
Multimodal Inference for Driver-Vehicle Interaction 
 

Tevfik Metin Sezgin 
College of Engineering 

Koç University 
Istanbul, Turkey 

mtsezgin@ku.edu.tr 

Ian Davies 
Computer Laboratory 

University of Cambridge 
Cambridge, CB3 0FD, UK 

Ian.Davies@cl.cam.ac.uk 

Peter Robinson 
Computer Laboratory 

University of Cambridge 
Cambridge, CB3 0FD, UK 

Peter.Robinson@cl.cam.ac.uk 
 
 
ABSTRACT 
In this paper we present a novel system for driver-vehicle 
interaction which combines speech recognition with facial-
expression recognition to increase intention recognition accuracy 
in the presence of engine- and road-noise. Our system would 
allow drivers to interact with in-car devices such as satellite 
navigation and other telematic or control systems. We describe a 
pilot study and experiment in which we tested the system, and 
show that multimodal fusion of speech and facial expression 
recognition provides higher accuracy than either would do alone.  

Categories and Subject Descriptors 
H5.2 [User Interfaces] 

General Terms 
Design, Human Factors. 

Keywords 
Driver monitoring, facial-expression recognition, speech 
recognition, multimodal inference. 

1. INTRODUCTION 
Accurate measurement of drivers’ intentions and responses is an 
important requirement for effective human-vehicle interaction. 
Detecting user response reliably is especially important in 
interaction scenarios where feedback is expected in response to a 
question (e.g., posed by an in-car navigation system). So far, in-
car interaction modalities have been restricted to traditional 
graphical dialog-box representations and speech-based input. 
Traditional graphical representations usually require interacting 
with small touch-sensitive displays, and can be distracting 
because of the visual attention required for the interaction. 
Speech-based interfaces, on the other hand, offer a more natural 
modality for interaction, although their usefulness is subject to a 
number of limitations.  

We have developed a framework for automatic analysis of 
drivers’ facial expressions with the goal of adding facial displays 
to the list of modalities available for human-vehicle interaction. 
Specifically, we have investigated the feasibility of combining 
head-based displays with speech in order to achieve higher 
recognition results in the presence of noise. We studied the 
effects of noise in an interaction scenario that required responses 
to a series of “yes/no” questions, which are typical in interacting 
with a navigation system (e.g. “The gas is running low. Would 
you like directions to the nearest gas station?”). 
Because vehicle-noise and the willingness of the driver to express 
themselves clearly through spoken dialogue are the primary 
causes of misrecognized speech, we focused our investigation on 
intelligent fusion of head-display and speech information for 
varying noise levels and varying speaker volumes. Using our in-
house driving simulator, we conducted a pilot study where we 
recorded a participant answering a series of “yes/no” questions 
while driving. We recorded separate audio and video streams that 
captured the driver’s speech and facial displays. Based on 
promising results from the pilot study, we conducted a larger 
controlled experiment with 4 further subjects (age 22–50) to 
verify our findings. Clearly four subjects is still only a small 
sample and we would need to run a much larger study in order to 
draw stronger quantitative conclusions from our results. 
We implemented a speech recognition application for processing 
the audio and used our own facial expression recognition 
software [[5]] to interpret the video stream. We used Support 

Vector Machines to fuse audio- and video-based inference results 
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Figure 1: The physical setup of our experiment 



and constructed a multimodal recognition engine that outperforms 
the individual modalities. 

2. EXPERIMENTAL SETUP 
Figure 1 shows the physical setup of our experiment. We had a 
driving simulator equipped with a digital video camera for 
recording facial displays (1). A microphone secured to the frame 
in front of the driver (2) was used to record audio for speech 

recognition. Two pairs of speakers were used for playing audio 
stimuli consisting of questions for the driver (3), and simulated 
engine noise (based on vehicle speed and road conditions) 
generated by the STISIM driving simulator software (4). A pair of 
studio lights (5) was used to control the lighting conditions. 
During the experiment, the driver was asked a series of questions 
referring to a target shape displayed next to the virtual dashboard 
projected on a screen (6). The driver also wore a headset with 
microphone to record higher quality speech for further analysis 
(7). 
The audio stream used for speech recognition was captured by a 
microphone on the dashboard (#2 in Figure 1). The speech was 
processed by a Microsoft SAPI 5 application customized to 
recognize 29 words that a driver would be likely to use in the 
context of driving including “yes,” “no,” and five variants (such 
as “yeah”, “nope”). The video used for recognizing head displays 
was captured by a digital camcorder positioned directly in front of 
the driver (#1 in Figure 1) and was processed by our mind-
reading software [[5]] trained to recognize facial displays for 
agreement and disagreement. 

