCE, we

further smooth the raw Doppler profile to remove outliers with

a moving average filter with sliding window size of 3 as shown
in Fig. 8(d). The pseudocode of extracting Doppler profile is

as shown in Algorithm 1.

Following that, we proceed to segment the continuous

Doppler profile curve. To achieve this, we come up with an

acceleration-based segmenting method which localizing start

and end points of a stroke by detecting abrupt changes of

acceleration of Doppler shifts. The key insight is that writing a

stroke is a short-duration and high-acceleration process which

induces rapid changes in Doppler shifts. Specifically, we first

calculate first-order difference of obtained Doppler profile with

a noise-robust differential approach as follows [18].

acc(i) =
2× [y(i + 1)− y(i − 1) + y(i + 2)− y(i − 2)]

8
(2)

where y(i) and acc(i) represent Doppler shifts sequence

(i.e., finger moving speed) and its first-order differential (i.e.,
acceleration), respectively. On the other hand, considering the

principle of Doppler effect, we can obtain

ft =
1± vf

vs

1∓ vf
vs

f0 = ± 2f0vf
vs ∓ vf

+ f0 ≈ ±2f0vf
vs

+ f0 (3)

since vf � vs. The first-order differential of Doppler shift

(Δft = |ft − f0|) is as follows:

Δf
′
t =

2f0
vs

v
′
f =

2f0
vs

a (4)

where a is the acceleration of finger movement which is about

0.15 m/s2. Substituting this into the above equation, we know
that the acceleration of Doppler shift in normal cases is about

40. Therefore, we set a acceleration threshold β of detecting

stroke movement to be 40 and search the first point P whose

value is above this threshold. From P , we search backward

until the point whose Doppler shift is closest to zero. This

point is then identified as the start point of a stroke, denoted by

Pstart. When a user finishes writing a stroke, he/she withdraws

the finger and prepares to enter next stroke. In this process,

the speed remains but the acceleration decreases notably. To

identify the end point of a stroke, we set another acceleration

781

ALGORITHM 1: Doppler Profile Extraction
Input: Spectrogram matrix P , centre frequency bin cf
Output: Doppler shift profile DopShift

1 colNum=getColumNum(P);

2 DopShift(1:colNum)=cf ; //initialization
3 for i=1:colNum do
4 row=getNonNullRows(col(i)); // get non-null rows

of the ith col

5 if isNotEmpty(row) then
6 meanValue=mean(row);

7 if meanValue>cf then
8 DopShift(i)=max(row);
9 else

10 DopShift(i)=min(row);
11 end
12 end
13 end
14 DopShift = SMA(DopShift); // SMA represents

smoothed moving average filter

threshold γ to be β
2 , i.e., 20. If a point and its following

nine points are detected to be less than γ, it is therefore

identified as the end point of a stroke, denoted by Pend. By the

above method, segments corresponding to stroke movements

can be detected as shown in Fig. 10. As we can see, even

with interfering Doppler shifts caused by multipath (labeled

by green square) and irrelevant hand movement (labeled by

circle), our method can effectively detect the start and end

points of each stroke.

C. Stroke and Texts Recognition

Following profile extraction, the next step is to recognize

strokes. Our insight is that different strokes produce unique

Doppler profiles as shown in Fig. 9. More importantly, within a

certain range, the Doppler profiles are intrinsically related with

strokes themselves, while irrelevant with who performs them

and how fast they are performed. Limited by the page limit, we

leave out the proof of above statement. For stroke recognition,

we make use of dynamic time warping (DTW) to match an

extracted Doppler shift profile with templates pre-stored in the

system. DTW is a mathematical method to compute similarity

of time series which outperforms over other methods by taking

stretch and contraction of into consideration [5].

Recognizing a stroke sequence enables us obtain different

combinations of letters among which some are feasible words.

