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Abstract

Mind reading encompasses our ability to attribute mental
states to others, and is essential for operating in a complex
social environment. The goal in building mind reading
machines is to enable computer technologies to understand
and react to people’s emotions and mental states. This
paper describes a system for the automated inference of
cognitive mental states from observed facial expressions
and head gestures in video. The system is based on a multi-
level dynamic Bayesian network classifier which models
cognitive mental states as a number of interacting facial
and head displays. Experimental results yield an average
recognition rate of 87.4% for 6 mental states groups: agree-
ment, concentrating, disagreement, interested, thinking and
unsure. Real time performance, unobtrusiveness and lack
of preprocessing make our system particularly suitable for
user-independent human computer interaction.

1. Introduction
People mind read or attribute mental states to others all the
time, effortlessly, and mostly subconsciously. Mind reading
allows us to make sense of other people’s behavior, predict
what they might do next, and how they might feel. While
subtle and somewhat elusive, the ability to mind read is
essential to the social functions we take for granted. A lack
of or impairment in mind reading abilities are thought to be
the primary inhibitor of emotion and social understanding
in people diagnosed with autism (e.g. Baron-Cohenet. al
[2]).

People employ a variety of nonverbal communication
cues to infer underlying mental states, including voice,
posture and the face. The human face in particular provides
one of the most powerful, versatile and natural means
of communicating a wide array of mental states. One
subset comprises cognitive mental states such asthinking,
decidingandconfused, which involve both an affective and
intellectual component [4]. Cognitive mental states play
an important role in interpreting and predicting the actions
of others [22] and as shown in Rozin and Cohen [19]

these non-basic mental states occur more often in day to
day interactions than the prototypic basic ones (happiness,
sadness, anger, fear, surprise and disgust). Because of
their intellectual component, cognitive mental states are
especially relevant in human computer interaction which
often involves problem-solving and decision-making.

Paradoxically, despite the crucial role of cognitive men-
tal states in making sense of people’s behaviour, facial
expressions are almost always studied as a manifestation
of basic emotions. The majority of existing automated
facial expression analysis systems either attempt to identify
basic units of muscular activity in the human face (action
units or AUs) based on the Facial Action Coding System
(FACS) [10], or only go as far as recognizing the set of basic
emotions [5, 6, 7, 8, 9, 17, 18, 21].

The recognition of cognitive mental states involves the
analysis of multiple asynchronous information sources such
as purposeful head gestures, eye-gaze direction, in addition
to facial actions [2]. Also, cognitive mental states are only
reliably discerned by analysing the temporal dependencies
across consecutive facial and head displays [14]. In other
words, modelling cognitive mental states involves multi-
level temporal abstractions: at the highest level, mental
states typically last between 6-8 sec [3]. Displays can last
up to 2 sec, while at the lowest level, action units last tenths
of seconds.

This paper describes a system for inferring cognitive
mental states from video of facial expressions and head
gestures in real time. Being unobtrusiveness and fully
automated makes the system particularly suitable for user-
independent man-machine contexts. To our knowledge, this
work makes the first attempt at classifying cognitive mental
states automatically.

2. Overview

Our approach combines machine vision and supervised
statistical machine learning to model hidden mental states
of a person based upon the observable facial and head
displays of that person. An overview of the automated mind
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Figure 1: Block diagram of the automated mind reading
system

reading system is shown in Figure 1. Video of the face is
recorded at 29 frames per second and input to the system in
real time. We assume a full frontal view of the face, but take
into account variations in head pose and framing inherent
in video-based interaction. The vision-based component
recognizes dynamic head and facial displays from video.
It locates and tracks fiducial landmarks across an image,
then estimates head pose from expression-invariant feature
points. The head pose parameters depict head action units.
Facial feature motion, shape and color descriptors identify
facial action units. Head and facial actions are combined
temporally in a hidden Markov model (HMM) framework
to recognize displays.

The inference component makes use of dynamic
graphical models, specifically dynamic Bayesian networks
(DBNs) that represent high-level cognitive mental states
given observed displays. A separate model of each mental
state is learned allowing the system to be in more than
one mental state at a time. This is particularly useful for
modelling mental states that are not mutually exclusive.
The use of DBNs makes it possible to later add eye-gaze
and context to map multiple information sources to mental
states. By exploiting the different temporal scale of each
level the mind reading system runs in real time. For
example, instead of invoking a mental state inference on
every frame, approximately 20 inferences are made in a
video 6 seconds long (190 frames). In addition, each level
of the system is implemented as a sliding window to make
it possible to run the system for an indefinite duration.

