
Automatic Evaluation of Assistive Interfaces

Pradipta Biswas

Computer Laboratory

15 JJ Thomson Avenue

Cambridge CB3 0FD

University of Cambridge, UK

E-mail: pb400@cam.ac.uk

Peter Robinson

Computer Laboratory

15 JJ Thomson Avenue

Cambridge CB3 0FD

University of Cambridge, UK

E-mail: pr10@cam.ac.uk

ABSTRACT

Computers offer valuable assistance to people with physical
disabilities. However designing human-computer interfaces
for these users is complicated. The range of abilities is
more diverse than for able-bodied users, which makes
analytical modelling harder. Practical user trials are also
difficult and time consuming. We are developing a
simulator to help with the evaluation of assistive interfaces.
It can predict the likely interaction patterns when
undertaking a task using a variety of input devices, and
estimate the time to complete the task in the presence of
different disabilities and for different levels of skill. In this
paper we describe the different components of the simulator
in detail and present a prototype of its implementation.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and
Techniques – user interfaces; K.4.2 [Computers and
Society]: Social Issues – assistive technologies for persons
with disabilities

General Terms
Algorithms, Experimentation, Human Factors,
Measurement

Keywords
Human Computer Interaction, Assistive Technology,
Usability Evaluation, Simulator.

INTRODUCTION

Computers offer valuable opportunities to physically
challenged people as it help them to engage more fully with
the world. However designing and evaluating human-
computer interfaces for these users is more complicated

than for able-bodied persons, since the range of abilities is
more diverse. Their patterns of interaction are also
significantly different from those of able-bodied users. So
existing HCI models are not easily applicable to assistive
interfaces. Assistive interfaces are generally evaluated by
analysing log files after a user trial. However it is often
difficult to find participants with specific disabilities. Petrie
et. al. [10] take the approach of remote evaluation but still
need to find disabled participants. As an alternative, a
modelling tool that could simulate HCI of users with
disabilities would relieve the designer from searching for
disabled participants to run a conventional user trial.
However, research on assistive interfaces and HCI
modelling do not overlap. Very few HCI models have
considered users with disability. Researchers on assistive
interfaces have concentrated on designing assistive
interfaces for a particular application (e.g. Web Browser,
Augmentative and Alternative Communication aid etc.),
developing new interaction techniques (e.g. different
scanning techniques) or developing novel hardware
interfaces (head mounted switches, eye-gaze trackers,
brain-computer interfaces etc.). They have not looked at
designing a systematic modelling tool for assistive
interfaces. We have developed a simulator to model HCI of
disabled users. It can predict the likely interaction patterns
of users when undertaking a task using a variety of input
devices, and estimate the time to complete a task in the
presence of different disabilities and for different levels of
skill. The simulator can be used to compare several existing
assistive interfaces and to evaluate new alternatives. We
also address the shortcomings of existing HCI models and
hope to develop a system that will be easier to use than the
existing models and support both able-bodied and disabled
users.

RELATED WORKS

The GOMS family of HCI models (e.g. KLM, CMN-
GOMS, CPM-GOMS) is mainly suitable for modelling the
optimal behaviour (skilled behaviour) of users [5]. On the
other hand, models developed using cognitive architectures
consider the uncertainty of human behaviour in detail but
have not been widely adopted for simulating HCI. For
example, developing a sequence of production rules for
Soar [3], a semantic network for ACT-R [15] or a set of
constraints for CORE [11] is difficult with respect to an

