
SOCA (2007) 1:197–212
DOI 10.1007/s11761-007-0016-x

ORIGINAL RESEARCH

An architecture for rapid, on-demand service composition

Maja Vuković · Evangelos Kotsovinos ·
Peter Robinson

Received: 1 August 2007 / Revised: 24 September 2007 / Accepted: 26 September 2007 / Published online: 1 November 2007
© Springer-Verlag London Limited 2007

Abstract Legacy application design models, which are still
widely used for developing context-aware applications, incur
important limitations. Firstly, embedding contextual depen-
dencies in the form of if–then rules specifying how app-
lications should react to context changes is impractical to
accommodate the large variety of possibly even unanticipa-
ted context types and their values. Additionally, application
development is complicated and challenging, as program-
mers have to manually determine and encode the associati-
ons of all possible combinations of context parameters with
application behaviour. In this paper we propose a framework
for building context aware applications on-demand, as dyna-
mically composed sequences of calls to services. We present
the design and implementation of our system, which employs
goal-oriented inferencing for assembling composite services,
dynamically monitors their execution, and adapts applicati-
ons to deal with contex- tual changes. We describe the fai-
lure recovery mechanisms we have implemented, allowing
the deployment of the system in a non-perfect environment,
and avoiding the delays inherent in re-discovering a suita-
ble service instance. By means of experimental evaluation
in a realistic infotainment application, we demonstrate the

This work was supported by IBM Zurich Research Laboratory.

M. Vuković (B)
IBM T.J.Watson Research, 19 Skyline Drive,
Hawthorne, NY 10532, USA
e-mail: mvukovi@us.ibm.com

E. Kotsovinos
Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7,
10587 Berlin, Germany
e-mail: evangelos.kotsovinos@telekom.de

P. Robinson
University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

potential of the proposed solution an effective, efficient, and
scalable approach.

Keywords Service composition · Context awareness ·
AI planning

1 Introduction

Smaller and universally connected computing devices,
advances in sensing technologies, and the development of
knowledge extraction and management capabilities lead to
an environment rich in contextual information such as loca-
tion, physiological state, and motion. As a result, applicati-
ons now operate in a variety of new settings; for example,
embedded in cars or wearable devices. They use information
about their context to respond and adapt to changes in the
computing environment, moving towards the vision of truly
ubiquitous computing [1]. They are, in short, increasingly
context aware.

However, advances in application models to support the
development of context aware systems have not kept up.
Such applications are often built in a scenario-specific man-
ner, encoding the anticipated context types and desired app-
lication behaviour. This presents important disadvantages.
Firstly, embedding contextual dependencies in the form of
if–then rules specifying how applications should react to con-
text changes is only feasible for the set of context types antici-
pated at the time of application design. Systems built this way
are not able to accommodate the large variety of possibly even
unanticipated context types and their values. Additionally,
application development is complicated and challenging, as
programmers have to manually determine and encode the
associations of all possible combinations of context para-
meters with application behaviour. Finally, reprogramming

123

198 SOCA (2007) 1:197–212

scenario-specific context awareness in each system reduces
code reusability and robustness.

This work presents our design and implementation of a
framework that employs AI planning to rapidly assemble
applications on-demand from individual services, based on
context and user goals. Contrary to most other service com-
position frameworks, our system supports dynamic on-the-fly
adaptation of applications, and comprehensive failure reco-
very mechanisms. Applications built using our system are
able to deal with run-time changes in the environment in
which they operate, and to continue operating even when
some of their components get unpredictably disconnected.
Experimental evaluation of our framework demonstrates that
it provides an efficient and scalable solution, allowing for
rapid composition and deployment of complex services even
in realistically large and complex pervasive computing envi-
ronments.

Applications built using our system enjoy the following
advantages:

– Ease of development. Our framework allows combining
individual services flexibly and conveniently, in a goal-
oriented fashion, to perform complex context-aware tasks
on-demand

– Ease of maintenance. Our system allows extending app-
lications to cope with new types of context information
(e.g. new devices coming to the market) without requiring
significant reprogramming

– On-the-fly adaptation. Our system monitors changes in
contextual information, and ensures that application beha-
viour is dynamically adapted accordingly, without com-
promising performance and scalability

– Failure resilience. Our framework incorporates mecha-
nisms for automatic recovery from failures that may occur
during the composition and execution process

This paper extends [2] and is structured as follows. An
example scenario demonstrating how we envisage our system
to operate from a user’s point of view is examined in Sect. 2.

The architecture of our framework for context aware service
composition is analysed in Sect. 3 and its implementation
is described in Sect. 4. Section 5 discusses our prototype
implementation and evaluation results. Section 6 positions
our work in the research context of pervasive computing,
and discusses shortcomings of previous service composition
frameworks. Finally, Section 7 presents our conclusions and
outlines areas of future work.

In previous work we addressed failures resulting from
unsuccessful composition or execution of composite services
[3] and investigated the applicability of planning systems to
the service composition problem [4].

2 Usage scenario

To illustrate how the proposed framework can simplify the
development of context aware applications, this section intro-
duces the following scenario in the scope of an infotainment
application. A user, called Miles, subscribes to an infotain-
ment portal provided by his mobile network operator. This
portal offers users a broad array of on-line services, inclu-
ding a Restaurant Finder service, which provides a directory
of available restaurants, a Directions Finder service, which
computes the driving directions to a given restaurant, a Trans-
lator service, which translates the content from one language
to another, and a Speech Synthesizer service, which converts
from text format to speech.

Users such as Miles can place requests to services pro-
vided by the portal on-line and receive the corresponding
information. User requests are enriched with context infor-
mation regarding the location of the user, the current activity
of the user, and the type of the computing device used to make
the request. The above information is provided by a context
middleware solution.

Use case 1. As shown in Fig. 1, Miles is initially using his
SmartPhone while walking around Market Square in Cam-
bridge, UK. He places a request to the infotainment portal for

Fig. 1 Usage scenario: context
aware restaurant finder

userResponse

userRequest

userResponse

Composition
Framework

restaurantRequest

restaurantResponse

directionRequest

directionResponse

translationRequest

translationResponse

speechRequest

speechResponse

Composite Service

Local Mobile Provider

userRequest

userRequest

userResponse

Case 2:

Case 1:

Infotainment
Portal

Roaming Mobile Provider

context
change

SpeechSynthesizer

RestaurantFinder

DirectionFinder

TranslationService

123

SOCA (2007) 1:197–212 199

finding a restaurant of his liking, and providing directions to
it. The portal uses our composition framework to assemble a
composite service to deal with Miles’ request. The resulting
service, tailored to help Miles locate a Spanish restaurant, is
composed from the atomic services Restaurant Finder and
Directions Finder.