To infer corresponding words, we make use of posterior prob-

ability maximization technique and find out feasible words

with highest probability. To be specific, for a stroke sequence

denoted by I = s1s2...sn, the output is a letter combination

denoted by w = l1l2...ln, where s1, s2, ..., sn and l1, l2, ..., ln
are mutually independent. By Bayesian rule,

P (w|I) = P (w, I)

P (I)
≈ P (w, I) (5)

since P (I) is the same for every possible candidate. Further,

we know that

P (w, I) = p(w) · P (I|w)

= p(w) · P (s1s2...sn|l1l2...ln)

= P (w) ·
n∏

i=1

P (si|li)
(6)

This is,

P (w|I) ≈ P (w) ·
n∏

i=1

P (si|li) (7)

where where P (w) represents the prior probability of a

candidate word obtained by existent vocabulary statistics, and

P (si|li) can be obtained from confusion matrix in stroke-

recognition stage.

A straightforward approach to work out candidate words

is directly applying Eq. 7 to calculate probabilities of fea-

sible candidates and select the one with highest probability.

However, such an approach ignores possible errors in stroke

recognition caused by imperfection of our algorithm and user’s

writing strokes. Consequently, we propose a stroke correction

technique to improve the accuracy of word recognition. In

theory, stroke correction can be performed by deleting, insert-

ing and substituting a certain number of letters in different

positions within the word, which yet induces exponential

increase of computation overhead. However, we notice that our

acceleration-based stroke detection method can accurately de-

tect strokes and ignore irrelevant motion interference. It means

that we can take no account of deleting and inserting cases

without much performance decline. What is more, according

to our experiments, we find that there is little possibility for

multiple strokes to be wrongly recognized simultaneously in

a sequence. Consequently, when we perform correction for a

candidate word, we only consider the substitution case with

editing distance of 1 at each time.

To further improve computation efficiency, we make use of

an experimental observation that errors of stroke recognition

are mainly caused by high false positive rate of S1 and false

negative rate of S5, only consider these possible substitution

cases when performing stroke correction. This is because S2,

S4 and S6 are likely to be recognized as S1, and S5 are likely

to be recognized as S2 and S6, as indicated by Fig. 9. Thus,

we replace S1 by S2, S4 and S6, and substitute S2 and S6

for S5 in turn . By substituting one stroke each time, we can

obtain a set of corrected stroke sequences.

As aforementioned, each stroke sequence corresponds to

multiple letter combinations of which a part are feasible words.

To check a letter combination, we build up a customized dic-

tionary consisting of 5000 words with top frequencies selected
from Corpus of Contemporary American English (COCA),

which is one of the largest currently available corpora [14],

[19]. Each word is encoded to be an entry with attributes of

{word, frequency, length, strokeSeq}, of which strokeSeq
represents its corresponding stroke sequence. When we find a

word match in the dictionary, we calculate its corresponding

782

ALGORITHM 2: Word Recognition Algorithm

Input: Stroke sequence I = s1s2...sn
Output: candidate words W

1 CandidateI=correct(I)∪ I;

2 W= ∅;

3 for each I in [candidateI] do
4 words=findInDictionary(I);

5 for each word w in [words] do
6 compute P (w|I) = P (w) ·∏n

i=1 P (si|li);
7 end
8 W = W∪words;
9 end

10 sort W by word length in ascending order, and

P (W |I) in descending order;

probability by P (w) · ∏n
i=1 P (si|li), where P (w) is the

attribute of frequency and P (si|li) can be obtained by stroke
recognition. We sort these feasible words by their P (w|I) in
a descending order and provide top k (k equals 5 in our

implementation) candidates with highest probabilities for a

user to choose. The above process is summarized in Algorithm

2. In this way, users can input text with a small screen

which enables them to perform sliding and choosing, such

as smartwatch screens and touchpads of smart glasses. In

our implementation, if a user does not make any choice

longer than 1 second, the system will acquiescently pick top

1 candidate as the result. After word recognition, our texts-

entry algorithm will predict following words by automatic

successive associations by using the 2-gram data of COCA.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We implement EchoWrite on a Huawei Mate 9 equipped

with a 2.4 GHz Hisilicon CPU and 6 GB RAM. The Android

application is developed with Java and C codes, of which the

former are responsible for high-level logic and user interface

designing, while the latter are utilized for low-level data pro-

cessing algorithms. When the system runs, a process controls

the speaker to emit 20 KHz sinusoidal modulated audio signals
continuously, and another process manages a microphone to

sample echoes at 44.1 KHz and stores collected data in buffer
with a size of 5 frames. When the buffer is full, data are fed

to the following processing flowchart.

