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Abstract

In this paper we present a method for localisation of fa-
cial landmarks on human and sheep. We introduce a new
feature extraction scheme called triplet-interpolated fea-
ture used at each iteration of the cascaded shape regres-
sion framework. It is able to extract features from simi-
lar semantic location given an estimated shape, even when
head pose variations are large and the facial landmarks are
very sparsely distributed. Furthermore, we study the im-
pact of training data imbalance on model performance and
propose a training sample augmentation scheme that pro-
duces more initialisations for training samples from the mi-
nority. More specifically, the augmentation number for a
training sample is made to be negatively correlated to the
value of the fitted probability density function at the sam-
ple’s position. We evaluate the proposed scheme on both
human and sheep facial landmarks localisation. On the
benchmark 300w human face dataset, we demonstrate the
benefits of our proposed methods and show very competi-
tive performance when comparing to other methods. On a
newly created sheep face dataset, we get very good perfor-
mance despite the fact that we only have a limited number
of training samples and a set of sparse landmarks are an-
notated. Source code is available for academic use 1.

1. Introduction
Many computer vision applications require localisation

of a set of landmarks for the purpose of fine-grained recog-
nition. For example, joint localisation in human pose es-
timation [34], part localisation for bird [6] and dog [25]
breed recognition. It is of interest to localise facial land-
marks for animals and humans, given the fact that their faces
hold rich information such as identity, expression, health
conditions, etc. In this paper, we are interested in localis-
ing sheep and human facial landmarks for real applications.

* indicates authors contribute equally.
1https://github.com/ChrisYang/TIFfacealignment

Figure 1: Normal sheep (left) vs. sheep in pain (right). The
red landmarks are associated with distinguishable patterns
that we intend to localise.

Sheep facial landmark localisation is new in computer vi-
sion field and has very promising potential in animal wel-
fare. Compared to other animals, sheep have less intricate
facial muscles and thus do not appear to have a wide array of
facial expressions. However, researchers have linked a few
specific postures with emotional experiences, for example
backward ear posture, which is associated with unfamiliar
and uncontrollable unpleasant situations, could express fear
[7]. Identifying the pain or suffering of animal (like sheep)
is an essential aspect of animal welfare and is very help-
ful to both researchers and farmers. As an example shown
in Fig.1, the sheep on the right is suffering heavily from
painfulness while the sheep on the left is in a normal condi-
tion. Experts on animal welfare research are able to pick
up several distinguishable patterns of sheep-in-pain such
as orbital tightening, abnormal ear position and abnormal
nostril and philtrum shape. In order to identify those fea-
tures automatically, localising the corresponding landmarks
on sheep face is very essential, which is conceptually very
similar to human facial landmarks localisation (also called
face alignment). As a classical problem in computer vi-
sion, face alignment has been intensively studied in the past
decades due to its wide applications for example face recog-
nition, facial expression recognition, avatar animation, etc.
Several recent methods such as [9, 8, 22, 31, 41, 39, 45]
have reported close-to-human performance on the academic



databases such as LFW [21], LFPW [5] and HELEN [24].
However, we meet several obstacles when we apply the

state of the art algorithms directly to real data, for both hu-
man and sheep facial landmark localisation. First, unlike
the benchmark dataset for human face alignment, in which
a large number of landmarks are often annotated, the num-
ber of facial landmarks in practice is usually smaller, due to
the annotation cost and fewer landmarks of interest. Sec-
ond, both human face and sheep face show big head pose
variations in real world given the uncontrollability. It usu-
ally results in localisation failures.

In this paper we deal with the problems mentioned
above. We build our localisation algorithm on top of
the Cascaded Pose Regression (CPR) framework, given its
good performance in facial landmarks localisation in the
wild. There has been a series of works with incremen-
tal improvement one after the other including [8, 9, 16].
The most recent work RCPR ([8]) introduced interpolated
shape-indexed features used in each regression. It demon-
strated better robustness against large pose variations and
shape deformations, compared to the closest landmark in-
dexed feature in [9]. However, the two-point-interpolation
method limits the feature extraction space, especially when
the number of facial landmarks is small. Landmark spar-
sity is often the case when we need to annotate a new train-
ing dataset given a limited amount of time or only a small
number of landmarks needed. To overcome those issues we
make the following contributions.