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

interface designer. Usability issues for cognitive
architectures are also supported by the X-PRT system [11]
for the CORE architecture. Additionally, Kieras has shown
that a high fidelity model cannot always outperform a low
fidelity one though it is expected to do so [7]. Researchers
have already attempted to combine these two forms of
model to develop more usable and accurate models.
Salvucci and Lee [9] have developed the ACT-Simple
model by translating basic GOMS operations into ACT-R
production rules [15]. The model works well to predict
expert performance but does not work for novices.
Blandford et. al. [1] implement the Programmable User
Model (PUM) using the Soar architecture. They developed
a program, STILE (Soar Translation from Instruction
Language made Easy), to convert the PUM Instruction
Language into Soar productions. However, this approach
also demands good knowledge of Soar from an interface
designer. The second problem of existing approaches to
modelling comes from specific issues with disability. There
is not much reported work on systematic modelling of
assistive interfaces. McMillan [34] felt the need to use HCI
models to unify different research streams in assistive
technology, but his work aimed to model the system rather
than the user. The AVANTI project [6] models an assistive
interface for a web browser based on some static and
dynamic characteristics of users. However, this model does
not address the basic perceptual, cognitive and motor
behaviour of users and so it is hard to generalize to other
applications. Our user model [23] breaks down the task of
user modelling into several steps that include clustering
users based on their physical and cognitive abilities,
customizing interfaces based on user characteristics and
logging user interactions to update the model itself.
However the objective of this model is to design adaptable
interfaces and not to simulate users’ performance. Keates
et. al. [30] measured the difference between able-bodied
and motor-impaired users with respect to the Model Human
Processor (MHP) and motor-impaired users were found to
have a greater motor action time than their able-bodied
counterparts. The finding is obviously important, but the
KLM model itself is too primitive to use.

OUR OBJECTIVE

Based on the previous discussion, Figure 1 plots the
existing general-purpose HCI models in a space defined by
the skill and physical ability of users. To cover most of the
blank spaces in the diagram, we set our objectives to
develop a model that can:

1. Simulate HCI of both able-bodied and disabled
users.

2. Work for users with different levels of skill.

3. Be easy to use and comprehend for an interface
designer.

THE SIMULATOR

We are developing a simulator that takes a task definition

and locations of different objects in an interface as input.
Then it predicts the cursor trace, probable eye movements
in screen and task completion time, for different input
device configurations (e.g. mouse or single switch scanning
systems) and undertaken by persons with different levels of
skill and physical disabilities.

Figure 1. Existing HCI models w.r.t. skill and

physical-ability of users

The architecture of the simulator is shown in Figure 2. It
consists of the following three components:

The Application model represents the task currently
undertaken by the user by breaking it up into a set of simple
atomic tasks.

The Interface Model decides the type of input and output
devices to be used by a particular user and sets parameters
for an interface.

The User Model simulates the interaction patterns of users
for undertaking a task analysed by the task model under the
configuration set by the interface model. It uses the
sequence of phases defined by Model Human Processor.
The perception model simulates the visual perception of
interface objects. The cognitive model takes the output of
the perception model and determines an action to
accomplish the current task. The motor-behaviour model
predicts the completion time and possible interaction
patterns for performing that action. A case study of using
the simulator can be found in [22] while an application of
the model in evaluating different single-switch scanning
techniques is presented in [21].

Figure 2. Architecture of the Simulator

The remainder of this paper discusses the design of these

three components of the user model. The perception model
is designed according to the theories of visual attention.
Our cognitive model is more detailed than the GOMS
model but not as complex as existing cognitive
architectures. The motor-behaviour model is developed by
statistical analysis of screen navigation paths of disabled
users.

THE PERCEPTION MODEL

Among existing systems, only EPIC [8] and ACT-R/PM
[19] have distinct perception models. Currently our
perception model considers only vision. It takes a list of
keyboard and mouse events and a sequence of bitmap
images of an interface as input and produces a sequence of
eye-movements and the visual search time as output.