Limited by CPU capacity, current smartwatches can not

afford the data-processing workload, which makes it unfeasible

to implement real-time EchoWrite on them. Even though, to

verify capabilities of other hardware, we implement the func-

tion of emitting and receiving audio signals simultaneously on

a Huawei smartwatch 2. The received echoes are processed

offline following the same routine as shown in Fig. 7.

B. Experiments

In order to evaluate EchoWrite, we have conducted com-

prehensive experiments under three settings as follows.

• Meeting room During experiments, the air conditioners

are turned on and windows are closed as a usual case

in daily life. The average noise level is measured to be

60 ∼ 70 db with a sound level meter.

• Lab area The room size is 8 m × 9 m in which twenty

students are working on workdays. During experiments,

non-participants are unaware of on-going experiments.

They keep a usual state such as working with computers,

chatting casually, and walking around occasionally.

• Resting zone It is an open area in the CSE building

spared for discussing problems and conversing casually.

Moreover, since it is very close to a corridor, students

usually walk around or talk with each other near our

experiments site. To test EchoWrite’s robustness to irrel-

evant movements, we also request a participant to walk

around near the site with a distance of 30 ∼ 40 cm.

We recruit 6 participants for our experiments. Overall, our

experiments can be divided into three parts, namely, stroke

recognition, words input and phrases entry. As participants

have no idea about our design scheme, we explain rules

to them until they have totally understand how experiments

should be conducted. Before experiments, we let them do some

texts entry practice according to the rules in order to make

sure they have actually understand. For stroke recognition,

we request each participant to perform each stroke for 30
times in each experimental setting. As a result, we can obtain

a total number of 3240 (3(settings) × 6(participants) ×
6(strokes) × 30(repetitations)) testing instances. For the

evaluation of words input, we select 10 words of short,

medium and long lengths from COCA as shown in Table I.

These words are commonly used in our communications

such as short messages, brief memos, and etc.. And also

words of different lengths cover all six strokes. In this set

of experiments, participants are requested to write each word

for a total number of 30 repetitions.

V. EVALUATION

In this section, we demonstrate system evaluation. Several

metrics are explained as follows.

• Top k accuracy: For a word entered for N repetitions, it

occurs n times in the lists with top k candidates. Then

top k accuracy is defined as n
N .

• WPM: It is short for word(s) per minute which measures
the average number of words entered per minute. This

metric is commonly used for evaluating the efficiency of

an text-entry system.

• LPM: It is short for letter(s) per minute which measures

the average number of letters entered per minute. This

metric takes the length of words into account when

evaluating texts-entry efficiency.

A. Stroke Recognition Performance

1) Overall performance on different devices: As mentioned
in Section IV-B, although we have not implemented real-

time EchoWrite on a smartwatch, we test the performance of

recognizing strokes on a Huawei smartwatch by off-line data

783

TABLE I
THE SELECTED WORDS FOR OUR EXPERIMENTS FROM COCA

Properties
Words

OK YES YOU CALL SOON WAIT LATER THANKS MEETING RECEIVE

ID W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Length 2 3 3 4 4 4 5 6 7 7

Frequency (×104) 5.5 15.7 308 36.7 7.7 10.2 14.2 2.3 5.0 8.0

S1 S2 S3 S4 S5 S6
 Stroke ID

60

80

100

 A
cc

ur
ac

y
(%

)

Phone
Watch

Fig. 11. The performance comparison of
EchoWrite with smartphone and smartwatch.

S1 S2 S3 S4 S5 S6
StrokeID

60

80

100

 A
cc

ur
ac

y
(%

)

Meeting room
Lab area
Resting zone

Fig. 12. The recognition accuracy of different
strokes in three experimental environment.

