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Abstract
Wireless communication links are expensive and slow, and are therefore a scarce resource. Their usage should be subject to special scrutiny,
especially when used by general-purpose application programs. We present the services of the “Mobile Application Framework” which supports
conventional applications while using these links in three aspects: first, by optimizing outgoing communication calls via call interception and the
spoofing of replies; second, by allowing disconnected operation through file logging and automatic modification reconciliation; and third, by
scheduling and communication calls to allow the user to specify a monetary communications budget. As an example application, we show how the
system can be used to mobilize a conventional e-mail system. Similar functionality to that provided by dedicated mobile e-mail clients and the
ability to adapt to changing network environments is achieved without requiring any changes to the e-mail system itself or its user interface.

Mobilizing Applications

. STEFAN G. HILD
UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY
AND IBM UK LABORATORIES
PETER ROBINSON
UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY

ecent developments in data
communications have provided the basis for new advances in
mobile computing. While the potential of mobile computing is
great and there is widespread interest in the subject, remark-
ably few applications are currently available. The reasons for
this are numerous and diverse, cost being one of the major
obstacles: data connections are expensive to set up and main-
tain, and offer limited throughput and disappointing line char-
acteristics.

Current networking applications and their protocols, how-
ever, are written for comparatively high-speed and low-cost
wired data links and often perform poorly across mobile data
channels. Research is currently focusing on several areas. The
first is the improvement of the underlying protocol stacks and
communication protocols. Work is concentrating on adding
functionality to the widely used Transmission Control Proto-
col/Internet Protocol (TCP/IP) suite of protocols through
extensions and new TCP/IP options.

The second area of research concerns the applications
themselves. “Mobile-enabled” versions of popular applications
such as e-mail readers or Web browsers are now available.
These programs are either heavily adapted versions of con-
ventional wired applications or newly engineered programs, to
allow them tp function efficiently across mobile data links.

We briefly illustrate both these approaches in the introduc-
tory sections of this article.

A third approach are the so-called mobile enablers, small
software products that allow conventional “wired” applica-
tions to function across data links with little or no modifica-
tion to the application itself. The prime advantage of these
enablers is that the user does not need to invest in new appli-
cations, and that a generic “enabler” can tap into an existing
huge market of network applications.

Our work follows this third school of thought: in this arti-
cle we describe our system of background services which sup-
port wired applications on mobile hosts. Further details of the
system can be found in [1]; here, we show how the services

can be used to “mobilize” wired applications, that is, to make
them run efficiently across a broad range of wired and wire-
less networks. As an example, we apply our system to a con-
ventional e-mail system.

Protocol Adaptation

Although it has competition, TCP/IP is by far the most com-
monly used communications protocol. Most researchers have
therefore concentrated their efforts in adapting protocols on
this particular suite.

TCP/IP performs poorly across wireless links, mainly
because it was developed for the Internet, a topologically stat-
ic, wired network of comparatively high-speed links with con-
stant transmission characteristics, used by a large number of
users at the same time.

Wireless links, on the other hand, are often point-to-
point, with much less favorable speed and transmission char-
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W Figure 1. TCP/IP performance across a WaveLAN link [2]
under good and bad conditions.
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acteristics. Many of the attributes of
wired networks are hard-coded into
the TCP/IP protocol; TCP/IP does

Client

Thin vs. Thick Clients — In client/server
architecture, the functionality of the over-
all system is split between server and

not distinguish between the loss of
the packet and a transmission error.

(a) Thick client:

client, connected through some commu-
nications channel. Although there is no

Both are interpreted as indicating
network congestion, and TCP/IP
reacts by backing off and reducing
throughput. In the wireless world,
on the other hand, such packet loss-

universally agreed definition for “thin”
and “thick” clients, it is generally
related to the exact division of this
functionality. Our definition is based
on the amount of communications

es are much more likely to be due to
transmission errors. Forward error
correction could correct these, but
TCP/IP backs off, which does not
solve the problem and leaves the
otherwise unused expensive data
link idle for significant periods of.