We perceive something in a computer screen by focusing
attention at a portion of the screen and then searching for
the desired object within that area. If the intended item is
not found in that area then attention is shifted to a new
location. Our model supports both systematic and random
mechanisms of shifting attention [13,27] and also the top
down and bottom up theories [8,19] of focusing attention.
We model the bottom up theory by analysing a bitmap
image of the interface using different computer vision
algorithms (e.g. colour-histogram matching, Shape
matching etc.). The top down mechanism is modelled in the
form of heuristics (e.g. the model never searches in a region
of screen which does not contain any controls or it does not
undertake a visual search for common operations like
minimizing, maximizing or closing a window etc.). The
model is controlled by four free parameters: distance of
user from the screen, foeveal, parafoveal and periphery
angles. The default values of these parameters are set
according to the EPIC architecture [8]. By changing
resolution or by proper filtering of the bitmap images, the
model can also be used to simulate vision of different
visually impaired users.

THE COGNITIVE MODEL

We have modelled the optimal (expert) and sub-optimal
(non-expert) behaviour separately. We have used the CPM-
GOMS [5] model to simulate the optimal behaviour. For
sub-optimal behaviour, we have developed a new model.
This model takes a task definition as input and produces a
sequence of operations needed to accomplish the task as
output. It simulates interaction patterns of non-expert users
by two interacting Markov processes. One of them models
the user’s view of the system and the other signifies the
designer’s view of the system. Users operate in the users’
space to achieve their goals. They do it by converting their
intended actions into an operation offered by the device. At
the same time, they map a state of the device space into a
state of the user space to decide the next action. Users
behave sub-optimally, when these mappings between the
device space and the user space are not done optimally. We
can summarize our assumptions as follows:

o Users and devices operate in two different state

spaces [16].

o Each state space can be modelled as a Markov
Decision Process. This is consistent with the fact
of finite capacity of short-term memory of
humans.

o Users follow the principle of maximum rationality
[3], so if they know an action to achieve their goal,
then they will select that action.

o Users behave sub-optimally by not properly
converting their intended action into a device
operation and misperception of a device state.

o A good interface will minimize the mismatch
between the user space and the device space.

The performance of the system is illustrated in Figure 3. At
any state, users have a fixed policy based on the current
task in hand. The policy produces an action, which in turn
is converted into a device operation (e.g. clicking on a
button, selecting a menu item etc.). After application of the
operation, the device moves to a new state. Users have to
map this state to one of the state in the user space. Then
they again decide a new action until the new state becomes
the goal state.

Figure 3. Sequence of events in an interaction

Learning

Besides performance simulation, our model also has the
capability of learning new techniques of interactions.
Learning can occur either offline or online. The offline
learning takes place when the user of the model adds new
states or operations to the user space. The model can also
learn new state and operations itself. During execution,
whenever the model cannot map the intended action of the
user into an operation permissible by the device, it tries to
learn a new operation. To do so, it first asks for instruction
from outside. The interface designer is provided with the
information about previous, current and future states and
she can choose an operation on behalf of the model. If the
model does not get any instruction from outside then it
searches the state transition matrix of the device space and
selects an operation according to the label-matching
principle [16]. If the label matching principle cannot return
a prospective operation, it randomly selects an operation
that can change the device state in a favourable way. It then
adds this new operation to the user space and updates the

state transition matrix of the user space accordingly. In the
same way, the model can also learn a new device state.
Whenever it arrives in a device state unknown to the user
space, it adds this new state to the user space. Then it
selects or learns an operation that can bring the device into
a state desirable to the user. If it cannot reach a desirable
state, it just selects or learns an operation that can bring the
device into a state known to the user. The model can also
simulate the practice effect of users. Initially the mapping
between the user space and the device space remains
uncertain (i.e. the probabilities for each pair of state/action
in the user space and state/operation in the device space is
less than 1). After each successful completion of a task the
model increases the probabilities of those mappings that
leads to the successful completion of the task and after
sufficient practice the probability values of certain
mappings reach one. At this stage the user can map his
space unambiguously to the device space and thus behave
optimally.