U1 U2 U3 U4 U5 U6
UserID

60

80

100

 A
cc

ur
ac

y
(%

)

Meeting room
Lab area
Resting zone

Fig. 13. The accuracy of recognizing strokes for
different participants in experiments.

W1 W2 W3 W4 W5 W6 W7 W8 W9W10

Word ID

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Top-1 Top-2 Top-3 Top-4 Top-5

Fig. 14. The top 5 accuracies with stroke correc-
tion for different words in experiments.

Top-1 Top-2 Top-3 Top-4 Top-5
 Top-k accuracy

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Before correction After correction

Fig. 15. The average top 5 accuracies of words
recognition with and without stroke correction.

U1 U2 U3 U4 U5 U6
 User ID

0
2
4
6
8

10

 W
PM

EchoWrite
Watch keyboard

Fig. 16. The comparison of words-entry speed
between EchoWrite and Soft keyboard on a
smartwatch.

processing. Fig. 11 shows the results. The average accuracy

of recognizing user-defined stroke gestures with a smartwatch

is about 94.4% which is very close to that of EchoWrite

implemented on Mate 9 (i.e., 94.7%). The negligible difference

indicates that acoustic sensors on a smartwatch are capable

of sensing finger gestures, which verifies the feasibility of

extending EchoWrite to smartwatches in the near future.

2) Accuracy of different strokes: Fig. 12 shows average

accuracies of recognizing different strokes under three settings.

Overall, the accuracy can be up to 98.9% (S3, lab area)

and is no lower than 87.8% (S5, resting zone), which indi-

cates EchoWrite’s high performance of recognizing strokes.

Moreover, compared with other strokes, S4 and S5 possess

worst performance since they are more complex which makes

it more difficult to write them well. In addition, we can

see that the average accuracies over all strokes are 94.4%,

94.9% and 93.2% in meeting room, lab area and resting

zone, respectively. We can obtain that EchoWrite is robust to

noises from different sources such as air conditioner, human

talking and typing keyboard, and irrelevant human motions.

The reasons are two-fold. On the one hand, the frequency

range of received echoes shares few overlaps with common

nosies in daily environments. On the other hand, compared

with finger strokes, normal human motions are with lower

accelerations, and thus are filtered by our acceleration-based

stroke detection method. However, due to bursting noise that

span whole frequency band like rubbing interference, accuracy

in resting zone decreases slightly.

3) Accuracy of different participants: Fig. 13 displays

stroke recognition performance for different participants in

order to evaluate the impact of user diversity. The average

accuracies of different participants over tested settings are

95.6%, 93.5%, 93.1%, 93.0%, 94.8% and 95%, respectively.

Due to different proficiencies in performing finger gestures,

their performances deviate from each other by a maximum gap

of 2.6%. However, considering the minute standard deviation

(i.e., 1.1%), we can claim that with same training, participants

can achieve nearly the same performance.

B. Texts Recognition Performance

1) Accuracies of different words: Fig. 14 shows the top

5 accuracies of recognizing words shown in Table I. For

k = 1, 2, ..., 5, the average top k accuracy over different words

is 73.2%, 85.4%, 94.9%, 95.1% and 95.7%, respectively. By

784

U1 U2 U3 U4 U5 U6
 User ID

0
5

10
15
20
25
30

 L
PM

EchoWrite
Watch keyboard

Fig. 17. Letter-entry speed between
EchoWrite and smartwatch keyboard.

0 3 6 9 12 15
Session ID

0
10
20
30
40
50
60

Te
xt

-e
nt

ry
 s

pe
ed

WPM
LPM

Fig. 18. Speed of text input after dif-
ferent numbers of training sessions.

providing 3 candidates, EchoWrite can infer words correctly

with a probability of 94.9% which is favorable for texts entry.

