
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 1

Real-time Recognition of Affective States from
Non-verbal Features of Speech and its

Application for Public Speaking Skill Analysis
Tomas Pfister and Peter Robinson

Abstract —This paper presents a new classification algorithm for real-time inference of affect from non-verbal features of speech
and applies it to assessing public speaking skills. The classifier identifies simultaneously occurring affective states by recognising
correlations between emotions and over 6000 functional-feature combinations. Pairwise classifiers are constructed for 9 classes
from the Mind Reading emotion corpus, yielding an average cross-validation accuracy of 89% for the pairwise machines and 86%
for the fused machine. The paper also shows a novel application of the classifier for assessing public speaking skills, achieving
an average cross-validation accuracy of 81% and a leave-one-speaker-out classification accuracy of 61%. Optimising support
vector machine coefficients using grid parameter search is shown to improve the accuracy by up to 25%. The emotion classifier
outperforms previous research on the same emotion corpus and is successfully applied to analyse public speaking skills.

Index Terms —Affect analysis, speech analysis, public speaking, speech coaching, emotion in human-computer interaction.
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1 INTRODUCTION

EMOTIONS are fundamental for humans, impacting
perception and everyday activities such as com-

munication, learning and decision-making. They are
expressed through speech, facial expressions, gestures
and other non-verbal clues.

Affective speech analysis refers to the analysis of
spoken behaviour as a marker of emotion, with focus
on the non-verbal aspects of speech. Its assumption
is that the affective state of a person can be objec-
tively measured by analysing features from speech.
Supporting evidence for this assumption includes em-
pirical evidence that some emotions are associated
with physiological reactions which produce a change
in how the voice is produced. For example, anger
often produces changes in respiration and increases
muscle tension, influencing the vibration of the vocal
folds and vocal tract shape, thus affecting the acoustic
characteristics of the speech [1].

A completely new application of emotion detection
proposed in this paper is speech tutoring. Especially
in persuasive communication, the non-verbal clues a
speaker conveys require focused attention. Untrained
speakers often come across as bland, lifeless and
colourless. Precisely measuring and analysing the
voice is a difficult task and has in the past been
entirely subjective. By using a similar approach as
for detecting emotions, this paper shows that such
judgements can be made objective.
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In the past, there was a lack of interest in emotions
among computer scientists [2]. Pioneering work by
Rosalind Picard [3] in the late 1990s enabled a larger
audience to see the need for integrating emotions into
computing. Although the field has recently received
an increase in contributions, it remains a new area
of study with a number of potential applications.
These include emotional hearing aids for people with
autism; detection of an angry caller at an automated
call centre to transfer to a human; or presentation style
adjustment of a computerised e-learning tutor if the
student is bored.

Discovering which features are indicative of emo-
tional states and consecutively capturing them can
be a difficult task. Furthermore, features indicating
different states may be overlapping, and there may
be multiple sets of features expressing the same emo-
tional state. One widely used strategy is to compute
as many features as possible. Optimisation algorithms
can then be applied to select the features contributing
most to the discrimination while ignoring others.
This atheoretical approach to emotions avoids making
difficult a priori decisions about which features may be
relevant.

Previous studies indicate that several emotions can
occur simultaneously [4]. Examples of co-occurring
emotions include being happy at the same time as
being tired, or feeling touched, surprised and excited
when hearing good news. Improving upon the infer-
ence solution for co-occurring emotions presented by
Sobol Shikler [5], the new system proposed in this
paper is able to achieve real-time performance and
higher classification accuracy.

In this paper, we describe an approach for real-time
classification of co-occurring emotions. [6] The classi-
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fication output is a set of classes rather than a single
one, allowing nuances and mixtures of emotions to
be detected. Finally, we present a novel application of
the classifier to virtual speech coaching for improving
public speaking skills and show that objective com-
puterised analysis of public speaking skills is feasible.

2 APPLICATION FOR PUBLIC SPEAKING
SKILL ASSESSMENT

In addition to presenting an emotion classifier achiev-
ing state-of-the-art accuracy, we present a novel ap-
plication of the classifier for assessing the quality of
public speaking skills using our new Speech Tutor
corpus.

In persuasive communication, the non-verbal clues
a speaker conveys require special attention. Untrained
speakers often come across as bland and lifeless.
Precisely analysing the voice is difficult for humans
and is subjective. By using a similar approach as for
detecting emotions, our system enables more objective
assessment of public speaking skills.

Potential applications for the analysis include
speech coaching and presentation skill practice. A
speech coach could use the tool to achieve more
objective and precise analysis. A presenter could use
the immediate presentation feedback to practise pub-
lic speaking at home and modify the speaking style
according to the computer’s feedback and the advice
from a speech coach.

3 PREVIOUS RESEARCH

One of the first studies investigating the link between
intonation and emotions was done by Uldall [7], who
modified the intonation contour artificially. Huttar [8]
later recorded natural speech in lectures and found
significant correlations between prosodic features and
emotions. Significant fundamental work on speech
emotion detection was done by Dellaert et al. [9],
who proposed the use of statistical pattern recognition
techniques for emotion detection and set the basic
system architecture still used today. Their initial work
achieved accuracies of 60-65% using four classes of
acted data.

Starting from then, the accuracy has continually
been improving. Since people are not very good at
faking emotions on request, the focus has shifted
from acted data to induced and natural data. Batliner
et al. [10] detected the existence of emotions with
95% accuracy using an induced corpus. More recently,
Forbes-Riley et al. [11] and others have been using
human-human dialogues, achieving 84% accuracy for
valence. Steidl et al. [12] among others worked with
human-machine databases, achieving 60% accuracy
for four classes. Other recent works include work
using both acoustic and language features to detect
affect from call centre data [13] and medical dialogues

[14]. Schuller et al. [15] analysed interest in human-
human dialogues using a Multiple-Instance Learning
approach on frames instead of doing segmental anal-
ysis.

More recently, the INTERSPEECH speech emotion
recognition competition [16] was a collective effort
for increasing the classification accuracy for a specific
set of data. Lee et al. [17] achieved a high emotion
recognition accuracy using hierarchical binary deci-
sion trees. Dumouchel et al. [18] achieved 70% recall
using cepstral features. By fusing the output from
all candidates’ systems, the organisers managed to
achieve performance that exceeded all of the individ-
ual results.

A wide range of corpora are commonly used in
research, including among others the Belfast database
[19], the EmoTV corpus [20], EMO-DB [21], eN-
TERFACE corpus [22], Audio Visual Interest Corpus
(AVIC) [23] and the Mind Reading corpus [24]. The
choice of emotion corpus is heavily influenced by the
application and situation.