Use case 2. At a later point in time, Miles is in Zurich, Swit-
zerland, and wishes to locate a restaurant of his liking. Miles
is now registered with a Swiss infotainment portal, which has
a roaming agreement with Miles’ mobile network operator.
Miles speaks only English, but the Swiss portal provides the
local restaurant guide service only in the German, French and
Italian languages. Our framework takes information about
the services available, Miles’ request and restrictions, and
context, and assembles a service for Miles consisting of
the atomic services RestaurantFinder, DirectionsFinder, and
TranslationService. The information is delivered to Miles’
mobile phone.

A few minutes later, Miles’ context changes from “wal-
king” to “driving”, as he collects a rental car and starts dri-
ving to the restaurant. Our system notices the change, and
adds the SpeechSynthesizer service to the application, refor-
matting the directions and routing them to Miles’ in-vehicle
information system (IVIS) for speech delivery.

In all above cases, Miles has the same goal: he wishes to find
and get directions to a restaurant of his liking. However, the
two requests result in the composite services being construc-
ted from different atomic services, because of the different
context in which the requests are submitted. In the first case,
Miles is using a SmartPhone while walking around Market
Square in Cambridge. In contrast, in the second case, Miles
is driving through Zurich, and using IVIS. Our framework
allows Miles to submit both requests in the same way, and
automatically handles application adaptation.

3 System architecture

This section describes the architecture of the proposed fra-
mework using the scenario described in Sect. 2.

The overall operation of our system is shown in Fig. 2.
The inputs to the system are a user request, a number of
available services, and the context. When a user request is
made, the composition request management layer combi-
nes this with contextual information to create a composition
request for the abstract service composition layer. This in
turn assembles a composite service, and passes it on to the
architecture-specific service composition layer, which binds
it to a sequence of deployable service instances. Finally, the
execution and monitoring layer invokes the above sequence,

monitors its execution, and triggers adaptation when context
or execution parameters change.

Composition request management. The composition process
starts with the receipt of a user request (Step 1 in Fig. 2).
Based on that, this step creates a composition request; this
includes a number of literals specifying the userÆs task
intention (e.g. “find me directions to a restaurant”) and con-
textual parameters (e.g. “in Zurich”, “driving”). The request
is then fed to the abstract service composition layer (Step 4)
for building an abstract plan.

Abstract service composition. This layer translates the
composition request and available service descriptions to a
problem definition, which is in the representation format sup-
ported by the composition technology in use —TLPlan [5] in
our prototype—(Steps 7 and 8). Then the problem definition
is passed to the composition engine for building an abstract
plan (Step 9a). This denotes a sequence of abstract services,
high-level descriptions of service operations and cannot be
directly invoked, which are bound to service instances in the
following layer. Potential failures of the composition process
are handled by GoalMorph [3], a system which transforms
failed composition requests into alternative ones that can be
solved (Step 9b).

Architecture-specific service composition. Starting from the
abstract plan, this layer translates it into an abstract exe-
cution plan, which is represented in the language used by
the execution framework employed—BPEL4WS [6] in our
prototype—(Step 10). The Plan Instantiator—implemented
using the BPWS4J engine [7], uses the Service Registry—
implemented using jUDDI v0.94 [8] to discover service
instances, which are realized as calls to fine granularity Web
services, binding to the abstract services in the abstract exe-
cution plan (Step 7). This produces the deployable service
description, a deployable composition of service instances,
which is passed on to the execution and monitoring layer
(Step 12a).

Execution and monitoring. The layer executes and conti-
nuously monitors the execution of the deployable service des-
cription. Upon disconnection or failure of individual service
instances, the layer passes control back to the architecture-
specific service composition layer, which can substitute the
failed service instances with new ones (Step 15a). Should an
unanticipated change in context occur (Step 15b), or should
the user change the task specification (Step 15c), control is
passed to the composition request management layer, where
a new composition request is generated and recomposition
triggered.

123

200 SOCA (2007) 1:197–212

Fig. 2 System architecture
overview

Context
Mesh

composition
request

Goal
Transformation

Engine

Context
Proxy

Context
Service

5a: transform core
 goal conditions

5b: transform context
goal conditions

2: retrieve context

3b:generate context
goal conditions

3a:generate core
goal conditions

6: retrieve context

1: select goal

Layer 1:
Composition request management

Goal
Service

Translator
Module

Composition
Engine

7: translate
composition request

9a:abstract
service composition

9b: composition
failure

problem
definiton

abstract
plan

8: translate abstract
service descriptions

Layer 2:
Abstract service composition

domain
description

Abstract
Service

Repository

Plan
Translator

Plan
Instantiator

10: translate abstract plan
to architecture specific

description format

11: service discovery
 and binding

12a: schedule service
instance for invocation

Service
Registry

Layer 3:
Architecture specific
service composition

deployable
service

description

service
binding

abstract
execution

plan

12b: service discovery failure

Execution
Engine

Monitoring
Engine

13: service
exectution

14: execution
monitoring

15a: service failure

15b: context change

15c: user task change

4: initiate abstract service composition

Layer 4:
Execution and monitoring

Context changes during the execution of composite service
may (a) unexpectedly satisfy effects of scheduled services
or (b) invalidate preconditions that were true at the time
of abstract composition. For instance, a user may manually
adjust the volume of the music in the car. As a result the
effect of the scheduled service for lowering music volume is
satisfied, and the service should not be executed. The monito-
ring process observes context changes and service execution
using the monitoring model proposed by Haigh et al. [9].
For example, if the main service effect has been unexpec-
tedly satisfied, such as the user manually lowers the music
volume, the execution state is updated and the scheduled ser-
vice for controlling music volume is not invoked. Observing
the environment and maintaining a state description in this
way improves the efficiency of the system because it will
not attempt redundant service executions. Mechanisms for
handling composition and execution failures are analysed
in [10].

4 Implementation

This section describes how the prototype implementation
applies goal-oriented inferencing from the TLPlan [5] plan-
ning algorithm to select atomic services that form a com-
posite Web service. It also presents how the abstract
execution plan is described in BPEL4WS [6] format.
Finally it discusses the internals of the execution and moni-
toring layer.

4.1 Composition Engine: TLPlan for Web service
composition

TLPlan is used to synthesise plans in the domain of our usage
scenario, which has been described in Sect. 2. The fundamen-
tal steps in planning include describing the planning domain,
specifying the initial and goal worlds, and invoking the plan-
ning process.

