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Abstract. In this paper we deal with the problem of detecting emo-
tions from the body movements produced by naturally connected action
sequences. Although action sequences are one of the most common form
of body motions in everyday scenarios their potential for emotion recog-
nition has not been explored in the past. We show that there are funda-
mental differences between actions recorded in isolation and in natural
sequences and demonstrate a number of techniques which allow us to
correctly label action sequences with one of four emotions up to 86% of
the time. Our results bring us an important step closer to recognising
emotions from body movements in natural scenarios.

1 Introduction

Inferring emotions from human body motion in natural environments can be very
difficult as body movements are virtually unconstrained. This makes it difficult
to train emotion recognisers which are robust enough to tolerate this kind of
real-world variability while still picking up subtle emotion-communicating cues.
In this paper we describe an approach to recognising emotions from natural
action sequences. We refer to these sequences as connected actions.

The first contribution of this work is the description of an end-to-end sys-
tem which is able to detect emotions from connected action sequences. In order
to perform emotion recognition effectively, we first need to build a solid under-
standing about the underlying constraints of human movements. We show that
an increased refinement of action models can boost our ability to recognise the
emotions communicated through connected actions.

Secondly, we highlight the differences between actions recorded in isolation
and as naturally connected sequences. Although obtaining and working with iso-
lated data is often easier, we show that results achieved on isolated data are not
necessarily transferable to cases where actions appear in connected sequences.
In order to bridge the gap between the two, we describe ways to adapt isolated
models to the connected cases. As a result we hope to bring emotion recognition
one step closer to naturally-occurring scenarios.

2 Background

Human action and activity recognition has been studied extensively in the past
with connection to unusual event detection, crime prevention and the like. In



those cases it is the action itself which is the focus of the recognition effort.
Actions, however, can also provide a valuable context for emotion recognition
in natural environments. Imagine yourself as a human judge faced with an im-
poverished video recording of a human subject. The subject you are watching is
stretching the right arm backwards and moving it forcefully forwards again. If
this subject is involved in a conversation with another person, you might inter-
pret the movement as communicating a hostile stance. If the person, however,
was moving a piece of paper this movement can be easily interpreted as a throw-
ing action. Only if the movements were extremely forceful would we be likely
to associate the motion itself with an aggressive emotion. This example illus-
trates that our emotional interpretation of human body motion is based on our
understanding of the action which is being performed.

This is the problem pattern recognition algorithms face when classifying emo-
tional content from body movements. Algorithms which have no prior model of
movement patterns are likely to register large differences between examples of
the same emotion category but in very different actions such as running, walking
and knocking. Clearly, this extreme kind of variation will render any attempt to
discover the underlying patterns due to emotional changes extremely difficult.
In this paper we therefore use explicit models of action patterns to aid emotion
classification.

In some cases authors discussing the recognition of emotions from body move-
ments manage to side-step the above problem by only considering one type of
action such as knocking [2] or a prescribed arm lowering action [3]. In other
cases researchers have focused on stylised body motions. Those are motions
which usually arise from laboratory settings where subjects are instructed to act
an emotion freely without any constraints. Authors of those studies often find
that under those circumstances subjects produce stereotypical expressions [1, 4].
These produce strong patterns which are easier to detect with statistical pattern
classification techniques.

In many ways the analysis of connected actions is similar to that of connected
speech. Indeed, emotion recognition from speech has been a prominent problem
since the early days of affective computing. Many different sets of low level acous-
tic features have been proposed over the years to capture emotional information
in recorded speech. However, one recent study by Lee and Narayanan suggests
that major improvements in emotion discrimination can in fact be achieved by
making the recognition algorithms aware of higher level lexical and discourse
structure [5]. Our work builds on these results by adding structural knowledge
about common action patterns to the emotion recognition framework.

Our motion data comes from a motion-captured corpus of actions recorded
at the Psychology Department, University of Glasgow [6]. It contains samples
of knocking, throwing, lifting and walking actions recorded both in isolation
and as naturally connected sequences. 15 male and 15 female untrained subjects
were recruited and actions recorded in 4 emotional styles: neutral, happy, angry
and sad. For the performance of isolated actions subjects were instructed fairly



carefully, e.g. which hands to use for actions and how far to stand from certain
props. Connected actions were naturally less constrained.