(c) Client-agent-server

required to complete a transaction:
thin clients require more communica-
tion and interaction with the server,
and consequently more connection
time. On the other hand, they can be
simpler and less powerful than thick
clients, which process data locally

time. In Fig. 1 this effect is evi-
denced by prolonged flat segments
in the transmission progression
graph under bad conditions (i.e. sig-
nal strength 10% of maximum). These segments appear to
become shorter as the transmission proceeds due to TCP/IP
adjusting to the link characteristics and reducing the trans-
mission window size. Unfortunately these adjustments are
late and are insufficient.

Furthermore, TCP/IP is unable to take advantage of the
point-to-point nature of mobile data links such as GSM channels.
In the multi-user environment for which TCP/IP was designed,
each packet requires extensive headers to
allow routing, assignment to individual log-

architectures.

W Figure 2. Possible client/server application

and submit requests to the server as
a batch. Figure 2 shows common
client/server architectures and the
required communications bandwidth
between the functional components (i.e., the user interface,
data processing engine, and server back-end).

Thus, thick clients minimize required connectivity. Howev-
er, there are compelling reasons for retaining the predomi-
nantly thin-client style architectures of conventional wired
applications. In particular, it removes the requirement for spe-
cially adapted hardware and software, and preserves the
client’s full functionality; “thick” clients tend to have less
functionality than their “thin” counter-

ical connection, and reassembly of the
packets at the remote side. On point-to-
point links most of these headers are

parts, which rely on servers with adequate
resources to support them.

A third approach is to introduce
“agents.” These allow clients to remain

redundant and simply waste scarce band- o (a) Push thin and share some of the communica-
width. tions efficiency of their thick versions by
Routing in TCP/IP is based on static Request separating the communications-intensive

and hierarchical IP addresses; this causes
problems if mobile hosts connect to the
network at different access points and do
not want to change their IP addresses.
Extensions and modifications to

(b) Pult

part of the application into the software
agent which migrates through the network
to the most favorable location for the
communications to follow; the thin client
communicates the task to the agent and

TCP/IP have been proposed by several
researchers; a good overview is presented
n [3]. Briefly, Mobile IP addresses
TCP/IP’s routing problems by allowing “IP
tunnels” between “mobile support stations”
which ensure the forwarding of IP traffic to a mobile’s current
location [4]. “Indirect TCP” [5-7], “Semi-connected TCP/IP”
[8]. and “Daedalus TCP” [9] are examples of TCP/IP extensions
which address the inadequacy of the transmission algorithms.
All intercept conventional TCP/IP traffic at a gateway and
modify the data stream. Of these, Indirect TCP is the most
efficient: it actually terminates the TCP/IP connection at the
gateway and forwards data to the mobile across a second con-
nection using a modified and mobile-adapted TCP/IP stack.
Although very effective, the scheme has problems preserving
TCP/IP’s end-to-end semantics.

Application Adaptation

Applications usually regard network bandwidth as free and
plentiful. When adapting an application to expensive wireless
links, programmers carefully use data compression wherever
possible and minimize the connectivity required during a
transaction. For such application reengineering, two aspects
must be considered: thick and thin client architectures, and
push and pull transaction modes.

B Figure 3. Data transfer from host A
to host B with push and pull archi-
tectures.

“disconnects.” The agent acts for and on
behalf of the thin client and attempts to
accomplish the task by communicating to
servers while moving through the network.
Once the task is achieved the agent moves
back to the client to return the results. “Notus” [10] is a
recent implementation of such a system; “Telescript” [11] is
one of several industry standards for such agent software.
“Proxy” servers as used in the World Wide Web are essential-
ly nonmoving agents.

Push vs. Pull Architecture — Passing data between host com-
puters can be simple: the sending host connects to the receiv-
er and transmits the data across the network connection. If
the connection fails, the sender retries after a suitable period
of time. This “push” model of data transfer operates satisfac-
torily as long as network downtimes are rare. However, a
mobile host may only be connected to the network intermit-
tently, and the sender may have to retry several times to
establish a connection. If an exponential backoff algorithm is
used, the chances of actually establishing a connection dimin-
ish with each failed attempt.