• We propose a new feature extraction scheme, called
triplet-interpolation feature (TIF) for cascaded pose re-
gression. It uses three anchor landmarks to calculate a
shape-indexed feature. It is more robust to large head
pose variation and shape deformation. More impor-
tantly, with this scheme, features can be extracted from
the facial area with no restriction.

• We propose an augmentation scheme for training sam-
ple to deal with the issue of imbalanced training data
distribution. This scheme sets the augmentation num-
ber of each training sample to be negatively correlated
to its value in the probability density function of the
training data. More intuitively, we augment the minor-
ity training samples with more random initialisations
and vice versa.

We have carried out experiments on both human and
sheep facial landmarks localisation and demonstrate the
benefits of our proposed methods under the situation of
sparse landmarks and large head pose variations. It also
shows competitive overall performance comparing to other
related methods.

The reminder of the paper is organized as follows. In
section 2 we present related work. Then we introduce the

triplet-interpolation features and the augmentation scheme
in section 3. In section 4 we evaluate our proposed methods
on both human and sheep facial landmarks localisation and
in section 5 we draw some useful conclusions.

2. Related work

2.1. Facial landmarks localisation

Facial landmarks localisation has made considerable
progress in recent years and a large number of methods have
been proposed. Two types of source information are usu-
ally used: facial appearance and shape information. Based
on whether a method has an explicit detection model for an
individual landmark or not, we categorise them into local-
based methods and holistic-based methods. The methods in
the former category usually rely on explicit discriminative
local detection and usually use deformable shape models to
regularise the local outputs while the methods in the latter
category directly regress the shape (the representation of the
facial landmark locations) in a holistic way.

Local based methods usually consist of two parts: local
experts and spatial shape models. The former describes how
image around each facial landmark looks like in terms of
local intensity or colour patterns while the latter describes
how face shape varies. There are three main types of local
feature detection. (1) Classification methods include Sup-
port Vector Machine (SVM) classifier [30, 5] based on var-
ious image features such as Gabor [38], SIFT [27], Dis-
criminative Response Map Fitting (DRMF) by dictionary
learning [2] and multichannel correlation filter responses
[18]. (2) Regression-based approaches include Support
Vector Regressors (SVRs)[28] with a probabilistic MRF-
based shape model, Continuous Conditional Neural Fields
(CCNF)[4]. (3) Voting-based approaches are also intro-
duced in recent years, including regression forests based
voting methods [12, 14, 43] and exemplar based voting
methods [35, 33]. One typical shape model is the Con-
strained Local Model (CLM) [13]. There are some other
shape models such as RANSAC in [5], graph-matching in
[46], Gaussian Newton Deformable Part Model (GNDPM)
[37] and mixture of trees [48].

Holistic methods have gained higher popularity in re-
cent years. Most of them work in a cascaded way simi-
lar to the classical Active Appearance Model (AAM) [11].
We list very recent holistic methods as well as their proper-
ties in Table 1. These methods work in a similar cascaded
framework but differ from each other mainly in three as-
pects. First, how to set up the initialisations; Second, how
to calculate the shape-indexed features; Third, what type
of regressor is applied at each iteration. Feature extraction
and regression are usually interdependent. Core aspects are
discussed in [29]. As can be seen, several methods have in-
vestigated using simple pixel difference (diff.) features that



Table 1: Holistic methods and their properties.