3 System Overview

Our goal is to classify each of the action sequences in our corpus into one of the
four emotion classes. Note that we do not in general know the order of actions
that make up a sequence, nor do we know where the action boundaries are. We
will present a solution to this segmentation problem in Section 4.2. Currently
all our system assumes is that it knows, and has models for, each of the action
categories and emotions it could be faced with. We describe in detail how we
build those models in Sections 4 & 5.

Importantly, both the action and emotion models are initially trained on
isolated samples. In other domains such as speech recognition it is often be-
lieved that models need to be trained on data stemming directly from connected
samples [8]. Within the scope of this research, our decision to initially base our
models on isolated data has a number of advantages:

1. A number of systems that analyse isolated actions have been built and dis-
cussed in the past [2, 3]. We are building on their insights to derive our action
and emotion models.

2. Starting out with isolated models allows us to evaluate their performance
for connected actions. We will discuss how isolated models can be adapted
to perform better on connected actions. The gained insights are very illumi-
nating in understanding the differences between emotions expressed through
isolated and connected actions.

Our recognition framework works as follows. Given a set of action cate-
gories A (e.g. A = {knocking, throwing, lifting, walking}) and emotion classes
& (e.g. &€ = {neutral, happy, angry,sad}), we classify an action sequence S =
(81,82,...,8,) with s; € A as an emotion e € £ as follows:

1. Train a set of action models A = {)\,} on samples of isolated actions.

2. Train emotion models M, ¢ on isolated samples of action category a and
emotion set £.

3. Adapt A and M, ¢ to the patterns observed in connected actions yielding
the adapted models A and Ma7g.

4. Segment S into its component actions (s1,. .., S,) using A. .

. For each s; € 9, find the most likely emotion class e; using M, ¢.

6. Combine (eq,...,e,) into an overall emotion class e for the whole sequence.

ot

Note that we explicitly model the difference of emotional appearance in dif-
ferent actions by training emotion models M, ¢ dependent on both emotions and
action. This allows us to deal with the cases introduced in our initial example.
In the next sections we discuss how we define A and M, ¢ and how to adapt

them to A and Ma’g respectively.



4 Action analysis

In the absence of any context information, isolated actions are defined and iden-
tified by the spatio-temporal trajectories of body joints. Formally, we represent
an action category a as a set of joints and a description of their movements over
time, A,. We are using Hidden Markov Models (HMMs) to solve the isolated
action recognition problem. HMMs have been applied successfully to this kind
of temporal pattern recognition problem in the past [8] and we are able to draw
on an extensive body of knowledge documenting their use.

HMMSs are particularly suitable for modelling temporally evolving systems
which produce observable outputs. At each discrete point in time, the system
can be in one of a finite number of hidden states. The transitions between states
over time are governed by a matrix A of transition probabilities. At every time
frame the system outputs an observation vector. The probability of observing a
particular output is conditioned only on the current hidden state. Because joint
movements exhibit complex trajectories in position and speed we model the
system’s output as a vector of continuous observation variables, parameterised
by the mean and standard deviation of a normal distribution. The observation
densities are represented in two matrices O,, and O, capturing the mean and
standard deviation of the observation variables in each state.

4.1 Model parameters

The essence of an action is its pattern of posture and movement changes over
time. We are therefore using the following quantities as our HMM observation
variables.

global body speed

body-local joint positions

body-local joint speeds

— body twist (angle between shoulder-shoulder and hip-hip vectors)

These quantities are easy to calculate from the 3D joint position data avail-
able directly from the motion capture corpus. Body-local measures are derived
by a simple transform placing a coordinate system at the pelvis joint of the
subject. This gives us a representation invariant to absolute body position and
orientation. The transition matrices for each action model impose a left-to-right
structure, thus strictly enforcing a traversal from the first to the last hidden
state. The only complication arises for walking motions. They are cyclic in na-
ture and therefore the action model for walking allows a transition from the
last back to the first hidden state. The HMM parameters A and (O, O;) are
estimated from the isolated action samples using the standard Baum-Welsh al-
gorithm [8]. The number of hidden states for each model was chosen empirically
and is in each case less than 10.



