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ABSTRACT 

Computers offer valuable assistance to people with physical 
disabilities. However designing human-computer interfaces 
for these users is complicated. The range of abilities is 
more diverse than for able-bodied users, which makes 
analytical modelling harder. Practical user trials are also 
difficult and time consuming. We are developing a 
simulator to help with the evaluation of assistive interfaces. 
It can predict the likely interaction patterns when 
undertaking a task using a variety of input devices, and 
estimate the time to complete the task in the presence of 
different disabilities and for different levels of skill. In this 
paper we describe the different components of the simulator 
in detail and present a prototype of its implementation. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and 
Techniques – user interfaces; K.4.2 [Computers and 
Society]: Social Issues – assistive technologies for persons 
with disabilities 

General Terms 
Algorithms, Experimentation, Human Factors, 
Measurement 

Keywords 
Human Computer Interaction, Assistive Technology, 
Usability Evaluation, Simulator. 

INTRODUCTION 
 

Computers offer valuable opportunities to physically 
challenged people as it help them to engage more fully with 
the world. However designing and evaluating human-
computer interfaces for these users is more complicated 

than for able-bodied persons, since the range of abilities is 
more diverse. Their patterns of interaction are also 
significantly different from those of able-bodied users. So 
existing HCI models are not easily applicable to assistive 
interfaces. Assistive interfaces are generally evaluated by 
analysing log files after a user trial. However it is often 
difficult to find participants with specific disabilities. Petrie 
et. al. [10] take the approach of remote evaluation but still 
need to find disabled participants. As an alternative, a 
modelling tool that could simulate HCI of users with 
disabilities would relieve the designer from searching for 
disabled participants to run a conventional user trial. 
However, research on assistive interfaces and HCI 
modelling do not overlap. Very few HCI models have 
considered users with disability. Researchers on assistive 
interfaces have concentrated on designing assistive 
interfaces for a particular application (e.g. Web Browser, 
Augmentative and Alternative Communication aid etc.), 
developing new interaction techniques (e.g. different 
scanning techniques) or developing novel hardware 
interfaces (head mounted switches, eye-gaze trackers, 
brain-computer interfaces etc.). They have not looked at 
designing a systematic modelling tool for assistive 
interfaces. We have developed a simulator to model HCI of 
disabled users. It can predict the likely interaction patterns 
of users when undertaking a task using a variety of input 
devices, and estimate the time to complete a task in the 
presence of different disabilities and for different levels of 
skill. The simulator can be used to compare several existing 
assistive interfaces and to evaluate new alternatives. We 
also address the shortcomings of existing HCI models and 
hope to develop a system that will be easier to use than the 
existing models and support both able-bodied and disabled 
users. 

RELATED WORKS 
 

The GOMS family of HCI models (e.g. KLM, CMN-
GOMS, CPM-GOMS) is mainly suitable for modelling the 
optimal behaviour (skilled behaviour) of users [5]. On the 
other hand, models developed using cognitive architectures 
consider the uncertainty of human behaviour in detail but 
have not been widely adopted for simulating HCI. For 
example, developing a sequence of production rules for 
Soar [3], a semantic network for ACT-R [15] or a set of 
constraints for CORE [11] is difficult with respect to an 
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interface designer. Usability issues for cognitive 
architectures are also supported by the X-PRT system [11] 
for the CORE architecture. Additionally, Kieras has shown 
that a high fidelity model cannot always outperform a low 
fidelity one though it is expected to do so [7].  Researchers 
have already attempted to combine these two forms of 
model to develop more usable and accurate models. 
Salvucci and Lee [9] have developed the ACT-Simple 
model by translating basic GOMS operations into ACT-R 
production rules [15]. The model works well to predict 
expert performance but does not work for novices. 
Blandford et. al. [1] implement the Programmable User 
Model (PUM) using the Soar architecture. They developed 
a program, STILE (Soar Translation from Instruction 
Language made Easy), to convert the PUM Instruction 
Language into Soar productions. However, this approach 
also demands good knowledge of Soar from an interface 
designer. The second problem of existing approaches to 
modelling comes from specific issues with disability. There 
is not much reported work on systematic modelling of 
assistive interfaces. McMillan [34] felt the need to use HCI 
models to unify different research streams in assistive 
technology, but his work aimed to model the system rather 
than the user. The AVANTI project [6] models an assistive 
interface for a web browser based on some static and 
dynamic characteristics of users. However, this model does 
not address the basic perceptual, cognitive and motor 
behaviour of users and so it is hard to generalize to other 
applications. Our user model [23] breaks down the task of 
user modelling into several steps that include clustering 
users based on their physical and cognitive abilities, 
customizing interfaces based on user characteristics and 
logging user interactions to update the model itself. 
However the objective of this model is to design adaptable 
interfaces and not to simulate users’ performance.  Keates 
et. al. [30] measured the difference between able-bodied 
and motor-impaired users with respect to the Model Human 
Processor (MHP) and motor-impaired users were found to 
have a greater motor action time than their able-bodied 
counterparts. The finding is obviously important, but the 
KLM model itself is too primitive to use. 