The pilot study was designed to investigate the effects of noise in 
an interaction scenario requiring responses to a series of “yes/no” 
questions. Such situations frequently arise while interacting with 
a navigation system. In order to elicit a verbal or non-verbal 
agreement/disagreement response, we designed a task where the 
user is first presented a geometric shape (like the red triangle as 
shown in Figure 2), and then asked a question about the shape, 
which can be answered verbally (“yes” or “no”), and non-verbally 
(head-nod or head-shake). We refer to each round of shape 

presentation as a trial. In order to collect representative data for 
varying noise levels, we had a total of 60 trials consisting of 30 
questions requiring an affirmative response, and 30 requiring a 
negative response. For the subsequent larger experiment, we ran 
100 trials with each of the 4 participants. The order of trials was 
randomized. Each trial consisted of playing an audio clip which 
asked a question (e.g. "Is the shape a red triangle?"), displaying 
the target shape in a particular colour for 2 seconds, then 
expecting an appropriate verbal and/or non-verbal response from 
the driver. We waited 5 seconds between trials. 
The primary source of noise in the study was the engine noise 
generated by the STISIM driving simulator based on the vehicle 
speed and road conditions. We started the experiment with the 
noise volume set to zero, and gradually increased the noise level 
over the course of the drive. An appropriate range of noise levels 
was determined by measuring the noise level in a transit van at 
60mph (100kph) with a digital sound level meter. The loudest 
noise level experienced by the driver was 75 dBA, so we used 
this as the maximum in the experiment. For the final 40 trials in 
the large controlled experiment, the driver was asked to speak 

Figure 2: System Structure 



louder or quieter in order to provide additional data relating to 
variation in speaker loudness. 
 

3. RESULTS 
3.1 Audio-Based Recognition Results 
Speech recognition events were attributed to particular questions 
by nearest-neighbour matching. Speech events in the audio were 
identified by clustering. The RMS value of the audio data for 
each cluster provided a measure of speaker loudness. The 
background noise was measured by averaging the absolute value 
of the audio signal in the time between the question finishing and 
the driver speaking. 
Figure 3 presents speech recognition results from the pilot study 
for increasing levels of noise. As seen in this graph, speech 
recognition works reasonably well when the noise is low. The 
recognition accuracy is very poor for high noise levels, and there 
is a transitional gray zone between the high-noise and low-noise 
segments where the recognition results are unpredictable. The 
recognition accuracy based on speech alone was 57% in the pilot 

study. 
 

3.2 Video-Based Recognition Results 
To compute the head display hypotheses for each trial, we 
compared the average probabilities of agreement and 
disagreement for a short video segment taken briefly after the 
completion of the question. Although our facial display analysis 
software computes probability scores for agreement and 
disagreement, these do not represent actual probabilities in the 
Bayesian sense and this prohibits direct comparison of the values. 
Therefore we treat these numbers as scores and train a linear 
SVM classifier that maps a pair of agreement/disagreement 
scores to an agreement or disagreement decision. Figure 4 shows 
the video-based recognition results from the pilot study for 
increasing levels of noise. As seen in this graph, video 
recognition generally works well, and its accuracy does not 
appear to depend on the noise level. The recognition accuracy 
based on video alone was 78% in the pilot study. 

 

3.3 Multimodal Fusion Results 
Our framework for multimodal fusion is based on the observation 
that speech recognition works remarkably well for low-noise 
conditions, but performs quite badly in high noise conditions, 
while the video-based recognition performance is reasonably 
accurate regardless of the noise level. We fuse the audio and 
video information at the decision level by treating the results of 
our speech and head-display analysis as inputs to a classifier 
along with the noise level of the environment. More specifically 
we consider a classification problem where the inputs are 3-
tuples <ai, vi, ni>, which respectively represent the class assigned 
by the speech recognizers (ai: yes/no/other, where ‘other’ means 
nothing was recognised), head-display recognizers (vi: agreement/ 
disagreement), and the noise level (ni) for trial i. For the 
subsequent experiment, we also included speaker loudness. 
Although this appears to be a simple construction, the high 
dimensional space representing the decision problem is 
sufficiently complex that it is not linearly separable. Although 
some of the categorical data inputs could be re-ordered to achieve 
a better space, it is highly likely that the non-linearity would still 
not be avoided when more features (such as a measure of the 

complexity of the speech recognition grammar) were added to the 
input space. In order to deal with this non-linearity, we trained 
Support Vector Machines (SVMs) with Radial Basis Function 
kernels for multimodal fusion.  
 
We measured the performance of our SVM using 10-fold cross 
validation, and ran it 10 times while randomly shuffling the 
training and testing sets, thus performing bootstrapping. 
Representative results of one cross-validated run are shown in 
Figure 5. The average recognition rate for the multimodal 
classifier was 89% in the pilot study, with a standard deviation of 
3.1. This is substantially higher than either of the individual 
modalities considered separately.  
The results obtained in the larger controlled experiment 
(summarised in Table 1) supported those from the pilot study. In 
all cases multimodal inference outperformed each individual 

Figure 3: Speech-Based Recognition Results 

Figure 4: Video-Based Recognition Results 



mode. Note that our system was particularly valuable for subject 
4, for whom speech recognition alone was entirely inadequate. 