Usability

One important aspect of a cognitive model is its own
usability, which is mostly ignored in the current literature
on cognitive models. We developed user interfaces for

developing and running the model (Figures 4 and 5
respectively). The model should be developed in three
steps. In the first step, the designer has to specify some
possible user states and actions. Then she has to define a
state transition diagram for the current task by selecting a
state and an action alternatively. This can be done with the
help of a physical DFD (for structured design) or a state-
transition diagram (for object-oriented design) developed as
part of the system design document. Individual entries of
the state transition diagram can be modified by clicking on
the ‘Advanced Control’ button. In step 2, all of the previous
operations have to be repeated for developing the device
space. Finally in step 3, the states and actions of the user
space and the device space have to be mapped with each
other. The mapping can be done by defining a joint
probability distribution matrix using the interface shown in
Figure 4d. The interface designer is also free to choose any
advanced modelling techniques (like rule-based system or a
decision network) to model the mapping between the user
space and the device space. Once developed, the model can
be run using the interface shown in Figure 5a. At this stage,
the system also permits to define and simulate a new task
(Figure 5b). We have demonstrated the use of the model for
a simple but non-trivial example in the next section.

Figure 4. Interfaces to develop the model

Figure 5. Interfaces to run the model

Demonstration

We have modelled a situation of sending e-mails using
our system. Initially we developed a very simple interface
(Figure 6) for sending and receiving e-mails. The
interface did not impose or indicate any particular order
of operations and allowed the user to do any operation at
any time. So it helped us to observe the natural interaction
patterns of users while sending or receiving e-mails. The
device model was developed from the interface itself. The
state transition diagram of the device space is shown in
Figure 7. We developed the user space by collecting
interaction patterns from 5 participants on the interface.
The participants were expert computer users but none
used the interface before. They were aged between 25 to
35 years. The state transition diagram of the user space is
shown in figure 8. The mapping between the user space
and the device space is presented in table 1. We ran the
model for two iterations to simulate the task of sending an
e-mail using this particular interface. The output of the
model is shown in table 2.

Figure 6. An interface to send and receive e-mails

In this particular example, the difference between the user
space and the device space lies in the interpretation of the
‘Send Mail’ operator. Users expected after clicking on the
‘Send Mail’ button, they would automatically be asked to
specify recipient, which was not supported by the device.
So during executing the task for the first time, the model
encountered the error message and learned the operation

‘Give Recipient’. After specifying the recipient, the user
wanted to confirm the sending operation. The
‘ConfirmSending’ action did not have any matching
operation in the device space. At this stage the model
applied the label matching principle, which successfully
returned the ‘Send Mail’ operation in the device space. At
the next iteration, the model performed the task optimally
by using its learned knowledge. Thus this simple example
demonstrates how the model can simulate the
performance and learning of first-time users of an
interface.

Table 1. Mapping between the user space and device space

User Space Device Space

States

Ready to write mail Welcome Screen

Letter without recipient Notepad without recipient

Specify recipient Specify recipient

Letter with recipient Notepad with recipient

Confirmation Message Confirmation Message

Actions

Write Mail Write Mail

Send Mail Send Mail

Confirm Recipient(s) Confirm Recipient(s)