123

SOCA (2007) 1:197–212 201

Fig. 3 Sample domain description in TLPlan

Domain description. A domain description contains
details about the literals, predicates and function symbols
to be used in the domain. Figure 3 shows literals descri-
bing concepts in the usage scenario. For example, the literal
(predicate restaurant_booking_made 2) is
used to describe the effect of a booking being made. It has
arity 2, where arguments represent the number of persons
and the time for which the booking was made. The literal
(predicate restaurant_has_space 2) is used
to determine if the booking can be made (Fig. 4).

Problem definition. The problem definition specifies the
initial world and the goal world, using lists of domain
predicates and function definitions. Figure 5 shows a
sample problem definition for the usage scenario, e.g.
goal conditions (directions_found current_
address restaurant_address) and(direction
speech_out) are states to be reached. The core part of this
request is finding the directions, and the context goal is that
directions should be read out in audio form, as the user is
currently driving.

Plan. The planner is invoked by loading the domain
description file and the problem definition file.

Fig. 4 Sample TLPlan operator

Fig. 5 Sample TLPlan problem

The resulting plan is a list of operators and a sequence in
which they should be applied. Figure 6 shows the sample
output given the problem in Fig. 5.

4.2 Representation of abstract execution plans

This layer converts the abstract plan into the
abstract execution plan, which is represented in
the architecture specific language. To express the logic of a
composite Web service the framework uses BPEL4WS, an
XML-based flow composition language.

Fig. 6 Sample TLPlan plan

123

202 SOCA (2007) 1:197–212

Fig. 7 Sample partner definition in Business Process Execution Lan-
gauge for Web Services

BPEL4WS models the interaction among participating
Web services, termed partners in BPEL4WS, to describe
composite Web services. It specifies the role of the partners
providing each Web service and the flow of the messages
they exchange. Figure 7 shows how partners are defined. In
the current implementation partners are: partner_user
and partner_plan_instantiator_proxy. Partner
definition includes partner name, role, and the link to the
service definition in its Web Service Description Language
(WSDL) [11] file.

Figure 8 shows the abstract execution plan in
the BPEL4WS format. The partner partner_plan_
instantiator_proxy represents the Plan
Instantiator component. Itsinstantiate operation
is called for each service description in the abstract
execution plan. As an input it takes the service des-
cription, Quality of Service parameters and the location of
the Service Registries. It uses this information to
perform service discovery and binding. For example, the
<invoke> construct invoke_restaurant-lookup-
ch takes as an input the variable input_restaurant-
lookup-ch, which contains search and input parameters
for a restaurant finder service instance.

The abstract execution plan, described in
BPEL4WS is deployed on IBM Business Process Execu-
tion Language for Web Services Java Run Time (BPWS4J)
v2.1 [7], a platform that executes BPEL4WS processes. The
BPWS4J is a Web component that runs on an application ser-
ver. This implementation of the framework uses the Tomcat
v5.1 [12] application server.

The main limitation of BPWS4J is that it does not allow
for dynamic binding and discovery of services. As an input
it takes three parameters: (1) a BPEL4WS document that
describes a composite service to be executed, (2) a WSDL
document without binding information, which describes the

interface that the composite service will present to clients
or partners in BPEL4WS terms and (3) WSDL documents
that describe the services that the composite service may
invoke during its execution. An abstract execution
plan contains an abstract service description. It does not
have information about service instances and their WSDL
documents, which are a necessary parameter to BPWS4J as
described above.

To address this limitation, the framework introduces the
Plan Instantiator component. The BPWS4J uses the
Plan Instantiator as a proxy to communicate with
Service Registries to obtain WSDL files and instan-
tiate services. This is achieved by encapsulating service
search parameters as an input to the instantiate ope-
ration of the partner partner_plan_instantiator_
proxy, shown in Fig. 8.

4.3 Execution and monitoring layer

This section describes how the framework mediates the inter-
action between the composition layers and the execution
environment. It presents how the framework adapts and app-
lies the monitoring model proposed by Haigh et al. [9], which
includes service monitors that observe service execution, and
event monitors that track changes in the environment.

The Execution Engine schedules and invokes
service instances, which are defined by deployable
service descriptions. During service execution the
environment is changing and can therefore invalidate the
facts, which are used by the Composition Engine to
assemble a composite service. The purpose of the
Monitoring Engine is to provide the Composition
Engine and the Execution Enginewith an up-to-date
view of the state of the execution environment.

The execution of each service is embedded in a
monitoring procedure, which verifies service
preconditions and postconditions. The monitoring
procedure is run sequentially, before and after service
execution. For example, before a RestaurantFinder
service is executed, the Monitoring Engine determi-
nes whether the cuisine type parameter has been supplied. If
this is not the case, control is passed back to the user and the
composition request management layer to acquire the
missing parameters. Similarly, before executing the
DirectionFinder service, if the current location is no
longer available, control is passed to the composition request
management layer to reformulate the request.

Once all necessary preconditions are satisfied, the service
is invoked. The Monitoring Engine then examines the
outcome of service execution and passes control back to
the abstract service composition and the architecture spe-
cific service composition layers, if the actual outcome of
service operation is not as expected. For example, if details

123

SOCA (2007) 1:197–212 203

Fig. 8 Abstract execution plan
in Business Process Execution
Language for Web Services

of restaurants are not produced as a result of executing the
RestaurantFinder service, control is passed back to the
abstract service composition and the architecture specific ser-
vice composition layers. The Monitoring Engine also
passes the information on the current state of the environ-
ment to the Composition Engine, which may trigger a
recomposition of the request.

5 Evaluation

As service-oriented architectures gain popularity, more ser-
vices will be made available by service providers, therefore
increasing the size of the problem definition—the construct

fed to the Composition Engine for assembling the composite
service. Additionally, the number of composition requests is
anticipated to increase over time as a wider user community
takes advantage of the service composition framework. To
be able to handle both the increase in the size of the pro-
blem definition and increase in the number of users and their
requests, the framework must be able to scale gracefully and
maintain its performance and responsiveness.

Ensuring that the system’s computational requirements
scale linearly in the above conditions enables the addition of
computational resources on demand, as by doing so a linear
performance improvement will be observed. This is a com-
mon scalability criterion in systems research [13]. The first
part of this section presents evaluation results of quantitative

123

204 SOCA (2007) 1:197–212

jUDDI v0.94

380 Kbps, 93ms

P5 1.7GHz,
1GB RAM,

100Mbit Ethernet

Layer 3:
Architecture specific service compostion

Layer 4:
Execution and monitoring

Layer 2:
Abstract service compostion

Layer 1:
Composition request management

Tomcat v5.5

GoalMorph

P5 1.7GHz,
1GB RAM,

100Mbit Ethernet

TLPlan
P3 800MHz,

2GB RAM,
100Mbit Ethernet

380 Kbps, 93ms

BPWS4J

Fig. 9 Experimental setup

methods demonstrating the framework’s performance and
scalability.