Popular classification models used include, among
others, different decision trees [25], support vector
machines [5], [26], [27], [17], [6], neural networks [12],
[10] and Hidden Markov Models. Again, which is the
best classifier often depends on the application and
corpus. To combine the benefits of different classi-
fiers, classifier fusion [28], [29] is starting to become
common. Schuller et al. [29] combine support vector
machines, decision trees and Bayesian classifiers to
yield higher classification accuracy. Scherer et al. [28]
combine three different KNN classifiers to improve
the results.

Many studies in psychology have also examined
vocal expressions of emotions. Russell et al. [30],
Scherer [31] and Scherer et al. [32] provide reviews
of these. Non-linguistic vocalisations such as laughter,
cries, sighs and yawns were investigated but mount-
ing evidence questions whether they are each linked
to a specific discrete state [33]. For vocal expressions
of speech, the strongest single association found for
vocal acoustics has been with the arousal level [34].

The first issue of this journal had a number of the-
oretical overviews of emotion recognition. Calvo and
d’Mello [35] examines various emotion theories and
reveals several problematic assumptions common in
affective computing. The authors suggest broadening
of the mental states studied, investigating dimensions
versus categories for labelling, and integrating context
into recognition. Reisenzein [36] discusses the lim-
itations of affect recognition purely from nonverbal
expressions of emotion.

In this paper, we apply some of these ideas to
achieve state-of-the-art classification performance on
the Mind Reading corpus, and present a novel ap-
plication of the classifier for successfully analysing
public speaking skills.
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4 IMPLEMENTATION METHODOLOGY

The design of the classifier considers three main fac-
tors: (i) the need for real-time performance, (ii) the
ability to recognise co-occurring emotions, (iii) the
choice of a training corpus.

Achieving real-time performance required a careful
choice of feature extraction and classification algo-
rithms. Recognising co-occurring emotions needed a
method for ranking candidate emotions.

The overall system design is shown in Figure 1.
Explanations of the choices made are given in the
subsections below.

Pre-process corpora Segment live audio

Extract audio features Extract audio features

Compute SVM models Run SVM classifiers

Combine pairwise
decisions to give

ranking

? ?

? ?

-

?

Fig. 1. Schematic flowchart of the functionality imple-
mented for affect recognition from speech.

4.1 Emotion Classification

For emotion classification we choose the Mind Read-
ing corpus [24] which provides a hierarchical structure
between groups with a large number of emotion con-
cepts. It was developed by psychologists at University
of Cambridge Autism Research Centre, aiming to
help autistic children and adults to recognise both
basic and complex emotions. The corpus consists of
2927 acted everyday sentences, covering 442 different
concepts of emotions, each with 5-7 sentences. The
acting was induced and the labelling was done by ten
people in different age groups [37]. The labelling of
each sample in the corpus required the agreement of 8
members of a panel of 10 expert assessors. Although
the samples are acted, the large number of samples
makes the corpus suitable for training an emotion
classifier.

The main emotion groups of Mind Reading are
shown in Table 1. Each of these is further divided
into concepts, giving a total of 422 concept subgroups.
For the classifier, a subset of 9 categories representing
a large variety of emotions is chosen. This subset
consisted of 548 samples spoken by 10 different actors.
Each category contains samples from the groups as

TABLE 1
The 24 emotion groups in the Mind Reading corpus
[37]. The superscripts indicate the main groups from
which a subset of affective states is selected to allow

comparison of the results to previous research [5].
These subsets, with their respective number of

samples, are: absorbed1 (41), excited2 (46),
interested3 (44), joyful4 (94), opposed5 (38), stressed6

(87), sure7 (53), thinking8 (68) and unsure9 (77).

afraid angry bored bothered6 disbelieving

disgusted excited2 fond happy4 hurt

interested1,3 kind liked romantic sad

sneaky sorry sure7 surprised think8

touched unfriendly5 unsure9 wanting

shown in Table 1. The subcategories absorbed and inter-
ested were extracted from the concepts in the interested
main category. The subcategory joyful was extracted
from the concepts in the happy main category, op-
posed from unfriendly and stressed from bothered. Other
subcategories were extracted from the main category
with the same name. The subcategories are chosen to
minimise the overlap between categories. The subcat-
egories and samples are the same as those used by
Sobol Shikler [5], [25], allowing direct comparison of
results.

4.2 Public Speaking Skill Assessment

For assessing public speaking skills, we retrain our
classifier using six labels shown in Table 12. Following
the requirements by Schuller et al. [16], we use non-
acted, non-prompted, realistic data with many speak-
ers, using all obtained data. An experienced speech
coach was asked to label 124 one-minute-long samples
of natural audio from 31 people (13 female and 18
male) attending speech coaching sessions. The chosen
six labels are the ones that the professional is accus-
tomed to using when assessing the public speaking
skills of clients. The samples are labelled on a scale
4–10 for each class. We then divided the samples of
classes into higher and lower halves according to the
score. The upper half represents a positive detection
of the class (e.g. clear), and the lower half represents
a negative detection (e.g. not clear).

4.3 Support Vector Machines

Several potential classifiers were investigated. In pre-
vious work on emotion recognition from speech on
the Mind Reading corpus [5], support vector machines
(SVMs) and tree algorithms such as C4.5 were found
to be effective. In our experiments SVMs gave the
most promising results.

SVMs create a model by constructing an N -
dimensional hyperplane that optimally separates data
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Input corpus with labels (l1, ..., ln)

Convert into pairwise corpora
C = {(l1, l2), ..., (l1, ln), ...(ln−1, ln)}

For all i, j.ci,j ∈ C extract feature set F (ci,j)

Select best separating features f(ci,j) ⊆
F (ci,j)

Grid search SVMi,j’s RBF kernel parameters
(Ci,j , γi,j) that maximise cross-validation ac-
curacy

Compute SVM model τi,j from optimal pa-
rameters (Ci,j , γi,j)

Output models τi,j

?

?

?

?

?

?

Fig. 2. The training system architecture. SVMi,j rep-
resents the support vector for comparing label li with
lj .

into two categories. We use a modified version of
SVMs [38] that allows for mislabelled examples by
choosing a hyperplane as cleanly as possible even if
there is no hyperplane that can split the two classes.

We use a non-linear classifier, replacing the linear
dot product by a kernel function that transforms the
original input space into a higher-dimensional feature
space, allowing the SVM to potentially better separate
the two classes. After trialling several possible kernel
function candidates, the Radial Basis Function (RBF)
kernel was found to yield the most promising results.
To generalise SVMs to more than two classes, pairwise
classification is used. This reduces a single multiclass
problem into multiple binary problems by building a
classifier for each pair of classes, using only instances
from two classes at a time.