Methods RCPR [8] ESR [3] LBF [31] TREES [22] SDM [39] TCDCN [45]
features pixel diff. pixel diff. forest on pixels pixel SIFT ConvNet feature
regressor random ferns random ferns linear random trees linear ConvNet

is calculated from the current shape. Random ferns and ran-
dom trees are widely used for regression. Using raw pixel
difference feature makes the algorithm very efficient. In
our testing, the method ESR, RCPR, LBF and TREES with
c++ implementation process a standard face image in mini-
seconds on an i7 desktop with a single core. This is a great
advantage in systems that are designed to process a large
number of faces, for example to analyse a group of sheep
at the same time. SDM has been widely applied given its
good performance of the publicly available model. It runs
at around 30 frames per second. TCDCN has applied deep
learning approach for face alignment by multi-task learn-
ing, but training such a model usually requires a big dataset
with multiple additional annotations such as head pose, w/o
glasses, etc.

There are several other approaches for holistic face
alignment such as occlusion detection based methods by
[19, 41], combined local and holistic method in [1], SDM
variants including the global SDM [40] and shape search-
ing in [47]. Due to their different setting and limited space,
we will not compare them in our experiments. Please refer
to [42] for a comprehensive study of recent face alignment
methods.

2.2. Data imbalance

The data imbalance problem is of particular importance
in real world scenarios as the available data usually follows
a long tail distribution. Data imbalance has been widely
studied in classification problems, i.e., a few classes are
abundant while others only have a limited number of sam-
ples [20]. State of the art solutions include sampling meth-
ods (e.g. under-sampling [26] and SMOTE over-sampling
[10]), cost-sensitive learning [17, 20]. On the contrary, very
little attention has been paid on data imbalance in regres-
sion problem (like our facial landmark localisation). This is
mainly due to the fact that the data imbalance is difficult to
be noticed given the continuity and the usually high dimen-
sionality of the output space. Thus in this paper we investi-
gate how to adapt the approach of tackling class imbalance
to regression problem.

3. Method
In this section, we first briefly review the general cas-

caded pose regression (CPR) approach, on which our lo-
calisation algorithm has been built. Then we introduce the
triplet-interpolated features. Following that, inverse propor-

tional augmentation is discussed in details as an approach to
deal with imbalanced training data.

3.1. General CPR and RCPR

The shape of a human or sheep face is repre-
sented as a vector of landmark locations, i.e., S =
(y1, ..., yk, ..., yK) ∈ R2K , whereK is the number of land-
marks. yk ∈ R2 is the 2D coordinates of the k-th landmark.
CPR is formed by a cascade of T regressors, R1...T . Shape
estimation starts from an initial shape S0 and progressively
refines the pose. Each regressor refines the pose by produc-
ing an update, ∆S, which is added up to the current shape
estimate, that is,

St = St−1 + ∆S. (1)

The update ∆S is returned by the regressor that takes the
previous pose estimation and the image feature I as inputs:

∆S = Rt(St−1, I) (2)

The CPR is summarized in Algorithm 1 [16].This CPR
framework differs from the classic boosted approaches
mainly in the feature re-sampling process. More specifi-
cally, instead of using the fixed features, the input feature
for regressor Rt is calculated relative to the current pose es-
timation, thus in turn introduces geometric invariance into
the cascade process and shows good performance in prac-
tice. This is often referred as pose-indexed features as in
[16]. The idea of sampling features from current pose es-
timation is later used in [9, 22]. To strengthen the geo-
metric invariance, instead of extracting features from the
closest landmarks, RCPR [8] utilizes a different feature-
indexing method (ht(I, St−1)), namely the interpolated
shape-indexed features. The features are extracted with ref-
erence to two shape points. [8] has proven that RCPR is
more robust to large pose variations than the general CPR.

Algorithm 1 Cascaded Pose (shape) Regression

Require: Image I , initial pose S0

Ensure: Estimated pose ST

1: for t=1 to T do
2: f t = ht(I, St−1) . Shape-indexed features
3: ∆S = Rt(f t) . Apply regressor Rt

4: St = St−1 + ∆S . update shape
5: end for



Figure 2: Pixels indexed by the same local coordinates
should have the same semantic meaning. The triplet-
interpolated feature shows its feature invariance to large
pose variation in the right bottom figure.