At the same time, it is important to show that the design of
the service composition framework does indeed make con-
text aware applications easier to build and maintain by redu-
cing their complexity and increase their extensibility. The
second part of this section conducts a qualitative evaluation
of the system, analysing how it helps reducing the develop-
ment effort required for building context aware applications.

5.1 Quantitative evaluation

In this section we present our experimental results, which
demonstrate that the framework is able to respond quickly
and scale gracefully.

5.1.1 Experimental setup

Framework deployment. Figure 9 shows the configuration
of the environment in which all experiments were conduc-
ted. Two machines were used hosting different layers of the
framework. The machine providing access to the abstract
service composition layer, including TLPlan, was a dual pro-
cessor Pentium III 800 MHz with 2 GB RAM. An IBM
Thinkpad T41 with an Intel Pentium M 1700 MHz processor
and 1 GB RAM hosted the composition request management,
architecture specific service composition, and execution and
monitoring layers. Layers 3 and 4 were deployed on Tomcat

Table 1 Sample service categorisation

Service type Number of Number of Number of
geographical semantic UNSPCS
categories annotations codes

RestaurantFinder 1 3 2

AddressFinder 1 2 1

DirectionsFinder 1 3 4

Translation-Service 1 2 1

SpeechSynthesizer 1 2 1

v5.5 application server [12]. The two machines were in same
LAN connected over a 100Mbps Ethernet.

Context-rich environment. All experiments were performed
in a context-rich infotainment environment, corresponding
to the one described in Sect. 2. This environment had the
following characteristics:

– There were 20 sample abstract services in the Abstract
Service Repository, such as Restaurant Finder and Direc-
tions Finder.

– The Service Registry contained a number of instances
of each abstract service available in the Abstract Service
Repository.

– The infotainment environment was represented in a pro-
blem definition containing 100 elements describing the
scenario concepts, such as restaurant and its properties.

– Service instances were associated with two categories:
geographical, describing the area in which each service
is applicable, and the United Nations Standard Products
and Services Code System (UNSPSC) [14] categorisa-
tion. These categorisations were stored in the Service
Registry. Table 1 shows the number of categories that
applied to each service instance. Additional structures
were used to describe preconditions and postconditions
of each service (i.e. semantic annotations).

– The following sample user requests were generated to
test the system: “find a dining or entertainment venue
(location-based)”, “find an entertainment venue (event-
based)”, “find a dining venue (cuisine-based)”, “find
directions to the venue”, “book dining or entertainment
venue”, and “make booking and find directions for dining
and entertainment venues”. Each request was enriched
with context, such as location, device used, activity, social
context, time and weather.

5.1.2 Performance

This experiment evaluated the performance of our system,
both with and without the presence of service execution
failures. Such failures may occur, for instance, when services

123

SOCA (2007) 1:197–212 205

become unavailable as a result of network disconnection. Our
system handles such failures either reactively or proactively,
similar to the approach proposed by Gu et al. [15]. In par-
ticular, we evaluated the performance of our system in the
following three cases:

– Case 1. The process of service composition occurred
under ideal conditions, without any execution failures.

– Case 2a. Service execution failures caused control to be
passed from the execution and monitoring layer back
to the architecture specific composition layer, in which
a replacement service was discovered, bound and sche-
duled for invocation. This is termed a reactive recovery
method.

– Case 2b. Several service instances of each type were
deployed, allowing the rapid switchover from the una-
vailable instance to another upon disconnection. This
reduced the overhead of the discovery process once the
execution failure occurred, as will be shown in the follo-
wing section. This is termed a proactive recovery method.

We measured the total framework operation CPU time
taken by the subsequent steps of the system’s operation—as
described in Sect. 3, including the time needed for recovery
from any execution failures. The measurements were perfor-
med by obtaining snapshots of the total CPU time consumed
by the system using JConfig [16] after each of the steps in
the composition process as previously described. All mea-
surements were repeated 20 times for a composition request
containing 10 literals, with the resulting composite service
containing 23 atomic services. The discovery process was
performed with 160 service instances in total in the Service
Registry. All measurements were rounded to the nearest mili-
second.

The translation of abstract service descriptions was per-
formed only once at the beginning of the overall evaluation,
as each test case uses the same problem definition. There-
fore the measurements do not include the time for this step.
On average, this test takes approximately 4.3 seconds in our
prototype.

Results. Figure 10 shows the total framework operation time
for each one of the above test cases. On average the normal
composition without any failures takes approximately 125
ms for a composite service consisting of 23 atomic services.
Handling a composition failure in the reactive mode costs
20 ms on average, while using proactive approach in Case
2b reduces the failure recovery time by 15 ms—down 75%
from the 20 ms it took in Case 2a. This underlines the signifi-
cant performance—and thus user experience — benefit that
using our proactive recovery approach provides, increasing

Composition Timeline

0
1 2 3 4 5 6 7 8 9

100

200

300

400

500

600

700

10 11 12 13

Composition Step

T
im

e
(m

s)

normal with_composition_failure
with_execution_failure_1 with_execution_failure_2

Fig. 10 Framework operation timeline for Cases 1, 2a, and 2b

the framework’s suitability for interactive, latency-sensitive
applications.

It is important to note that the reason why the architecture
specific composition layer takes a disproportionate amount
of time compared to the other steps is the low performance
of the WSDL parser [17] used for generating the BPEL4WS
file.

This experiment demonstrates that the framework per-
forms more than adequately well, and handles execution fai-
lures rapidly, especially when proactive recovery is used.
The above properties underline the suitability of the system
for dynamic, wide-area pervasive computing environments.

5.1.3 Scalability

This set of experiments demonstrates the framework’s ability
to operate under increasing: (1) problem definition size, (2)
size of composition requests (in terms of the literals they
contain), and (3) number of concurrent composition requests
submitted. The experimental configuration described in
Sect. 5.1.1 was used to run the scalability tests. The comple-
xity of the problem definition size was extended to contain
150 facts and 100 service types, to accommodate composite
services consisting of up to 100 atomic services.