4.4 Training

The training system architecture is shown in Figure 2.
Its main components are discussed below.

4.4.1 Noise reduction

The Mind Reading corpus used for emotion detection
was recorded with high-quality equipment and is
largely noise-free. However, the Speech Tutor corpus
that is used for public speaking skill assessment was
recorded in different environments and contained
background noise. To avoid the noise affecting the
feature extraction and the construction of the hyper-
planes, it was necessary to remove noise from the
corpus.

A number of noise reduction algorithms, such as
Power subtraction [39] and Time frequency block
thresholding [40] were tried. The former models the
speech signal as a random process to which uncorre-
lated random noise is added. The noise is measured
during a silence period in the speech, and the esti-
mated power spectrum of the noise is then subtracted
from the noisy input signal. This method resulted
in an artefact which sounds like random musical
notes caused by narrowband tonal components that
appeared in unvoiced sound and silence regions after
the noise reduction.

Time frequency block thresholding dynamically ad-
justs spectrogram filter parameters using the Stein risk
estimator, which gives an indication of the estimator’s
accuracy. It was found to eliminate the musical noise
of the Power subtraction method, and was thus used
as a pre-processing filter for the Speech Tutor corpus.

4.4.2 Feature Extraction
For this work, the openSMILE [26] feature extrac-
tion algorithms are used. OpenSMILE provides sound
recording and playback via the open-source PortAu-
dio library, echo cancellation, windowing functions,
fast Fourier transforms and autocorrelation. More-
over, it is capable of extracting features such as
pitch, loudness, energy, mel-spectra, voice quality,
mel-spectrum frequency coefficients, and can calculate
various functionals such as means, extremes, peaks,
percentiles and deviations with a Real-Time Factor ≪
1. The ten most commonly used class-differentiating
features are shown in Table 2. These consist of func-
tionals calculated for two main categories.

4.4.3 Feature Selection
Since a large feature set will be extracted from the
speech, it is expected that there are some irrelevant
and redundant data that will not improve the SVM
prediction performance. Classification algorithms are
unable to attain high classification accuracy if there
is a large number of weakly relevant and redundant
features, a problem known as the curse of dimension-
ality [41]. Algorithms also suffer from computational
load incurred by the high dimensional data.

Our approach is to use the predefined openSMILE
set emo_large with 6552 features, and pick the most
relevant ones using feature selection. For choosing
relevant features, the Correlation-based Feature Selec-
tion (CFS) algorithm [42] is used. It uses a heuris-
tic based on the assumption that good feature sets
contain features highly correlated with the class and
uncorrelated with each other. It defines the score for
a feature subset S as

MeritS =
krcf

√

k + k(k − 1)rff

where k is the number of features in S, rff is
the average feature-feature intercorrelation and rcf is
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TABLE 2
Ten most used features in emotion detection. The first
column shows the number of pairwise machines in the

total
(

9

2

)

= 36 that used the feature. All features are
smoothed with a moving average filter. MFCC denotes
Mel frequency cepstral coefficient, MFSM denotes Mel
frequency spectrum magnitude and FFT denotes Fast

Fourier Transform.

SVMs Feature name Description

12 mfcc sma[12] range Range of MFCC 12

9 pcm Mag fband250-
650 sma de centroid

Centre of gravity of 1st order
delta coefficient for FFT magni-
tude in band 250–650 Hz

8 pcm Mag melspec
sma de de[4]
quartile3

75% percentile of 2nd order
delta for 4th band (317–416 Hz)
of MFSM

8 mfcc sma de
de[4] qregerrQ

Quadratic error between 2nd or-
der delta for MFCC 4 and its
quadratic regression line

8 mfcc sma[8] range Range of MFCC 8

7 pcm Mag melspec
sma de[2]

quartile2

50% percentile of 1st order delta
for 2nd band (143–226 Hz) of
MFSM

7 mfcc sma[4]
minameandist

Difference between arithmetic
mean and minimum value of
MFCC 4

7 mfcc sma[4] iqr1-2 Difference between 50% and
25% percentiles of MFCC 4

6 pcm Mag melspec
sma de de[4]

iqr2-3

Difference between 75% and
50% percentiles of 2nd order
delta for 4th band (317–416 Hz)
of MFSM

6 pcm Mag melspec
sma de de[19]

minPos

Absolute position (frame) of the
minimum value of 2nd order
delta for 19th band (3423–3827
Hz) of MFSM

the average feature-class correlation. After discretising
the features, CFS calculates feature-class and feature-
feature correlations using a symmetric form of infor-
mation gain

Hsym(X ;Y ) =
2I(X ;Y )

H(X) +H(Y )

for random variables X,Y where

H(X) = −
∑

x∈X

p(x) log2 p(x)

H(X |Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log2 p(x|y)

with H(X) representing the entropy of X and
H(X |Y ) the entropy of X after observing Y . The
information gain is

I(X ;Y ) = H(X) −H(X |Y ) = H(Y ) −H(Y |X).

Hsym(X ;Y ) fixes the problem of I(X ;Y ) assigning
a higher value for features with a greater number of

values although they may be less informative. It also
normalises the values to the range [0, 1].

After calculating the correlations, CFS starts with an
empty set of features and applies forward best first
search, terminating when it encounters five consec-
utive fully-expanded subsets that show no improve-
ment.

4.4.4 Scaling
After the feature selection stage, the features f(ci,j) ⊆
F (ci,j) are scaled from R to [−1,+1]. This is done to

1) Prohibit attributes in a greater numeric range
from dominating those in smaller ranges.

2) Avoid numerical difficulties during the calcula-
tion, such as division by large f(ci,j).

4.4.5 Grid Search
When using the Radial Basis Function SVM kernel,
it is important to choose a suitable penalty for mis-
labelled examples C and the exponentiation constant
γ. Because the optimal values are model-specific, a
search algorithm is needed for finding a near-optimal
set of values. The optimisation is done on the training
data with testing data kept unseen.

The goal is to identify good (C, γ) values so that the
classifier can accurately predict unseen testing data,
rather than choosing them to maximise prediction ac-
curacy for the training data whose labelling is already
known. In this work we use v-fold cross-validation.
The training set is divided into v equal-sized subsets,
with each subset sequentially tested used a classifier
trained on the remaining v − 1 subsets.

We use a GRID SEARCH algorithm (Algorithm 1)
that sequentially tries pairs of (C, γ) in a given range,
and picks the one with the highest cross-validation
accuracy. Exponentially growing sequences worked
well in practice, confirming findings in previous re-
search [43]. The algorithm is run recursively on a
shrinking area.

