
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=hihc20

Download by: [University of Cambridge] Date: 14 January 2016, At: 12:26

International Journal of Human-Computer Interaction

ISSN: 1044-7318 (Print) 1532-7590 (Online) Journal homepage: http://www.tandfonline.com/loi/hihc20

Designing Inclusive Interfaces Through User
Modeling and Simulation

Pradipta Biswas , Peter Robinson & Patrick Langdon

To cite this article: Pradipta Biswas , Peter Robinson & Patrick Langdon (2012) Designing
Inclusive Interfaces Through User Modeling and Simulation, International Journal of Human-
Computer Interaction, 28:1, 1-33, DOI: 10.1080/10447318.2011.565718

To link to this article:  http://dx.doi.org/10.1080/10447318.2011.565718

Accepted author version posted online: 24
Jun 2011.

Submit your article to this journal 

Article views: 486

View related articles 

Citing articles: 8 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=hihc20
http://www.tandfonline.com/loi/hihc20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10447318.2011.565718
http://dx.doi.org/10.1080/10447318.2011.565718
http://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=hihc20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10447318.2011.565718
http://www.tandfonline.com/doi/mlt/10.1080/10447318.2011.565718
http://www.tandfonline.com/doi/citedby/10.1080/10447318.2011.565718#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/10447318.2011.565718#tabModule


Intl. Journal of Human–Computer Interaction, 28: 1–33, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 1044-7318 print / 1532-7590 online
DOI: 10.1080/10447318.2011.565718

Designing Inclusive Interfaces Through User Modeling
and Simulation

Pradipta Biswas1, Peter Robinson2, and Patrick Langdon1

1Department of Engineering, University of Cambridge, UK
2Computer Laboratory, University of Cambridge, UK

Elderly and disabled people can be hugely benefited through
the advancement of modern electronic devices, as those can help
them to engage more fully with the world. However, existing design
practices often isolate elderly or disabled users by considering
them as users with special needs. This article presents a simula-
tor that can reflect problems faced by elderly and disabled users
while they use computer, television, and similar electronic devices.
The simulator embodies both the internal state of an application
and the perceptual, cognitive, and motor processes of its user.
It can help interface designers to understand, visualize, and mea-
sure the effect of impairment on interaction with an interface.
Initially a brief survey of different user modeling techniques is
presented, and then the existing models are classified into dif-
ferent categories. In the context of existing modeling approaches
the work on user modeling is presented for people with a wide
range of abilities. A few applications of the simulator, which shows
the predictions are accurate enough to make design choices and
point out the implication and limitations of the work, are also
discussed.

Not only do physically disabled people have experiences which
are not available to the able bodied, they are in a better position to
transcend cultural mythologies about the body, because they cannot
do things the able-bodied feel they must do in order to be happy,
“normal,” and sane. If disabled people were truly heard, an explosion
of knowledge of the human body and psyche would take place. —
Susan Wendell (1996, p. 77)

1. INTRODUCTION
The World Health Organization (2011) states that the num-

ber of people aged 60 and older will be 1.2 billion by 2025 and
2 billion by 2050. The very old (age 80 or older) is the fastest
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growing population group in the developed world. Many of
these elderly people have disabilities that make it difficult
for them to use computers. The definition of the term “dis-
ability” differs across countries and cultures, but the World
Bank (2011) estimates a rate of 10 to 12% of the popula-
tion worldwide having a condition that inhibits their use of
standard computer systems. The Americans with Disabilities
Act in the United States and the Disability Discrimination Act
in the United Kingdom prohibit any discrimination between
able-bodied and disabled people with respect to education,
service, and employment. There are also ethical and social
reasons for designing products and services for this vast
population.

However, existing design practices often isolate elderly or
disabled users by considering them users with special needs and
do not consider their problems during the design phase. Later
they try to solve the problem by providing a few accessibil-
ity features. Considering any part of the society as “special”
can never solve the accessibility problems of interactive sys-
tems. Unfortunately, existing accessibility guidelines are also
not adequate to analyze the effects of impairment on interac-
tion with devices. So designers should consider the range of
abilities of users from the early design process so that any
application they develop can either adapt to users with a wide
range of abilities or specify the minimum capability of users
it requires. For example a smartphone should either automat-
ically adapt the screen content for different zooming levels
or specify the minimum visual acuity required to read the
screen.

In this article we have presented a simulation system that
helps to develop inclusive systems by

• helping designers in understanding the problems faced
by people with different range of abilities, knowledge,
and skill;

• providing designers a tool to make interactive systems
inclusive;

• assisting designers in evaluating systems with respect
to people with a wide range of abilities; and
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2 P. BISWAS ET AL.

• modifying the design process of interactive system to

◦ evaluate the scope of it with respect to the range of
abilities of users and

◦ investigate the possibilities of adaptation of the
interfaces for catering users with different ranges of
abilities.

The simulator can predict the likely interaction patterns when
undertaking a task using a variety of input devices and esti-
mate the time to complete the task in the presence of different
disabilities and for different levels of skill. Figure 1 shows the
intended use of the simulator. We aim to help evaluate existing
systems and different design alternatives with respect to many
types of disability. The evaluation process would be used to
select a particular interface, which can then be validated by a
formal user trial. The user trials also provide feedback to the
models to increase their accuracy. As each alternative design
does not need to be evaluated by a user trial, it will reduce the
development time significantly.

The article is organized as follows. In the next section, we
present a detailed survey on existing works on human behavior
simulation. In the context of earlier works, we have presented
the simulator in section 3. The rest part of the article describes
three applications of the simulator. Each application simulates a
particular task (like icon searching or menu selection) and then
validates the simulation with user trials involving users with and
without disabilities. Section 6 introduces the GUIDE Project,
which is currently using the simulation. Finally we discuss the
implications and limitations of this work in section 7 and drawn
our conclusion in section 8.

2. USER MODELS
A model can be defined as a simplified representation

of a system or phenomenon with any hypotheses required
to describe the system or explain the phenomenon, often
mathematically. The concept of modeling is widely used in
different disciplines of science and engineering, ranging from
models of neurons or different brain regions in neurology
to construction model in architecture or model of universe

in theoretical physics. Modeling human or human systems is
widely used in different branches of physiology, psychology,
and ergonomics. A few of these models are termed as user mod-
els when their purpose is to design better consumer products.
By definition a user model is a representation of the knowledge
and preferences of users (Benyon & Murray, 1993).

Research on simulating user behavior to predict machine
performance was originally started during the Second World
War. Researchers tried to simulate operators’ performance
to explore their limitations while operating different military
hardware. During the same time, computational psycholo-
gists were trying to model the mind by considering it as
an ensemble of processes or programs. McCulloch and Pitts’
(1943) model of the neuron and subsequent models of neural
networks and Marr’s (1980) model of vision are two influential
works in this discipline. Boden (1985) presented a detailed
discussion of such computational mental models. In the late
1970s, as interactive computer systems became cheaper and
accessible to more people, modeling human–computer inter-
action (HCI) also gained much attention. However, models
like Hick’s Law (Hick, 1952) or Fitts’ Law (Fitt, 1954),
which predict visual search time and movement time, respec-
tively, were individually not enough to simulate a whole
interaction.

The Command Language Grammar developed by Moran
(1981) at Xerox PARC could be considered the first HCI
model. It took a top-down approach to decompose an interac-
tion task and gave a conceptual view of the interface before
its implementation. However it completely ignored the human
aspect of the interaction and did not model the capabilities and
limitations of users. Card, Moran, and Newell’s (1983) Model
Human Processor was an important milestone in modeling
HCI because it introduced the concept of simulating HCI from
the perspective of users. It gave birth to the GOMS family
of models (Card et al., 1983) that are still the most popular
modeling tools in HCI.

There is another kind of model for simulating human behav-
ior that not only works for HCI but also aims to establish a
unified theory of cognition. These types of models originated
from the earlier work of computational psychologists. Allen
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FIG. 1. Use of the simulator.
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DESIGNING INCLUSIVE INTERFACES 3

Newell (1973) pioneered the idea of unifying existing theories
in cognition in his famous paper “You Can’t Play 20 Questions
With Nature and Win” at the 1973 Carnegie Symposium. Since
then, a plethora of systems have been developed that are termed
as cognitive architectures, and they simulate the results of
different experiments conducted in psychological laboratories.
Because these models are capable (or at least demanded to be
capable) of simulating any type of user behavior, they are also
often used to simulate the behavior of users while interact-
ing with a computer. Gray, Young, and Kirschenbaum (1997)
asserted that cognitive architectures ensure the development of
consistent models over a range of behavioural phenomena due
to their rigorous theoretical basis.

So there are two main approaches of user modeling: The
GOMS family of models was developed only for HCI, whereas
the models involving cognitive architectures took a more
detailed view of human cognition. Based on the accuracy,
detail, and completeness of these models, Kieras (2005) classi-
fied them as low-fidelity and high-fidelity models, respectively.
These two types of model can be roughly mapped to two
different types of knowledge representation. The GOMS fam-
ily of models is based on goal-action pairs and corresponds
to the Sequence/Method representation, whereas cognitive
architectures aim to represent the users’ mental model (Carroll
& Olson, 1990). The Sequence/Method representation assumes
that all interactions consist of a sequence of operations or
generalized methods, whereas the mental model representation
assumes that users have an underlying model of the whole
system.