When k exceeds 3, the accuracy slightly increases by 0.8% that

can also be verified by Fig. 15. The above results mean that

EchoWrite can achieve high words-recognition performance

by providing only 3 candidates. Moreover, different words

possess varied absolute top k accuracies and overall trend. For

words such as W6, W8 and W10, when k is 2, the accuracy

reaches the maximum value; while for W4, the accuracy

increases with k.
2) Impact of stroke correction: To evaluate the impact of

stroke correction, we show the average top 5 accuracies for

cases with and without stroke correction in Fig. 15. Overall,

the average top 5 accuracies for both cases are 84.5% and

88.9%, respectively. For each k, the corresponding top-k
accuracy with stroke correction is higher than that of without

stroke correction. This indicates that stroke correction indeed

improves the performance of words recognition. The reason

is that with stroke correction, the algorithm provides more

candidates for inferring correct words. What is more, we can

clearly see that when k exceeds 3, the top-k accuracy nearly

keeps stable as aforementioned.

3) Speed of texts entry: Fig. 16 displays the average speeds
of entering given paragraphs randomly selected in Fry Instant

Phrases [20] with EchoWrite and touch screen on a smart-

watch. The paragraphs are grouped in five blocks, each of

which contains two paragraphs. The average texts-entry speeds

over all participants with EchoWrite and smartwatch are 7.5
WPM and 5.5 WPM, respectively. Moreover, by providing

more candidates, users can input texts with a higher speed up

to 8 words per second in a fuzzy way. Although this speed

is not comparable with soft keyboard on mobile devices with

large screens, it is yet sufficient for most texts-entry applica-

tions with wearable devices such as writing a memo, making

simple notes, giving short reply and the like. Considering the

differences of words’ lengths, we also compare the texts-entry

speed by LPM (i.e., letter per minute) in Fig. 17. We can

clearly see that the average speed is 25.6 LPM for EchoWrite

which is higher than that of smartwatch by about 18.8 LPM.

4) Impact of training time: Intuitively, a user’s proficiency

has great impact on text-entry speed. To evaluate this quan-

titatively, we request participants to ’write’ a block for 15
times (i.e., sessions). We display the WPM and LPM of each

session in Fig. 18. As we can see, with increasing number of

practice sessions, the speed of user’s texts input also increases

S1 S2 S3 S4 S5 S6
Stroke ID

0

100

200

 T
im

e
(m

s)

Signal processing Segmenting Matching

Fig. 19. The running time of differ-
ent parts of data processing.

0 5 10 15 20 25 30
 Time (min)

70

80

90

100

 P
ow

er
 (%

)

Fig. 20. The energy consumption
when running the application.

0 50 100 150 200 250
time (s)

0

10

20

30

C
PU

 (%
)

Fig. 21. The CPU overhead during the process of recognizing words.

especially in initial sessions. When this number reaches 13,
the WPM and LPM are stable and can be up to 16.6 and

55.3, respectively. Thus, we can conclude that with acceptable
training overhead, users can achieve much higher texts-input

efficiency.

C. System Running Performance

1) Running time of each part: The time consumption of

different data processing parts in EchoWrite is shown in

Fig. 19. As we can see, the total processing time of recognizing

a stroke is less than 200 ms which indicates favorable real-

time performance of EchoWrite. In other words, the response

time of our system is no more than 0.2 s. We can also see that

signal processing including Doppler enhancement and profile

extraction occupies over 90% running time. The underlying

reason is that performing STFT is rather time-consuming

which can be optimized by downsampling technique in the

future work. Further more, we notice that S4, S5 and S6 cost

more time than other strokes as they last longer and consist

of more samples than other strokes.

2) Energy consumption: To obtain knowledge of energy

consumption of EchoWrite, we leave EchoWrite in the back-

stage only and kill other Apps, monitor power levels of a mo-

bile device which continuously runs EchoWrite to recognize

texts every 5 minutes. As is shown in Fig. 20, the power level

decreases from 100% to 87% after 30 minutes, which means

about 3% power is consumed every 5 minutes. As a result, a

smartphone can last for about 2.8 hours if we run EchoWrite

continuously. Since entering texts such as short messages,

quick replies and etc. are not frequent, this power consumption
rate is acceptable for mobile devices. By optimizing STFT as

aforementioned, we can further reduce the power consumption

of EchoWrite.