Scalability when increasing problem definition size. This
experiment varied the number of service instances availa-
ble in the Service Registry from 80 to 640. The rest of the
parameters of the planning domain remained as described in
Sect. 5.1.1, consisting of 100 facts and 20 abstract service
types. For each stage of the problem definition growth a full
composition process was executed to reconstruct the frame-
work operation. At the same time the size of the resulting

123

206 SOCA (2007) 1:197–212

0

40

80

120

160

200

240

Size of composite service (number of atomic services)

C
o

m
p

o
si

ti
o

n
 t

im
e

(C
P

U
 m

s)

Domain 80 108 136 157 221
Domain 160 108 139 167 225
Domain 320 111 140 176 225
Domain 640 112 143 179 229

8041239

Fig. 11 Scalability when increasing problem definition size

Table 2 Composition request size and composite service size

Test cases

Composition request size (number of goal conditions) 5 10 20 40

Number of context goal conditions 1 5 7 10

Average size of the resulting composite service 9 23 41 80

composite service was varied from 9 to 80. The composition
process was invoked 20 times to measure the average CPU
time needed by the system to assemble, deploy, and monitor
the composite service.

Figure 11 shows the results of this experiment, demon-
strating that the framework scales gracefully to a realistic
problem definition (640 instances), while still requiring less
than 229 ms of CPU time. Additionally, the experiment shows
that our framework scales linearly as the problem definition
size increases, allowing the on demand addition of compu-
ting resources to cope with larger pervasive environments.

Scalability when increasing composition request size. This
experiment measured the impact of composition request size
— in terms of the number of literals it contained — on the fra-
mework operation time. Table 2 shows the number of literals
in the composition request in each test case — varied from 6
to 50, as well as the average size of the resulting composite
service.

Figure 12 shows the average framework operation time
and provides a breakdown of time taken by each layer of
the framework. The framework processes an unusually large
composition request of size 40, assembles, and invokes a
complex composite service of size 80 in less than 225 ms of
CPU time. Additionally, as in the previous experiment, the
system is shown to scale linearly, allowing handling larger
composition requests if needed to accommodate for realistic
deployment environments.

Scalability when increasing number of composition requests.
This experiment was conducted to measure the framework

0

 50

 100

 150

 200

 250

 40 20 105

C
om

po
si

tio
n

tim
e

(C
P

U
 m

s)

Composition request size

Layer 1
Layer 2
Layers 3 and 4

Fig. 12 Scalability when increasing the composition request size, for
domain size 160.

0

 20

 40

 60

 80

 100

 120

 140

 100 50 101

C
om

po
si

tio
n

tim
e

(C
P

U
 m

s)

Number of composition requests

Legend
Layer 1: assembling composition request
Layer 2: planning
Layer 3: BPEL construction
Layer 3: BPEL deployment
Layer 3 and 4: service discovery, binding, exection

Fig. 13 Scalability when increasing number of composition requests

operation time when an increasing number of concurrent
composition requests—varied from 1 to 100 — were submit-
ted, in the environment described in Sect. 5.1.1. The BPWS4J
engine v2.1, which was used in our prototype implementa-
tion, does not support programmatical deployment of more
then one BPEL4WS file simultaneously, at the time of wri-
ting. Therefore the measurements focus on the scalability of
the framework without the deployment of the BPEL4WS file.

Figure 13 shows that a large difference in the number of
requests submitted (100 to 1) makes only little difference in
the total time taken to serve the request (2 to 1); the total time
for 100 simultaneous composition requests is less than twice
the time for a single request. This demonstrates the ability of
the system to scale gracefully to accommodate large numbers
of concurrent composition requests, thus making it suitable
to large-scale, multi-user deployments.

123

SOCA (2007) 1:197–212 207

Table 3 Scalability when increasing the composition request size: composition time distribution (CPU ms)

Step 1 request 10 requests 50 requests 100 requests

Layer 1: Composition request assembly 5 30 30 45

Layer 2: Abstract service composition 10 30 30 40

Layer 3: Generate BPEL4WS 11 13 16 19

Layer 3: Deploy BPEL4WS 55 n/a n/a n/a

Layers 3 and 4: Service discovery, binding, and execution scheduling 51 118 120 124

Total time (ms) 132 191 196 228

Table 3 analyses the result in a bit more depth, showing
the distribution of time across the subsequent steps of our
system’s operation. The reported time for service discovery,
binding and invocation is a total time for processing all the
participating atomic services. The results have been rounded
to one decimal place.

As the table shows, the bottleneck of the composition pro-
cess is the generation of the BPEL4WS file, due to the low
performance of the WSDL parser used [17]. Furthermore,
the relatively small increase in the time taken for layers 3
and 4, shown in Table 3, results from the caching mechanism
employed by the Service Registry, as the test data set con-
tained composition requests consisting of randomised, but
possibly overlapping, service instance queries.

5.2 Qualitative evaluation

At present, devising a set of standard and commonly accepted
metrics for measuring development complexity remains an
open research topic. Recent research has focused mainly on
performance analysis and system complexity [18,19]. One
of the challenges is that the complexity of a system can be
viewed from the perspective of a number of different stake-
holders. An application developer is concerned with deve-
lopment time, flexibility and extensibility of the application.
A system administrator is concerned with the amount of
management and configuration required to keep the appli-
cation running. Most importantly, the end user is concerned
with how the complexity of the system affects its usability
and the ability of the user to specify and select computational
tasks; in other words, to specify the composition request in
the proposed framework.

This section analyses the effort involved in developing
context aware applications using legacy application frame-
works, which embed the contextual dependencies, use the tra-
ditional application development methodology, and employ
available application design toolkits and context middleware
solutions. It then compares it to the effort it takes to deve-
lop context aware applications using our proposed metho-
dology, grounded in the context aware service composition
framework.

Table 4 summarises the design and development steps
involved in each approach. For each phase in the development
process, the table shows its development mode, its frequency
when adaptation is required and its difficulty. Development
modes are categorised as manual coding, semi-automated —
with the assistance of toolkits and scripts, or fully automated
— with the assistance of frameworks or middleware.

The most critical steps are 3, 4, 5, 7, 16, 17, and 18,
which deal with the specification of context behaviour and
the systems’s ability to handle unpredictability and react to
failures. These tasks are manual or semi-automatic, have to
be done repetitively, and are moderate to difficult in terms
of their complexity, as they require specifying and manually
encoding context behaviour in the application.

These steps are automated and simplified using the propo-
sed framework, significantly reducing the amount of manual
effort needed for application development. The trade-off is
that service composition approach requires the semantic
annotation of services (Step 8) and construction of the domain
description (Step 9). However, despite the fact that these tasks
require (possibly manual) design and development, both sta-
ges occur only once for each application domain. We believe
that this is a limited amount of effort compared to the conti-
nued effort of individual programmers to keep up with new
contextual parameters.