OUR OBJECTIVE 
 

Based on the previous discussion, Figure 1 plots the 
existing general-purpose HCI models in a space defined by 
the skill and physical ability of users. To cover most of the 
blank spaces in the diagram, we set our objectives to 
develop a model that can: 

1. Simulate HCI of both able-bodied and disabled 
users.  

2. Work for users with different levels of skill. 

3. Be easy to use and comprehend for an interface 
designer. 

THE SIMULATOR 
 

We are developing a simulator that takes a task definition 

and locations of different objects in an interface as input. 
Then it predicts the cursor trace, probable eye movements 
in screen and task completion time, for different input 
device configurations (e.g. mouse or single switch scanning 
systems) and undertaken by persons with different levels of 
skill and physical disabilities.  

 
Figure 1. Existing HCI models w.r.t. skill and 

physical-ability of users 

 

The architecture of the simulator is shown in Figure 2. It 
consists of the following three components: 

The Application model represents the task currently 
undertaken by the user by breaking it up into a set of simple 
atomic tasks. 

The Interface Model decides the type of input and output 
devices to be used by a particular user and sets parameters 
for an interface. 

The User Model simulates the interaction patterns of users 
for undertaking a task analysed by the task model under the 
configuration set by the interface model. It uses the 
sequence of phases defined by Model Human Processor. 
The perception model simulates the visual perception of 
interface objects. The cognitive model takes the output of 
the perception model and determines an action to 
accomplish the current task. The motor-behaviour model 
predicts the completion time and possible interaction 
patterns for performing that action. A case study of using 
the simulator can be found in [22] while an application of 
the model in evaluating different single-switch scanning 
techniques is presented in [21]. 

 

Figure 2. Architecture of the Simulator 

 

The remainder of this paper discusses the design of these 



three components of the user model. The perception model 
is designed according to the theories of visual attention. 
Our cognitive model is more detailed than the GOMS 
model but not as complex as existing cognitive 
architectures. The motor-behaviour model is developed by 
statistical analysis of screen navigation paths of disabled 
users. 

THE PERCEPTION MODEL 

 

Among existing systems, only EPIC [8] and ACT-R/PM 
[19] have distinct perception models. Currently our 
perception model considers only vision. It takes a list of 
keyboard and mouse events and a sequence of bitmap 
images of an interface as input and produces a sequence of 
eye-movements and the visual search time as output.   

We perceive something in a computer screen by focusing 
attention at a portion of the screen and then searching for 
the desired object within that area. If the intended item is 
not found in that area then attention is shifted to a new 
location. Our model supports both systematic and random 
mechanisms of shifting attention [13,27] and also the top 
down and bottom up theories [8,19] of focusing attention. 
We model the bottom up theory by analysing a bitmap 
image of the interface using different computer vision 
algorithms (e.g. colour-histogram matching, Shape 
matching etc.). The top down mechanism is modelled in the 
form of heuristics (e.g. the model never searches in a region 
of screen which does not contain any controls or it does not 
undertake a visual search for common operations like 
minimizing, maximizing or closing a window etc.). The 
model is controlled by four free parameters: distance of 
user from the screen, foeveal, parafoveal and periphery 
angles. The default values of these parameters are set 
according to the EPIC architecture [8]. By changing 
resolution or by proper filtering of the bitmap images, the 
model can also be used to simulate vision of different 
visually impaired users. 