3) CPU occupation: We also evaluate the occupancy of

CPU resources when a mobile device runs EchoWrite. During

evaluation, we turn off all other applications except EchoWrite

and monitor CPU consumption with Android API. We contin-

uously enter texts to test the maximum CPU consumption with

EchoWrite. Fig. 21 shows real-time CPU proportion consumed

785

during recognizing words with EchoWrite. Even though the

CPU proportion varies from 9.5% to 25.6%, the average is

about 15.2% with a standard deviation of 2.3% which is

acceptable for an application. Indicated by Fig. 19, we can

further decrease CPU resources consumption by accelerating

image and matrix processing using the GPU.

VI. RELATED WORK

A. Acoustic signal-based HCI

Acoustic sensors have been widely used for human-device

interaction with mobile devices in coarse gesture recognition

[16], [21]–[25], digits input [26] and precise motion tracking

[10]–[12], [27], [28]. The early works [21], [24], [25] require

users to move devices to achieve device-to-device interaction.

The works [16], [22], [23] makes use of Doppler effect

caused by relative motion between one’s hand and a device

to recognize coarse hand gestures such as ”Pull”, ”Flick” and

etc.. In contrast, our work focuses on designing a texts-entry

system based on more fine-grained finger movements instead

of solely recognizing hand gestures, which brings about unique

challenges. Among the above works, AudioGest [23], which

achieves accurate hand gesture recognition, is most related to

ours from technical perspective. However, the differences are

notable as well. First, due to finer granularity of input gestures,

techniques developed in [23] can not be applied in our work

according to our implementation. Second, as EchoWrite is a

text-entry system, we have also devoted to designing efficient

and accurate input scheme and texts recognition techniques.

Some other works develop high-precision motion tracking

systems in a device-based [27], [28] or device-free way [10]–

[12] which accomplish mm-level 2D motion tracking. But

they require multiple normal microphone-speaker pairs which

are not available for most commercial devices especially tiny

smart devices.

B. Motion sensor- and RF-based input systems

Besides acoustics, other text-entry systems can be mainly

divided into two categories, namely, sensor-based [5], [6], [9],

[29] and radio frequency (RF)-based [1]–[4]. Motion sensor-

based systems mainly utilize inertial sensors (i.e., accelerom-
eter, gyroscope) or with proximity and distance sensors to

recognize characters, digits and texts [5], [6], [9], [29], [30].

Compared with EchoWrite, they have the following shortcom-

ings: 1) needing additional hardware such as a ring or glove

except the interactive device; 2) requiring users to wear or

carry devices during interaction; 3) being sensitive to irrelevant

body movements. RF-based systems utilize Wi-Fi, RFID,

60 GHz signals and visible light to achieve high-precision

finger input [1], [2], [4], [31] or coarse inputing gestures [3].

Nevertheless, they require additional RF equipment, such as

RFID readers and tags, Wi-Fi transceivers, and LEDs, and thus

are not applicable for most mobile devices. In comparison,

EchoWrite provides a novel texts-input method without any

additional device/hardware, and works in a device-free, touch-

free and training-free style.

VII. DISCUSSION AND FUTURE WORK

As an prototype, EchoWrite still has several limitations and

needs to be optimized in the future work.

A. Scalability to smartwatches
As aforementioned, EchoWrite can not run on existing

smartwatches at present due to the limitation of CPU capacity.

However, according to results with a Huawei watch 2 as shown

in Fig. 11, the offline performance of strokes recognition

is close to that of a Huawei mate 9. This indicates that

the hardware of a smartwatch is capable of implementing

EchoWrite, provided that the CPU workload is affordable. We

are optimistic about tackling this problem considering two-

fold reasons. On the one hand, obtaining the spectrogram by

continuous STFT costs a high percentage of CPU resources.