To build a software solution in a given scenario using
our application, the developer needs to perform two key
steps. Firstly, she needs to describe the problem definition,
which corresponds to representing the scenario concepts and
abstract services. If abstract services from other scenarios or
previous deployments — e.g. libraries — are available, they
can be reused. Secondly, the developer needs to define the
user task intentions that will be supported, and the context
types that are relevant in the scenario. We are investigating
the automation of both of these operations based on inference
in our ongoing work.

Unlike the legacy approach, when the new context is intro-
duced into the application, the proposed service composi-
tion approach removes the need for manual reprogramming.
The composition framework automatically discovers new
context using context middleware, generates new context

123

208 SOCA (2007) 1:197–212

Table 4 Comparison of design process when building context aware applications using a legacy approach and using our proposed service compo-
sition approach

Step Step description Development mode Frequency Difficulty

Legacy Our system Legacy Our system Legacy Our system

Task specification

1 Specify context semi semi repeated repeated easy easy

2 Register with context providers auto auto repeated repeated easy easy

3 Specify desired core goal manual semi repeated repeated moderate easy

4 Specify desired context behaviour semi auto repeated repeated difficult easy

5 Select desired task semi semi repeated repeated moderate easy

Application behaviour specification and configuration

6 Develop core functionality manual n/a one-off n/a moderate n/a

7 Encode context aware behaviour manual n/a repeated one-off difficult effortless

8 Semantic description of services n/a semi n/a one-off n/a difficult

9 Generate domain description n/a semi n/a one-off n/a moderate

10 Generate problem definition n/a auto n/a repeated n/a easy

11 Generate abstract plan n/a auto n/a repeated n/a easy

12 React to plan failures n/a auto n/a repeated n/a easy

13 Generate architecture specific plan n/a auto n/a repeated n/a easy

Application execution

14 (Platform-specific) deployment semi n/a repeated n/a moderate n/a

15 Service discovery and invocation n/a auto n/a repeated n/a easy

Unpredictability and failure recovery

16 React to context changes semi auto repeated repeated difficult easy

17 React to task changes auto auto repeated repeated moderate easy

18 React to execution failures semi auto repeated repeated moderate easy

behaviour (Step 7 implemented by [3]) and adapts applicati-
ons. Furthermore, an important advantage of our approach
is its generality and independence of specific application
scenarios.

6 Related work

This section describes related work in two main research
categories: context aware computing and service composi-
tion.

6.1 Middleware for context awareness

Building context aware applications from scratch is not
practical, as the facility for specifying, acquiring and pro-
cessing context must be developed each time. As a result
researchers are building infrastructures to decrease the deve-
lopment overhead by decoupling of context from applica-
tion. Such context architectures are commonly called context
middleware.

Dey [20] analysed a typical development cycle of a con-
text aware application and identifies the following essential
features of context middleware for supporting context aware
applications: context specification, resource discovery, con-
text acquisition, interpretation, context storage, transparent
distributed computing and constant availability. This analy-
sis extends the set of essential architectural features proposed
by Dey, to include the support for the following: distributed
context repository, security, privacy and quality of informa-
tion.

Table 5 shows that not all of the identified properties are
present in a single architecture. The review shows that there
has been an advance in addressing technical challenges in
developing context middleware. However, most conventio-
nal architectures for context awareness do not address social
and legal issues with respect to privacy and security concerns.
It is especially evident that support for privacy and Quality
of Information is in its early stages. Only Context Weaver
integrates a Quality of Information into its model of context.
Context Toolkit, Context Fabric and Context Weaver pro-
vide limited support for expressing access control policies
for context data.

123

SOCA (2007) 1:197–212 209

Table 5 Comparison of context middleware

Feature Context Middleware

Schilit’s Stick-e TEA Context Toolkit Context Fabric iRoom Context Weaver
[21] [20] [22] [23] [24] [25] [26]

Specification * * * � � * �
Acquisition � � � � � � �
Interpretation × × � � � * �
Storage × × � � � � �
Resource discovery * * * � � × �
Transparent distributed communications * × × � � � �
Constant availability � × × � � �
Distributed context repository × × × � × * �
Security × × × * * × *

Privacy × × × * * × �
Quality of Information model × × × * * × �
× = no support, * = partial or proposed support, � = full support

6.2 Planning-based service composition

We conducted a structured comparison of a number of exi-
sting planning-based service composition frameworks with
our proposed solution, based on a defined set of features. This
refers to the functionality that planning-based service com-
position frameworks need to provide, in order to enable their
wide applicability to large-scale, realistically complex perva-
sive computing environments. The set of features we define
is not exhaustive, and extends the one proposed by Koehler
et al. [27]. The features we have identified as necessary
are the following: extended goals, complex actions, dyna-
mic composition, on-the fly recomposition, user interaction,
automatic service discovery, monitoring for nondeterminism,
implicit task specification, resource constraints, composition
and execution failure recovery.

Comparison of planning-based service composition frame-
works. Wu et al. [28] used the SHOP2 [29] planner for auto-
mating Web service composition in a scheduling scenario.
Their system does not support on-the-fly recomposition, does
not automatically discover services, and is not able to recover
from composition failures.

McIlraith et al. [30] used and extended Golog [31], a high
level logic programming language built on top of Situation
Calculus [32] able to compose services encoded in DAML-S
[33]. User requests are expressed as generic ConGolog [34]
templates, constructed off-line and then modified based on
user preferences and constraints. This work does not deal
with on-the-fly recomposition, nor does it facilitate compo-
sition failure recovery.

Ponnekatni et al. proposed SWORD [35], a toolkit for Web
service composition. SWORD employs a rule-based expert

system based on the Rete algorithm [36], which automati-
cally determines if a desired service can be realised as a com-
position of existing, predefined, services. SWORD exhibits
several limitations, as it does not support extended goals,
complex actions, on-the-fly recomposition, automatic ser-
vice discovery, nondeterminism and monitoring, resource
constraints, and failure recovery.

Berardi et al. [37] considered a Web service as a tree
of all possible interactions with clients and developed the
E-Service Composer (ESC). They used Situation Calculus
to provide automated composition, supporting direct inter-
action with the user in the composition process. The main
weaknesses of ESC relate to its lack of support for resource
constraints and composition failure recovery.

Akkiraju et al. [38] devised a two layered workflow com-
position architecture. The higher layer focuses on abstract
business process flow specification, where processes are
described at a high-level using BPEL4WS semantically
annotated with DAML-S. The lower layer deals with service
discovery, composition, binding, and execution. This system
does not facilitate on-the-fly recomposition and composition
failure recovery.

Pistore et al. [39] proposed a service composition frame-
work grounded in the concept of planning as model checking,
also known as Model-Based Planning (MBP). They develo-
ped the ASTRO [40] toolset, supporting automated service
composition, monitoring and execution.