In such situations the “pull” model is more appropriate;
here, the sender buffers the data and waits for the receiver to
connect and request the transfer (Fig. 3).
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Remote

used by most application programs. The func-
tions provided include simple connection-time
accounting, and sometimes allow the user to
specify a maximum idle period after which the
link is taken down automatically. An example of
such a call manager is “ARTour” [15]. ‘

The Mobile Application Framework’s call
manager supports all these functions, but has
added facilities which allow networking applica-
tions to use specially adapted, highly efficient
point-to-point protocols if they require.

In essence, the system intercepts the commu-
nication calls between the two communicating
applications (similar to the interception done by
Indirect TCP), and the call is terminated by a
local “call handler.” An identical call handler
establishes a similarly short connection to the
“target” server on the remote side of the connec-
tion (Fig. 4).

an arbitrary protocol.

An interesting example of an application that has recently
been moved from a push to a pull architecture is electronic mail.
The original protocol for mail delivery, the “Simple Mail Trans-
fer Protocol” (SMTP) [12], is implemented in the form of “mail
delivery agents,” which pass mail from host to host in push fash-
ion: incoming e-mail is pushed to the next hop toward its des-
tination. For delivery to the recipient SMTP has recently been
replaced by the pull-oriented “Post Office Protocol” (POP)
[13], and more recently with the “Internet Message Access
Protocol” (IMAP) [14]. Both protocols buffer e-mail at the
user’s mail server, and wait for the user to log on and retrieve
the buffered mail messages. IMAP also allows the user to
selectively retrieve messages or parts of messages, for exam-
ple, to avoid large appends if connected over a slow data link.

The Mobile Application Framework

f the two previously described approaches, adapting the
Oapplication is far more efficient in improving the sys-
tem’s performance over wireless links than restricting
improvements to the protocol level. However, it involves very
specific modifications which can rarely be abstracted and
reused in other applications. Thus, much of the effort has to
be repeated for every application.
The “Mobile Application Framework” is a system of back-
ground services which allows conventional unmodified systems
to function efficiently across wireless links. The

M Figure 4. The call management system allows calls to be redirected to “call
handlers” which transparently replace the application’s native protocol with

Call handlers are written specifically for each
network service; for example, an “ftp”-call han-
dler intercepts and optimizes communications
calls from ftp clients; a “Web” call handler does
the same for Web browsers. The fallback handler
for services for which no specialized call handler
is available sends TCP/IP traffic onto the network without any
modifications.

The call handlers spoof the requests and responses from
the server, while maintaining communications with each other
through an arbitrary protocol.

Call Interception and Redirection — Indirect TCP intercepts
outgoing communication calls by modifying the binary library
containing the TCP/IP API calls. This relies on the library
being linked to the client binary dynamically. We have imple-
mented the call interception as part of the network interface
for the serial line device. This automatically bypasses the redi-
rection system if a fast network is available through an alter-
native (unmodified) network interface and simplifies its
addition to a running system.

By examining the destination port number of outgoing
packets the required network service is determined. For
example, “ftp” clients connect to servers on port 21. We have
to assume that the clients use these standard port numbers.

A “redirection” table is maintained as part of the modified
network interface. Call handlers are user-space application
programs similar to conventional network daemons, which
“listen” on particular TCP/IP ports.

As shown in Fig. 5, redirecting a packet to the appropriate
call handler is done by:
 Swapping the source and destination IP address

services are transparent to the application, but
not to the user, who is given constant information
regarding the state of connectivity and the cur-
rent cost of any communication calls.

We have«designed and implemented three dis-
tinct services for the Mobile Application Frame-
work, which we will briefly outline in the
following sections.

Call Management
Traditional call managers for mobile environments
are usually bundled with mobile middieware. Mid-
dleware interfaces the application programming

Packet - k

~

Packet

interfaces (APIs) provided by mobile networks,
which are often proprietary to the TCP/IP APIs

M Figure 5. Redirection of packets that originate from applications (dark
arrows) and replies from the call handlers (light arrows).
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* Replacing the destination port
number with the call handler
port number

propagating file updates across file
systems, and model the system for
a user who has a stationary, fixed

After updating the checksums
the redirected packet is returned

tocal

computer system (“desktop

- Remote machine”) and a mobile notebook

to the local TCP/IP stack for deliv-
ery to the call handler. For reply
packets the process is reversed
and the packets are delivered to
the original sender application.