To decrease computing overhead, a possible approach is to

utilize down-sampling technique to reduce the number of FFT

points, according to bandpass sampling theorem [32]. More

importantly, this operation does not need to modify main

methods proposed in this work. On the other hand, we can

expect that wearables’ CPUs are able to support EchoWrite in

the near future considering the rapid hardware improvement.

B. Robustness to bursting noises
Although EchoWrite has exhibited robustness to external

noises, it is yet sensitive to certain kinds of burst noises such

as knocking tables and striking objects which usually cover

a wide frequency range overlapping with signals utilized in

EchoWrite. Due to the frequency overlap, the noises cause

interference to spectrograms of strokes, which makes it rather

difficult to work out corresponding Doppler profiles and de-

grades the performance of stroke recognition. As a result, it

is desirable to further enhance system robustness by tackling

this problem. In our opinion, there are two possible approaches

to handle this problem. The first one is to improve denoising

techniques by making use of properties of such noises like

short duration. Another one is to use classification methods

to classify texts-entry behaviors and irrelevant behaviors. By

this approach, we can discard signal segments only containing

bursting noises caused by irrelevant events.

C. User-defined input scheme
In the design of input scheme, we have taken learnability,

memorability and efficiency into consideration. But we have

not considered users’ preferences to input gestures. For ex-

ample, some people may think certain gestures to be difficult

and would like to re-define them by themselves. The current

version of EchoWrite can not support users to customize the

input gestures due to two reasons. First, we have not designed

an module to automatically check whether the customized

gestures set are appropriate. For example, some gestures may

have the same Doppler profile which are not permitted accord-

ing to our approach. Another reason is that some parameters

are empirically determined according to gestures. When users

redefine certain gestures, the corresponding parameters need

to be adjusted automatically. We leave adding self-adjusting

module into EchoWrite as one of our future work.

786

VIII. CONCLUSION

Motivated by limitations of existing texts-entry approaches

for mobile devices, we propose a novel system named

EchoWrite that enables users to input texts with a finger

writing strokes in the air. EchoWrite relies on pervasive acous-

tic sensors to sense writing gestures and further recognize

entered texts. To design this system, we propose a natural and

efficient input scheme, develop fine-grained Doppler profile

extraction method, design stroke-correction and texts infer-

ence algorithm. To evaluate performance of our texts-entry

approach, we implement real-time system on a commercial

device and conduct comprehensive experiments. Results show

that our approach enables users to enter texts at a comparable

or even higher speed compared with related works. Although

EchoWrite has still some limitations, we envision that it has

great potential to be applied on various smart devices.

ACKNOWLEDGMENT

This research was supported in part by the China NSFC

Grant (61802264, 61872248, U1736207), Guangdong NSF

2017A030312008, Shenzhen Science and Technology Founda-

tion (JCYJ20180305124807337, JCYJ20170302140946299,

JCYJ20170412110753954, GRCK2017082111300325), Fok

Ying-Tong Education Foundation for Young Teachers in the

Higher Education Institutions of China (Grant No.161064),

GDUPS (2015), and Tencent Rhinoceros Birds- Scientific Re-

search Foundation for Young Teachers of Shenzhen University.

Kaishun Wu is the corresponding author.

REFERENCES

[1] J. Wang, D. Vasisht, and D. Katabi, “RF-IDraw: virtual touch screen in
the air using rf signals,” in ACM SIGCOMM, 2014.

[2] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-
time tracking of mobile rfid tags to high precision using cots devices,”
in ACM MobiCom, 2014.

[3] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “Widraw: Enabling
hands-free drawing in the air on commodity wifi devices,” in ACM
MobiSys, 2015.

[4] T. Wei and X. Zhang, “mtrack: High-precision passive tracking using
millimeter wave radios,” in ACM Mobicom, 2015.

[5] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[6] C. Amma, M. Georgi, and T. Schultz, “Airwriting: Hands-free mobile
text input by spotting and continuous recognition of 3d-space handwrit-
ing with inertial sensors,” in IEEE ISWC, 2012.