Figure 7. State transition diagram of the device space

Figure 8. State transition diagram of the user

space

Table 2. Output of the cognitive model

 Device Space User Space

Iteration 1

State Welcome Screen Ready to write mail

Action Write Mail WriteMail

 State Notepad without
recipient

 Letter without
recipient

Action SendMail SendMail

State ErrorMsg

 New Action

Learned

 GiveRecipients

 State Specify recipient Specify recipient

Action ConfirmRecipient ConfirmRecipient

 State Notepad with

recipient

 Letter with recipient

 New Action

Learned
 SendMail

Action SendMail Confirm Sending

 State Confirmation Confirmation

Iteration 2

State Welcome Screen Ready to write mail

Action Write Mail WriteMail

 State Notepad without

recipient

 Letter without

recipient

Action GiveRecipients GiveRecipients

 State Recipient Recipient

Action ConfirmRecipient ConfirmRecipient

 State Notepad with

recipient

 Letter with recipient

Action SendMail Confirm Sending

 State Confirmation Confirmation

THE MOTOR-BEHAVIOUR MODEL

A motor behaviour model simulates movement limits and
capabilities of users for different input devices and
interaction techniques [12]. For able-bodied users, most
motor-behaviour models are based on Fitts’ Law [26] and
its variations [12]. For disabled users, there is growing
evidence that their interaction patterns are significantly
different from those of their able-bodied counterparts [29-
32]. However the applicability of Fitts’ law for motor-
impaired users is a debatable issue. Smits-Engelsman et.
al. [4], Wobbrock and Gajos [14] found it to be applicable
for children with congential spastic hemiplegia and
motor-impaired people respectively, but Bravo et. al. [24]
and Gump et. al. [2] obtained a different result. In general
for real life pointing tasks, motor-impaired persons are
not always governed by the visual feedback. Their
movements seem to be more ballistic (rapid and discrete
movement without visual feedback, [2]). This may be a
result of their poor coordination between perception and
motor-action. This poor coordination causes more neuro-
motor noise than the permissible limit of Fitts’ law [25].
They obey Fitts’ law when the task is very simple and
thus requires less coordination between vision and motor-
action [4] or there are other cues (e.g. auditory) besides
vision [14]. There has been some works to develop an
alternative to Fitts’ law for motor-impaired people. Gump
et. al. [2] found significant correlation between the
movement time and the root of movement amplitude
(Ballistic Movement Factor [17]). Gajos, Wobbrock and
Weld [18] estimated the movement time by selecting a set
of features from a pool of seven functions of movement
amplitude and target width, and then using the selected
features in a linear regression model. We have developed
the motor-behaviour model by statistical analysis of
cursor traces of a previous experiment [32]. We did a
more detailed analysis of different phases of movement
for several pointing tasks undertaken by motor-impaired
users and developed a model to predict the movement
time for a pointing task. We investigated the cursor traces
for each individual pointing task. The main difference
between the mouse movement of the motor-impaired and
able-bodied users lie in the characteristics of the sub-
movements [29,31]. Able-bodied users move the mouse
towards the target by a single long sub-movement
followed by some smaller sub-movements to home on the
target. In the case of motor-impaired users, the number of
sub-movements is greater than that of able-bodied users
and the main movement towards the target is often
composed of two or more sub-movements. The time spent
between two sub-movements (described as pause) also
significantly affects the total task completion time. So our
model estimates the total task completion time by
calculating the average number of sub-movements in a
single pointing task, their average duration, and the
average duration of pauses. In the present study, we
define a pause as the event when the mouse stops
movement for more than 100 msec and a sub-movement
is defined as a movement occurring between two pauses.
To reveal the characteristics of the sub-movements and

the pauses, we clustered the points where the pauses
occurred (i.e. a new sub-movement started). We found
that about 90% of the sub-movements took place when
the mouse pointer was very near the source (the pointer
had not moved more than 20% of the total distance) or
near the target (the pointer had moved more than 85% of
the total distance). The sub-movements near the source
and target are rather ballistic and the remaining 10% of
the sub-movements actually constituted the main
movement. So our model divided the sub-movements and
pauses during a pointing task into three classes based on
their position with respect to the source and the target.
The model operates based on the following equation.

Movement Time = p1(d1+s1) + p2*d2 + f (Dist/v2) +

p3(d3+s3) - (s1+s3)