3.2. Triplet-Interpolated Feature (TIF)

The above CPR scheme and its variants are very popu-
lar given its high computational efficiency and localisation
accuracy. In each iteration, random ferns or random forests
takes raw pixel values as input features, which in turn be-
come essential to fast convergence in the cascaded learning.
Prevalent pixel-indexing features intend to be invariant with
respect to pose variation. That is to say, the indexed pix-
els referencing to same shape points are expected to have
same semantic meaning across different samples. Such ef-
forts have been made in [9], which applied shape-indexed
features, and in [8], which achieved stronger geometric in-
variance with the interpolated shape-indexed features.

However, the interpolated shape-indexed features in
RCPR has a fundamental drawback. It can only draw fea-
tures that are lying on the line segment between two land-
marks. As example shows in Fig 3a, features can be ex-
tracted from a rich area of the face when the landmarks are
dense. However it becomes problematic when the facial
landmarks are sparse. Features can only be extracted from
very restricted locations (see Fig. 3b). This limits the ran-
domness of feature extraction.

To combine the benefits of geometric invariance and
avoid its limitations, we propose a new indexing approach,
namely Triplet-interpolated feature(TIF), as shown in 3c.
The indexing process works in the following way: Out of
every group of three randomly selected landmarks, one is
randomly chosen and assigned as the primary point. Then
two vectors, from the primary to the rest two, can span the
whole plane by linear combination. By setting the param-

eters of the linear combination, a position can be selected
within the spanned area, as shown in Fig 3c. The location
of the point p indexed by TIF is represented as:

p(S, i, j, k, α, β) = yi + (α · ~vij + β · ~vik) (3)

where S is the current shape and i, j, k are landmark in-
dexes. ~vij = yj − yi is the vector from the position of
i to the position of j. α and β are the random ratios that
control the position of the indexed point. Compared to the
original closest landmark indexed feature in [9], the TIF
has two main advantages: 1) it is computationally cheaper
since it does not have the shape transformation step; 2) it
is more robust to large head pose variation given the triplet
interpolation property, as shown in Fig. 2. Compared to
the two-point-interpolated-feature in RCPR [8], it is able to
extract features from a much wider range, especially when
the landmarks are sparse. We will show the benefits of us-
ing TIF in the experiment section. Apart from the feature
extraction process, we follow the cascaded pose regression
process used by ESR [9] and RCPR [8]. Note that in this pa-
per, we only use the feature extraction part of RCPR as the
occlusion estimation part requires landmark-wise occlusion
annotation. In this way we also make the benefits of feature
extraction clearer.

3.3. Negatively Correlated Augmentation (NCA)

Before introducing our data augmentation scheme, we
first analyse the data distribution of the benchmark database
for human facial landmark localisation, i.e., 300w, which is
a benchmark database for human facial landmark localisa-
tion. It consists of face images from AFW [48], HELEN
[36], LFPW [5] and the newly annotated iBug [32]. We par-
tition it to 3148 training images and 689 test images. Train-
ing images are from AFW (337 images), HELEN training
set (2000 images) and LFPW training set (811 images), and
test images are from HELEN test set (330 images), LFPW
test set (224 images) and iBug (135 images).

Because it is impractical to analyse the data distribution
directly on the output space given its high dimensionality,
we ignore individual face difference and small facial de-
formation. Then facial landmarks distribution is mainly af-
fected by head pose variations, which lie in low dimensional
manifold. Therefore, we analyse the distribution of head
poses. Since head pose is not provided by the database, es-
timated head pose information for each face is derived from
the annotated facial landmarks. To this end, we fit a mean
3D model (68 facial points) of a head to the annotated points
in the image. Then we feed the set of corresponding 3D and
2D points to the POSIT [15] algorithm which produces the
head pose information.

As shown in Fig. 4, the majority of training samples dis-
tribute near frontal angles. More than 97% of the samples
lie within roll angle range between -20◦ and 20◦. For pitch
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Figure 3: The red lines in (a)(b) show the available area
for feature extraction when we use the linear-interpolated
shape-index features. (c) and (d) illustrate the concept of
our Triplet-interpolated features and its available feature
region. (b)(d) together show that how the new indexing
method extends the available area for feature extraction
when the shape annotation is sparse.

and yaw angle, such percentages are 83% and 76% respec-
tively. For each training sample, we calculate the most sig-
nificant rotation angle, i.e., the angle with the biggest abso-
lute value. Then we fit a Gaussian curve on all the training
samples as shown in Fig. 4d.