There is a third kind of model in HCI that evaluates an
interface by predicting users’ expectations, rather than their
performance (e.g., Task Action Language [Reisner, 1981], Task
Action Grammar [Payne & Green, 1986], etc.). These models
represent an interaction by using formal grammar where each
action is modeled by a sentence. They can be used to com-
pare users’ performance based on standard sentence complexity
measures; however, they have not yet been used and tested
extensively for simulating users’ behavior (Carroll & Olson,
1990).

In the following sections, we briefly describe these different
types of user model, followed by a critical review of existing
models, and set out the objectives of this research.

2.1. The GOMS Family of Models
GOMS stands for Goals, Operators, Method and Selection.

It was inspired by the GPS system developed by Newell (Newell
& Simon, 1995). It assumes that people interact with a com-
puter to achieve a goal by selecting a method, which consists
of a sequence of basic operations. The GOMS model enables
a designer to simulate the sequence of actions of a user while
undertaking a task by decomposing the task into goals and sub-
goals (John & Kieras, 1996). There are many variations of the
original GOMS model.

The keystroke level (KLM) model (Card et al., 1983) sim-
plifies the GOMS model by eliminating the goals, methods, and
selection rules, leaving only six primitive operators:

1. Pressing a key
2. Moving the pointing device to a specific location.
3. Making pointer drag movements.
4. Performing mental preparation.
5. Moving hands to appropriate locations.
6. Waiting for the computer to execute a command.

The durations of these six operations have been empirically
determined. The task completion time is predicted by the num-
ber of times each type of operation must occur to accomplish
the task.

Kieras developed a structured language representation of
GOMS model, called Natural GOMS Language (NGOMSL;
Kieras, 1994). Originally, it was an attempt to represent the con-
tent of a cognitive complexity theory (CCT) model (Johnson,
1992) at a higher level of notation. CCT is a rule-based system
developed by Bovaria, Kieras, and Polson (1990) to model
the knowledge of users of an interactive computer system. In
NGOMSL, the methods of the original GOMS model are repre-
sented in terms of production rules of the CCT model. Kieras,
Wood, Abotel, and Hornof (1995) also developed a modeling
tool, GLEAN (GOMS Language Evaluation and Analysis),
to execute NGOMSL. It simulates the interaction between a
simulated user with a simulated device for undertaking a task.

John and Kieras (1996) proposed a new version of the
GOMS model, called CPM-GOMS, to explore the parallelism
in users’ actions. This model decomposes a task into an activ-
ity network (instead of a serial stream) of basic operations (as
defined by KLM) and predicts the task completion time based
on the Critical Path Method.

2.2. Cognitive Architectures
Allen Newell (1990) developed the State Operator And

Result (SOAR) architecture as a possible candidate for his uni-
fied theories of cognition. According to Newell (1990) and
Johnson-Laird (1988), the vast variety of human response func-
tions for different stimuli in the environment can be explained
by a symbolic system. So the SOAR system models human cog-
nition as a rule-based system and any task is carried out by
a search in a problem space. The heart of the SOAR system
is its chunking mechanism. Chunking is “a way of converting
goal-based problem solving into accessible long-term memory
(productions)” (Newell, 1990). It operates in the following way.
During a problem-solving task, whenever the system cannot
determine a single operator for achieving a task and thus cannot
move to a new state, an impasse is said to occur. An impasse
models a situation where a user does not have sufficient knowl-
edge to carry out a task. At this stage SOAR explores all
possible operators and selects the one that brings it nearest to
the goal. It then learns a rule that can solve a similar situation
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4 P. BISWAS ET AL.

in future. Laird, Rosenbloom, and Newell (1994) successfully
explained the power law of practice through the chunking
mechanism.

However, there are certain aspects of human cognition
(such as perception, recognition, motor action) that can bet-
ter be explained by a connectionist approach than a symbolic
one (Oka, 1991). It is believed that initially conscious pro-
cesses control our responses to any situation and after suffi-
cient practice, automatic processes are in charge for the same
set of responses (Hampson & Morris, 1996). Lallement and
Alexandre (1997) classified all cognitive processes into syn-
thetic or analytical processes. Synthetic operations are con-
cerned with low-level, nondecomposable, unconscious, percep-
tual tasks. In contrast, analytical operations signify high-level,
conscious, decomposable, reasoning tasks. From the modeling
point of view, synthetic operations can be mapped on to
connectionist models, whereas analytic operations correspond
to symbolic models. Considering these facts, the Adaptive
Control of Thought–Rational (ACT–R) system (Anderson &
Lebiere, 1998) does not follow the pure symbolic modeling
strategy of the SOAR; rather, it was developed as a hybrid
model, which has both symbolic and subsymbolic levels of
processing. At the symbolic level, ACT–R operates as a rule-
based system. It divides the long-term memory into declarative
and procedural memory. Declarative memory is used to store
facts in the form of “chunks” and the procedural memory
stores production rules. The system works to achieve a goal
by firing appropriate productions from the production mem-
ory and retrieving relevant facts from the declarative memory.
However, the variability of human behavior is modeled at
the subsymbolic level. The long-term memory is implemented
as a semantic network. Calculation of the retrieval time of
a fact and conflict resolution among rules is done based on
the activation values of the nodes and links of the semantic
network.

The Executive-Process/Interactive Control (Kieras &
Meyer, 1990), or EPIC, architecture pioneers to incorporate
separate perception and motor behavior modules in a cognitive
architecture. It mainly concentrates on modeling the capability
of simultaneous multiple task performance of users. It also
inspired the ACT–R architecture to install separate perception
and motor modules and developing the ACT–R/PM system.
A few examples of their usage in HCI are the modeling of
menu searching and icon searching tasks (Byrne, 2001; Hornof
& Kieras 1997).

The Constraint-based Optimizing Reasoning Engine (Eng
et al., 2006; Howes, Vera, Lewis, & McCurdy, 2004; Tollinger
et al., 2005), or CORE, system takes a different approach to
model cognition. Instead of a rule-based system, it models
cognition as a set of constraints and an objective function.
Constraints are specified in terms of the relationship between
events in the environment, tasks, and psychological processes.
Unlike the other systems, it does not execute a task hierarchy;
rather, prediction is obtained by solving a constraint satisfaction
problem. The objective function of the problem can be tuned to
simulate the flexibility in human behavior.

There exist additional cognitive architectures (such as
Interactive Cognitive Subsystems [Barnard, 2011], Apex,
DUAL, CLARION [“Cognitive Architecture,” n.d.], etc.), but
they are not yet as extensively used as the previously discussed
systems.

2.3. Grammar-Based Models
The grammar-based model (such as task action grammar

[Payne & Green, 1986] and task action language [Reisner,
1981]) simulates an interaction in the form of grammatical
rules. As for example, task action language models

• Operations by Terminal symbols
• Interaction by a Set of rules
• Knowledge by Sentences

This type of modeling is quite useful to compare different inter-
action techniques. However, they are more relevant to model
knowledge and competence of a user than performance.

2.4. Application-Specific Models
A lot of work has been done on user modeling for develop-

ing customizable applications. These models have the following
generic structure (Figure 2). They maintain a user profile and
use different types of Artificial Intelligence systems to pre-
dict performance. The user profile section stores detail about
user relevant for a particular application and inference machine
use this information to personalize the system. A plethora of
examples of such models can be found in the User Modeling
and User-Adapted Interaction journal and the proceedings of
the User Modeling, Adaptation and Personalization conference.
This type of models is particularly popular in online recom-
mender or help systems. A few representative applications of
such models are as follows.

FIG. 2. Application-specific user models (color figure available online).
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DESIGNING INCLUSIVE INTERFACES 5

The generative user model (Motomura, Yoshida, &
Fujimoto, 2000) was developed for personalized information
retrieval. In this model, input query words are related to user’s
mental state and retrieved object using latent probabilistic vari-
ables. Norcio (1989) used fuzzy logic to classify users of an
intelligent tutoring system. The fuzzy groups are used to derive
certain characteristic of the user and thus deriving new rules for
each class of user. Norcio and Chen (1992) also used an artificial
neural network for the same purpose as in their previous work
(Norcio, 1989). In their model, users’ characteristics are stored
as an image, and neural networks are used to find patterns in
users’ knowledge, goals, and so on. Yoshida and Motoda (1996)
similarly developed the Clipboard system to automate complex
task execution using a single command based on previously
executed commands.

The Lumiere Convenience Project (Horovitz, Breese,
Heckerman, Hovel, & Rommelse, 1998) used influence dia-
gram in modeling users. The Lumiere project is the background
theory of the Office Assistant shipped with the Microsoft
Office application. The influence diagram models the relation-
ships among users’ needs, goals, user background, and so on.
However, all these models are developed by keeping only a sin-
gle application in mind and so they are hardly usable to model
human performance in general.

2.5. Review
The GOMS family of models is mainly suitable for modeling

the optimal behavior (skilled behavior) of users (John & Kieras,
1996). These models assume that for each instance of a task exe-
cution, the goal and the plan of a user are determined before the
execution is started. During execution of a task, a novice first
time user or a knowledgeable intermittent user may not have
a fixed plan beforehand and can even change goals (or sub-
goals) during execution of the task. Even expert users do not
follow a fixed sequence of actions every time. So the assump-
tions of the GOMS model may not hold true for many real-life
interactions. In actuality, these models do not have probabilistic
components beyond the feature of selecting the execution time
of primitive operators from a statistical distribution in order to
model the uncertainty involved in the suboptimal behaviour of
users. As it fails to model the suboptimal behavior, it cannot be
used to predict the occurrences of different errors during inter-
action. These problems are common for any Sequence/Method
representations as these ways of representations overlook the
underlying mental models of users (Caroll & Olson, 1990).