Once optimal (C, γ) are determined, final SVM
models are computed for all pairwise corpora using
the LibSVM [44] library.

4.5 Classification

The real-time classification system architecture is
shown in Figure 3. Its main components are discussed
below.

4.5.1 Segmentation
Real-time analysis of speech requires segmenting the
audio. One approach to the problem would be to
just process every 1 second separately. However, this
would create two problems.

1) The single second may only contain silence,
but the SVMs will still need to make a binary
decision between two classes by mapping the
features on one side of the hyperplane.
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Algorithm 1 Grid search algorithm. The algorithm is
run by giving the mislabelling penalty C and expo-
nentiation constant γ ranges initial values. Variable
nsteps defines how fine-grained the grid search is.

GRID-SEARCH([Clow , Chigh, Cstep],[γlow, γhigh, γstep],
nsteps)

1) Initialise P = 0, Copt = 0, γopt = 0.
2) For all i ∈ Z

+ ∪ {0} such that Ci = (Clow +
iCstep) ≤ Chigh

a) For all j ∈ Z
+ ∪ {0} such that γj = (γlow +

jγstep) ≤ γhigh

i) Divide training model into v equal sub-
sets (for predefined v).

ii) Sequentially classify one subset using a
classifier trained on the remaining v− 1
subsets using parameters C = 2Ci and
γ = 2γi .

iii) If P < (ncorrect/v), set P = (ncorrect/v),
Copt = Ci, γopt = γj .

3) If nsteps ≤ 0, return (Copt, γopt).
4) Else GRID-SEARCH([Copt − nsteps, Copt +

nsteps, Cstep/2],[γopt−nsteps, γopt+nsteps, γstep/2],
nsteps − 1).

2) Emotions may not be expressible within a short
time interval. Furthermore, some features have
a temporal characteristic which will not be ex-
tractable if a single segment length is used.

As a result it was necessary to choose the segment
length dynamically, approximating to one segment
per sentence. The signal energy could be used for
differentiating between silence and speech. The choice
was between a simple algorithm that uses static
thresholds and a more complex algorithm that im-
plements dynamic thresholding. In accordance with
the iterative development model, a simple static algo-
rithm was implemented first. By adding complexity in
layers, we could at each step check that performance
sufficient for real-time operation was achieved.

The SEGMENTATION algorithm (Algorithm 2)
achieves this by defining three thresholds. First, the
silence threshold η defines the threshold for the en-
ergy E =

∑n

i |si|
2 > η, for signals si in frame of

size n. Second, ρstart sets the number of frames with
energy above η that are required until a segment start
is detected. Third, ρend is the number of frames below
η until a segment end is detected. From the start to
the end of a segment, the features are extracted. At
the end the pairwise SVMs are run in parallel.

It turned out that the segmentation results of this
algorithm were more than sufficient for detecting
pauses in the speech. In practice, separate η could be
used for a quiet room and for a noisier environment.
In our experiments we set ρstart and ρend to 10 and
40 frames respectively.

Input live audio A

For all i, j.ci,j ∈ C read model τi,j and
selected features f(ci,j)

Segment A into utterances with loudness
above threshold

Extract selected features f(ci,j)

Run SVM1,2(f(c1,2))
and extract p1, p2

...
Run SVMn−1,n(f(cn−1,n))
and extract pn−1, pn

Calculate win count ωi and total probability
ψi

Output ψi

n
if ωi ≥ λ, where λ is the threshold

?

?

?

? ? ?

? ? ?

?

Fig. 3. The real-time classifier architecture. SVMi,j

computes the probabilities pi and pj for labels i, j,
using features f(ci,j).

Algorithm 2 Audio segmentation algorithm. η is the
silence threshold based on the energy of the signal.
ρstart and ρend specify the thresholds for the number
of frames that need to be above and below η for a
segment to start and end, respectively.

SEGMENTATION(η, ρstart, ρend)

1) Initialise Cstart = Cend = 0
2) Repeat

a) If
∑n

i |si|
2 > η

i) Set Cend = 0
ii) Increment Cstart

iii) If Cstart > ρstart

A) Send start_inferencemessage to
all pairwise SVMs.

b) Else

i) Set Cstart = 0
ii) Increment Cend

iii) If Cend > ρend

A) Send end_inference message to
all pairwise SVMs.

4.5.2 Support Vector Machines

Once the audio is segmented and the features are
extracted, the n(n − 1)/2 pairwise machines can be
run in parallel to predict the class for a segment.
The hyperplanes separate two emotion classes in an
|f |-dimensional space, where f is the set of features
being considered. Implementation-wise, this required
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preparing the features for interfacing with the Lib-
SVM library and then using the results to do further
processing. The LibSVM library provides a highly op-
timised algorithm for solving the Lagrange multiplier
optimisation problem for SVMs.

The RUN-SVM algorithm (Algorithm 3) describes
this process. First, all but the features selected by the
correlation-based feature selection algorithm needed
to be filtered away from the model files. The algorithm
then waits for extracted features from openSMILE.
Once it receives these, it scales them by the same
ratio as used in the training phase. It then predicts
probabilities for both labels by calling the LibSVM
C++ library, and sends the results paired with the
labels to the PAIRWISE-COMBINATOR module.

Algorithm 3 Run-SVM algorithm. τ is the model file,
(li, lj) are the pairwise class labels, S is the scaling file
and ζ is the feature selection file. These are computed
in the training phase.

RUN-SVM(τ, (li, lj), S, ζ)

1) Load τ , (li, lj), S and ζ from files
2) Filter away all features except ζ
3) Repeat

a) Receive features fi ∈ ζ from openSMILE
components

b) Apply scaling S used in training
c) Predict probabilities (pi, pj) by applying

LibSVM on (τ, f)
d) Send [(li, pi), (lj , pj)] to PAIRWISE-

COMBINATOR

4.5.3 Pairwise Classification
When the pairwise SVMs have been run, their results
need to be combined so that the label of the segment
can be predicted. This glues together the SVMs run-
ning in parallel and the voting algorithm.

The PAIRWISE-COMBINATOR algorithm (Algorithm
4) achieves this by receiving the results from the
1

2
n(n−1) pairwise SVMs running in parallel. It keeps

count of the labels of the winning classes. Once it
has received all pairwise classification results for a
segment and computed the number of wins ωi for
each label i, it resets the wins for the next frame and
runs a pairwise voting algorithm that determines the
winning class. The voting is described in the next
section.

4.5.4 Pairwise Fusion Mechanism
In order to determine the most probable class, the
probabilities of the multiple binary classifiers are
fused.