We ran several models on the test images including
the Explicit Shape Regression (ESR) [9], the Robust Cas-
caded Pose Regression (RCPR) [8], the Supervised De-
scent Method (SDM) [39], and the TCDCN [45]. Then we
recorded their failures, i.e. a sample with mean localisa-
tion error bigger than 0.1 inter-ocular-distance (IOD). The
overall distribution is shown in Fig. 4e. Despite these meth-
ods being modelled in very different ways, their failures are
quite similar. Only a few failures are within angle range be-
tween -20◦ and 20◦, where the majority of training samples
distribute. To this end, we can conclude that the imbalanced
distribution of training data has heavy impact on testing per-
formance, regardless of the algorithm design.

In the framework of cascaded shape regression, data aug-
mentation is usually carried out during training time. More
specifically, for one face image sample, several initialisa-
tions are generated by Monte Carlo method. This procedure
has been used in ESR, RCRP and SDM and the augmenta-
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Figure 4: (a) (b) (c) show the histogram of the head pose
pitch, roll and yaw angles respectively in 300w training set.
(d) shows the fitted Gaussian curve and the histogram of
the most significant angle of the training samples. (e) is the
histogram of failures from several state of the art models
trained on 300W (ESR, TREES, RCPR and SDM).

tion number is usually fixed. We propose a simple augmen-
tation scheme, under which the amount of augmentation of
each training sample is negatively correlated to the value
on the fitted Gaussian curve (Fig. 4d). Conceptually, this is
similar to over-sampling in classification problem but each
augmented sample becomes unique in our case because of
the initialisation difference. More specifically, the augmen-
tation number mx of training sample x is calculated as:

mx = a · N (xpose) + b (4)

where xpose the head pose of x, N (·) the fitted Gaussian
distribution. a is a negative variable that controls the slope
and b is a bias term that controls the bounds of augmentation
numbers. We use two pairs of values (the maximum and the
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Figure 5: Performance comparison on our sheep face
dataset. (Lower is better.)

minimum) to fit this linear equation with a constrain that
the total number after augmentation is equal to the baseline
augmentation scheme.

4. Evaluation
4.1. Sheep face experiment

We collected 600 sheep face photos from an animal re-
search centre. We manually labelled the bounding boxes
and 8 landmarks on faces as shown in Fig.1. We trained a
structured SVM sheep face detector based on HOG features
using dlib [23]. Using a few hundred sheep face images is
sufficient to train a sheep face detector which can be used
in real videos. In our sheep facial landmarks localisation,
as usual, we assumed the face bounding boxes are avail-
able. We randomly split the 600 sheep faces into a training
set (500) and a testing set (100). Then we trained our TIF
model, ESR and RCPR using the same training set. We set
the augmentation number to 20 for all these methods. We
repeated this random process for 5 times, and recorded all
the results. Since our test set is not big, we directly report
the sorted sample-wise mean error (normalised by sheep
face size) of the 100 images. For each index, the value is
the average over 5 runs. As can be seen, on a small dataset
with sparse landmarks, our method outperforms the base-
line methods by a large margin. Around 90% of the sheep
images are localised with mean error less than 10% of the
face size. Some example images with comparison to other
methods are shown in Fig. 6. The sheep face image in our
collected dataset exhibits a wide range of diversity: sheep
breed, facial colour, lighting condition, background, occlu-
sion, head pose, ear posture, etc.