Where,

Dist Distance from source to target

p1 No. of pauses near source

d1 Average duration of a pause near source

s1

Average duration of a sub-movement near

source

p2 No. of pauses in main movement

d2 Average duration of a pause in main movement

v2 Speed of movement in main movement

f
Fraction of the total distance covered by the

main movement

p3 No. of pauses near target

d3 Average duration of a pause near target

s3 Average duration of a sub-movement near target

We have estimated each of these model parameters from
statistical analyses. One challenging task in developing
the model was to categorize users based on their extent of
disabilities. Several clinical scales have been used to
measure disability (e.g. Ashworth scale [20], the weighted
disability score [28], Tardieu Scale, Spasticity Grading
[35] etc.), but they are hardly applicable in modelling
HCI. In the present set of data, the experimenters
categorized the users in several ways based on their
experience, difficulty in clicking, pointing, dragging etc.
Among these we found that a scale based on the difficulty
in dragging, is significantly correlated (p<0.05) with three
model parameters (No. of pauses near source, No. of
pauses near target [Figure 9] and average speed of main
movement [Figure 10]). We drew histograms of other
parameters (Figure 11) and then they were approximated
by the inverse transform method [33]. However in
developing the model we assumed a fixed boundary
among the three regions (near source, main movement,
near target). To make the model more realistic, we blurred
these boundaries. We calculated the probability of a pause
from the function shown in Figure 12. As can be seen
from Figure 12, the probability of a pause gradually
increases to 1 near the source and the target. We
estimated the pause durations by multiplying it with the
probability of occurrence of a pause.

Figure 9.Variation of number of pauses w.r.t. a scale

based on difficulty in dragging

Figure 10. Variation of speed of main movement w.r.t. a

scale based on difficulty in dragging

To estimate the accuracy of our model, we tested the
model on 62 pointing tasks undertaken by 15 participants.
The predictions are obtained by running Monte-Carlo
simulation 500 times for each pointing task. The actual
and predicted average task completion times and a Z-
score distribution of the actual and predictions are shown
in table 3 and Figure 14 respectively. Figure 13 presents a
scatter diagram of actual and average predicted time. The
median of the z-scores has come at –0.27 instead of 0,
however the predicted average task completion time is
found to be significantly correlated (p<0.002) with the
actual.

Figure 11. Histograms of model parameters

Pause Distribution with Disance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Normalized Distance

P
ro

b
a
b
il
it
y
 o

f
a
 P

a
u
s
e

Figure 12. Probability of occurrence of a pause

Table 3. Actual and Predicted Task Completion Time

Participants

Average

Predicted Time

(msec.)

Actual Time

(msec.)

P1 3566 1880

P2 4138 2176

P3 3418 2400

P4 4018 2500

P5 3920 2907

P7 14632 10309

P9 7389 2796

P11 687 1293

P12 14512 9349

P14 14974 22833

P15 4134 10478

P16 3584 1629

P17 7895 15888

P19 4018 2335

P20 3188 8771

Pearson r 0.71

t 3.64

p 0.0015

IMPLEMENTATION

We have developed the simulator in a modular fashion –
all of its components can be run independently of each
other as well as together. The sequence of operations
during execution of the simulator is shown in Figure 15.
The cognitive model takes a task description from the task
model and produces a list of low-level device operations.
The interface designer has to execute these operations
manually while our mouse hooking program runs as a
daemon.

Actual vs Predicted Task Completion Time

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000 16000

Average Predicted Time

A
c
tu

a
l
T
im

e

Figure 13. Scatter Diagram of Actual vs. Predicted

Task Completion Time (in msec.)

Figure 14. Prediction from our model for mouse

interface

The mouse-hooking program generates a list of events (a
list of key presses and mouse clicks), a low-level snapshot
(a sequence of bitmap images) and a high-level snapshot
(locations of windows, icons, buttons and other controls
in the screen) of the whole interaction. The perception
model operates on the event list and the sequence of
bitmaps while the motor-behaviour model takes the event
list and the high-level snapshot as input. An interface
designer is free to use any one or more than one modules
of the system. For example, one can run a GOMS analysis
on the output of the cognitive model instead of using our
perception or motor-behaviour model. Similarly the
mouse-hooking program can be run for any interaction
that is not produced by our cognitive model and the
perception and (or) the motor-behaviour model can be
used on the output of the mouse-hooking program.