On the other hand, cognitive architectures model the uncer-
tainty of human behavior in detail but they are not easily
accessible to nonpsychologists, and this causes problem as
interface designers are rarely psychologist as well. For exam-
ple, the ACT–R architecture models the content of a long-term
memory in the form of a semantic network, but it is very difficult
for an interface designer to develop a semantic network of the
related concepts of a moderately complex interface. Developing

a sequence of production rules for SOAR or a set of constraints
for CORE is equally difficult. The problem in usability issues of
cognitive architectures is also supported by the development of
the X-PRT system (Tollinger et al., 2005) for the CORE archi-
tecture. In addition, Kieras (2005) has shown that a high-fidelity
model cannot always outperform a low-fidelity one, though it is
expected to do so.

Researchers have already attempted to combine the GOMS
family of models and cognitive architectures to develop more
usable and accurate models. Salvucci and Lee (2003) developed
the ACT–Simple model by translating basic GOMS operations
(such as move hand, move mouse, press key) into ACT–R pro-
duction rules. However they do not model the “think” operator
in detail, which corresponds to the thinking action of users and
differentiates novices from experts. The model works well in
predicting expert performance but does not work for novices.

Blandford, Butterworth, and Curzon (2004) implemented the
Programmable User Model (PUM; Young, Green, & Simon,
1989) by using the SOAR architecture. They developed a pro-
gram, the SOAR Translation from Instruction Language made
Easy (or STILE), to convert the PUM Instruction Language into
SOAR production rules. However, this approach also demands
good knowledge of SOAR on the part of an interface designer.
Later, the PUM team identified additional problems with run-
able user models, and they are now investigating abstract
mathematical models (Butterworth & Blandford, 1997).

The CogTool system (http://cogtool.hcii.cs.cmu.edu/) com-
bines GOMS models and ACT–R system for providing quan-
titative prediction on interaction. The system simulates expert
performance through GOMS modeling, whereas the ACT–R
system helps to simulate exploratory behavior of novice users
(John, Prevas, Salvucci, & Koedinger, 2004). The system also
provides graphical user interfaces to quickly prototype inter-
faces and to evaluate different design alternatives based on
quantitative prediction (John, 2010). However, it does not yet
seem to be used for users with disability or assistive interaction
techniques.

There also exist some application-specific models that com-
bine GOMS models with a cognitive architecture. For example,
Gray and Sabnani (Gray & Sabnani, 1994) combined GOMS
with ACT–R to model a VCR programming task, whereas
Peck and John (1992) used SOAR to model interaction with a
help-browser, which ultimately turned out to be a GOMS model.

Another problem of existing modeling approaches stems
from issues related to disability. Researchers have concentrated
on designing assistive interfaces for many different applications,
including

• Web browsers
• Augmentative and alternative communication aids
• New interaction techniques
• Scanning interfaces
• Gravity wells
• Novel hardware interfaces
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6 P. BISWAS ET AL.

• Head-mounted switches
• Eye gaze trackers
• Brain–computer interfaces

Most of these works concentrate on a particular application
or a set of users, which reduces the scalability of the overall
approach. Furthermore, developing systems for a small segment
of market often makes the system very costly.

There is not much reported work on systematic modelling
of assistive interfaces. McMillan (1992) felt the need to use
HCI models to unify different research streams in assistive tech-
nology, but his work aimed to model the system rather than
the user. The AVANTI project (Stephanidis & Constantinou,
2003; Stephanidis et al., 1998) modeled an assistive interface
for a web browser based on static and dynamic characteristics
of users. The interface is initialized according to static charac-
teristics (such as age, expertise, type of disability, etc.) of the
user. During interaction, the interface records users’ interaction
and adapts itself based on dynamic characteristics (such as idle
time, error rate, etc.) of the user. This model works based on
a rule-based system and does not address the basic perceptual,
cognitive, and motor behavior of users, so it is hard to generalize
to other applications.

The EASE tool (Mankoff, Fait, & Juang, 2005) simulates
effects of interaction for a few visual and mobility impairments.
However the model is demonstrated for a sample application
of using word prediction software but not yet validated for
basic pointing or visual search tasks performed by people with
disabilities.

Keates, Clarkson, and Robinson (2000) measured the dif-
ference between able-bodied and motor-impaired users with
respect to the Model Human Processor (Card et al., 1983), and
motor impaired users were found to have a greater motor action
time than their able-bodied counterparts. The finding is obvi-
ously important, but the KLM model itself is too primitive to
model complex interaction and especially the performance of
novice users.

Serna, Pigot, and Rialle (2007) used ACT–R cognitive archi-
tecture (Anderson & Libiere, 1998) to model progress of
dementia in Alzheimer’s patients. They simulated the loss of
memory and increase in error for a representative task at kitchen
by changing different ACT–R parameters (Anderson & Libiere,
1998). The technique is interesting, but their model still needs
rigorous validation through other tasks and user communities.

Our previous user model (Biswas, Bhattacharyya, &
Samanta, 2005) also took a more generalized approach than
the AVANTI project. It broke down the task of user modeling
into several steps that included clustering users based on their
physical and cognitive ability, customizing interfaces based on
user characteristics, and logging user interactions to update the
model itself. However, the objective of this model was to design
adaptable interfaces and not to simulate users’ performance.

Gajos, Wobbrock, and Weld (2007) developed a model to
predict pointing time of users with mobility impairment and

adapt interfaces based on the prediction. They estimated the
movement time by selecting a set of features from a pool of
seven functions of movement amplitude and target width, and
then using the selected features in a linear regression model.
This model shows interesting characteristics of movement pat-
terns among different users but fails to develop a single model
for all. Movement patterns of different users are found to be
inclined to different functions of distance and width of targets.

3. THE SIMULATOR
Based on the previous discussion, Figure 3 plots the existing

general purpose HCI models in a space defined by the skill and
physical ability of users. To cover most of the blank spaces in
the diagram, we need models that can

• Simulate HCI of both able-bodied and disabled users.
• Work for users with different levels of skill.
• Be easy to use and comprehend for an interface

designer.

To address the limitations of existing user modeling systems,
we have developed the simulator (Biswas, 2010) as shown in
Figure 4. It consists of the following three components:

The Application model represents the task currently under-
taken by the user by breaking it up into a set of simple
atomic tasks following KLM model (Card et al., 1983).

The Interface model decides the type of input and output
devices to be used by a particular user and sets parameters
for an interface.

The User model simulates the interaction patterns of users
for undertaking a task analyzed by the task model under
the configuration set by the interface model. It uses the
sequence of phases defined by Model Human Processor
(Card et al., 1983).

• The perception model simulates the visual perception
of interface objects. It is based on the theories of visual
attention.

Physical Ability

KLM for Disabled 

Skill
level

Novice

Expert

Disabled Able-bodied

SOAR
ACT-R

Core

GOMS

CPM-GOMS EPIC 

FIG. 3. Existing human–computer interaction models with respect to skill and
physical ability of users (color figure available online).
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DESIGNING INCLUSIVE INTERFACES 7

FIG. 4. Architecture of the simulator (color figure available online).

• The cognitive model determines an action to accom-
plish the current task. It is more detailed than the
GOMS model (John & Kieras, 1996) but not as com-
plex as other cognitive architectures.

• The motor behavior model predicts the completion
time and possible interaction patterns for performing
that action. It is based on statistical analysis of screen
navigation paths of disabled users.

The details about users are store in xml format in the user profile
following the ontology shown in Figure 5. The ontology stores
demographic detail of users like age and sex and divide the func-
tional abilities in perception, cognition, and motor action. The
perception, cognitive, and motor behavior models takes input
from the respective functional abilities of users.

The perception model (Biswas & Robinson, 2009a) simu-
lates the phenomenon of visual perception (like focusing and
shifting attention). We have investigated eye gaze patterns
(using a Tobii X120 eye tracker) of people with and without
visual impairment. The model uses a backpropagation neural
network to predict eye gaze fixation points and can also sim-
ulate the effects of different visual impairments (like Maccular

Degeneration, color blindness, Diabetic Retinopathy, etc.) using
image processing algorithms. Figure 6 shows the actual and pre-
dicted eye movement paths (green line for actual, black line for
predicted) and points of eye gaze fixations (overlapping green
circles) during a visual search task. The figure shows the pre-
diction for a protanope (a type of color blindness) participant,
and so the right-hand figure is different from the left hand one
as the effect of protanopia was simulated on the input image.

The cognitive model (Biswas & Robinson, 2008) breaks up
a high-level task specification into a set of atomic tasks to be
performed on the application in question. The operation of it
is illustrated in Figure 7. At any stage, users have a fixed policy
based on the current task in hand. The policy produces an action,
which in turn is converted into a device operation (e.g., clicking
on a button, selecting a menu item, etc.). After application of
the operation, the device moves to a new state. Users have to
map this state to one of the states in the user space. Then they
again decide a new action until the goal state is achieved.