 

4. DISCUSSION 
These results suggest that multimodal approaches where the 
individual modalities complement each other and compensate for 
their shortcomings have the potential to reduce recognition errors, 
substantially improve driver-vehicle interaction, and enhance the 
overall driving experience.  
It is worth noting that the speech recognition accuracy depends on 
factors other than just the noise level, such as the speech 
recognition engine in use, and the complexity of the grammar that 
guides the parsing process. In particular, the number and choice 

of terminals in the grammar (i.e., the vocabulary) affects 
accuracy.  
For example, our later analysis with a more recent version of the 
Microsoft Speech Recognizer improved the average speech 
recognition accuracy by 11 points, even though the increase was 
not found to be statistically significant.  
Using a simpler grammar also resulted in improvements, albeit in 
smaller quantities. For example, removing the top two words that 
caused misrecognitions one at a time resulted in 4.7% and 5.2% 
increases in the average recognition accuracies, compared to a 
baseline computed using the original grammar. Recognition 
accuracy for speech and video based inference systems could 
easily be increased with further refinement, but it seems likely 
that multimodal fusion would always yield a better result. 
The architecture of our system was specifically designed to allow 
further experiments to be carried out using other modalities. The 
modular design allows any number of input modalities to be used, 
and the multimodal fusion engine can be easily modified to 
accept them and produce appropriate outputs. This system will 
now allow new hypotheses to be tested quickly and easily. 

Subject 

Speech-Based 
Recognition 

Accuracy (%) 

Video-Based 
Recognition 

Accuracy (%) 

Multimodal 
Accuracy 
(Mean, %) 

Multimodal 
Accuracy 

(S.D.) 

1 (Pilot) 57 78 88.7 3.1 

2 46 67 72.3 2.5 

3 54 69 75.8 1.5 

4 31 65 70.4 3.4 

5 39 69 73.9 2.6 

Table 1: Controlled Experiment Recognition Results 

5. RELATED WORK 
It has long been recognised that current driver-vehicle interaction 
techniques are inadequate for safe and effective use of 
increasingly complex in-car devices. People have begun to 
investigate alternative methods, such as speech recognition [[1]]. 
A considerable amount of work has been done to tackle the 
problem of speech recognition in noisy environments [[2],[3]], 
with good results. However, recognition accuracy always 
decreases as noise increases and there is a limit to how much it 
can be improved. 
Automatic facial expression recognition has also been dealt with 
previously [[4],[5]], and Rong and Tan implemented explicit 
head-nod and shake detection [[6]]. Although this experiment 
only deals with agreement and disagreement, our facial 
expression recognition software [[5]] uses more than just nod and 
shake detection and is capable of distinguishing several more 
mental states. 
Several people have combined vision-based approaches with 
speech recognition - usually in the context of broader affective 
inference for emotion recognition. Busso et al. used multi-modal 
fusion of speech and facial expression to identify the six 
archetypal emotions of surprise, fear, disgust, anger, happiness, 
and sadness [[8]], while Jaimes and Sebe provide a survey of 
many uses of multi-modal fusion in the field of human-computer 
interaction [[9]]. Work has also been done on supporting speech 
recognition specifically; Cooke et al. have collected a large audio-
visual corpus designed for both automatic speech recognition-
based and perceptual studies of speech processing [[7]] and 
Oviatt has shown that multi-modal approaches can support 
significant levels of mutual disambiguation of errors in speech 
processing [[11]].  Erzin et al. have developed a multilevel 
Bayesian decision fusion scheme, combining vision and speech in 
automotive environments for identification and authentication 
[[10]]. 
 

6. FUTURE WORK 
These results suggest that it would be worth pursuing further 
investigations of affective inference as a component in the 
dialogue between a driver and an in-car telematic system. 
The next step would be to move from detection of simple 
agreement and disagreement to a more elaborate dialogue 
involving a broader range of options in a larger and more realistic 
task, such as interacting with a satellite navigation device. This 
could involve programming a destination as well as responding to 
incorrect turns and providing routing options. Understanding the 
driver’s concentration level so as to avoid distraction from more 
critical driving tasks would also be important and is a potential 
application of affective computing techniques to this domain. 
Another interesting study would be to compare decision-level 
with feature-level fusion. 

Figure 5: Multi-Modal Recognition Results 



 

7. SUMMARY 
We have demonstrated, tested and validated a system for driver-
vehicle interaction which uses multimodal fusion of speech and 
facial expression recognition. We have shown that combining 
these inference techniques gives a level of accuracy unattainable 
when using either system on its own. The architecture of the 
inference system we built provides a more general framework in 
which new techniques can be tested. 
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