Due to the redirection, the original sender and the call
handler appear to be connected to a “virtual” sender and
receiver: the sender’s packets appear to go to, and be answered
by, the originally targeted destination, whereas the call han-
dler sees a connection from the sender at the original target’s
destination (Fig. 6).

redirection.

Call Handlers — Call handlers improve communication effi-
ciency in two ways: first, they avoid unnecessary connections
by spoofing and batching; second, they use optimized link
layer protocols instead of TCP/IP. For example, consider the
ftp protocol: ftp login procedures are static, and replies

M Figure 6. Virtual and actual connections after

computer (“mobile”), and uses the

. same applications on both. The

service allows the user to replicate

data files from the desktop

machine onto the mobile, for example, the document the user

is currently editing: while in the office, the document is updat-

ed on the desktop machine; while on the move, the same

document is edited on the mobile system. Our File Logger

tracks file updates and propagates these to the desktop

machine (Coda calls this process “hoarding”). However, our
system is unlike Coda and other mobile file systems in that:

* The File Logger does not replicate the entire file space
automatically. The process of replicating a file and main-
taining the necessary logs to ensure eventual resynchroniza-
tion is expensive and unsuitable for large numbers of files.
The system is built as a “private” user replication facility for

can be spoofed effectively. File transfers through ftp
are, for the reasons detailed earlier, inefficient over
TCP/IP links when compared with thin-wire protocols
such as “Z-Modem.” A call handler will therefore use
such a thin-wire protocol for the actual data transfer.
The amount of spoofing implemented with each call
handler can vary, depending on its expected usage:
* An aggressive call handler for ftp may spoof the entire

ftp login procedure and establishes connectivity only
when files or directories not already held in a local
cache are being requested.

* A Web call handler can scan pages for inline images and
other appendages prior to transmission, and bundle these
with the requested page. Idle lines can be used to prefetch
pages, as proposed in [16].

In effect, call handlers provide platforms for improvements
to individual protocols such as ftp or http, and make these
available to all applications using these protocols.

File Logger

Data sharing between the stationary desktop machine and the
user’s mobile notebook is accomplished by the “File Logger,”
in a manner similar to network file systems such as Sun’s NFS
[18], Burrows’ MFS [17], or the Andrew File System (AFS)
[19]. Our system uses the same paradigm to allow convention-
al applications to manipulate shared data, but differs from
wired file systems in various aspects.

Network file systems rely on fast and readily available data
links to redirect read/write operations across the network.
Caching is used to reduce traffic load on the network. Our sys-
tem is predominantly disconnected: expensive data links are
only established occasionally — in the meantime, a copy of
the file has to serve all read/write calls. This allows data incon-
sistencies to develop due to simultaneous editing of the same
file at disconnected locations. File locking (a summary of the
most important locking policies is given in [20]) is usually
employed to prevent inconsistencies, but in a mobile environ-
ment with prolonged disconnected periods this is rarely accept-
able. Most mobile file systems, such as Tait’s Mobile FS [21],
Coda [22], or Microsoft’s “Briefcase” system [23], therefore,
allow inconsistencies temporarily, and rely on either the user
or the application program to resolve conflicts once reconnect-
ed. “Mobile-aware” applications now frequently come with
their own replication engine (e.g., “Lotus Notes” [24]).

We use our File Logging system as a convenient method of

M Figure 7. Usage of a file type converter for logging unsuitable file formats.

a small number of important data files which are indicated
by the user manually.

* It is built to function with conventional wired applications
on running systems without requiring modifications to exist-
ing setups. The File Logger provides facilities for automatic
conflict detection and reconciliation. The algorithms used
can be augmented by the user to suit any application or
usage environment.

« Files are shared “consciously”: a group of users might edit a
document jointly and share replicas of the original file.
Here conflicts are relatively rare, since users arrange their
access rights informally: they will edit different parts of the
same document and so on.

» Reconciling replicas at different locations requires only a
minimum amount of connectivity during log exchange.
Total reconciliation of all replicas can be achieved through
a series of partial reconciliation steps among subsets of all
replicas. This is useful if some mobiles holding copies of the
file cannot be reached because they are down, damaged, or
simply outside the coverage area of the mobile network.

The system is user-configurable; in the following sections we

outline the default policies and settings.