4.2 Parsing connected actions

We use the isolated action models to build a connected action recogniser. This
problem is very similar to connected speech recognition from individual word
models [8]. We can therefore make use of the extensive literature available on
the subject.

One popular technique developed by Rabiner and Levinson to solve this
problem is Level Building (LB) [7]. Given a sequence of observations it uses an
efficient Dynamic Programming approach to find the most likely sequence of
actions and according segmentation boundaries. This approach is very similar to
the Viterbi algorithm which finds the most likely hidden state sequence of a single
HMM given an observation sequence. Indeed, LB uses the Viterbi algorithm
repeatedly at every level (see Rabiner and Levinson [7] for details). In order
to be able to compare the segmentations achieved through LB to some ground
truth, we also hand-segmented each of the sequences. We will make use of this
manual segmentation in our evaluation in Section 6.

4.3 Isolated and connected action differences

By playing back videos of our motion corpus, we quickly realised that actions
did not appear the same in isolation and in connected sequences. Because many
constraints were placed on the subjects for the isolated recordings, they tended to
appear more controlled and uniform. In the connected case we observe actions
blending into each other, making it hard to identify unique transition points
between individual actions. Anticipatory effects were particularly strong. For
example, isolated knocking actions uniformly started with a succinct arm lift
before the knock. When knocking is preceded by a walking action, however, we
can observe the arm lift to commence at various points during the walking action
and long before the knock itself starts.

We were interested in finding quantitative evidence for the difference in ap-
pearance of isolated and connected actions. Here we focus on the amount of
variation observed across different subjects and repetitions of the same action.
For each action sample, we computed a set of features F capturing the temporal
evolution of each joint as its mean and standard deviation in position, speed,
acceleration and jerk. These quantities were shown by Bernhardt and Robinson
in [2] to capture the static and dynamic qualities of body motions well. We then
compute the sample standard deviations o7,y and o¢, ¢ over all isolated and con-
nected action samples respectively. For every feature f, o ¢ and oc, ¢ tell us how
much f varies across different instances of the same action. Finally, we partition
F into F¢ and Fr such that

f€.7:c<=>ac’f>01’f (1)
fEf[@UquO’Lf (2)

That is, F¢ contains the features which show relatively large variation across
connected samples while the features in F; show larger variation across isolated
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Fig. 1. Difference in variation between isolated and connected actions.

samples. Figure 1 shows |F¢| and |F| for every action category. If the isolated
and connected cases had similar dynamic characteristics, we would expect each
pair of bars to be of roughly the same height. We see, however, that only for lifting
actions the variation is relatively similar in both cases. For all other actions, the
dynamics differ substantially between isolated and connected cases. The observed
differences in knocking, throwing and walking actions make it necessary to adapt
the action models to the connected cases. It is important to note at this point
that, although we discussed these dynamic differences in the light of action
models, emotion recognition is likely to suffer similarly from these changes in
appearance. We will see quantitative evidence for this in Section 6.

4.4 Adapting action models

The above differences make it necessary to adapt action models to the appear-
ance of connected actions. We chose to adapt the models statistically using a
small set of representative sequences S and an associated set of weak labels L.
By weak labels we refer to a sequence of action categories such as “knock, walk,
lift, throw” as exhibited by the sequences but without any explicit action bound-
aries. We can then use a bootstrapping approach to iteratively refine the set of
action models A as follows:

1. Start with an initial set of models /10, i=0

2. Segment all sequences in S by LB using A’

3. Retrain a new set of models A+ using the action samples of sequences
which agree with £

4. If the number of correctly segmented sequences increased ¢ = i + 1, goto 2.

To start off the bootstrapping loop we initialise A9 to the isolated action
models. Successive iterations then improve the model parameters based on the
connected samples which were segmented correctly. For our data, we found that
the bootstrapping iterations converge very quickly and we obtain a converged set
of models after two iterations. While A° only segmented 45% of S correctly, A2
improved this to 87%. Subsequent bootstrapping iterations decrease the number
of correctly segmented sequences slightly.