3 Head and facial action unit analysis

Twenty four facial landmarks are detected using a face
template in the initial frame, and their positions tracked

across the video. The system builds on Facestation [1],
a feature point tracker that supports both real time and
offline tracking of facial features on a live or recorded
video stream. The tracker represents faces as face bunch
graphs [23] or stack-like structures which efficiently com-
bine graphs of individual faces that vary in factors such
as pose, glasses, or physiognomy. The tracker outputs the
position of twenty four feature points, which we then use
for head pose estimation and facial feature extraction.

3.1 Extracting head action units

Natural human head motion typically ranges between 70-
90o of downward pitch, 55o of upward pitch, 70o of
yaw (turn), and 55o of roll (tilt), and usually occurs as
a combination of all three rotations [16]. The output
positions of the localized feature points are sufficiently
accurate to permit the use of efficient, image-based head
pose estimation. Expression invariant points such as the
nose tip, root, nostrils, inner and outer eye corners are used
to estimate the pose. Head yaw is given by the ratio of left
to right eye widths. A head roll is given by the orientation
angle of the two inner eye corners. The computation of both
head yaw and roll is invariant to scale variations that arise
from moving toward or away from the camera. Head pitch
is determined from the vertical displacement of the nose
tip normalized against the distance between the two eye
corners to account for scale variations. The system supports
up to 50o, 30o and 50o of yaw, roll and pitch respectively.
Pose estimates across consecutive frames are then used to
identify head action units. For example, a pitch of 20o

degrees at timet followed by 15o at timet + 1 indicates a
downward head action, which is AU54 in the FACS coding
[10].

3.2 Extracting facial action units

Facial actions are identified from component-based facial
features (e.g. mouth) comprised of motion, shape and
colour descriptors. Motion and shape-based analysis are
particularly suitable for a real time video system, in which
motion is inherent and places a strict upper bound on the
computational complexity of methods used in order to meet
time constraints. Color-based analysis is computationally
efficient, and is invariant to the scale or viewpoint of the
face, especially when combined with feature localization
(i.e. limited to regions already defined by feature point
tracking).

The shape descriptors are first stabilized against rigid
head motion. For that, we imagine that the initial frame
in the sequence is a reference frame attached to the head of
the user. On that frame, let(Xp, Yp) be an “anchor” point, a
2D projection of the approximated real point around which



the head rotates in 3D space. The anchor point is initially
defined as the midpoint between the two mouth corners
when the mouth is at rest, and is at a distanced from the line
joining the two inner eye cornersl. In subsequent frames
the point is measured at distanced from l, after accounting
for head turns.
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Figure 2: Polar distance in determining a lip corner pull and
lip pucker

On each frame, the polar distance between each of the
two mouth corners and the anchor point is computed. The
average percentage change in polar distance calculated with
respect to an initial frame is used to discern mouth displays.
An increase or decrease of 10% or more, determined
empirically, depicts a lip pull or lip pucker respectively
(Figure 2). In addition, depending on the sign of the change
we can tell whether the display is in its onset, apex, offset.
The advantages of using polar distances over geometric
mouth width and height (which is what is used in Tian
et al. [20]) are support for head motion and resilience to
inaccurate feature point tracking, especially with respect to
lower lip points.
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Figure 3: Plot of aperture (red) and teeth (green) in
luminance-saturation space

The mouth has two color regions that are of interest:
aperture and teeth. The extent of aperture present inside the
mouth depicts whether the mouth is closed, lips parted, or
jaw dropped, while the presence of teeth indicates a mouth
stretch. Figure 3 shows a plot of teeth and aperture samples
in luminance-saturation space. Luminance, given by the

relative lightness or darkness of the color, acts as a good
discriminator for the two types of mouth regions. A sample
of n = 125000 pixels was used to learn the probability
distribution functions of aperture and teeth. A lookup table
defining the probability of a pixel being aperture given its
luminance is computed for the range of possible luminance
values (0% for black to 100% for white). A similar lookup
table is computed for teeth. Online classification into
mouth actions proceeds as follows: For every frame in the
sequence, we compute the luminance value of each pixel in
the mouth polygon. The luminance value is then looked up
to determine the probability of the pixel being aperture or
teeth. Depending on empirically determined thresholds the
pixel is classified as aperture or teeth or neither. Finally, the
total number of teeth and aperture pixels are used to classify
the mouth region into closed (or lips part), jaw drop, or
mouth stretch. Figure 4 shows classification results of 1312
frames into closed, jaw drop and mouth stretch.