Detecting File Modifications — Detecting file modifications is
nontrivial since no semantic meaning can readily be associated
with the content of a file: all methods need to be file-type-
independent. Hence, we adopt the most basic view imagin-
able, and read all files as a simple sequence of symbols.

A log of all modifications executed on the local copy of the
file is accumulated by retaining a backup copy of the file and
comparing the actual file with that backup at regular intervals.
A derivative of the edit distance is used to model the file
modification history in terms of insertion and deletion opera-
tions. We accommodate structurally more complicated file
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.. Partial
reconciliation

Total

reconciliation

» Two deletions conflict if the range of file positions
deleted overlap.

 Two insertions conflict if both insert at the same file
position.

*» An insertion and a deletion conflict if the insertion
inserts at a file position deleted by the deletion.
Conflict resolution proceeds by assigning priorities

to the conflicting modifications. We have opted not to

adopt the concept of a “master copy” which automati-

cally receives higher priority than other copies (e.g., as

M Figure 8. Version graph of file {, intermediary versions, and final ver-

sion f”.

formats by allowing conversion programs to be executed on
the cached file prior to file logging (Fig. 7).

All modifications in the log are time-stamped to allow
automatic conflict resolution. Interdependent modifications
(i.e., modifications which extend or augment earlier modifica-
tions in the same log which are not separated by synchroniza-
tion events) are collapsed into single modifications, thus
removing the interdependency. This reduces log length and
simplifies conflict detection which requires the order of the
modifications in the log to be changeable. This is only possible
if there are no interdependencies between

in Coda), but we believe that during disconnected
operation each host has an equal right to read and
modify the file; upon reconnection, all modifications
are equally valid.

We have implemented two priority assignment
policies. The first is based on the time of modification -—earli-
er modifications take preference over later ones. Taking the
reverse approach would be counterintuitive in that modifica-
tions have a greater chance of committing successfully the
later they are executed. Second, we envisage that the owner of
the file can receive a certain “owner bonus.” In contrast to the
“master copy,” the bonus is bound to the user executing the
modification, not to the location of the replica.

We provide two default resolution policies. The “Total
Invalidation” policy simply removes the lower-priority resolu-
tion. This preserves the file format

individual modifications and the system
merely needs the location information to
be updated.

Reconciliation — If all replicas can be
contacted, a “total reconciliation” is exe-
cuted which will lead to a new synchro-
nized file copy to be generated on all
sites. If one or more sites cannot be
reached, a “partial reconciliation” is exe-
cuted that generates a semi-synchronized
version in the connected cluster which is
still pending reconciliation with the
remaining replicas. Figure 8 shows a num-
ber of versions of the same file as nodes
in a directed graph; disconnected opera-
tion leads to divergence, represented by
nodes appearing as children of the same
version. Reconciliation steps lead to two
or more different versions being united
into a single node.

Once connected, all file copies deter-
mine the last point in time f when they
had identical file copies (i.e., the last total
reconciliation). The relevant logs are gen-
erated from the recorded logs by remov-
ing all modxﬁcatlons recorded prior to ¢,
and moving all modifications to a time
frame relative to ¢ (Fig. 9).

The relevant logs are exchanged, and
the hosts disconnect. Note that we do not
require the clocks on all machines partici-
pating in the process to be synchronized,
since we compare clocks at connection
time and compensate for any differences
in the received logs.

Since all modifications are relative to
the same time frame, we can directly com-

(assuming that each individual modifica-
tion preserves the file format), but leads
to the conflict resolution step being nonas-
sociative and may lose a large amount of
information.

The “Partial Invalidation” policy
removes only the conflicting area of the
lower-priority modification. This is asso-
ciative and removes only the minimum
amount of information needed to resolve
the conflict, but may not preserve the file’s
format.

Once the logs are merged and conflicts
reconciled, the locally cached file is
brought in line with the new log.

User Interface — The File Logger pro-
vides a user interface which supplies con-
stant health information regarding the
state of the locally cached files. The health
is indicated by giving a rough estimate of
the file’s divergence from other replicas,
measured as a function of the amount of
locally recorded modifications and the
length of the disconnection. Figure 10
shows such a “file divergence meter” with
annotations.