Besides performance simulation, the model also has the abil-
ity to learn new techniques for interactions. Learning can occur
either offline or online. The offline learning takes place when
the user of the model (such as an interface designer) adds new

FIG. 5. User ontology. Note. STM = short-term memory; EIQ = emotional intelligent quotient; CS = Contrast Sensitivity; CB = Colour Blindness; GS = Grip
Strength, ROM = Range of Motion (color figure available online).
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8 P. BISWAS ET AL.

FIG. 6. Eye movement trajectory for a user with color blindness (color figure available online).

Operation
Old User

State

Action to
Operation
Mapping

New User
State

Old Device
State 

New Device
State

State 
Mapping

Action 

User Space Device Space Mapping 

FIG. 7. Sequence of events in an interaction (color figure available online).

states or operations to the user space. The model can also learn
new states and operations itself. During execution, whenever the
model cannot map the intended action of the user into an opera-
tion permissible by the device, it tries to learn a new operation.
To do so, it first asks for instructions from outside. The interface
designer is provided with the information about previous, cur-
rent, and future states, and he can choose an operation on behalf
of the model. If the model does not get any external instruc-
tions, then it searches the state transition matrix of the device
space and selects an operation according to the label matching
principle (Rieman & Young, 1996). If the label matching prin-
ciple cannot return a prospective operation, it randomly selects
an operation that can change the device state in a favorable way.
It then adds this new operation to the user space and updates the
state transition matrix of the user space accordingly. In the same
way, the model can also learn a new device state. Whenever it
arrives in a device state unknown to the user space, it adds this
new state to the user space. It then selects or learns an opera-
tion that can bring the device into a state desirable to the user.
If it cannot reach a desirable state, it simply selects or learns
an operation that can bring the device into a state known to
the user.

The model can also simulate the practice effect of users.
Initially the mapping between the user space and the device

space remains uncertain. It means that the probabilities for each
pair of state/action in the user space and state/operation in the
device space are less than 1. After each successful completion
of a task the model increases the probabilities of those mappings
that lead to the successful completion of the task, and after suf-
ficient practice the probability values of certain mappings reach
1. At this stage the user can map his space unambiguously to
the device space and thus behave optimally.

The motor behavior model (Biswas & Robinson, 2009b)
is developed by statistical analysis of cursor traces from
motor-impaired users. We have evaluated hand strength (using a
Baseline 7-pc Hand Evaluation Kit) of able-bodied and motor-
impaired people and investigated how hand strength affects
HCI. Based on the analysis, we have developed a regression
model to predict pointing time. Figure 8 shows an example of
the output from the model. The thin purple line shows a sample
trajectory of mouse movement of a motor-impaired user. It can
be seen that the trajectory contains random movements near the
source and the target. The thick red and black lines encircle the
contour of these random movements. The area under the con-
tour has a high probability of missed clicks as the movement is
random there and thus lacks control.

These models do not need detailed knowledge of psychology
or programming to operate. They have graphical user interfaces
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DESIGNING INCLUSIVE INTERFACES 9

FIG. 8. Mouse movement trajectory for a user with cerebral palsy (color figure available online).

to provide input parameters and showing output of simulation.
Figure 9 shows a few interfaces of the simulator.

At present it supports a few types of visual and mobil-
ity impairments. For both visual and mobility impairment,
we have developed the user interfaces in three different
levels:

• In the first level (Figure 9a) the system simulates
different diseases.

• In the next level (Figure 9b) the system simulates
the effect of change in different visual functions (like
visual acuity, contrast sensitivity, visual field loss, etc.)
and hand strength metrics (like grip strength, range of
motion of forearm, wrist, etc.).

• In the third level (Figure 9c), the system allows dif-
ferent image-processing algorithms to be run (such as
high pass filtering, blurring, etc.) on input images and
to set demographic detail of users.

The simulator can show the effects of a particular disease on
visual functions and hand strength metrics and in turn their
effect on interaction. For example, it can demonstrate how
the progress of dry macular degeneration increases the num-
ber and sizes of scotoma (dark spots in eyes) and converts a
slight peripheral visual field loss into total central vision loss.
Similarly it can show the perception of an elderly color-blind
user, or in other words the combined effect of visual acuity loss
and color blindness. We have modeled the effects of age and
gender on hand strength, and the system can show the effects
of cerebral palsy or Parkinson’s disease for different age group
and gender. A few sample screenshots can be found at http://
www.cl.cam.ac.uk/~pb400/Demo.htm.

3.1. Validation of the Models
Each of the perception, cognitive, and motor behavior mod-

els were calibrated and validated separately involving people
with and without visual and mobility impairment (Biswas,
2010).

The perception model was validated through an eye gaze
tracking study for a visual search task. We compared the cor-
relation between actual and predicted visual search time, eye
gaze, and investigated the error in prediction. The actual and
predicted visual search time correlated statistically significantly
with less than 40% error rate for more than half of the trials
(Biswas & Robinson, 2009a).

The cognitive model was used to simulate interaction for
first-time users, and it can simulate the effect of learning as well
(Biswas & Robinson, 2008).

The motor behavior model was validated through ISO
9241 pointing task. The actual and predicted movement time
correlated statistically significantly with less than 40% error rate
for more than half of the trials (Biswas & Robinson, 2009b).

3.2. Working Principle
The simulator works in the following three steps.

1. While a task is undertaken by participants, a monitor pro-
gram records the interaction. This monitor program records

a. A list of key presses and mouse clicks (operations),
b. A sequence of bitmap images of the interfaces (low-level

snapshot), and
c. Locations of windows, icons, buttons and other controls

in the screen (high-level snapshot).

2. Initially, the cognitive model analyzes the task and produces
a list of atomic tasks (detailed task specification).
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10 P. BISWAS ET AL.

a. Interfaces to simulate the effects of different diseases 

b. Interfaces to simulate the effects of different visual functions and hand strength metrics 

c. Interfaces to run image processing algorithms and set demographic detail of users 

FIG. 9. A few interfaces of a prototype of the toolbox (color figure available online).

3. If an atomic task involves perception, the perception model
operates on the event list and the sequence of bitmap images.
Similarly, if an atomic task involves movement, the motor
behavior model operates on the event list and the high-level
snapshot.

In the remaining sections of this article, we demonstrate the use
of the simulator through an icon-searching and menu selection
task. In the first application, the simulation accurately pre-
dicts performance of users with visual and mobility impairment.
In the second case, the simulator is used to identify the acces-
sibility problems of menus and thus redesign a menu selection
interface.

4. CASE STUDY 1—ICON SEARCHING TASK
In graphical user interfaces, searching and pointing con-

stitute a significant portion of HCI. Users search for many
different artifacts like information in a web page, button with
a particular caption in an application, e-mail from a list of

mails, and so on. We can broadly classify searching in two
categories.

Text searching includes any search that only involves search-
ing for text and not any other visual artifact. Examples
include menu searching, keyword searching in a document,
mailbox searching, and so on.

Icon searching includes searching for a visual artifact (such as
an icon or a button) along with text search for its caption.
The search is mainly guided by the visual artifact, and the
text is generally used to confirm the target.

In this section, we present a study involving an icon search-
ing task. We simulated the task using the simulator and eval-
uated the predictive power of the model by comparing actual
task completion time with prediction in terms of correlation and
percentage error in prediction.
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DESIGNING INCLUSIVE INTERFACES 11

FIG. 10. Corpus of shapes (color figure available online).

4.1. Process
We conducted trials with two families of icons. The first

consisted of geometric shapes with colors spanning a wide
range of hues and luminance (Figure 10). The second con-
sisted of images from the system folder in Microsoft Windows
to increase the external validity (Figure 10) of the experiment.
Each icon bears a caption underneath (Figure 11). The first
two letters and length of all the captions were kept nearly
same to avoid any pop-out effect of the captions during visual
search.

Previous work found that alignment and grouping of screen
elements have most influence on subjective preference of users,
which was also correlated to the search time (Parush, Nadir,
& Shtub, 1998). So this experiment was a mixed design with
two measures and a between-subject factor. The within-subject
measures were spacing between icons and font size of captions
(see Figure 12). We used the following three levels for each
measure:

• Spacing between icons

◦ Sparse: 180 pixels horizontally, 230 pixels verti-
cally. This was the maximum separation possible in
the screen.

◦ Medium: 150 pixels horizontally, 200 pixels verti-
cally.

FIG. 12. Sample screenshot of the study. (a) Dense Spacing Big Font, (b)
Medium Spacing Medium Font, (c) Sparse Spacing Medium Font, (d) Dense
Spacing Small Font) (color figure available online).

◦ Dense: 120 pixels horizontally, 170 pixels vertically.
This was the minimum possible separation without
overlapping the icons.

• Font size

◦ Small: 10 point.

FIG. 11. Corpus of icons (color figure available online).
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12 P. BISWAS ET AL.

◦ Medium: 14 point (as suggested by the Royal
National Institute of Blind People; http://www.rnib.
org.uk/Pages/Home.aspx).

◦ Large: 20 point.

The between-subjects factor is

• Group

◦ Able bodied
◦ Visually impaired
◦ Motor impaired

The experimental task consisted of shape searching and icon
searching tasks. The task was as follows:

• A particular target (shape or icon with a caption) was
shown.

• A set of 18 candidates for matching was shown.
• Participants were asked to click on the candidate,

which was same as the target both in terms of icon and
caption.