Figure 4: Classifying 1312 mouth regions into closed, jaw
drop or stretch

4 Head and facial display recognition

Facial and head actions are quantized and input into left-
to-right HMM classifiers to identify facial expressions and
head gestures. Each is modelled as a temporal sequence of
action units (e.g. a head nod is a series of alternating up and
down movement of the head). In contrast to static classifiers
which classify single frames into an emotion class, HMMs
model dynamic systems spatio-temporally, and deal with
the time warping problem. In addition, the convergence of
recognition computation may run in real time, a desirable
aspect in automated facial expression recognition systems
for human computer interaction.

We devise several HMM topologies for the recognition
of the displays. For instance the head nod HMM is a 4-
state, 3 symbol HMM, where the symbols correspond to
head up, head down, and no action. We use a similar



topology for head shakes and supported mouth displays.
For tilt and turn displays we use a 2-state HMM with 7
observable symbols. The symbols encode the intensity of
the tilt and turn motions. Maximum likelihood training
is used to determine the parameters of each HMM model
λ = {Λ, β, π} offline, described by transition probabilities,
the probability distributions of the states, and priors.

For each modelλ and a sequence of observations
O = {o1, o2, ..., oT } forward-backward algorithm
determines the probability that the observations are
generated by the model. Forward-backward is linear inT ,
so is suitable for running in real time.

5 Cognitive mental state inference

The HMM level outputs a likelihood for each of the facial
expressions and head displays. However, on their own, each
display is a weak classifier that does not entirely capture
an underlying cognitive mental state. Bayesian networks
have successfully been used as an ensemble of classifiers,
where the combined classifier performs much better than
any individual one in the set [15]. In such probabilistic
graphical models, hidden states (the cognitive mental states
in our case) influence a number of observation nodes, which
describe the observed facial and head displays. In dynamic
Bayesian networks (DBN), temporal dependency across
previous states is also encoded.

Training the DBN model entails determining the param-
eters and structure of a DBN model from data. Maximum
likelihood estimates is used to learn the parameters, while
sequential backward elimination picks the (locally) optimal
network structure for each mental state model. More details
on how the parameters and structure are learnt can be found
in [13].

6 Experimental evaluation

For our experimental evaluation we use the Mind reading
dataset (MR) [3]. MR is a computer-based guide to
emotions primarily collected to help individuals diagnosed
with Autism recognize facial expressions of emotion. A
total of 117 videos, recorded at 30 fps with durations
varying between 5 to 8 seconds, were picked for testing.
The videos conveyed the following cognitive mental states:
agreement, concentrating, disagreement, thinking andun-
sureand interested. There are no restrictions on the head
or body movement of actors in the video. The process of
labelling involved a panel of 10 judges who were asked
could this be the emotion name? When 8 out of 10 agree,
a statistically significant majority, the video is included in
MR. To our knowledge MR is the only available, labelled
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Figure 5: ROC curves for head and facial displays

resource with such a rich collection of mental states and
emotions, even if they are posed.

We first evaluate the classification rate of the display
recognition layer and then the overall classification ability
of the system.

6.1 Display recognition

We evaluate the classification rate of the display recognition
component of the system on the following 6 displays: 4
head displays (head nod, head shake, tilt display, turn
display) and 2 facial displays (lip pull, lip pucker). The
classification results for each of the displays are shown
using the Receiver Operator Characteristic (ROC) curves
(Figure 5). ROC curves depict the relationship between the
rate of correct classifications and number of false positives
(FP). The classification rate of displayd is computed as the
ratio of correct detections to that of all occurrences ofd
in the sampled videos. The FP rate ford is given by the
ratio of samples falsely classified asd to that of all non-d
occurrences. Table 2 shows the classification rate that the
system uses, and the respective FP rate for each display.