Also indicated is the level of diver-
gence at which a reconnection is triggered
automatically and the maximum diver-
gence specified by the user for each indi-
vidual file.

The user can demand immediate resyn-
chronization by clicking the “SNC” button
provided as part of the user interface.

Communications Scheduling
Networking applications make inadequate

pare the location information to identify
conflicts between individual modification

from different users: (blue) replicas.

3
W Figure 9. The logs relevant for a
reconciliation of the two marked

provision for the user to monitor and con-
trol communications cost. This is prob-
lematic when the high cost of mobile data
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networks is considered. The “Scheduling”
service provided as part of the Mobile Appli-
cation Framework allows users to control
communications cost by defining a monetary
communications budget. User-initiated com-
munications are monitored and the available
budget adjusted accordingly. Maintaining the
budget is achieved in conjunction with the
File Logger, which can support disconnected
operation for variable periods of time. This

Maximum divergence
Next automatic sync
Current divergence

Show replica

Force sync Add replica File settings

allows the scheduler to arrange reconnections
freely and delay the transmission of data to:
* Save on overhead involved in establishing
the data connection itself
» Take advantage of off-peak times when connection time is
cheaper
* Apply compression more efficiently to batches of data
The effectiveness of our communications scheduler
depends on the accuracy with which we can predict communi-
cations cost and the communications requirement.

Scheduling Strategy — In the context of networking, “schedul-
ing” focuses on scheduling packet transmissions to support dif-
ferent applications across homogeneous network environments
through either “scheduling techniques,” which determine the
order in which packets are flushed from the buffer onto the
network, or “dropping techniques,” which determine which
data packets from the buffer are dropped in favor of “higher-
priority” data traffic; for a summary see {25, 26]. Such tech-
niques are of limited value for our application.

In simple terms, the scheduling algorithm determines when
data is to be transmitted, given the predicted communications
cost, the predicted communications requirement, and the
available budget.

Our scheduler operates based on “Constant Maximum
Backlog Scheduling,” which reconnects as soon as the amount
of logged data (i.e., the amount of data awaiting transmission)
reaches a trigger-level [ which is determined by the cost of the
network and the available budget. Thus, the user experiences
at most / outstanding data. Assuming that the predicted com-
munications requirement at time ¢ is D(t), the cost of commu-
nicating one unit of data is C(t), the cost ¢ of n reconnection
during the budgeting period is

c= iC(D“(m x ) x1,

m=1

where D-1(¢) is the inverse of D(t) and n can easily be deter-
mined from the length of the budgeting period, the expected
total communications requirement, and /.

The above formula is used to determine a trigger level / for
the available budget by iteratively evaluating ¢ for different

@ Figure 10. The file divergence meter presented by the File Logger.

rigger levele |
ilable budget;‘».-;
“User activi o

Trigger level, budget, user activity

0 1 2 3 4 5 6 7 8
-Week

B Figure 11. Trigger level |, available budget, and user activity
during the first two months.

values of /. Further rules are added to augment the behavior
of the system. In particular, the user is asked to specify a max-
imum age for any logged data. This ensures that even small
amounts of data are eventually propagated.

Predicting User Activity and Network Cost — For the above
computation we have assumed that the cost of the network
and the user activity can be predicted. Our system bases these
predictions on past observations. The accuracy of these predic-
tions depends on the regularity with which the mobile is used.

The observations are stored as running averages for each
hour in a week in 7 x 24 tables. The user activity measure-
ments are based on the size of the logs recorded by the File
Logging service. Network availability is measured similarly in
a separate table for each network, where each observation
yields 1 to indicate network availability and 0 otherwise.

Given an order function o(nw) which determines the prior-
ity of each network nw against all other networks such that

if nw is preferred over nw, then o(nwy) > o(nwy),
and the probability that the network nw is avail-

Mail file:- Saved msg

able at some time ¢ in the future is recorded in
table npy,(t), we can deduce the probability
Pnw(t) that we will be using nw at time

in(t)=”in(t)x H(l_"Py(t))
Vy-v(y)>u(nW)
or, in other words, the probability that the net-
work is available at that time multiplied by the
probability that all other preferred networks are
not available.
We can now easily compute the expected net-

M Figure 12. Elements of an e-mail delivery system.

work parameters by evaluating their expected
value.
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Implementation

The Mobile Application Framework can provide simi-
lar functions in conjunction with conventional e-mail
systems. We now detail both receiving e-mail and
mail delivery within a sample MAF architecture.