THE COGNITIVE MODEL 

 

We have modelled the optimal (expert) and sub-optimal 
(non-expert) behaviour separately. We have used the CPM-
GOMS [5] model to simulate the optimal behaviour. For 
sub-optimal behaviour, we have developed a new model. 
This model takes a task definition as input and produces a 
sequence of operations needed to accomplish the task as 
output. It simulates interaction patterns of non-expert users 
by two interacting Markov processes. One of them models 
the user’s view of the system and the other signifies the 
designer’s view of the system. Users operate in the users’ 
space to achieve their goals. They do it by converting their 
intended actions into an operation offered by the device. At 
the same time, they map a state of the device space into a 
state of the user space to decide the next action. Users 
behave sub-optimally, when these mappings between the 
device space and the user space are not done optimally. We 
can summarize our assumptions as follows: 

o Users and devices operate in two different state 

spaces [16]. 

o Each state space can be modelled as a Markov 
Decision Process. This is consistent with the fact 
of finite capacity of short-term memory of 
humans. 

o Users follow the principle of maximum rationality 
[3], so if they know an action to achieve their goal, 
then they will select that action. 

o Users behave sub-optimally by not properly 
converting their intended action into a device 
operation and misperception of a device state. 

o A good interface will minimize the mismatch 
between the user space and the device space. 

The performance of the system is illustrated in Figure 3. At 
any state, users have a fixed policy based on the current 
task in hand. The policy produces an action, which in turn 
is converted into a device operation (e.g. clicking on a 
button, selecting a menu item etc.). After application of the 
operation, the device moves to a new state. Users have to 
map this state to one of the state in the user space. Then 
they again decide a new action until the new state becomes 
the goal state. 

Figure 3. Sequence of events in an interaction 

Learning 

Besides performance simulation, our model also has the 
capability of learning new techniques of interactions. 
Learning can occur either offline or online. The offline 
learning takes place when the user of the model adds new 
states or operations to the user space. The model can also 
learn new state and operations itself. During execution, 
whenever the model cannot map the intended action of the 
user into an operation permissible by the device, it tries to 
learn a new operation. To do so, it first asks for instruction 
from outside. The interface designer is provided with the 
information about previous, current and future states and 
she can choose an operation on behalf of the model. If the 
model does not get any instruction from outside then it 
searches the state transition matrix of the device space and 
selects an operation according to the label-matching 
principle [16]. If the label matching principle cannot return 
a prospective operation, it randomly selects an operation 
that can change the device state in a favourable way. It then 
adds this new operation to the user space and updates the 



state transition matrix of the user space accordingly. In the 
same way, the model can also learn a new device state. 
Whenever it arrives in a device state unknown to the user 
space, it adds this new state to the user space. Then it 
selects or learns an operation that can bring the device into 
a state desirable to the user. If it cannot reach a desirable 
state, it just selects or learns an operation that can bring the 
device into a state known to the user. The model can also 
simulate the practice effect of users. Initially the mapping 
between the user space and the device space remains 
uncertain (i.e. the probabilities for each pair of state/action 
in the user space and state/operation in the device space is 
less than 1). After each successful completion of a task the 
model increases the probabilities of those mappings that 
leads to the successful completion of the task and after 
sufficient practice the probability values of certain 
mappings reach one. At this stage the user can map his 
space unambiguously to the device space and thus behave 
optimally. 

Usability 

One important aspect of a cognitive model is its own 
usability, which is mostly ignored in the current literature 
on cognitive models. We developed user interfaces for 

developing and running the model (Figures 4 and 5 
respectively). The model should be developed in three 
steps. In the first step, the designer has to specify some 
possible user states and actions. Then she has to define a 
state transition diagram for the current task by selecting a 
state and an action alternatively. This can be done with the 
help of a physical DFD (for structured design) or a state-
transition diagram (for object-oriented design) developed as 
part of the system design document. Individual entries of 
the state transition diagram can be modified by clicking on 
the ‘Advanced Control’ button. In step 2, all of the previous 
operations have to be repeated for developing the device 
space. Finally in step 3, the states and actions of the user 
space and the device space have to be mapped with each 
other. The mapping can be done by defining a joint 
probability distribution matrix using the interface shown in 
Figure 4d. The interface designer is also free to choose any 
advanced modelling techniques (like rule-based system or a 
decision network) to model the mapping between the user 
space and the device space. Once developed, the model can 
be run using the interface shown in Figure 5a. At this stage, 
the system also permits to define and simulate a new task 
(Figure 5b). We have demonstrated the use of the model for 
a simple but non-trivial example in the next section. 