We propose a fusion method for determining co-
occurring emotions. Whereas in traditional single-
label classification a sample is associated with a single

Algorithm 4 Pairwise combinator algorithm. n is the
number of labels. As there are 1

2
n(n − 1) pairwise

machines, each label should receive n−1 probabilities.

PAIRWISE-COMBINATOR(n)

1) Initialise P = {S1, ..., Sn} with ∀i.Si = {}, W =
{ω1, ..., ωn} with ∀i.ωi = 0

2) Repeat

a) If ∀i.|Si| < n− 1

i) Receive [(li, pi), (lj , pj)] from RUN-SVM
ii) Insert pi into Si and pj into lj

b) Else

i) For all i set ωi =
∑

p∈Si
g(p) where

g(p) =

{

1 for p ≥ 1

2

0 otherwise
ii) Run PAIRWISE-VOTING(P,W ) and set

∀i.Si = {} ∧ ωi = 0

label li from a set of disjoint labels L, multi-label
classification associates each sample with a set of
labels L′ ⊆ L. A previous study concluded that the
use of complex non-linear fusion methods yielded
only marginal benefits (0.3%) over linear methods
when used with SVMs [45]. Therefore, three linear
fusion methods are implemented:

1) Majority voting using wins from binary classi-
fiers.

2) Maximum combined probability from binary
classifiers.

3) Binary classification wins above a threshold.

In the first method we consider all n − 1 SVM
outputs per class as votes and select the class with
most votes. Assuming that the classes are mutually
exclusive, the a posteriori probability for feature vector
f is pi = P (f ∈ classi). The classifier SVMi,j computes
an estimate p̂i,j of the binary decision probability

pi,j = P (f ∈ classi|f ∈ classi ∪ classj) (1)

between classes i and j. The final classification
decision D̂voting is the class i for which

D̂voting = arg max
1≤i≤n

∑

j 6=i

g(p̂i,j) (2)

where

g(p) =

{

1 for p ≥ 1

2

0 otherwise
. (3)

Ties are solved by declaring the class with higher
probability to be the winner.

In the second method, the maximum probability
ψi =

∑

p∈Si
p of the binary SVMs is determined. The

winner of decision D̂probability is i such that
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D̂probability = arg max
1≤i≤n

∑

j 6=i

p̂i,j . (4)

Finally, for detecting co-occurring emotions, the
classes are ranked according to the number of wins.
The classes with wins above a threshold λ are re-
turned, with the classification decision D̂threshold be-
ing the set of classes

D̂threshold = {i |
∑

j 6=i

g(p̂i,j) ≥ λ}. (5)

The PAIRWISE-VOTING algorithm (Algorithm 5)
combines these three approaches. An experiment
comparing the results using the three methods is de-
tailed in the evaluation section. The total probabilities
ψi of probabilities pi are calculated for each label li
and normalised to norm(ψi) according to the number
of labels. The resulting label and its normalised prob-
ability is sent to the console output when the wins for
the label are above the threshold λ.

Algorithm 5 Pairwise voting algorithm. µ is the mean
win count and σ is the standard deviation. The thresh-
old definition follows previous research [5].

PAIRWISE-VOTING(P,W )

1) Set win threshold λ = ⌊(µ+ σ)(n − 1)⌋
2) For each li with i ≤ n using pi ∈ Si, Si ∈ P and

ωi ∈ W

a) Set the total probability ψi =
∑

p∈Si
p with

norm(ψi) = ψi

n−1

b) If ωi ≥ λ

i) Send (li, norm(ψi)) to console output

We set λ = ⌊(µ + σ)n⌋ where µ is the mean win
count, σ is the standard deviation and n is the class
cardinality to allow comparison with Sobol Shikler [5].
By the central limit theorem, the distribution of a sum
of many independent, identically distributed random
variables (RVs) tends towards the normal distribution.
By assuming that the SVMs exhibit such RVs, and
since for the normal distribution µ + σ ≈ 0.841,
λ = ⌊0.841(n − 1)⌋. In particular, for the 9 classes
chosen for evaluation, λ = 6.

4.6 Method for Assessing Public Speaking Skills

In this subsection we describe the changes in the emo-
tion classifier that enabled the classifier to successfully
analyse public speaking skills.

One binary SVM per class is used to derive a class-
wise probability. If a pairwise approach similar to
that in emotion classification had been used, the same
samples would have existed in several classes, making
separating the classes intractable. As a result, unlike
in emotion detection where the most prominent labels

describing the speech are selected, for speech quality
assessment all classes are detected, each labelled with
a probability. This allows users to attempt to maximise
all class probabilities, a goal which is more useful for
speech coaching. As for emotion recognition, Radial
Basis Function kernel parameter in the SVMs were
optimised using Algorithm 1.

The data were recorded in different environments
with varying background noise level. Therefore an ad-
ditional challenge was to normalise the data to avoid
learning to only recognise speakers. As explained in
Section 4.4.1, we successfully used time frequency
block thresholding to reduce the noise level without
introducing artefacts common in other methods.

As for emotion recognition, the Correlation-based
Feature Selection algorithm was used to select the
best discriminating features. The ten most commonly
used class-differentiating features are given in Table 3.
As in emotion recognition features shown in Table 2,
features based on computations of Mel frequency cep-
stral coefficients and Mel frequency spectrum magni-
tudes dominate the list. In particular, Mel frequency
cepstral coefficients were very commonly used. In
addition, a functional calculated on the zero-crossing
rate of the time signal was also commonly used for
discrimination.

5 EVALUATION

In this section we evaluate the overall classification
results.

5.1 Grid Search for SVM Parameter Optimisation

In previous studies optimisation of the machine learn-
ing algorithm has not received much attention. This
study employs a method based on maximising cross-
validation accuracy in training data to obtain a con-
siderable improvement in recognition accuracy. The
experiment below demonstrates how this method im-
proves the accuracy of the emotion classifier.

The greedy grid search algorithm chooses optimal
(C, γ) parameters for each pairwise SVM. It first does
a rough search over the values and then recursively
narrows down the search space by searching around
the values that produced the highest cross-validation
accuracy. This turned out to be a major contributor
to the high accuracy of the SVM approach. Previous
work has ignored this subtle but clearly important
classifier optimisation.

The effect for using grid search with the three
pairwise fusion mechanisms is shown in Table 4. A
significant improvement, between 10% and 25%, is
observed. This is as high an improvement as that
gained from choosing SVM over C4.5. As the op-
timisation maximises the cross-validation accuracy
instead of the training data classification accuracy, the
optimisation did not result in overfitting of the model.
The optimisation is done on the training data, with the
testing data kept unseen.
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TABLE 3
Ten most used features in public speaking skill

assessment. The first column shows the rank of the
feature. The rank is derived from the number of

classes that used the feature in a leave one speaker
out experiment. All features are smoothed with a

moving average filter. MFCC denotes Mel frequency
cepstral coefficient and MFSM denotes Mel frequency

spectrum magnitude.