The sequence of the trials was randomized using a Latin square.
Each participant undertook eight trials for each combination
of the within-subject measures. Each participant performed
72 searching and pointing tasks in total. They were trained for
the task before start of the actual trial. However one of the
participants (P4) retired after undertaking 40 trials.

4.2. Material
We used a 1280 × 800 LCD color display driven by a

1.7 GHz Pentium 4 PC running the Microsoft Windows XP
operating system. We also used a standard computer Mouse
(Microsoft IntelliMouse® Optical Mouse) for clicking on the
target.

4.3. Participants
We collected data from two able-bodied, two visually

impaired, and three motor-impaired participants (Table 1). All
were expert computer users and used computers more than once
a week.

4.4. Simulation
Initially we analyzed the task in light of the cognitive model.

Because the users undertook preliminary training, we consid-
ered them as expert users. We followed the GOMS analysis
technique and identified two subtasks:

• Searching for the target.
• Pointing and clicking on the target.

The prediction is obtained by sequentially running the percep-
tion model and the motor behavior model. The predicted task

TABLE 1
List of participants

Age Gender Impairment

C1 27 M Able-bodied
C2 30 M
P1 27 M Myopia (–4.5 / –4.5 Dioptre)
P2 26 M Myopia (–5.5 / –5.5 Dioptre)
P3 30 M Hypokinetic motor impairment resulted

from cerebral palsy, restricted hand
movement, wheelchair user

P4 42 M Cerebral palsy, restricted hand movement,
also suffering tremor in hand, wheelchair
user

P5 45 M Hyperkinetic motor impairment resulted
from stroke, significant tremor in fingers,
wheelchair user

completion time is the summation of the visual search time (out-
put by the perception model) and the pointing time (output by
the motor behavior model).

4.5. Results
Figure 13 shows the correlation between actual and predicted

task completion times. We also calculated the relative error
Predicted−Actual

Actual and show its distribution in Figure 14. The super-
imposed curve shows a normal distribution with same mean and
standard deviation as the relative error. We found that the corre-
lation is ρ = 0.7 (p < .001) and 56% of the trials have a relative
error within ± 40%. The average relative error is +16% with
a standard deviation of 54%. The model did not work for 10%
of the trials, and the relative error is more than 100% in those
cases. For the remaining 90% of the trials, the average relative
error is +6% with a standard deviation of 42%.

We also analyzed the effects of font size and icon spac-
ing on the task completion time and investigated whether the
prediction reflects these effects as well. So we conducted two
3 × 3 analyses of variance (Spacing × Font × Group) on
the actual and predicted task completion times, respectively.
We investigated both the within-subject effects and results of a
multivariate test. In the analyses of variance, we did not consider
the trials for which the relative error was more than 100%, as the
model did not work for those trials. Participant P4 did not also
complete the trial, leaving us with 40 rows of data (N = 40).

For calculating the within-subject effects, the Greenhouse-
Geisser correction was used if the Mauchy’s test detected viola-
tion from sphericity assumption (Field, 2009) giving fractional
values for the degrees of freedom. In this study, the main effect
of Spacing did not violate sphericity assumption (W = .854,
χ2 = 5.69 in actual, W = .99, χ2 = 0.37 in prediction, p >

.05), whereas the main effect of Font (W = .825, χ2 = 6.93 in
actual, W = .836, χ2 = 6.43 in prediction, p < .05) and the
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DESIGNING INCLUSIVE INTERFACES 13
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FIG. 13. Scatterplot between actual and predicted task completion time (color figure available online).
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FIG. 14. Relative error in prediction (color figure available online).

interaction effect of Spacing and Font (W = .244, χ2 = 49.94 in
actual, W = .539, χ2 = 21.91 in prediction, p < .05) vio-
lated sphericity assumption. Tables 2 and 3 show results of the
within-subjects tests and multivariate tests on the actual and pre-
dicted task completion times, respectively. The tables list the
degrees of freedom, F value, and corresponding significance for
different measures. Table 2 shows that three sources have signif-
icant effects on both actual and predicted task completion time.
They are

• A main effect of spacing, F(2, 74) = 5.44, p < .05, on
actual task completion time.

• A main effect of spacing, F(2, 74) = 6.95, p < .05, in
predicted task completion time.

• An interaction effect of spacing and group, F(4, 74) =
3.15, p < .05, on actual task completion time.

• An interaction effect of spacing and group, F(4, 74) =
4.64, p < .05, on predicted task completion time.

• An interaction effect of font and group, F(3.4, 62.97)
= 5.02, p < .05, on actual task completion time.

• An interaction effect of font and group, F(3.44, 63.6)
= 3.75, p < .05, on predicted task completion time.

The main effect of font and interaction effects between font
and group and spacing, font and spacing do not have signifi-
cant effects on both actual and predicted task completion times.
We confirmed these effects through a multivariate test (Table 3),
which is not affected by the sphericity assumption. Table 3
shows the following effects:

• A main effect of spacing (Wilks’s λ = 0.762), F(2, 36)
= 5.62, p < .05, on actual task completion time.

• A main effect of spacing (Wilks’s λ = 0.741), F(2, 36)
= 6.28, p < .05, in predicted task completion time.

• A main effect of font (Wilks’s λ = 0.817), F(2, 36) =
4.05, p < .05, in predicted task completion time.
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14 P. BISWAS ET AL.

TABLE 2
Test of within-subjects effects on task completion time

Actual Predicted

Source df F Sig. df F Sig.

Spacing 2.0 5.44 .006 2.0 6.95 .002
Spacing × Group 4.0 3.15 .019 4.0 4.64 .002
Error(Spacing) 74.0 74.0
Font 1.7 0.22 .770 1.7 2.89 .071
Font × Group 3.4 5.02 .002 3.4 3.75 .012
Error(Font) 63.0 63.6
Spacing × Font 2.3 1.03 .370 3.3 1.54 .204
Spacing × Font × Group 4.7 0.83 .528 6.5 1.32 .250
Error(Spacing × Font) 86.3 121.0

Note: Significant values are in boldface

TABLE 3
Multivariate test on completion time

Actual Predicted

Effect df F Sig. df F Sig.

Spacing 2 5.62 .008 2 6.28 .005
Spacing × Group 4 2.78 .033 4 3.97 .006
Font 2 0.31 .739 2 4.05 .026
Font × Group 4 6.39 0 4 5.05 .001
Spacing × Font 4 1.41 .253 4 2.18 .093
Spacing × Font × Group 8 2.15 .043 8 1.74 .106

Note: Significant values are in boldface

• An interaction effect of spacing and group (Wilks’s
λ = 0.750), F(4, 72) = 2.78, p < .05, on actual task
completion time.

• An interaction effect of spacing and group (Wilks’s
λ = 0.671), F(4, 72) = 3.97, p < .05, on predicted
task completion time.

• An interaction effect of font and group (Wilks’s
λ = 0.545), F(4, 72) = 6.39, p < .05, on actual task
completion time.

• An interaction effect of font and group (Wilks’s
λ = 0.610, F(4, 72) = 5.05, p < .05, on predicted task
completion time.

It can be seen from Tables 2 and 3 that the prediction captures
all effects at 99.95% confidence level in both within-subject test
and multivariate test. Figures 15 and 16 show that the effect
sizes (η2) are also fairly similar in the prediction as in the actual.
The maximum difference is below 10% in within-subject test
and below 20% in multivariate test. This suggests that the sim-
ulator successfully explained the variance in task completion
time for different factors. As these factors include both interface

parameters and physical characteristics of users, we can infer
that the simulator has successfully explained the effects of dif-
ferent interface layouts on task completion time for people with
visual and motor impairment.

Figures 17 and 18 show the effects of font size and spac-
ing for different user groups. In Figures 17 and 18, the points
depict the average task completion time and the bars show
the standard error at a 95% confidence level. It can be seen
from Figures 17 and 18 that the prediction is in line with the
actual task completion times for different font sizes and icon
spacing.

However the prediction is less accurate in one of the nine
conditions - the medium font size and medium spacing for the
motor impaired users (see Figures 19, 20). We found that, in
these cases, the model underestimates the task completion times
and fails to capture the variability in it. We have further ana-
lyzed the effects of spacing and font size for each user group
separately (Table 4).

It can be seen from Table 4 that in terms of significance at
p < .05, the prediction deviates from the actual in the following
two cases (highlighted in bold):
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DESIGNING INCLUSIVE INTERFACES 15

Effect Size Comparison in Within-Subject Test
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FIG. 15. Effect size comparison in analysis of variance (color figure available online).

Effect Size Comparison in Multivariate Test
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FIG. 16. Effect size comparison in multivariate analysis of variance (color figure available online).

Effect of Font size 
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FIG. 17. Effect of font size in different user groups (color figure available online).

• Interaction effect of spacing and font for able-
bodied users: F(4, 60) = 1.78, p > .05 for
actual, F(4, 60) = 2.69, p < .05, for predic-
tion.

• Effect of spacing for motor-impaired users: F(2, 14) =
2.93, p > .05, for actual, F(2, 14) = 3.78, p < .05, for
prediction.

Finally we compared the mean and standard deviation of the
actual and predicted task completion times for each condition.
Table 5 lists the relative difference Predicted−Actual

Actual in mean and
standard deviations between actual and predicted task comple-
tion time.