CONCLUSIONS

In this paper we have presented a simulator that can
predict the likely interaction patterns when undertaking a
task using a variety of input devices, and estimate the
time to complete the task in the presence of different
disabilities and for different levels of skill. We have
developed the simulator using the concept of Model
Human Processor and described each modules of the
system in details. We are now working to increase the
accuracy of the model and to validate it by some
experiments with people with disabilities.

Figure 15. Sequence of operations in the

simulator

ACKNOWLEDGEMENT

We would like to thank the Gates Cambridge Trust for
funding this work. We like to thank the students of
Computer Laboratory and Trinity College, Cambridge to
take part in our experiments. We are also grateful to Dr.
Shari Trewin of IBM TJ Watson Research Centre and Dr.
Helen Pain of University of Edinburgh for sharing their
data with us.

REFERENCES
[1] A. Blandford, R. Butterworthb and P. Curzonb, Models of

interactive systems: a case study on programmable user

modelling, International Journal of Human-Computer

Studies, vol. 60 (2004), 149–200

[2] A. Gump et. al., Application of Fitts’ Law to individuals

with cerebral palsy, Perceptual and Motor Skills (2002),

94, 883-895

[3] A. Newell, Unified Theories of Cognition. Harvard

University Press, Cambridge, MA, 1990

[4] B. C. M. Smits-Engelsman et. al., Children with congential

spastic hemiplegia obey Fitts’ Law in a visually guided

tapping task, Journal of Experimental Brain Research

(2007), 177, 431-439

[5] B. E. John and B. E Kieras., The GOMS family of user

interface analysis techniques: Comparison and Contrast.

ACM Transactions on Computer Human Interaction, Vol. 3

(1996), 320-351

[6] C. Stephanidis, et. al., Adaptable and Adaptive User

Interfaces for Disabled Users in the AVANTI Project,

Intelligence in Services and Networks, LNCS-1430,

Springer-Verlag 1998, 153-166

[7] D. E Kieras. Fidelity Issues In Cognitive Architectures For

HCI Modelling: Be Careful What You Wish For. In

Proceedings of 11th International Conference On Human

Computer Interaction (HCII 2005). Las Vegas, July, 2005

[8] D. Kieras and D.E. Meyer, An Overview of The EPIC

Architecture For Cognition And Performance With

Application To Human-Computer Interaction, Human-

Computer Interaction (1990), vol. 12, 391-438

[9] D.D. Salvucci and F.J. Lee, Simple cognitive Modelling in

a complex cognitive architecture, In Proceedings of the

ACM/SIGCHI Conference on Human Factors in

Computing Systems, Fort Lauderdale, FL, 2003, 265–272

[10] H. Petrie et. al., Remote usability Evaluations with disabled

people. . In Proceedings of the SIGCHI conference on

Human factors in computing systems (CHI ’06) , Montreal,

Canada, April 22-27, 2006. ACM Press, New York, NY,

2006, 1133- 1141

[11] I Tollinger. et. al., Supporting Efficient Development of

Cognitive Models At Multiple Skill Levels: Exploring

Recent Advances In Constraint-Based Modeling, In

Proceedings of the ACM/SIGCHI Conference on Human

Factors in Computing Systems, Portland, Oregon,

USA,2005, 411 – 420

[12] I. S. MacKenzie, motor-behaviour models for human-

computer interaction. In J. M. Carroll (Ed.) HCI models,

theories, and frameworks: Toward a multidisciplinary

science. 27-54. (2003) San Francisco: Morgan Kaufmann

[13] J. H. Reynolds and R. Desimone, The Role of Neural

Mechanisms of Attention In Solving The Binding Problem,

Neuron 24 (1999), 111-125

[14] J. O. Wobbrock and K. Z. Gajos, A Comparison of area

pointing and goal crossing for people with and without

motor impairments, . In Proceedings of 9th International

ACM/SIGACCESS Conference on Computers and

Accessibility (ASSETS 2007) (To appear)