5 Emotion recognition

Our emotion recognition framework is based on Bernhardt and Robinson’s frame-
work for classifying isolated knocking motions [2]. We extend their approach by
training individual classifiers M, ¢ for each supported action category a, thus al-
lowing emotion recognition based on a variety of actions. From each action time
series we extract a rich feature vector which captures the static and dynamic
information of the action. The features include mean and standard deviations
of posture, as well as joint speed, acceleration and jerk [2] calculated over the
whole action. We then normalise each feature to ensure similar orders of magni-
tude for each feature dimension. This aids robust training for pattern recognition
algorithms.

|-
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Fig. 2. Emotion recognition pipeline. Grey components denote operations performed
on the data components shown in white.

As the next step, we then subtract an individual movement bias. This extra
normalisation step has been shown to remove a major source of confusion for the
classification of emotions [2]. It accounts for the fact that different subjects tend
to exhibit different motion idiosyncrasies, thus confounding the subtle dynamic
differences between different emotions. The unbiased feature vector is then fed to
a Support Vector Machine-based classifier M, ¢ which classifies it into one of the
emotions in the emotion set £ = {neutral, happy, angry, sad}. This classification
pipeline is shown in Figure 2. The inputs shown at the top of the pipeline need
to be calculated prior to a classification from representative training data. In
detail, those are

1. the global normalisation constants calculated per action category

2. the personal motion bias constants calculated per action category and person

3. the emotion classifiers trained for each action category and on all emotion
classes.

In order to find a unique emotion label for a sequence S we classify each
component action s; using the classifier M, ¢. We treat each of the classification
results from different component actions as independent evidence towards the
overall emotion classification. Therefore, we arrive at a combined emotion class
by taking a majority vote. Ties are resolved by assigning one of the candidate
classes randomly.



5.1 Adapting emotion classifiers

In Section 4.3 we described in detail how the appearance of actions differs when
we move from isolated to connected actions. As for our action models, our initial
emotion classifiers M, ¢ are trained on the appearance of emotions in isolated
cases. We may, however, wish to adapt our classifiers to better capture the
appearance of emotions in connected actions. A number of adaptation methods
are possible, each varying in the associated cost. We will describe each of them
here and evaluate their performance in Section 6.

Clearly, the cheapest adaptation method is to simply reuse the isolated emo-
tion models M, ¢. We would expect these models still to perform better than
random as emotion appearances should not change so extremely as to render the
isolated models entirely useless. At the other end of the scale lies a total retrain-
ing of the classifiers on connected action data. In essence, we need to recompute
all three inputs to the classification pipeline listed in the previous section: global
constants, personal bias and emotion classifiers. This is likely to give us the best
results. These two extremes represent recalculating either none or all of the three
inputs to the pipeline. Apart from these two extremes we explore two interme-
diate adaptation strategies: recalculating only the first or the first two inputs to
the pipeline using the connected data. We call the derived models M, e M e

M 2 ¢ and M, 2 ¢ according to how many inputs are recomputed.

6 Experimental results

Having discussed approaches to adapt both action and emotion models from
isolated to connected data, it is now time to evaluate how much difference these
changes actually make on real data. To this end we conducted an experiment
using the full set of data in our corpus. At a high level we treated the isolated
actions as training data and evaluated our algorithms on the connected action se-
quences. We had around 4000 isolated action samples and 220 action sequences.
The latter all followed the same order: walking, lifting, walking, knocking, walk-
ing, throwing. We ignored this knowledge, however, when segmenting the data.
The sequence data was also used to adapt the action and emotion models as out-
lined in Sections 4.4 & 5.1. With a number of adaptation approaches in hand,
we asked ourselves the following questions:

1. What recognition rates are achievable with our classification approach?

2. Are there evidence for differences in the expression of emotions through
isolated and connected actions?

3. If so, which of the described adaptation schemes provide the best improve-
ments?

To answer these questions our experiment measured the effects of two inde-
pendent factors: level of adaptation of action models and level of adaptation of
emotion classifiers. The dependent variable we measured in each case was the
rate of correct emotion classifications for whole sequences. As cases for adapted
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Fig. 3. Recognition rates for various levels of action and emotion model adaptation.