We assume that the user has a conventional e-mail
account on a stationary computer (e.g., in the office),
and that the mobile computer is used to access the
same e-mail account. Thus, the mobile computer acts
as an “outpost” for the stationary account.

Receiving Mail — Forwarding e-mail from the desk-

- “FileLogger

top machine to the mobile is implemented easily. Fig-

A Sample Budget — Figure 11 shows user activity, the identi-
fied trigger level /, and the available budget during the first
two months of a budgeting run. The graph clearly shows how
the algorithm adapts to the usage pattern and identifies a con-
stant trigger level around 600 bytes. The budget is met at the
end of each month.

The jitters in the budget and trigger curves during the first
week are due to the algorithm adjusting to usage and network
availability patterns.

An MAF Application: E-mail

lectronic mail is not only the oldest, but also one of the
Emost popular and widespread applications within the

Internet. In this section, we demonstrate how we can use
the facilities within the Mobile Application Framework to
mobilize e-mail.

As illustrated in Fig. 12, e-mail systems consist of three
elements. “Mail user agents” (MUAs) are the actual e-mail
readers, such as “xmh” or “elm.” They display e-mail and pro-
vide tools for composing new messages and replies. If a mes-
sage is ready for sending, it is passed to the MTA (“mail
transfer agent™), which is responsible for the actual delivery of
the message across the network to the target destination. At
the target host the “Mail Delivery Agent” (MDA) delivers it

played by the MUA. The MUA then pro-

W Figure 13. E-mail delivery from the user’s desktop computer to a mobile
notebook with the facilities provided by the Mobile Application Framework.

ure 13 illustrates the principal architecture: to the left
of the slow network is the user’s desktop e-mail sys-
tem. E-mail delivered to the MDA is appended to the
e-mail file; the MUA then indicates that a new mes-
sage has arrived.

On the right side is the user’s mobile computer, with an
identical e-mail system. As indicated in Fig. 13, e-mail forward-
ing between the desktop computer and the notebook is accom-
plished by use of the File Logger by instating a replica-original
relationship between the e-mail files (inbox file and archives)
on the mobile computer and on the stationary computer. By
reading a new message it is deleted from the mail file and
possibly moved to one of the mail archive files. The File Log-
ger makes sure such activity is automatically duplicated on
both hosts.

Through the File Logger the user has access to the built-in
functions for communications budgeting and scheduling.

Sending Mail — Sending e-mail involves all three facilities
provided by the Mobile Application Framework. We recall
that, to send an e-mail, the message is passed by an MUA to
the local MTA, which forwards the message across the net-
work toward the mail’s destination address through other
MTAs.

Figure 14 illustrates the sending of e-mail from a computer
running the MAF. Here, to the left of the slow network is the
mobile computer from which an e-mail is being sent. The MTA is
an unmodified one which attempts to pass the message on to its
counterpart on the next hop toward the destination of the mes-
sage. By use of the call redirection system, the communication

vides facilities to archive the received file in
alternative mail files.

to the user’s e-mail file, from which it is dis-

| mMTA

R

MTA §--

Motivation

Modern mail transfer agents now allow e-
mail messages to be batched prior to
transmission to reduce communications
cost when: connected across slow net-
works; some allow the user to indicate
priority for each outgoing mail message,
which in turn determines the maximum
length of time the message may remain
on the local queue.

However, these systems are frequently
tied into particular MUAs to provide ade-
guate control over the added features
(e.g., Lotus cc:mail). As noted previously,
specialized mobile applications are often
not favored by users who would prefer a
uniform application interface across all

-

Gateway

| Mail cH
app.

OutMail file

FileLogger .| -

the platforms that they use, mobile or sta-
tionary.