A non-neutral initial frame is the main reason behind
undetected and falsely detected displays. To illustrate this,
consider a sequence that starts as a lip pucker. If the lip
pucker persists (i.e. no change in polar distance) the pucker
display will pass undetected. If on the other hand, the
pucker returns to neutral (i.e. increase in polar distance)



it will be falsely classified as a lip pull display. This
problem could be solved by using the polar angle and color
analysis to approximate the initial mouth state. The other
reason accounting for misclassified mouth displays is that of
inconsistent illumination. Possible solutions to dealing with
illumination changes include extending the color-based
analysis to account for overall brightness changes or having
different models for each possible lighting condition.

6.2 Mental state recognition

We then evaluate the overall system by testing the inference
of cognitive mental states, using leave-5-out cross valida-
tion. Figure 6 shows the results of the various stages of
the mind reading system for a video portraying the mental
statechoosing, which belongs to the mental state group
thinking. The mental state with the maximum likelihood
over the entire video (in this casethinking) is taken as the
classification of the system.

87.4% of the videos were correctly classified. The
recognition rate of a mental classm is given by the total
number of videos of that class whose most likely class
(summed over the entire video) matched the label of the
classm. The false positive rate for classm (given by
the percentage of files misclassified asm) was highest for
agreement(5.4%) and lowest forthinking (0%). Table 2
summarizes the results of recognition and false positive
rates for 6 mental states.

A closer look at the results reveals a number of in-
teresting points. First, onset frames of a video occa-
sionally portray a different mental state than that of the
peak. For example, the onset ofdisapprovingvideos were
(mis)classified asunsure. Although this incorrectly biased
the overall classification tounsure, one could argue that
this result is not entirely incorrect and that the videos do
indeed start off with the person beingunsure. Second,
subclasses that do not clearly exhibit the class signature
are easily misclassified. For example, theassertiveand
decidedvideos in theagreementgroup were misclassified
asconcentrating, as they exhibit no smiles, and only very
weak head nods. Finally, we found that some mental
states were “closer” to each other and could co-occur. For
example, a majority of theunsurefiles scored high for
thinkingtoo.

7 Applications and conclusion

The principle contribution of this paper is a multi-level
DBN classifier for inferring cognitive mental states from
videos of facial expressions and head gestures in real time.
The strengths of the system include being fully automated,
user-independent, and supporting purposeful head displays
while de-coupling that from facial display recognition. We

reported promising results for 6 cognitive mental states on a
medium-sized posed dataset of labelled videos. Our current
research directions include:

1. testing the generalization power of the system by
evaluating a larger and more natural dataset

2. exploring the within-class and between-class variation
between the various mental state classes, perhaps by
utilizing cluster analysis and/or unsupervised classifi-
cation

3. adding more mental state models such ascompre-
hending, boredandtired, which like the ones already
reported in this paper are relevant in an HCI context.

On the applications front we are working on integrating
the system with instant messaging [12] to add spontaneity
of interaction. In addition, we are building a prototype
of an “emotional hearing aid”, an assistive tool for peo-
ple diagnosed with Asperger’s Syndrome [11] designed to
provide advice on emotion understanding from video. We
believe that the work presented is an important step towards
building mind reading machines.
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Figure 6: The status of the dynamic Bayesian networks for 7 mental states shown at 8 inference instances in a video
of choosing, which belongs to thethinking group. The vertical axis encodes the output of the facial/head display HMM
classifiers. Longer bars (also color coded in yellow) represent a higher likelihood of a display. Displays from top to bottom
are: nod, shake, tilt, turn, lip corner pull, lip pucker, jaw drop, mouth stretch (teeth), and eye brow raise. The horizontal
axis encodes the likelihood for 7 mental states. Larger circles (shown in yellow) encode higher likelihood of a mental state.
Mental states from left to right are:agreement, interested, comprehending, concentrating, unsure, thinkinganddisagreement.
For the first instance, the likelihoods of all mental states are 0 (indicated by the small red circles). As the video progresses,
the likelihoods change. The mental state with the maximum likelihood over the entire video (in this casethinking) is taken
as the classification of the system.