Rank Feature name Description

1 mfcc sma[6] percent-
ile98.0

98% percentile of MFCC 6

2 mfcc sma[3] zcr Zero-crossing rate of MFCC 3

3 mfcc sma de
de[8] skewness

3rd order moment of 2nd order
delta for MFCC 8

4 pcm zcr
sma iqr1-3

Difference between 75% and
25% percentiles of zero-crossing
rate of the time signal

5 mfcc sma de
de[12] meanPeakDist

Mean distance between peaks of
2nd order delta for MFCC 12

6 mfcc sma[4] percent-
ile95.0

95% percentile of MFCC 4

7 mfcc sma[3] nzg-
mean

Geometric mean for non-zero
absolute values of MFSM 3

8 pcm Mag mel-
spec sma[4]
meanPeakDist

Mean distance between peaks of
4th band (317–416 Hz) of MFSM

9 mfcc sma de
de[1] meanPeakDist

Mean distance between peaks of
2nd order delta for MFCC 1

10 pcm Mag
melspec sma
de[0] skewness

3rd order moment of 1st order
delta for 0th band (0–68 Hz) of
MFSM

TABLE 4
Detection accuracies in percentages with a 70–30%

training/testing split for the three fusion methods, with
and without grid search.

Type of data Threshold Max probability Max wins

Grid search 86 72 70

No grid
search

76 47 48

5.2 Real-time Performance

The experiment below demonstrates that the classifier
achieves real-time performance for common sentence
lengths.

The average latency in milliseconds of the classifi-
cation stage is shown in Figure 4. It was measured
as the time between the detection of the end of a
segment and the output of the result. As shown in
the figure, normal sentences (1–15 s) are classified
in 0.046–0.110 s, making the delay barely noticeable.
Improving upon Sobol Shikler’s inference solution [5],
this allows real-time classification.

The increase of latency with longer sentences is

caused by the feature extractors that need to process
more frames with longer audio segments. However,
since speakers need to pause to breath, and thus limit
the segment length, this increase in latency did not
cause problems in practice.

Fig. 4. Average live classification latency in millisec-
onds of 50 runs on a dual-core 2.66 GHz PC with 4 GB
RAM.

5.3 Different Classifiers

This experiment aims to compare the accuracy of the
three machine learning algorithms that were found to
achieve highest accuracies. A wide range of different
classifiers were tried, with SVMs and decision tree-
based C4.5 and Random Forest performing best.

C4.5 constructs a decision tree from a set of data by
dividing up the data according to the information gain
I(X ;Y ). It recursively splits the tree by the attribute
with the highest I(X ;Y ) in the training, yielding a
decision tree that can be reused for classification.

Random Forest builds a set of classification trees.
Each tree is created by taking a bootstrap sample
from the training data. The best attribute for the
split is selected from an arbitrarily chosen subset of
attributes. The classification result is derived through
majority voting by the tree classifiers.

Unlike in previous research [5], the experiment
found that SVMs could provide significantly higher
performance than from C4.5 for every pairwise ma-
chine. This is achieved by using grid search to opti-
mise the SVM parameters. The results are illustrated
in Table 5, where the SVM results are compared to the
results with C4.5 and Random Forest. In three cases,
Random Forest outperforms the optimised SVM.

Another factor that affected the results is feature
selection. The square-bracketed values in Table 5 show
the number of features in each SVM. These are only
a small fraction of the original 6669 feature combi-
nations extracted by openSMILE. When training on
all 6669 features, accuracies above 60% were rarely
obtained.
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TABLE 5
Ten-fold cross-validation percentages using grid

search-optimised SVMs, C4.5 and Random Forest.
The numbers without brackets are the results using

SVMs. The results using C4.5 are shown in
parentheses. The results using Random Forest are in

curly brackets. The number of features used are in
square brackets. The numbers in bold represent the

highest accuracy for the pairwise machines.
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absorbed 93
(79)
{89}
[53]

87
(74)
{93}
[55]

96
(80)
{90}
[79]

96
(85)
{85}
[46]

89
(80)
{89}
[58]

85
(74)
{85}
[39]

82
(76)
{86}
[52]

84
(79)
{83}
[36]

excited 90
(72)
{82}
[44]

84
(70)
{76}
[38]

81
(77)
{84}
[48]

80
(69)
{77}
[31]

94
(70)
{76}
[47]

90
(78)
{89}
[97]

87
(69)
{80}
[57]

interested 92
(81)
{86}
[65]

92
(72)
{85}
[54]

91
(68)
{78}
[46]

90
(77)
{86}
[68]

90
(79)
{84}
[85]

85
(69)
{73}
[34]

joyful 86
(77)
{82}
[53]

85
(70)
{77}
[54]

99
(75)
{84}
[75]

95
(84)
{91}
[103]

92
(73)
{80}
[62]

opposed 93
(75)
{81}
[43]

91
(73)
{82}
[28]

94
(75)
{85}
[86]

92
(76)
{84}
[28]

stressed 86
(68)
{81}
[61]

88
(74)
{83}
[100]

86
(68)
{78}
[34]

sure 94
(80)
{89}
[78]

88
(70)
{82}
[54]

thinking 90
(74)
{81}
[72]

unsure

5.4 Different Feature Selection Algorithm

This experiment compares the accuracy of two com-
monly used feature selection algorithms, the filter-
based Correlation-based Feature Selection (CFS) and
wrapper-based Dynamic Oscillating Search (DOS) [46]
methods.

Wrapper feature selection uses a search algorithm to
search through the space of possible features and eval-
uates each feature subset by running the classifier on
the subset. In contrast, filter feature selection evaluates

feature subsets by classifier-independent criteria. DOS
is a relatively new search method for wrapper-based
feature selection that has been shown to outperform
many other methods [46]. It extends the principle
of Oscillating Search [47] which repeatedly modifies
the current feature subset of a pre-determined size.
Dynamic Oscillating Search determines the feature
subset size automatically. Importantly, DOS performs
efficiently on large feature sets. Exhaustive wrapper
search of subsets for the 6552 extracted features would
be very time-consuming.

The results are illustrated in Table 6, where the CFS
results are compared to the results with DOS feature
selection. As shown in the table, CFS outperforms
DOS in all but one case. CFS selects on average over
ten times more features than DOS. As the feature sets
chosen by CFS still allowed real-time performance,
CFS was selected for the final implementation.