The above findings are summarised in Table 6. Common
characteristics of all systems include their centralised archi-
tecture, their support for dynamism in the composition
process, and the presence of mechanisms for handling execu-
tion failures — exclusively reactively, by replacing a service
instance with another one upon failure.

123

210 SOCA (2007) 1:197–212

Table 6 Comparison of features supported by planning-based service composition frameworks

Service framework

Feature Wu’s mcIliarth’s SWORD ESC Akkrijau’s ASTRO Our

– Composition method SHOP2 ConGolog Rete Situation calculus State planner MBP TLPlan

– Service markup OWL-S OWL-S XML WSTL OWL-S BPEL4WS OWL-S

– Composition model central central central central central central central

1 Extended goals * � × * � � *

2 Complex actions � � × � � � *

3 Dynamic composition * * * � * � �
4 On-the-fly recomposition × × × � × × �
5 User interaction * * * � * * *

6 Automatic service discovery × * × � � * �
7 Monitoring for nondeterminism * * × * * � *

8 Implicit task specification × × × × × × ×
9 Resource constraints * * × × * * �
10 Composition failure recovery × × × × × × �
11 Execution failure recovery reactive reactive × reactive reactive reactive proactive and reactive

× = no support, * = partial or proposed support, � = full support

However, all service composition frameworks we inve-
stigated lacks features that are crucial for applicability to
realistically large and complex pervasive computing environ-
ments, and which our framework provides integrated support
for: on-the-fly recomposition, allowing the adaptation of the
composite service to deal with the dynamicity of the envi-
ronment, and composition failure recovery, to allow dealing
with incorrectly defined services and user request literals
or incomplete knowledge of the world — the mechanisms
our system provides to facilitate the latter are analysed in
detail in our previous work [10]. Furthermore, our system
employs proactive recovery from execution failures to miti-
gate the delays inherent in discovering a new suitable service
instance.

7 Conclusion and future work

This paper has proposed a framework implementing a new
approach for developing context-aware applications in a
structured and extensible way, by rapidly composing them
from individual services on demand, at a user’s request. The
composition process takes into account the available services
and the context, in order to assemble a composite service that
meets the user’s task intention. A distinguishing feature of
our framework is its support for recomposition of compo-
site services on-the-fly, when the context, service availabi-
lity, or user’s task intention changes drastically. Additionally,
our framework provides a comprehensive failure manage-
ment solution, by facilitating recovery from failures occur-
ring during both the composition and execution stages. The
proactive failure recovery approach we have developed for

the latter case has been shown to provide significant perfor-
mance benefits over the standard, reactive methodology.

Our framework has been shown to be efficient and scalable
through the experimental evaluation of our prototype imple-
mentation. The system supports the composition and deploy-
ment of realistically complex composite services, consisting
of 80 atomic services, in less than 225 ms. The system is able
to scale gracefully also when the composition request size
and number of concurrent requests are increased. Further-
more, the occurrence of execution failures adds only 5ms to
the total framework operation time, due to the efficient proac-
tive recovery methodology we have implemented. Finally, by
means of qualitative analysis, the framework has been shown
to automise the most difficult, manual and frequently occur-
ring steps in developing context aware applications, such as
encoding the large and increasing number of combinations
of context types that applications have to adapt to.

In the future, we plan to investigate assembling and exe-
cuting composite services based on real-time Quality of Ser-
vice measurements, acquired through interaction with the
services. We also plan to work on optimising performance
by interleaving the processes of service discovery and exe-
cution, allowing each discovered service to be immediately
invoked while the subsequent service is being instantiated.

References

1. Weiser M (1991) The computer for the 21st century. Sci Am
265(3):66–75

2. Vukovic M, Kotsovinos E, Robinson P (2007) Application deve-
lopment powered by rapid, on-demand service composition. In:

123

SOCA (2007) 1:197–212 211

Proceedings of the 2007 IEEE international conference on service-
oriented computing and applications (IEEE SOCA 2007), Newport
Beach, California

3. Vuković M, Robinson P (2005) GoalMorph: Partial goal satisfac-
tion for flexible service composition. Int J Web Services Pract 1(1–
2):40–56

4. Vuković M, Robinson P (2005) SHOP2 and TLPlan for Proactive
Service Composition. In: Proceedings of the UK–Russia workshop
on proactive computing. Nizhniy Novgorod, Russia

5. Bacchus F, Kabanza F (1995) Using temporal logic to control
search in a forward chaining planner. In: Proceedings of the second
international workshop on temporal representation and reasoning
(TIME). Melbourne Beach, FL, USA

6. Curbera F, Andrews T, Dholakia H, Goland Y, Klein J, Leymann F,
Liu K, Roller D, Smith D, Thatte S, Trickovic I, Weerawarana
S (2005) Business Process Execution Language for Web Ser-
vices, version 1.1. White Paper available at ftp://www6.software.
ibm.com/software/developer/library/ws-bpel.pdf (Last accessed
1st March 2006)

7. IBM (2004) The IBM Business Process Execution Language
for Web Services JavaT M Run Time (BPWS4J). http://www.
alphaworks.ibm.com/tech/bpws4j (Last accessed 1st March 2006)

8. jUDDI v.0.94rc (2003) Java Implementation of the Universal
Description Discovery, and Integration (UDDI) Specification for
Web Services. Apache Web Services Project. http://ws.apache.org/
juddi/ (Last accessed 1st March 2006).

9. Haigh KZ, Veloso M (1996) Interleaving Planning and Robot
Execution for Asynchronous User Requests. In: Planning with
Incomplete Information for Robot Problems: Papers from the 1996
American Association for Artificial Intelligence (AAAI) Spring
Symposium, Stanford University in Palo Alto, California, USA,
AAAI Press, Menlo Park, California 35–44

10. Vukovic M (2006) Context Aware Service Composition. PhD the-
sis, University of Cambridge

11. Christensen E, Curbera F, Meredith G, Weerawarana S (2001) Web
Services Description Language (WSDL) 1.1. Specification availa-
ble at http://www.w3.org/TR/wsdl (Last accessed 1st March 2006)

12. Apache Tomcat v5.5 Application Server (2006) Software available
at http://tomcat.apache.org/ (Last accessed 1st March 2006)

13. Fox A, Gribble SD, Chawathe Y, Brewer EA, Gauthier P (1997)
Cluster-based scalable network services. In: Symposium on ope-
rating systems principles 78–91

14. The United Nations Standard Products and Services Code
UNSPSC. Website available at http://www.unspsc.org/ (1998)
(Last accessed 1st March 2006)