4.2. Human face experiment

In order to further evaluate the proposed schemes, we
carry out experiments on human face alignment benchmark
database, i.e., 300w. Recall that we split the publicly avail-
able database into training set (3148 images) and testing set

(689 images). We have implemented and trained the base-
line models (ESR and RCPR) on the same training images.
Note that when implementing the RCPR algorithm we only
used their method of feature indexing (interpolation by two
landmarks) but not their occlusion modelling since there is
no occlusion annotation for training. Thus for ESR, RCPR
and our TIF method, the only difference is their feature ex-
traction step. During testing time, we also initialised them
with the same random shapes for a fair comparison. We
carried out two groups of experiments. In the first group,
the model was trained on 68 facial landmarks, and in the
second group, we only used very sparse landmarks, to simu-
late the case of the sheep facial landmarks localisation. The
mark-up of sparse landmarks is shown 3d, which distribute
almost uni-formally among the original 68 landmarks on
the face. Note that we use the face bounding box detected
by dlib face detector [23], followed by manual check for
each face image. This is more realistic in practice than us-
ing the tight bounding boxes calculated from the annotated
facial landmarks. In order to make a fair comparison, we
trained our model as well as most competitive models (high-
lighted in Section 2) including the RCPR, SDM, TREES,
ESR, CCNF, LBF, with the same setting. More specifically,
we use the same training set and the same bounding box
definition. For TCDCN, GNDPM, DRMF we use their ini-
tial trained models as their performance is less competitive.

As shown in Fig. 7a, 1) Our method (NCA + TIF)
gets the best performance despite the improvement over the
baseline RCRP method is not huge; 2) Only using TIF does
not show superior performance over RCPR on dense land-
marks setting, which is as expected. The benefit of us-
ing TIF is more clear on sparse landmarks, as shown in
Fig. 7b. Our proposed TIF improves the baseline RCPR
method as well as the similar ESR method by a large mar-
gin. Note that, there are some tricks that are able to make
the cascaded pose regression methods more robust such as
the smart-restart in [8] and the mirrorability based restart in
[44], which are naturally compatible to our TIF method as
well. In this evaluation we are more interested in the bene-
fits brought by the TIF.

We evaluate the NCA scheme in three methods, our pro-
posed TIF, the RCPR and ESR, since they use the same way
of data augmentation. We set the smallest augmentation
number to 11 and the biggest to 40 for the training samples
in our NCA method, which makes the total number equal to
20N , where N is the number of training samples, 20 is the
augmentation number used by the baseline methods. In this
evaluation, we are more concerned with test samples with
big head pose variations. Therefore, we record the success-
ful localisation rates (SLR), i.e. the percentage of test sam-
ples are with mean localisation error smaller than 0.1IOD.
As shown in Fig.8, the proposed NCA scheme is able to im-
prove the SLR effectively. Among the 689 test samples, it is



Figure 6: Landmarks localisation on example sheep face images. From top to bottom show the result of our TIF method,
RCPR and ESR respectively. The final column shows a failure example of our method.
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Figure 7: Performance comparison on dense (left) and
sparse (right) facial landmarks. (Higher is better.)
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Figure 8: Successful-localisation-rate comparison for meth-
ods with and w/o our proposed Negatively Correlated Aug-
mentation (NCA).

able to successfully localise more than around 30 samples.
This is very significant given the fact that the failures from
methods without NCA are already very difficult.

5. Conclusion and discussion

In this paper, we have addressed the problems of local-
ising key landmarks on sheep and human faces. We pro-
posed a new feature extraction scheme by triplet interpo-
lation(TIF), which is more effective under the conditions
of large head pose variation and landmark sparsity. On
our new sheep face dataset of only 600 images, our pro-
posed method works considerably well on a large diversity
of sheep faces. We also studied the issue of training data
imbalance and proposed an sample augmentation strategy
to improve the performance on test samples that have big
variations.

Though we have pushed forward the state of the art
method for facial landmarks localisation and decreased the
failures, there are still failures that are mainly caused by
head pose variation or heavy occlusions. It is an open ques-
tion whether we need to address these challenges explicitly
or provide more data similar to the failure cases. Regarding
the sheep face analysis, we have only localised the land-
marks of interest, there are still many problems to tackle in
order to build an automatic computer vision system to iden-
tify the sheep in pain. We believe these are all interesting
and valuable problems for both computer vision and animal
welfare community.
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