 

Figure 4. Interfaces to develop the model 



 

Figure 5. Interfaces to run the model 

 

Demonstration 

We have modelled a situation of sending e-mails using 
our system. Initially we developed a very simple interface 
(Figure 6) for sending and receiving e-mails. The 
interface did not impose or indicate any particular order 
of operations and allowed the user to do any operation at 
any time. So it helped us to observe the natural interaction 
patterns of users while sending or receiving e-mails. The 
device model was developed from the interface itself. The 
state transition diagram of the device space is shown in 
Figure 7. We developed the user space by collecting 
interaction patterns from 5 participants on the interface. 
The participants were expert computer users but none 
used the interface before. They were aged between 25 to 
35 years. The state transition diagram of the user space is 
shown in figure 8. The mapping between the user space 
and the device space is presented in table 1.  We ran the 
model for two iterations to simulate the task of sending an 
e-mail using this particular interface. The output of the 
model is shown in table 2.  

 
Figure 6. An interface to send and receive e-mails 

In this particular example, the difference between the user 
space and the device space lies in the interpretation of the 
‘Send Mail’ operator. Users expected after clicking on the 
‘Send Mail’ button, they would automatically be asked to 
specify recipient, which was not supported by the device. 
So during executing the task for the first time, the model 
encountered the error message and learned the operation 

‘Give Recipient’. After specifying the recipient, the user 
wanted to confirm the sending operation. The 
‘ConfirmSending’ action did not have any matching 
operation in the device space. At this stage the model 
applied the label matching principle, which successfully 
returned the ‘Send Mail’ operation in the device space. At 
the next iteration, the model performed the task optimally 
by using its learned knowledge. Thus this simple example 
demonstrates how the model can simulate the 
performance and learning of first-time users of an 
interface. 

Table  1. Mapping between the user space and device space 

User Space Device Space 

States  

Ready to write mail Welcome Screen 

Letter without recipient Notepad without recipient 

Specify recipient Specify recipient 

Letter with recipient Notepad with recipient 

Confirmation Message Confirmation Message 

Actions  

Write Mail Write Mail 

Send Mail Send Mail 

Confirm Recipient(s) Confirm Recipient(s) 

 

 
Figure 7. State transition diagram of the device space 



 
Figure 8. State transition diagram of the user 

space 

 

Table  2. Output of the cognitive model 

 Device Space User Space 

Iteration 1 

State Welcome Screen Ready to write mail 

Action Write Mail  WriteMail 

 State  Notepad without 
recipient  

 Letter without 
recipient 

Action  SendMail   SendMail 

State  ErrorMsg  

 New Action 

Learned 

 GiveRecipients 
 

 State Specify recipient Specify recipient 

Action  ConfirmRecipient   ConfirmRecipient 

 State  Notepad with 

recipient   

 Letter with recipient 

 New Action 

Learned 
 SendMail  

Action SendMail  Confirm Sending  

 State  Confirmation    Confirmation 

Iteration 2 

State Welcome Screen Ready to write mail 

Action Write Mail  WriteMail 

 State  Notepad without 

recipient   

 Letter without 

recipient 

Action  GiveRecipients   GiveRecipients 

 State  Recipient    Recipient 

Action ConfirmRecipient  ConfirmRecipient 

 State  Notepad with 

recipient   

 Letter with recipient 

Action  SendMail   Confirm Sending 

 State  Confirmation    Confirmation 

THE MOTOR-BEHAVIOUR MODEL 

 