[15] J. R. Anderson and C. Lebiere, The Atomic Components of

Thought. Hillsdale, NJ: Erlbaum, 1998

[16] J. Rieman and R. M. Young, A dual-space model of

iteratively deepening exploratory learning, International

Journal of Human-Computer Studies (1996) 44, 743-775

[17] K. C. Gan and E. R. Hoffmann, Geometrical conditions for

ballistic and visually controlled movements, Ergonomics

(1988), 31, 829-839

[18] K. Z. Gajos, J. O. Wobbrock and D. S. Weld,

Automatically generating user interfaces adapted to users’

motor and vision capabilities, In proceedings of UIST

2007.

[19] M. D. Byrne, ACT-R/PM And Menu Selection: Applying

A Cognitive Architecture To HCI, International Journal of

Human Computer Studies (2001), vol. 55

[20] M. P. Barnes and G.P. Johnson, Upper Motor Neurone

Syndrome And Spasticity, Cambridge University Press,

U.K., 2001

[21] P. Biswas and P. Robinson, Performance Comparison of

Different Scanning System using a Simulator, Proceedings

of the 9th European Conference of Advancement of

Assistive Technology in Europe (AAATE 07) (To appear)

[22] P. Biswas and P. Robinson, Simulation to Predict

Performance of Assistive Interfaces, Proceedings of the 9th

International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS’07) (To appear)

[23] P. Biswas et. al., User Model To Design Adaptable

Interfaces For Motor-Impaired Users, In Proceedings of the

Tencon ‘05 – IEEE Region 10 Conferences, Melbourne,

Australia, 2005, 1801-1806

[24] P. E. Bravo et. al., A study of the application of Fitts’ Law

to selected cerebral palsy adults, Perceptual and Motor

Skills (1993), 77, 1107-1117

[25] P. H. McCrea and J. J. Eng, Consequences of increased

neuromotor noise for reaching movements in persons with

stroke, Journal of Experimental Brain Research (2005),

162, 70-77

[26] P.M. Fitts, The information capacity of the human motor

system in controlling the amplitude of movement, Journal

of Experimental Psychology (1954), 47, 381-391

[27] S. J. Luck et. al., Neural Mechanisms of Spatial Selective

Attention In Areas V1, V2, And V4 of Macaque Visual

Cortex, Journal of Neurophysiology (1997), vol. 77, 24-42

[28] S. Keates and J. Clarkson, Countering Design Exclusion

An Introduction To Inclusive Design, Springer-Verlag

London Ltd., UK., 2004

[29] S. Keates, and S. Trewin, Effect of age and Parkinson's

disease on cursor positioning using a mouse. In

Proceedings of 7th International ACM/SIGACCESS

Conference on Computers and Accessibility, Baltimore,

MD, USA, October 2005.

[30] S. Keates, J. Clarkson and P. Robinson, Investigating the

Applicability of User Models for Motion Impaired Users,

In Proceedings ASSETS 2000, ACM/SIGACCESS

Conference on Computers and Accessibility, November 13-

15, 2000

[31] S. Keates, S. Trewin, and J. Paradise, Using pointing

devices: Quantifying differences across user groups. In

Proceedings of UAHCI 2005: 3rd International Conference

on Universal Access in Human-Computer Interaction, Las

Vegas, USA, July 2005.

[32] S. Trewin and H. Pain, Keyboard and mouse errors due to

motor disabilities. International Journal of Human-

Computer Studies 50(2), (1999), 109-144.

[33] S.M. Ross, Probability Models For Computer Science,

Elsevier, 2002

[34] W. W. Mcmillan , Computing For Users With Special

Needs And Models of Computer-Human Interaction, In

Proceedings of the ACM/SIGCHI Conference On Human

Factors In Computing Systems (1992), 143-148

[35] V.A. B. Scholtes et. al. , Clinical assessment of spasticity in

children with cerebral palsy: a critical review of available

instruments, Developmental Medicine and Child Neurology

(2006), 48, 64-73