It can be seen from Table 5 that only in four conditions (high-
lighted in bold) is the average predicted time different from the
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16 P. BISWAS ET AL.

Effect of Spacing 
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FIG. 18. Effect of spacing in different user groups (color figure available online).

Effect of fontsize for medium spacing with motor impaired users
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FIG. 19. Effect of medium spacing in motor-impaired users (color figure available online).

Effect of spacing for medium font size with motor impaired 
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FIG. 20. Effect of medium font size in motor-impaired users (color figure available online).

actual predicted time by more than ±40%. However the stan-
dard deviation is predicted quite less than in actual in many
occasions. The difference is less severe for visually impaired
users than the other two groups. One possible reason for the

difference may be the effects of learning and fatigue as able-
bodied users might work quickly due to learning effect and
motor impaired users might feel fatigue. So, we have analyzed
the effects of usage time through a regression model.
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DESIGNING INCLUSIVE INTERFACES 17

TABLE 4
Analysis of variance for each user group

Actual Predicted

Source df F Sig. η2 df F Sig. η2

Able bodied
Spacing 2 0.21 .815 0.014 2 0.38 .688 0.025
Error(Spacing) 30 30
Font 2 0.72 .495 0.046 2 2.73 .081 0.154
Error(Font) 30 30
Spacing × Font 4 1.78 .144 0.106 4 2.69 .039 0.152
Error(Spacing × Font) 60 60

Visually impaired
Spacing 1.4 0.52 .54 0.034 2 0.81 453 0.051
Error(Spacing) 21.3 30
Font 1.4 8.39 .004 0.359 2 5.72 .008 0.276
Error(Font) 21.5 30
Spacing × Font 1.5 2.90 .089 0.162 4 0.21 .933 0.014
Error(Spacing × Font) 22.3 60

Motor impaired
Spacing 2 2.93 .087 0.295 2 3.78 .049 0.350
Error(Spacing) 14 14
Font 2 1.53 .251 0.179 2 1.56 .245 0.182
Error(Font) 14 14
Spacing × Font 4 0.26 .904 0.035 4 0.67 .62 0.087
Error(Spacing × Font) 28 28

Note: Significant values are in boldface

Analyzing effect of usage time. We have considered the pre-
dicted task completion time and the usage time as independent
variables and the actual task completion time as the dependent
variable. The usage time for each trial measures the total time
spent (in seconds) from beginning of the session to the end of
the trial. Table 6 shows the regression coefficients.

It seems that usage time can significantly (p < .005) affect
the actual time though the improvement in �R2 is only 2%. The
inclusion of usage time in the regression model also reduces
the change in R2 from .39 to .01, which means it increases the
genralizability of the model (Biswas & Robinson, 2009b). The
positive value of coefficient B indicates that the task comple-
tion time was directly proportional to the usage time. Figure 21
shows a weak positive correlation (ρ = 0.42) between usage
time and task completion time. Perhaps it means that users felt
fatigue or bored as the session went on and took more time to
complete the task in later trials.

4.6. Discussion
Choosing a particular interface from a set of alternatives is a

significant task for both design and evaluation. In this study, we
considered a representative task and the results showed that the
effects of both factors (separation between icons and font size)

were the same in the prediction as for actual trials with different
user groups. The prediction from the simulator can be reliably
used to capture the main effects of different design alternatives
for people with a wide range of abilities.

However, the model did not work accurately for about 30%
of the trials where the relative error is more than 50%. These
trials also accounted for an increase in the average relative error
from zero to 16%. In particular, the predicted variance in task
completion times for motor impaired users was smaller than the
actual variance. This can be attributed to many factors; the most
important ones are as follows.

Effect of usage time. Fatigue and learning effects: The trial
continued for about 15 to 20 minutes. A few participants (espe-
cially one user in the motor impaired group) felt fatigue. On the
other hand, some users worked more quickly as the trial pro-
ceeded. The model did not consider these effects of fatigue and
learning. It seems from the analysis that the usage time can sig-
nificantly affect the total task completion time. In the future we
would like to analyze the effect of usage time in more detail and
plan to incorporate it into the input parameters of the model.

User characteristics. The variance in the task completion
time can be attributed to various factors such as expertise, usage
time, type of motor impairment (hypokinetic vs. hyperkinetic),
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18 P. BISWAS ET AL.

TABLE 5
Relative differences in mean and standard deviation

% Difference in

Spacing Font M SD

Able bodied Sparse Small −7.58 −55.65
Medium 21.25 −27.62
Large −21.29 −83.04

Medium Small −11.16 −66.72
Medium 12.80 −45.72
Large −9.61 −24.4

Dense Small −7.93 −76.85
Medium −4.94 −44.12
Large −7.34 −1.27

Visually impaired Sparse Small −26.97 −69.06
Medium 12.70 −1.19
Large 32.51 17.21

Medium Small −41.33 −78.7
Medium 58.14 21.87
Large 14.93 −20.11

Dense Small 28.62 7.59
Medium 0.01 −19.48
Large −5.84 −13.97

Motor impaired Sparse Small 6.19 −48.68
Medium −35.31 −76.38
Large −24.97 −80.72

Medium Small −40.10 −67.8
Medium −43.22 −71.32
Large −36.46 −83.7

Dense Small 9.52 −61.08
Medium −29.82 −74.52
Large 4.23 7.57

Note: errors higher than 40% are in boldface

TABLE 6
Effect of usage time

Model B SE Beta

1 (Constant) 502.56 212.43
Predicted Time 0.67 0.04 0.62∗

2 (Constant) 372.16 214.53
Predicted Time 0.59 0.05 0.55∗
Usage Time 2.77 0.91 0.14∗

Note. �R2 = 0.62∗ for Model 1, �R2 = 0.64∗ for Model 2
(∗p < .005).

interest of the participant, and so on. Currently, the model
characterizes the extent of motor impairment of the user only
by measuring the grip strength (Bernard, Mills, Peterson, &
Storrer, 2001); in the future more input parameters may be
considered.

5. CASE STUDY 2—MENU SELECTION TASK
In this study, we have investigated the accessibility of pro-

gram selection menus for a digital TV interface. Previous
work on menu selection investigated selection time of different
menu items based on their position (Nilsen, 1992) and menu-
searching strategies (Hornof & Kieras, 1997) for able-bodied
users. Researchers worked on menu interaction for cell phones
(Mardsen & Jones, 2001; Ruiz & Lank, 2010)), but there is not
much reported work on accessibility issues of menus, in par-
ticular for digital TV interfaces. Existing approaches like target
expansion (McGuffin & Balakrishnan, 2005) or target identifi-
cation (Hurst, Hudson, & Mankoff, 2010) are not very suitable
for menu selection as menu items are more densely spaced than
other types of targets like buttons or icons in a screen. Ruiz’s
approach (Ruiz & Lank, 2010) of expanding target region has
also not been found to reduce menu selection time significantly.
There is also not much reported work on the legibility issues
of menu captions. Most researchers do not find difference in

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 1
2:

26
 1

4 
Ja

nu
ar

y 
20

16
 



DESIGNING INCLUSIVE INTERFACES 19

Effect of Usage Time
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FIG. 21. Effect of usage time (color figure available online).

FIG. 22. Interface used in the study (color figure available online).

terms of reading time due to font types with respect to online
reading tasks (Bernard, Liao, & Mills, 2001; Beymer, Russell,
& Orton, 2007; Boyarski, Neuwirth, Forlizzi, & Regli, 1998).
Although Bernard and colleagues (Bernard, Liao, et al., 2001;
Bernard, Mills, et al., 2001) reported significant difference in
reading times between Tahoma and Corsiva fonts for a read-
ing task of two pages, but the difference may turn insignificant
during reading short captions. However, there is significant dif-
ference in reading time and legibility due to font size. Beymer
and colleagues (2007) preferred the 12-point size, whereas the
Royal National Institute of Blind People and Bernard, Liao,
et al. (2009a) preferred the 14-point size.

We take help from the simulator in identifying the accessibil-
ity problems of program selection menu with respect to visually
and mobility impaired users. Based on the results of the simula-
tion we have designed new interfaces. The study consists of the
following three stages:

• Problem identification through simulation
• New interface evaluation through simulation
• Validation of the simulation through a controlled

experiment

5.1. The Study
Initially we designed the following interface (Figure 22),

which looks similar to existing systems (Figure 23). In this
particular work, we investigated

• Sensory problems of

◦ People with less visual acuity
◦ People having color blindness

• Interaction problems of

◦ People with motor impairment using a pointing
device

In this particular study, the simulator takes a sample task of
selecting a menu item and the screenshot of the interface as
input and shows the perception of visually impaired users and
cursor trajectory of motor-impaired users as output. In the sim-
ulation study, we did not bother with the particular words used
as captions because the simulation results are not to be used by
participants. We used captions like Channel 1, Program 1, or
Time 1 as captions. However in the validation study we used
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20 P. BISWAS ET AL.

FIG. 23. Representative of an actual interface (color figure available online).

FIG. 24. Perception of people having color blindness. (a) Original interface. (b) Interface perceived by Potanopia. (c) Interface perceived by Deuteranopia. (d)
Interface perceived by Tritanopia (color figure available online).

different words as captions and discussed it in detail in a later
section.