A motor behaviour model simulates movement limits and 
capabilities of users for different input devices and 
interaction techniques [12]. For able-bodied users, most 
motor-behaviour models are based on Fitts’ Law [26] and 
its variations [12]. For disabled users, there is growing 
evidence that their interaction patterns are significantly 
different from those of their able-bodied counterparts [29-
32]. However the applicability of Fitts’ law for motor-
impaired users is a debatable issue. Smits-Engelsman et. 
al. [4], Wobbrock and Gajos [14] found it to be applicable 
for children with congential spastic hemiplegia and 
motor-impaired people respectively, but Bravo et. al. [24] 
and Gump et. al. [2] obtained a different result. In general 
for real life pointing tasks, motor-impaired persons are 
not always governed by the visual feedback. Their 
movements seem to be more ballistic (rapid and discrete 
movement without visual feedback, [2]). This may be a 
result of their poor coordination between perception and 
motor-action. This poor coordination causes more neuro-
motor noise than the permissible limit of Fitts’ law [25]. 
They obey Fitts’ law when the task is very simple and 
thus requires less coordination between vision and motor-
action [4] or there are other cues (e.g. auditory) besides 
vision [14]. There has been some works to develop an 
alternative to Fitts’ law for motor-impaired people. Gump 
et. al. [2] found significant correlation between the 
movement time and the root of movement amplitude 
(Ballistic Movement Factor [17]).  Gajos, Wobbrock and 
Weld [18] estimated the movement time by selecting a set 
of features from a pool of seven functions of movement 
amplitude and target width, and then using the selected 
features in a linear regression model. We have developed 
the motor-behaviour model by statistical analysis of 
cursor traces of a previous experiment [32]. We did a 
more detailed analysis of different phases of movement 
for several pointing tasks undertaken by motor-impaired 
users and developed a model to predict the movement 
time for a pointing task. We investigated the cursor traces 
for each individual pointing task. The main difference 
between the mouse movement of the motor-impaired and 
able-bodied users lie in the characteristics of the sub-
movements [29,31]. Able-bodied users move the mouse 
towards the target by a single long sub-movement 
followed by some smaller sub-movements to home on the 
target. In the case of motor-impaired users, the number of 
sub-movements is greater than that of able-bodied users 
and the main movement towards the target is often 
composed of two or more sub-movements. The time spent 
between two sub-movements (described as pause) also 
significantly affects the total task completion time. So our 
model estimates the total task completion time by 
calculating the average number of sub-movements in a 
single pointing task, their average duration, and the 
average duration of pauses. In the present study, we 
define a pause as the event when the mouse stops 
movement for more than 100 msec and a sub-movement 
is defined as a movement occurring between two pauses. 
To reveal the characteristics of the sub-movements and 



the pauses, we clustered the points where the pauses 
occurred (i.e. a new sub-movement started). We found 
that about 90% of the sub-movements took place when 
the mouse pointer was very near the source (the pointer 
had not moved more than 20% of the total distance) or 
near the target (the pointer had moved more than 85% of 
the total distance). The sub-movements near the source 
and target are rather ballistic and the remaining 10% of 
the sub-movements actually constituted the main 
movement. So our model divided the sub-movements and 
pauses during a pointing task into three classes based on 
their position with respect to the source and the target. 
The model operates based on the following equation. 

Movement Time = p1(d1+s1) + p2*d2 + f (Dist/v2) + 

p3(d3+s3) - (s1+s3) 

 

Where,  

Dist Distance from source to target 

p1 No. of pauses near source 

d1 Average duration of a pause near source 

s1

Average duration of a sub-movement near 

source 

p2 No. of pauses in main movement 

d2 Average duration of a pause in main movement 

v2 Speed of movement in main movement 

f
Fraction of the total distance covered by the 

main movement 

p3 No. of pauses near target 

d3 Average duration of a pause near target 

s3 Average duration of a sub-movement near target 

 