[7] M. Goel, L. Findlater, and J. Wobbrock, “Walktype: using accelerometer
data to accomodate situational impairments in mobile touch screen text
entry,” in ACM CHI, 2012.

[14] M. Davies, “Corpus of contemporary american english,”
https://corpus.byu.edu/coca/, 2008, accessed on 2018-07-31.

[8] T. Ni, D. Bowman, and C. North, “Airstroke: bringing unistroke text
entry to freehand gesture interfaces,” in ACM CHI, 2011.

[9] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, “Typingring: A
wearable ring platform for text input,” in ACM MobiSys, 2015.

[10] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “Fingerio: Using
active sonar for fine-grained finger tracking,” in ACM CHI, 2016.

[11] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using
acoustic signals,” in ACM Mobicom, 2016, pp. 82–94.

[12] S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao, “Strata: Fine-grained
acoustic-based device-free tracking,” in ACM MobiSys, 2017, pp. 15–28.

[13] Super English Kid, “Super English Kid,”
http://www.superenglishkid.com/2014/11/stroke-order-worksheet-
for-teaching-how.html, 2014, accessed on 2018-07-31.

[15] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra, “Dopenc: acoustic-
based encounter profiling using smartphones,” in ACM Mobicom, 2016.

[16] S. Gupta, D. Morris, S. Patel, and D. Tan, “Soundwave: using the doppler
effect to sense gestures,” in ACM CHI, 2012.

[17] P. Soille, Morphological image analysis: principles and applications.
Springer Science & Business Media, 2013.

[18] P. Holoborodko, “Applied mathematics and beyond,” http://www.
holoborodko. com/ pavel/, 2015, accessed on 2018-01-16.

[19] MarkDavies, “Word frequency data,” https:// www. wordfrequency. info/,
2010, accessed on 2018-01-08.

[20] T. Rasinski, “Fry instant phrases,” http://www. timrasinski. com/ presen-
tations/, 2018, accessed on 2018-01-08.

[21] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel, “DopLink:
Using the doppler effect for multi-device interaction,” in ACM UbiComp,
2013, pp. 583–586.

[22] K.-Y. Chen, D. Ashbrook, M. Goel, S.-H. Lee, and S. Patel, “AirLink:
sharing files between multiple devices using in-air gestures,” in ACM
UbiComp, 2014.

[23] W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan,
“Audiogest: enabling fine-grained hand gesture detection by decoding
echo signal,” in ACM Ubicomp, 2016, pp. 474–485.

[24] Z. Sun, A. Purohit, R. Bose, and P. Zhang, “Spartacus: spatially-aware
interaction for mobile devices through energy-efficient audio sensing,”
in ACM MobiSys, 2013, pp. 263–276.

[25] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “Swordfight: Enabling
a new class of phone-to-phone action games on commodity phones,” in
ACM Mobisys, 2012, pp. 1–14.

[26] Y. Zou, Q. Yang, Y. Han, D. Wang, J. Cao, and K. Wu, “Acoudigits:
Enabling users to input digits in the air,” in IEEE PerCom, 2019, pp.
313–321.

[27] S. Yun, Y.-C. Chen, and L. Qiu, “Turning a mobile device into a mouse
in the air,” in ACM MobiSys, 2015, pp. 15–29.

[28] W. Mao, J. He, and L. Qiu, “Cat: high-precision acoustic motion
tracking,” in ACM Mobicom, 2016, pp. 69–81.

[29] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch and i
can track my user’s arm,” in ACM MobiSys, 2016, pp. 85–96.

[30] C. Zhang, A. Waghmare, P. Kundra, Y. Pu, S. Gilliland, T. Ploetz,
T. E. Starner, O. T. Inan, and G. D. Abowd, “Fingersound: Recognizing
unistroke thumb gestures using a ring,” ACM Ubicomp, 2017.

[31] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile
interaction through near-field visible light sensing,” in ACM Mobicom,
2015, pp. 345–357.

[32] A. V. Oppenheim, Discrete-time signal processing (3rd Edition). Pren-
tice Hall Press, 1999.

787