Problem identification. Initially the output from the simu-
lator is used to identify accessibility problems. Figure 24 shows
the perception of the interface for three different types of color
blindness. Details about the simulation can be found in Biswas
(2010). It can be seen that although the colors look different, the
particular color combination of the interface does not reduce the
legibility.

Figure 25 shows the perception of the interface of
people with mild (less than approximately –3.5 Dioptre)
and severe (more than approximately –4 Dioptre) acuity
loss. Details about the simulation can be found in Biswas

(2010). It can be seen from the figure that the captions
(which are in 14 point) become illegible for severe acuity
loss.

Figure 26 shows a possible cursor trace of a pointing device
(like mouse) operated by a person having motor impairment.
The thin purple line shows a sample trajectory of mouse
movement of a motor-impaired user. It can be seen that the
trajectory contains random movements near the source and
the target. The thick black lines encircle the contour of these
random movements. The area under the contour has a high
probability of missed clicks as the movement is random there
and thus lacks control. Details about the simulation can be
found in Biswas (2010). It can be seen that as the buttons
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DESIGNING INCLUSIVE INTERFACES 21

FIG. 25. Perception of people having less visual acuity. (a) Original interface. (b) Interface perceived by mild visual acuity loss. (c) Interface perceived by severe
visual acuity loss (color figure available online).

are closely spaced, there is a significant probability of missed
click in a wrong button, which would surely frustrate any
user.

Based on the simulation results we identified the following
two accessibility issues

• Legibility of captions
• Spacing between menu items

New interface. Based on the previous discussion, we have
redesigned the interfaces. We have increased the font size of

captions for users with visual impairment. For people with
motor impairment, we have changed the size of the buttons
without changing the screen size such that no couple of but-
tons shares a common boundary. This should reduce chances
of missed clicks. Figures 27 and 28 show the new interfaces.
We have not designed anything new to cater to color-blind users,
as the present interface seems perfect for them.

Figure 29 shows the perception of the new interface for
people with mild and severe acuity loss. It can be seen that
the modified captions (now at 18 point) has better legibility
than the previous case even for severe acuity loss. We have
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22 P. BISWAS ET AL.

FIG. 26. Possible cursor trace of a pointing device (like mouse) operated by a person having motor impairment (color figure available online).

FIG. 27. Interface for people having less visual acuity (color figure available online).

FIG. 28. Interface for people with motor impairment (color figure available online).

also investigated the effect of severe visual acuity loss for the
following six font types (Figure 30):

• Microsoft Sans Serif
• Sabon
• Verdana
• Times New Roman

• Arial
• Georgia

It can be seen in Figure 30 that the legibility is not much
different for different font types and nearly same for all.

Figure 31 shows the possible cursor trace of a person with
motor impairment for the new interface. It can be seen that the
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DESIGNING INCLUSIVE INTERFACES 23

FIG. 29. Perception of the new interface of people having less visual acuity. (a) Original interface. (b) Interface perceived by mild visual acuity loss. (c) Interface
perceived by severe visual acuity loss (color figure available online).

contour covering the area of missed click does not contain more
than one menu item now. Finally we have evaluated the new
interfaces with the following controlled experiment.

5.2. Validation
We validated the new interface through a user study. In this

study it is hypothesized that

• People with visual acuity loss and motor impairment
will perform a task faster and with less number of
errors in the new interface (Figures 32 and 33) than
the unchanged version (Figure 33).

• People with color blindness will perform a task equally
well with respect to people with no impairment (con-
trol group) in the unchanged version of the interface
(Figure 33).

We measured the task completion time as a measure of per-
formance and the number of missed clicks as a measure of
errors.

Procedure. The procedure mimics the process of select-
ing a channel from a list followed by selecting a program
from a drop-down menu. Initially, the participants were shown
a channel name and a program name. Then they made two
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24 P. BISWAS ET AL.

FIG. 30. Comparing different font types (color figure available online).

FIG. 31. Possible cursor trace of a mouse operated by a motor impaired person for the new interface (color figure available online).

selections matching the previously shown channel and pro-
gram names. We did not use real channel and program
names to avoid any biasness of users. The first two let-
ters and length of all the captions were kept nearly same
to avoid any pop-out effect (Treisman & Gelade, 1980) of
the captions during visual search. The Verdana font type is
used due to its bigger x-height and character spacing than
other conventional fonts. Each participant repeated the task
10 times. All participants were trained before undertaking the
study.

Material. We used a standard optical mouse and an Acer
Aspire 1640 laptop with a 15.5-in. monitor with 1280 ×
800 pixel resolution. We also used the same seating arrangement
(same table height and distance from table) for all participants.

Participants. We collected data from two institutes,
National Institute of Orthopedically Handicapped at Kolkata,
India, and Papworth Trust at Cambridge, United Kingdom. All
participants (Table 7) have some experience of using comput-
ers; either they were learning or using computers regularly. All
of them volunteered for the study.
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DESIGNING INCLUSIVE INTERFACES 25
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FIG. 32. Comparing reaction times for all participants (color figure available online).

Comparing Number of Missed Clicks
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FIG. 33. Comparing number of missed clicks times for all participants (color figure available online).

Results. The average reaction time (total time needed to
select the channel and program) was less in the new design than
the control design (Figure 34) though the difference was not sta-
tistically significant in an independent sample two-tailed t test,
t(120) = 0.64, p > .05. The average number of missed clicks
were also less (Figure 33) in the new design than the control
design, though the difference tends to statistical significance in a
Wilcoxon ranked test, W(120) = 163, p = .1. In the experimen-
tal condition (new design), missed clicks occurred in 21 trials,
whereas missed clicks occurred 31 times in control condition.

We have also analyzed the reaction times and missed clicks
for each individual participant. Table 8 and Figures 34 and 35
show the average reaction time and total number of missed
clicks for each participant. It can be seen that only four of
12 participants (P4, P5, P8, and P9) have an average reac-
tion time greater for the experimental condition and only two
of 12 participants (P8 and P12) missed clicked more in the
experimental condition than the control condition.

Unfortunately we did not get any participants with color
blindness. So we collected data from two able-bodied users
with no visual impairment using a color-blindness filter (from
Cambridge Research Systems, http://www.crsltd.com) to sim-
ulate the effect of dichromatic color blindness. In this case as
well we did not find any significant difference in reaction times
(Figure 36) in an independent sample two-tailed t test, t(20) =
0.81, p > .05, and did not record any missed clicks.

Discussion. The reaction time and number of missed clicks
were both less in the new design, though we failed to find any
statistical significance of the difference. Most participants did
not have any problem in moving hands, and thus they could
control the mouse movement pretty well. Except participant P1,
the visual acuity loss was also not severe. In addition, in the
present experimental setup, a missed click did not waste time,
whereas in a real interface a missed click will take the user to an
undesired channel and getting back to the previous screen will
incur additional time. So a higher number of missed clicks in the
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26 P. BISWAS ET AL.

TABLE 7
List of participants

Participants Age Sex Impairment

P1 >45 M No mobility impairment. Age-related Hypermetropia
(+3.75 / +3.25 Dioptre)

P2 25–45 M Difficulty in walking, right leg is shorter than left leg. Mild
myopia (–2.75 / –2 Dioptre)

P3 25–45 M Right hand was cut in accident, no impairment in left hand.
No visual impairment.

P4 25–45 M No mobility impairment. Lost vision in right eye, left eye is
perfect.

P5 25–45 M Left arm is affected by polio, no impairment in right hand.
No visual impairment.

P6 <25 F Lower body is affected by polio from birth, no impairment in
hands, wheelchair user. No visual impairment.

P7 <25 M Difficulty in walking from birth. Slight Myopia (–0.7 / –0.7
Dioptre)

P8 44 M Cerebral palsy reduced manual dexterity also some tremor in
hand wheelchair user. Slight loss of visual acuity.

P9 63 M Left side (nondominant) paralysed after a stroke in 1973 also
has tremor

P10 31 M Cerebral palsy reduced manual dexterity wheelchair user.
P11 >45 M Reduced manual dexterity in limbs due to neurological

problem, wheelchair user.
P12 44 F Did not mention disease restricted hand movement no tremor.

Slight loss of visual acuity.
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FIG. 34. Comparing reaction times for each participant (color figure available online).

control condition will also increase the channel selection time
further in an actual scenario. However, in the future we plan to
run the study with more a cautious selection of participants. All
of the visually impaired participants preferred the bigger font
size. However, a few participants reported difficulty in reading
the zigzag presentations of the captions of the new interface.
In the future we also plan to use an eye tracker to compare

the visual search time for both types (linear and zigzag) of
organizations of menu captions.

This study addresses a small segment of accessibility issues
related to digital TV interfaces. Future studies will include
more interaction modalities (like keypad or gesture-based inter-
action), devices (like remote control, set-top box, etc.), and
impairments (like cognitive impairments). However, the results
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DESIGNING INCLUSIVE INTERFACES 27

TABLE 8
Result per participant

AvgRT Ctrl (in msec) AvgRT Exp (in msec) TotalMC Ctrl TotalMC Exp

P1 3,886 3,259 0 0
P2 5,755 5,033 0 0
P3 7,230 6,149 0 0
P4 21,777 26,838 72 56
P5 4,481 4,611 0 0
P6 12,195 11,739 11 4
P7 15,628 6,747 13 0
P8 15,394 18,628 20 28
P9 7,213 9,184 0 0
P10 36,160 25,084 11 0
P11 20,752 20,550 14 8
P12 32,228 30,223 0 6
Avg 15,225 14,004 11.8 8.5
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FIG. 35. Comparing number of missed clicks for each participant (color figure available online).
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FIG. 36. Comparing reaction times for effect of color blindness (color figure available online).

of this study can be extended beyond program menu interfaces
of digital televisions. For example, the font size of captions
in absolute terms (x-height ≈ 0.5 cm.) indicates the minimum
font size required for any text in an interface for serving peo-
ple with severe visual acuity loss. Similarly the particular color

combination of the screen (white text on a blue background) can
be used in any other interface as well to cater people with color
blindness. Finally, the modified menu structure can be used in
computers or other digital devices to make the menus accessible
to people with mobility impairment.
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28 P. BISWAS ET AL.