We have estimated each of these model parameters from 
statistical analyses. One challenging task in developing 
the model was to categorize users based on their extent of 
disabilities. Several clinical scales have been used to 
measure disability (e.g. Ashworth scale [20], the weighted 
disability score [28], Tardieu Scale, Spasticity Grading 
[35] etc.), but they are hardly applicable in modelling 
HCI. In the present set of data, the experimenters 
categorized the users in several ways based on their 
experience, difficulty in clicking, pointing, dragging etc. 
Among these we found that a scale based on the difficulty 
in dragging, is significantly correlated (p<0.05) with three 
model parameters (No. of pauses near source, No. of 
pauses near target [Figure 9] and average speed of main 
movement [Figure 10]). We drew histograms of other 
parameters (Figure 11) and then they were approximated 
by the inverse transform method [33]. However in 
developing the model we assumed a fixed boundary 
among the three regions (near source, main movement, 
near target). To make the model more realistic, we blurred 
these boundaries. We calculated the probability of a pause 
from the function shown in Figure 12. As can be seen 
from Figure 12, the probability of a pause gradually 
increases to 1 near the source and the target. We 
estimated the pause durations by multiplying it with the 
probability of occurrence of a pause. 

Figure 9.Variation of number of pauses w.r.t. a scale 

based on difficulty in dragging 

 

Figure 10. Variation of speed of main movement w.r.t. a 

scale based on difficulty in dragging 

 

To estimate the accuracy of our model, we tested the 
model on 62 pointing tasks undertaken by 15 participants. 
The predictions are obtained by running Monte-Carlo 
simulation 500 times for each pointing task. The actual 
and predicted average task completion times and a Z-
score distribution of the actual and predictions are shown 
in table 3 and Figure 14 respectively. Figure 13 presents a 
scatter diagram of actual and average predicted time. The 
median of the z-scores has come at –0.27 instead of 0, 
however the predicted average task completion time is 
found to be significantly correlated (p<0.002) with the 
actual. 

Figure 11. Histograms of model parameters 
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Figure 12. Probability of occurrence of a pause 

 

Table  3. Actual and Predicted Task Completion Time 

 

Participants 

Average 

Predicted Time 

(msec.) 

Actual Time 

(msec.) 

P1 3566 1880 

P2 4138 2176 

P3 3418 2400 

P4 4018 2500 

P5 3920 2907 

P7 14632 10309 

P9 7389 2796 

P11 687 1293 

P12 14512 9349 

P14 14974 22833 

P15 4134 10478 

P16 3584 1629 

P17 7895 15888 

P19 4018 2335 

P20 3188 8771 

Pearson r 0.71 

t 3.64 

p 0.0015 

 
IMPLEMENTATION 

 

We have developed the simulator in a modular fashion – 
all of its components can be run independently of each 
other as well as together. The sequence of operations 
during execution of the simulator is shown in Figure 15. 
The cognitive model takes a task description from the task 
model and produces a list of low-level device operations. 
The interface designer has to execute these operations 
manually while our mouse hooking program runs as a 
daemon. 
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Figure 13. Scatter Diagram of Actual vs. Predicted 

Task Completion Time (in msec.) 
 

  
Figure 14. Prediction from our model for mouse 

interface 

 

The mouse-hooking program generates a list of events (a 
list of key presses and mouse clicks), a low-level snapshot 
(a sequence of bitmap images) and a high-level snapshot 
(locations of windows, icons, buttons and other controls 
in the screen) of the whole interaction. The perception 
model operates on the event list and the sequence of 
bitmaps while the motor-behaviour model takes the event 
list and the high-level snapshot as input. An interface 
designer is free to use any one or more than one modules 
of the system. For example, one can run a GOMS analysis 
on the output of the cognitive model instead of using our 
perception or motor-behaviour model. Similarly the 
mouse-hooking program can be run for any interaction 
that is not produced by our cognitive model and the 
perception and (or) the motor-behaviour model can be 
used on the output of the mouse-hooking program. 

CONCLUSIONS 
 

In this paper we have presented a simulator that can 
predict the likely interaction patterns when undertaking a 
task using a variety of input devices, and estimate the 
time to complete the task in the presence of different 
disabilities and for different levels of skill. We have 
developed the simulator using the concept of Model 
Human Processor and described each modules of the 
system in details. We are now working to increase the 
accuracy of the model and to validate it by some 
experiments with people with disabilities. 



 

 

Figure 15. Sequence of operations in the 

simulator 
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