action models, we considered the segmentations achieved after iterations 0, 1
and 2 of the bootstrapping algorithm presented in Section 4.4. Each of the iter-
ations produced action models of increasing adaptation levels ranging from no
adaptation for A° to good adaptation for A2. As a gold-standard we also con-
sidered an ideal set of action models A* which produces the segmentation we
had produced manually. As cases for the emotion classifiers we considered Mg <

to M3 ¢+ As for the action models, MO ¢ represents no adaptation while M3 £
represents a gold-standard achieved by totally retraining the emotion models on
the connected data. For the last condition we used 10-fold cross validation to
prevent training and testing on the same samples.

Table 1. Average emotion recognition rates for whole action sequences for no adapta-
tion (left) and good adaptation (right). Emotions appear in the order neutral, happy,
angry, sad.

0.15 0.06 0.00 0.79 0.88 0.03 0.03 0.06
0.07 0.47 0.06 0.40 0.12 0.75 0.11 0.02
0.01 0.39 0.47 0.13 0.00 0.14 0.86 0.00
0.00 0.00 0.02 0.98 0.24 0.01 0.00 0.75

average rate: 0.52 average rate: 0.81

In order to get the most comprehensive picture possible, we decided to adopt
a factorial design. By investigating the cases in all possible combinations we get a
set of 4x 4 classification results. These results are visualised in Figure 3. Each line
represents a series of results obtained for different action models A and for the
same emotion classifier M. Because our voting algorithm resolves ties by making
a random choice we also indicate the spread with error bars. As a general trend
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we observe that the recognition rate increases with the levels of adaptation. In
Table 1 we provide the confusion matrices for the pair of unadapted models (/io,
M? ;) and for the combination of best-adapted models (A2, M2 ;) short of the
gold standard. The significant increase in recognition rate conﬁrmb our initial
intuitions.

7 Discussion and future work

Our experimental results clearly show that using unadapted models trained on
isolated data on connected samples produces suboptimal emotion recognition
results. This is clear evidence that the appearance of actions change as we move
from strictly controlled, isolated samples to more natural, connected sequences.
As we have managed to show, this does not only impact the recognition of ac-
tions. Emotion recognition performance improves both as we adapt our action
models and our emotion models. A change in the appearance of actions there-
fore degrades emotion recognition in two ways. Firstly, a change in appearance
impedes our ability to recognise actions reliably which has a knock-on effect on
emotion recognition as we choose the wrong emotion models M, a,- Secondly, the
change in movement dynamics as we move to connected actions means that our
emotion models are simply not representative anymore.

We have shown that our adaptation approaches are effective. As we expected,
the recognition rate achieved with unadapted models is significantly better than
chance at 52%. This rate can be improved to 81%, however, by using our well-
adapted models. Note that for the latter case we did not need to retrain the
actual emotion classifiers, but the adaptation stemmed from appropriate pre-
processing of the feature vectors. This means that we do not need connected
motion sequences labeled by emotion. Using our gold-standard adaptations the
sequences can be classified at a rate of 86%. It seems, however, that the adap-
tation step from M ! £ to M ¢ brings the biggest improvement. This suggests
that there is no clear pattern with which individuals’ behaviour changes when
they go from isolated to connected action displays — we simply need to recom-
pute the personal motion bias of connected actions. This highlights once more
how important the modelling of individual differences is for the recognition of
emotions from body motions — both for isolated [2] and connected actions.

On a larger scale we conclude that data collected under very constrained
laboratory conditions is not necessarily representative of data occurring in more
natural scenarios. Of course, our connected data was only recorded under lab-
oratory conditions as well and it is therefore likely that truly natural data will
show effects beyond of what we observed. Repeating this experiment on data
collected in a natural environment will be an interesting goal for future research.
Nevertheless we believe that we have taken an important step towards being
able to deal with real-world scenarios. It is encouraging to note that although
there are changes in appearance, methods previously developed for isolated data
are in fact applicable to connected samples if they are adapted appropriately.
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