M Figure 14. Sending e-mail from a mobile computer running the Mobile
Application Framework.
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call from the local MTA is intercepted
and redirected to a mail call handler on
the local machine, which in the following
conversation mimics the responses from
the remote MTA. Instead of passing the
mail across the network, however, the
call handler writes it into a locally held

Mait file -

" Low-priarity

buffer file for outgoing mail. This file is
replicated onto a stationary gateway sys-
tem connected to a wired network (e.g.,
the user’s desktop machine) using the
File Logging facility. On the stationary system, a small gateway
application passes appends to the replicated buffer file on to
the local MTA, which continues mail delivery.

Again, the use of the File Logging facility and the related
Scheduling allows the user to control mail delivery by the cen-
tral budget defined for the Scheduler.

System Extensions

In our setup, budgeting facilities provided by the Scheduler
allow the user to monetarily control how quickly e-mail is
delivered and received. However, all mail messages are han-
dled indiscriminately; the architecture does not yet allow the
user to distinguish between high-priority messages, which
ought to be delivered immediately, and lower-priority mail,
which can await the next scheduled reconnection.

This problem can be alleviated easily. All outgoing and
incoming mail is forwarded between the mobile and stationary
host through files, which are handed by the File Logging sys-
tem. The File Logger allows the user to define maximum
divergence values; by installing separate files for high- and
low-priority mail and setting the maximum divergence values
accordingly (i.e., very small or zero for

W Figure 15. Priorities can be assigned to ‘messages by appending them to separate files
and setting the replication parameters accordingly.

I 1 Claséffy;{

E j[[“

Very important *’ ‘
Modera;elyiimponant ‘
. Notimportant ~ .~

junkmail o

B Figure 16. 4 small modification to the “exmh” mail user agent
allows the user to classify outgoing mail messages through a
small pulldown menu.

Conclusions

to wired data networks. Unfortunately, their cost,
speed, and transmission characteristics are less favor-
able than those found in wired links, and existing networking
applications are often inefficient.
In this article we have presented a

Wireless networks are a logical and necessary extension

high-priority mail, and large for low-
priority mail), high- and low-priority
messages can be handed differently by
appending them to separate files (Fig.
15).

Assigning priorities can be tricky;
common e-mail fiiters usually rely on
simple keyword matching. More elabo-
rate “learning” e-mail filters (such as
[27]) are still in the experimental stage.
The model mail filter employed within
the MAF relies on the user to indicate
priority by including a line of the form
priority level: [1..9] as partof
the mail envelope. We have also made
a small modification to “exmh” [28] to
allow this to be done through a conve-
nient pulldown menu (Fig. 16).

User Interface

The e-mail call handler itself does not
provide a user interface, but relies on
the Filé Logger to provide user feed-
back.

Figure 17 shows the divergence
meters for the mail files used in our
sample implementation (one file for
incoming e-mail, one for high-priority
outgoing e-mail, and one for low-prior-
ity outgoing e-mail). Note that the

W Figure 17. The divergence meters present-

system of background services that

help to augment existing communica-

tions systems to make efficient and
controllable use of mobile data com-
munication networks by:

« Optimizing outgoing communication
calls and providing means for trans-
parently replacing one communica-
tions protocol with another

» Supporting disconnected operation on
personal data files through a File Log-
ging system which logs changes to data
files, and reconciles these changes into
other replicas held at other locations

* Allowing the user to specify a mone-
tary communications budget, and by
scheduling reconnection events such
that minimum divergence is experi-
enced for the given budget

We have also shown how the ser-

-vices of the Mobile Application Frame-
work play together to mobilize e-mail,
one of the most popular applications
within the Internet.

Our solution has the advantage
that no modifications are required to
the software configuration of the e-
mail system on the stationary or
mobile machine. The Mobile Applica-
tion Framework enriches the e-mail

“Next Sync:” times indicated by the
File Logging subsystem reflect the user
settings for acceptable divergence for
the various files.

ed by the File Logging subsystem provide
feedback regarding the state of the mail
buffer files for incoming e-mail, and high-
and low-priority outgoing e-mail.

system with similar functionality to
that provided by dedicated mobile e-
mail clients while retaining the con-
ventional user interface. The system
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can fully adapt to changes in the networking environment to
the extent that, if connected to a cost-free and fast LAN
connection, it behaves exactly like a conventional system.

The article has used the e-mail system as an example appli-
cation for the Mobile Application Framework. It is hoped that
the reader can easily translate the techniques provided to
other applications.
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