15. Gu X, Nahrstedt K, Yu B (2004) SpiderNet: an Integrated Peer-
to-Peer Service Composition Framework. In: Proceedings of the
IEEE international symposium on high performance distributed
computing (HPDC), Honolulu, Hawaii, USA 110–119

16. JConfig (2002) Software available from http://tolstoy.com/
samizdat/jconfig.html (Last accessed 19th July 2006)

17. Web Services Description Language for Java (2005) Software
available at http://sourceforge.net/projects/wsdl4j (Last accessed
1st March 2006)

18. Ranganathan A, Campbell RH (2003) What is the complexity of
a distributed System? Technical Report UIUCDCS-R-2005-2568,
University of Illinois at Urbana-Champaign, Urbana-Champaign,
IL, USA

19. McCann JA, Huebscher MC (2004) Evaluation issues in autonomic
computing. In: Jin H, Pan Y, Xiao N. (eds) Proceedings of the
third international conference on grid and cooperative computing
workshops (GCC) of Lecture Notes in Computer Science, vol 3252.
Springer, Wuhan 597–608

20. Dey AK (2000) Providing architectural support for building
context-aware applications. PhD thesis,. Georgia Institute of Tech-
nology, Atlanta, GA, USA

21. Hong JI, Landay JA (2001) An infrastructure approach to context-
aware computing. Human–Comput Interact J 16:287–303

22. Winograd T (2001) Architectures for Context. Human-Comput
Interact J 16:401–419

23. Schilit BN (1995) System architecture for context-aware mobile
computing. PhD thesis. Columbia University, New York, USA

24. Pascoe J (1997) The Stick-e Note Architecture: extending the
interface beyond the user. In: Moore J, Edmonds E, Puerta A
(eds) Proceedings of the international conference on intelligent
user interfaces, Orlando, FL, USA. ACM, 261–264

25. Schmidt A, Aidoo KA, Takaluoma A, Tuomela U, Laerhoven KV,
de Velde WV (1999) Advanced interaction in context. In: Procee-
dings of the first international symposium on handheld and ubiqui-
tous computing (HUC). Springer, Karlsruhe, pp 89–101

26. Lei H, Sow DM, Davis II JS, Banavar G, Ebling MR (2002) The
design applications of a context service. ACM SIGMOBILE
Mobile Comput Commun Rev 6(4):45–55

27. Koehler J, Srivastava B (2003) Web service composition: cur-
rent solutions and open problems. In: The Proceedings of the
international conference on automated planning and scheduling
(ICAPS). Workshop on planning for Web Services, Trento, Italy
pp 28–35

28. Wu D, Sirin E, Hendler J, Nau D, Parsia B (2003) Automatic Web
Services composition using SHOP2. In: Proceedings of the 13th
international conference on automated planning and scheduling.
Workshop on planning for Web Services, Trento, Italy

29. Nau DS, Muñoz-Avila H, Cao Y, Lotem A, Mitchell S (2001) Total-
order planning with partially ordered subtasks. In: Nebel B (eds)
Proceedings of the seventeenth international joint conference on
artificial intelligence (IJCAI), Seattle, Washington, USA, pp 425–
430

30. McIlraith S, Son TC (2002) Adapting golog for composition of
semantic Web Services. In: Proceedings of the eighth international
conference on knowledge representation and reasoning (KR2002),
Toulouse, France

31. Levesque HJ, Reiter R, Lesperance Y, Lin F, Scherl RB
(1997) GOLOG: a logic programming language for dynamic
domains. J Logic Programm 31(1-3):59–83

32. McCarthy J, Hayes PJ (1969) Some philosophical problems from
the standpoint of artificial intelligence. In: Meltzer B, Michie
D (eds) Machine intelligence 4. Edinburgh University Press,
Edinburgh, pp 463–502

33. Ankolenkar A, Burstein M, Hobbs JR, Lassila O, Martin DL,
McDermott D, McIlraith SA, Narayanan S, Paolucci M, Payne TR,
Sycara K (2002) DAML-S: Web service description for the seman-
tic Web. In: Proceedings of the first international semantic Web
conference (ISWC), Sardinia, Italy

34. Giacomo GD, Lesperance Y, Levesque HJ (2000) Congolog, a
concurrent programming language based on the situation calcu-
lus. Artif Intell 121(1-2):109–169

35. Ponnekanti SR, Fox A (2002) Sword: A developer toolkit for Web
service composition. In: Proceedings of the 11th World Wide Web
conference (Web Engineering Track), Honolulu, Hawaii, USA

36. Forgy C (1982) Rete: A fast algorithm for the many patterns/many
objects match problem. Artif Intell 19(1):17–37

37. Berardi D (2005) Automatic service composition. Models, techni-
ques, tools. PhD thesis, University of Rome “La Sapienza”, Rome,
Italy

38. Akkiraju R, Verma K, Goodwin R, Doshi P, Lee J (2004) Execu-
ting abstract Web process flows. In: Proceedings of the internatio-
nal conference on automated planning and scheduling (ICAPS).
Workshop on planning and scheduling for Web and grid services,
Whistler, BC, Canada

39. Pistore M, Barbon F, Bertoli P, Shaparau D, Traverso P (2004)
Planning and monitoring Web service composition. In: Procee-
dings of the artificial intelligence: methodology, systems, and

123

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www.alphaworks.ibm.com/tech/bpws4j
http://www.alphaworks.ibm.com/tech/bpws4j
http://ws.apache.org/juddi/
http://ws.apache.org/juddi/
http://www.w3.org/TR/wsdl
http://tomcat.apache.org/
http://www.unspsc.org/
http://tolstoy.com/samizdat/jconfig.html
http://tolstoy.com/samizdat/jconfig.html
http://sourceforge.net/projects/wsdl4j

212 SOCA (2007) 1:197–212

applications, 11th international conference (AIMSA), Varna, Bul-
garia pp 106–115

40. Trainotti M, Pistore M, Calabrese G, Zacco G, Lucchese G, Barbon
F, Bertoli P, Traverso P (2005) ASTRO: supporting composition

and execution of Web services. In: Proceedings of the international
conference on automated and planning sheduling (ICAPS). Demo,
Monterey, CA, USA

123

	An architecture for rapid, on-demand service composition
	Abstract
	Introduction
	Usage scenario
	System architecture
	Implementation
	Composition Engine: TLPlan for Web service composition
	Representation of abstract execution plans
	Execution and monitoring layer
	Evaluation
	Quantitative evaluation
	Experimental setup
	Performance
	Scalability
	Qualitative evaluation
	Related work
	Middleware for context awareness
	Planning-based service composition
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