TABLE 6
Ten-fold cross-validation percentages using grid

search-optimised SVMs with CFS and DOS feature
selection algorithms. The numbers without brackets

are the results using CFS feature selection. The
results using DOS are shown in parentheses. The

number of features used by DOS are in square
brackets. The numbers in bold represent the highest

accuracy for the pairwise machines.
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absorbed 93
(82)
[4]

87
(85)
[4]

96
(83)
[4]

96
(86)
[4]

89
(85)
[4]

85
(70)
[5]

82
(89)
[4]

84
(77)
[2]

excited 90
(79)
[6]

84
(68)
[4]

81
(67)
[4]

80
(65)
[4]

94
(82)
[5]

90
(76)
[5]

87
(60)
[5]

interested 92
(83)
[5]

92
(61)
[6]

91
(67)
[5]

90
(78)
[5]

90
(87)
[7]

85
(67)
[5]

joyful 86
(76)
[5]

85
(81)
[7]

99
(80)
[6]

95
(82)
[6]

92
(72)
[7]

opposed 93
(68)
[5]

91
(59)
[3]

94
(72)
[6]

92
(68)
[6]

stressed 86
(70)
[6]

88
(83)
[8]

86
(65)
[5]

sure 94
(90)
[8]

88
(64)
[5]

thinking 90
(73)
[8]

unsure
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5.5 Ten-fold Cross Validation Results

The experiment below demonstrates the ten-fold
cross-validation results of the emotion classifier and
compares them to previous research using the same
training data [5].

The ten-fold cross-validation results for the pair-
wise SVMs are shown in Table 7. All accuracies are
greater than the values obtained in previous research
using the same classes and corpus. The results are
constantly above 80%, in contrast to the lower bound
60% obtained previously.

TABLE 7
The ten-fold cross-validation accuracy for pairwise

SVMs in percentages. The average accuracy is 89%.
Sobol Shikler’s results [5] are in parentheses.
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absorbed 93
(81)

87
(82)

96
(82)

96
(78)

89
(87)

85
(84)

82
(73)

84
(64)

excited 90
(71)

84
(60)

81
(71)

80
(61)

94
(83)

90
(72)

87
(75)

interested 92
(77)

92
(75)

91
(66)

90
(78)

90
(84)

85
(72)

joyful 86
(71)

85
(61)

99
(83)

95
(72)

92
(75)

opposed 93
(84)

91
(72)

94
(81)

92
(79)

stressed 86
(84)

88
(75)

86
(78)

sure 94
(75)

88
(78)

thinking 90
(89)

5.6 Different Fusion Methods

The experiment below demonstrates the accuracies for
the three fusion methods proposed in Section 4.5.4.

A summary of the accuracies for the three different
fusion methods is shown in Table 8. The average
accuracies are higher than or equal to the results
achieved previously on the same corpus [5]. The
average accuracy of the maximum probability fusion
technique is higher than that achieved by majority
voting (72% vs 70%). However, for some classes the
majority voting accuracy is higher (e.g. stressed and in-
terested). A higher average accuracy could be achieved
by combining these methods. In future work, more
advanced fusion methods such as the ensemble clas-
sification presented by Schuller et al. [27] and the tree-
based approach by Lee et al. [17] will be investigated.

Confusion matrices for fusion using thresholding,
maximum probability and majority voting are shown

TABLE 8
Accuracies in percentages for the three fusion

methods. Sobol Shikler’s results [5] are shown in
parentheses. 2.5 classes were inferred on average

with a threshold λ = 6. The reported results are
averages over 10 random 70–30% partitions.

Type of data Threshold Max probability Voting

70–30%
train/test split

86 (79) 72 70

Cross-validation
on 70% training
split

99 (81) 86 88

in Tables 9, 10 and 11 respectively. Inspection of the
confusion matrices reveals that some classes are better
detected than others. The classes opposed and sure
present the lowest values using any method. This is
reflected by the lower number of training samples
(38 and 53 samples, compared to the average of 61)
resulting from the categorisation choice to allow com-
parison to Sobol Shikler [5]. Similarly, the class with
most samples (joyful, 94 samples) is most frequently
mistaken to be the correct class. In future work classes
with equal numbers of training samples could be
used.

As expected, the thresholding fusion method for co-
occurring emotion classification yields highest detec-
tion accuracies since several classes can be selected
at a time. This, however, also leads to much higher
confusion values because of the assumption that more
than one emotion can be occurring simultaneously.
For example, as shown in Table 9, samples labelled
excited are detected as joyful in 35% of cases, compared
to a correct detection rate of 85%. Since more than one
class is selected at a time, the rows do not add to 100
like in conventional confusion matrices. In Tables 10
and 11 the rows do not add up to 100 due to rounding.
It is likely that some high confusion rates are caused
by the overrepresentation of certain classes.

5.7 Evaluation of Public Speaking Skill Assessor

This experiment evaluates the accuracy of the public
speaking skill assessor.

The results of public speaking skill assessment are
shown in Table 12. All classes can be accurately
detected in 10-fold cross-validation. The classes com-
petent and dynamic present slightly lower detection
accuracies. Overall, however, the speech quality as-
sessment cross-validation accuracies are high (average
81%).

We also provide evaluation data using a speaker-
independent evaluation on unseen test data. The sys-
tem was separately trained for 31 partitions, each in
which one out of the 31 speakers was left out. Each
partition’s classification performance was then tested
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TABLE 9
Matrix with confusion values for thresholded pairwise
fusion. Row headings show ground truth and columns
show inferences. Average accuracy is 86%. A random

choice would result in 11% accuracy. Leave one
speaker out average accuracy is 50%.
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absorbed 93 15 22 15 0 15 11 48 48

excited 4 85 2 35 14 60 19 15 8

interested 15 10 83 21 6 31 6 42 52

joyful 0 29 14 91 22 56 4 19 24

opposed 0 27 3 41 73 51 16 24 22

stressed 4 46 10 39 11 92 9 19 31

sure 12 24 11 22 17 31 74 28 26

thinking 23 6 17 23 7 24 11 93 56

unsure 24 14 14 22 8 29 9 56 91

TABLE 10
Confusion matrix using max probability for pairwise

fusion. Row headings show ground truth and columns
show inferences. Average accuracy is 72%. A random

choice would result in 11% accuracy. Leave one
speaker out average accuracy is 31%.
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absorbed 74 0 4 4 0 4 0 7 7

excited 0 75 0 10 2 8 0 0 4

interested 2 2 69 6 0 6 2 8 6

joyful 0 6 0 79 2 3 2 3 4

opposed 0 0 0 16 62 8 5 0 8

stressed 1 2 2 11 1 67 2 4 8

sure 2 6 2 4 2 9 63 11 2

thinking 1 0 3 3 0 1 0 86 6

unsure 1 1 1 4 0 8 0 17 68

on the speaker that was left out. The results shown
in Table 12 present the average classification accuracy
for the speakers that were left out.