6. THE GUIDE SYSTEM
Currently the simulator is being used in the GUIDE

Project. The GUIDE Project (http://www.guide-project.eu/) is
a medium-scale, focused research project on an EU FP7,
Accessible and Assistive Information and Communication
Technologies grant, “GUIDE–Gentle User Interfaces for
Disabled and Elderly Citizens.” It aims to develop a toolbox
of adaptive, multimodal user interfaces that target the accessi-
bility requirements of elderly and impaired users in their home
environment, making use of TV set-top boxes as processing
and connectivity platform. The objectives of this project are as
follows:

• Developing an intelligent software layer for multi-
modal adaptation of user interfaces.

• Developing novel user interface technologies (gesture,
multitouch, adaptive user interface rendering, virtual
avatars) suitable for different impairments.

• Conducting extensive tests with impaired users to bet-
ter understand their requirements.

• Developing a set of reference applications for home
automation, video conferencing, media navigation and
tele-learning based on GUIDE.

• Developing a multimodal hardware interface that inte-
grates a set of input modalities (visual gesture recogni-
tion and microphone beamforming).

Figure 37 shows a schematic overview of the GUIDE user
model and hub. The use of the user models and user profiles
will help it to address more varieties of users than the existing
similar system (Epelde et al., 2009).

The development of GUIDE adaptive toolbox will have two
main parts:

• Development of the user model
• Development of the adaptation algorithms

The GUIDE user model will be developed based on empir-
ical data collected from users with a wide range of abilities
(Figure 37). It will cluster users’ data into user profiles and pre-
dict interaction patterns for a different user profile. The GUIDE
Hub will use the model and the user profiles to adapt interfaces
(Figure 37). The adaptation algorithms can broadly be classified
into

• Static adaptation
• Dynamic adaptation

The static adaptation algorithm will take part before and at the
end of an interaction. It will select appropriate modalities of
interaction for users and update individual user profiles after the
interaction. The dynamic adaptation algorithm will run while
the user is interacting, and it will adapt the interface in run time
to suit users’ capabilities and context of use.

The GUIDE user model will accept help from the simulator
to select the appropriate modality of interaction for each user.

Users

Applications 

Adaptation Layer 

Device Drivers 

Hardware 

Static 
Adaptation 

Dynamic 
Adaptation 

Simulator 

Users’
data

User
Profile

GUIDE HUB 

GUIDE User 
Model 

FIG. 37. Schematic diagram of the GUIDE toolbox and Hub.
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DESIGNING INCLUSIVE INTERFACES 29

The simulator will also change the interface layout based on the
context of use and the interaction patterns of users. For example,
if a user has less visual acuity, the font size of the screen will
automatically be increased. If someone has a spasm or tremor in
a finger, as with cerebral palsy, one may find the remote control
hard to use and the simulator will invoke alternative interaction
devices for that person. The personalization will also be invoked
by change in context of use. For example, if the simulator
detects a higher level of background noise, it may automatically
increase the volume. The following two subsections elaborate
the ideas of static and dynamic adaptation.

6.1. Static Adaptation
This example demonstrates a case study of using the simu-

lator within the context of the GUIDE Project to select input
and output modalities of interaction and personalizing inter-
faces from user profile. Initially we selected a set of user
characteristics and modalities of interaction. Then we pre-
sented conditions for selecting different modalities for different
types of users. In the last part of the document, we extended
the idea of modality selection to interface personalization in
general.

User profile

• Visual Acuity after correction (VA)
• Presence and type of Colour Blindness (CB)
• Grip Strength (GS)
• Range of Motion of Forearm (ROM)
• Capacity of Short Term Memory (STM)

Input modalities

• Physical Keys like Remote Control (K)
• Pointing Device (P)
• Pointing with Haptic feedback (PH)
• Gesture based (G)
• Voice based (V)

Output modalities

• Screen (S)
• Audio (A)

Assumptions
We have considered the following assumptions based on the

results obtained from our simulator (Biswas, 2010).

• People having less than –5.5 Dioptre Visual Acuity
will not prefer to use screen and thus pointing devices.

• People having less than 20 kg Grip Strength will prefer
to use the pointing device with haptic feedback more
than the ordinary one.

• People with color blindness (especially red–green
color blindness) will prefer white text on a blue back-
ground on the screen.

• People having less capacity of short-term memory will
prefer to use a reduced command set for gesture-based
and voice-based input.

Flow chart
These assumptions are diagrammatically represented in

Figure 38. The Yes/No options of the flowchart can be replaced
with probability values after collecting enough data to calculate
the prior probabilities. Then the flow chart can be imple-
mented using a probabilistic rule-based system (like CLIPS) or
can be converted to a Bayesian Network (Griffiths, Kemp, &
Tenenbaum, 2008).

6.2. Dynamic Adaptation
The predicted cursor trace (Figure 8) from the simulator

helps in developing dynamic adaptation algorithms. Figure 39
shows cursor traces on three different buttons in an interface.
It can be seen that if the user aims to click at the middle of
the button, then in spite of the random movements, there is no
chance of miss-clicking neighboring buttons. However, if the
user aims to click at the edge of the button, as in the case of

FIG. 38. Flowchart to select interaction modalities.
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FIG. 39. An example of missed clicking (color figure available online).

FIG. 40. An example of the gravity well (color figure available online).

the rightmost button labeled “Disconnect,” the user may end up
clicking on a neighboring button—in this case the right arrow
key (marked with dotted red circle). We can alleviate this prob-
lem by employing an adaptation principle called gravity well
(Hwang, Langdon, Keates, Clarkson, & Robinson, 2002). The
gravity well will attract the pointer in the middle of a button,
if it is in vicinity of the button. So even if the user points
toward the edge of a button, the pointer will automatically move
to the center of the button. The thick blue line in Figure 40
shows the modified cursor traces after employing the gravity
well, and the dotted red circle highlights how the cursor has
been attracted to the middle of the Disconnect button influ-
enced by the gravity well. Similar analysis can also be done for

other adaptation algorithms like cursor path averaging, damping
(Hwang et al., 2002), and setting parameters for those algo-
rithms. In fact, we have already used the simulator to design
and evaluate accessible interfaces and interaction techniques
(Biswas, 2010).

7. IMPLICATIONS AND LIMITATIONS OF USER
MODELING

User trials are always expensive in terms of both time
and cost. A design evolves through an iteration of prototypes,
and if each prototype is to be evaluated by a user trial, the
whole design process will be slowed down. Buxton (1994)
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also noted that “while we believe strongly in user testing
and iterative design. However, each iteration of a design is
expensive. The effective use of such models means that we
get the most out of each iteration that we do implement.”
In addition, user trials are not representative in certain cases,
especially for designing inclusive interfaces for people with
special needs. A good simulation with a principled theoreti-
cal foundation can be more useful than a user trial in such
cases. Exploratory use of modeling can also help designers to
understand the problems and requirements of users, which may
not always easily be found through user trials or controlled
experiments.

This work shows that it is possible to develop engineering
models to simulate HCI of people with a wide range of abili-
ties and that the prediction is useful in designing and evaluating
interfaces. According to Allen Newell’s time scale of human
action, our model works in the cognitive band and predicts
activity in the millisecond to second range. It cannot model
activities outside the cognitive band like microsaccadic eye gaze
movements, response characteristics of different brain regions
(in biological band; Newell, 1990), affective state, social inter-
action, consciousness (in rational and social band; Newell,
1990), and so on. Simulations of each individual band have their
own implications and limitations. However, the cognitive band
is particularly important because models working in this band
are technically feasible, experimentally verifiable, and practi-
cally usable. Research in computational psychology and more
recently in cognitive architectures supports this claim. We have
added a new dimension in cognitive modeling by including
users with special needs. Thus it helps to implement Universal
Design or Inclusive Design processes by helping to visualize,
understand, and measure the effect of different impairments on
interaction.

However, this system should not be used in isolation. It is not
designed to capture subjective choice or preference of users; the
simulator should complement existing qualitative techniques
(Springett, 2008) or participatory designs (Ellis & Kurniawan,
2000) for assessing users’ experience.

8. CONCLUSION
In this article we have presented a literature survey on

human behavior simulation and their applications on modeling
users in HCI. The review of the current state-of-the-art work
shows a deficiency of modeling tools for users with disabilities.
We have developed a simulator to address the problems in
existing modeling techniques. It should be evident that the
use of modeling and the type of model to be used depend
on many factors like the application, the designers, avail-
ability of time and cost for design, and so on. However,
we hope this article will give system analysts an under-
standing of different modeling paradigms, which in turn
may help them to select the proper type of model for their
applications.
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