As can be seen from the data, the classes clear,
credible, dynamic and persuasive can all be success-
fully detected with greater than 60% accuracy in the
leave-one-speaker-out test. However, competent, which
gave high 10-fold cross-validation results, obtains low
leave-one-speaker-out results. This shows the large
extent to which speaker-dependency may skew the

TABLE 11
Confusion matrix using majority voting for pairwise

fusion. Row headings show ground truth and columns
show inferences. Average accuracy is 70%. A random

choice would result in 11% accuracy. Leave one
speaker out average accuracy is 29%.
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absorbed 74 0 4 4 0 4 0 7 7

excited 0 65 0 13 2 10 4 2 4

interested 0 3 73 4 0 4 2 8 6

joyful 0 6 2 76 5 3 2 3 3

opposed 0 3 0 16 59 8 5 1 8

stressed 1 2 2 10 1 71 2 4 7

sure 2 6 4 4 2 7 63 10 2

thinking 2 0 3 1 1 3 0 83 7

unsure 3 1 0 5 3 8 0 16 64

cross-validation results. In particular, the lower accu-
racy could indicate that the class is a more subjective
quality and hence is more difficult to classify. The class
clear, for example, which achieved the highest leave-
one-speaker-out accuracy, could intuitively be easier
to assess than whether a speaker sounds competent.

The number of training samples did not corre-
late with the accuracy. Even though the class clear
achieved the highest accuracy, with more samples
than average, class pleasant achieved lower accuracy
with even more training samples. The weighted aver-
age accuracy is the same as the unweighted average
accuracy 61%.

Overall, most of the classes are well detected even
in a speaker-independent evaluation. This is a promis-
ing result, and indicates that objective computerised
analysis of public speaking skills is feasible.

6 CONCLUSION

We have presented a framework for real-time clas-
sification of co-occurring emotions in speech whose
accuracy outperforms previous work using the same
corpus [5]. We have also shown that the novel ap-
plication of the system for assessing public speaking
skills achieves high classification accuracy.

The emotion classification framework consists of
n(n−1)/2 pairwise SVMs for n labels, each with a dif-
fering set of features selected by the Correlation-based
Feature Selection algorithm. The classifier was trained
using the Mind Reading corpus of acted speech.

We demonstrated a considerable improvement in
classification accuracy from optimising the misclassi-
fication and exponentiation coefficients (C, γ) using
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TABLE 12
Detection accuracies in percentages for assessing

public speaking skills. A random choice would result in
50% accuracy. The number of features is given in

square brackets.

Class 10-fold
cross-

validation

Leave one
speaker out

Training
samples

clear 80 [53] 72 [50] 66

competent 74 [32] 47 [36] 49

credible 80 [23] 64 [22] 42

dynamic 77 [41] 64 [38] 45

persuasive 82 [17] 62 [15] 79

pleasant 93 [43] 57 [43] 73

Mean 81 [35] 61 [34] 59

a grid search algorithm. Improvements between 10%
and 25% were observed. We further illustrated that
the parameter-optimised SVMs outperform tree-based
algorithms for most classes in our corpus. This under-
lines the importance of parameter optimisation, an is-
sue several recent studies in the field have overlooked.

In an experiment on feature selection, we showed
that the filter-based Correlation-based Feature Selec-
tion (CFS) algorithm outperforms a wrapper-based
feature selection with the Dynamic Oscillating Search
(DOS) algorithm for our emotion corpus. However,
CFS chose ten times more features than DOS. DOS
could therefore be a good choice for resource-limited
settings where a large set of features presents an
unnecessarily high overhead.

We further applied our emotion classifier to assess-
ing public speaking skills. For this we used our own
corpus of non-acted, non-prompted realistic data with
124 one-minute-long samples from 31 people attend-
ing speech coaching sessions. We illustrated that most
of the classes are well detected even in a speaker-
independent evaluation. This is a promising result,
and indicates that it is feasible to perform objective
computerised analysis of public speaking skills.

Overall, this paper presented a high-accuracy train-
ing and classification framework for emotion detec-
tion from speech. It also shows a novel application
of the classifier that successfully performs real-time
assessment of public speaking skills. It can be used for
training one’s public speaking skills, and for assisting
or even replacing a human speech coach.

7 FUTURE WORK

At present, our system is the most accurate classifier
trained on the Mind Reading corpus known to the
authors. It is also the only system known to us
which is able to provide automatic feedback on public
speaking skills. In the near future, we plan to apply

it to a number of tasks. First, we intend to investigate
how the system could be used as an assistant for
a professional speech coach. The system could help
the learner both in-session and at home by providing
instant feedback on the speaking skills, and could pro-
vide more objective and consistent analysis. Second,
we will investigate the use of emotion classification
for speech coaching. To be persuasive, it is critical
to non-verbally show the emotion that is consistent
with the verbal content. The system trained on the
Mind Reading corpus could provide useful feedback
on this front. Third, we acknowledge that an acted
database may not be suitable for all applications.
We therefore intend to focus on natural and induced
emotional databases in the future. Finally, we plan
to investigate the performance of the system together
with facial expression analysis. A multi-modal system
could potentially achieve more accurate classification
for both affect and public speaking skills.
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[46] P. Somol, J. Novovicová, J. Grim, and P. Pudil, “Dynamic oscil-
lating search algorithm for feature selection,” in International
Conference on Pattern Recognition 2008. IEEE Computer Society,
2009, pp. 1–4.

[47] P. Somol and P. Pudil, “Oscillating search algorithms for fea-
ture selection,” in International Conference on Pattern Recognition
2000. IEEE Computer Society, 2000, p. 2406.

Tomas Pfister received the BA degree in
computer science at University of Cam-
bridge, UK. His research interests include
affective computing, human-computer and
human-robot interaction, in particular affect
recognition from speech and facial features.

Peter Robinson is Professor of Computer
Technology and Deputy Head of the Com-
puter Laboratory at the University of Cam-
bridge in England, where he leads the Rain-
bow Group working on computer graphics
and interaction. His research concerns new
technologies to enhance communication be-
tween computers and their users, and new
applications to exploit these technologies.
Recent work has included desk-size pro-
jected displays and inference of users mental

states from facial expressions, speech, posture and gestures. He is
a Chartered Engineer and a Fellow of the British Computer Society.


