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Abstract

Self-timed circuits relieve the designer of problems like
clock distribution, but introduce new constraints in the form
of isochronic forks and equipotential regions. This pa-
per shows how the combination of floor- and geometry-
planning tools can be used to address these new problems.
As a result, prototype self-timed circuits can be developed
on conventional, clocked FPGAs without sacrificing perfor-
mance. We also present a solution to the problem of design-
ing arbiters on FPGAs.

1. Introduction

FPGAs tailored for prototyping self-timed circuits have
been proposed but will not be readily available until self-
timed techniques become widespread. This paper explains
how self-timed circuits may be mapped onto commercial
(clocked) FPGAs.

The table based function generators provided on FP-
GAs allow glitch free combinatorial functions to be imple-
mented. Many popular self-timed circuit cells [12, 2] can be
easily mapped onto these functions generators [3, 7, 8, 9].

The programmable interconnect exacerbates wire delays.
Consequently, more care has to be taken when making delay
assumptions. Section 2 explains the constrains imposed by
wire delay properties. Sections 3 & 4 explain how we met
these constraints and Section 5 presents a case study.

Arbiters (mutual exclusion elements) are not provided
on clocked FPGAs though they are essential for many self-
timed systems. Section 6 presents an FPGA arbiter design
with testing and analysis in Sections 7 & 8.

2. Self-timed Properties

Two important circuit properties that are essential when
designing self-timed circuits:equipotential regionsand
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isochronic forks. Equipotential regions are small circuits
where wire delays are sufficiently short that one may treat
a signal as identical at all points on a wire [11]. Basic cir-
cuit elements like RS flip-flops rely on equipotential regions
since the feedback paths must be “instantaneous” if the cir-
cuit is to function correctly.

An isochronic fork is a forking wire with constraints on
the arrival times at the ends of the wires radiating from the
fork [1]. Isochronic properties are not just governed by wire
delays; the loads being driven have a marked effect on per-
formance [1]. This makes general isochronic forks difficult
to use, particularly if the wires are long. However, distri-
bution of a signal to many gates can be achieved safely by
using a single wire which is routed to each gate in turn,
thereby avoiding long forks (see Figure 1).

Typically commercial place and route tools do not under-
stand isochronic forks, except for clock distribution which
is usually treated separately. The next two sections of this



paper present floor planning and geometry planning tech-
niques which may be used to enforce equipotential and
isochronic fork properties.

3. Floor Planning

Modern floor planning tools allow logical hierarchy (pre-
layout) to be imposed on the physical hierarchy (post-
layout). For example, to ensure that the carry propagation
path in an adder design is short, the floor plan could con-
strain the adder, and all of its associated subcomponents, so
that it resides in one small area.

Detailed floor planning may be used to enforce equipo-
tential regions. Such circuits must be small to satisfy the
equipotential properties, and tend to be numerous. Con-
sequently it would be convenient if such regions could be
specified as part of a hardware description language (HDL).
However, commercial floor planning tools are usually sepa-
rate from the HDL and synthesis process.

Floor planning is less appropriate for enforcing
isochronic fork properties. In practice short isochronic
forks can be thought of as equipotential regions. However,
long isochronic forks need to be enforced via routing con-
straints rather than area/floor planning constraints.

4. Geometry Planning

Some place and route tools allow components in a block
to be placed relative to each other. For example, the place
and route tool supplied by XilinxTM for their 4000 series
FPGAs allows latches to be grouped into sets [14]. Latches
within a set may be placed relative to each other. For ex-
ample, the arbiter design presented in Section 6 uses four
D-type latches which need to be placed next to one another
to ensure minimum wiring delays (see Figure 3c).

Geometry requirements could be specified separately
from the original HDL and applied after synthesis. How-
ever, these properties are a fundamental part of the func-
tional correctness of the design so it seems more logical to
add the information to the HDL description. Whilst such
information could be added via a new HDL or by extending
an existing HDL, this would require changes to all the other
tools using the HDL. An alternative is to add information to
instance names, vis:

reg aa_RLOC_R0C1;

(see Figure 4 for a more complete example). This speci-
fies a register (in Verilog) which has additional relative loca-
tion information supplied by the extension “RLOC_R0C1”.
The “RLOC_” indicates that what follows is geometry in-
formation. “R0C1” indicates that this register should be in

row 0, column 1 on some virtual grid in relation to a col-
lection of registers. In the case studies presented later, this
geometry grid gives the relative positions within a set of
programmable logic blocks.

Typically synthesis tools preserve instance names of reg-
isters, albeit with prefixed hierarchical information. Thus,
geometry information for each hierarchical block may be
derived by post processing the synthesised netlist. This
proves to be quite convenient for the designer and does not
require modifications to (commercial) synthesis tools.

Once placement has been constrained, routing is more
predictable. For signals requiring a short path, the routing
priority of the interconnect may be raised. This could be
achieved by annotating signal instances with, for example,
“CRITICAL ”. However, synthesis tools often rename sig-
nals and so the annotation would be lost. An alternative is
to use a hard macro function (e.g.CRITICAL() ) which
explicitly instructs the synthesis tool to add the priority in-
formation to the synthesised netlist.

Asymmetric isochronic fork properties can be assured
by careful geometry planning and marking of critical wires.
Also, many FPGAs offer low latency long wires which can
be useful for distributing asymmetric isochronic forks with
many short branches.

5. Case Study — Loadable Counter

To demonstrate geometry- and floor-planning, this sec-
tion presents a loadable counter design which will only
function correctly if routing constraints are met. Philips
suggested the loadable counter problem as an example for
the 1996 ACiD Workshop in Groningen [13] which they
required to implement thefor n do statement in the Tan-
gram language [2]. The requirement is for a counter which
can receive a bundled data integer,n, and will then perform
n four-phase handshakes on its output side. One solution is
to use a systolic counter [4, 13] which is quasi-delay insen-
sitive (QDI — see Glossary) apart from parallel loading the
bundled data valuen. However, the solution is somewhat
large.

We have designed a loadable counter which, whilst not
QDI, is more compact (see Figure 2). Although it is not
truly QDI, it does use a form of completion detection to
“time” the main activity. However, a few conservative delay
assumptions are made in the control path which means that
the design is not QDI. This we feel is acceptable since the
resulting design is particularly efficient on current FPGAs
because they support D-latches which are prevalent in this
design.

This version producesn+1 output handshakes. A load-
able ripple counter is used to hold the complement ofn.
To load a value, data is presented on thedata x wires, and
when they are stable andloadack is low, load may be
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Figure 2. Loadable counter

raised. Theload signal sets an RS flip-flop (theS input has
priority overR) which in turn cause the data to be latched
once the acknowledge on the output side is low (which
should always be the case by the timeloadack =0).

The value in the ripple counter is incremented when
the acknowledgement on the output side falls (aout �).
aout � causes the first flip-flop to toggle, and if it changes
from a 1 to a 0 then it will cause the next flip-flop to toggle,
and so on. A ripple has completed when one of the flip-
flops toggles from a 0 to a 1, since this will not propagate
the ripple any further. Completion can, therefore, be de-
tected using edge triggered D-latches. Completion causes
the output request to raise (rout +). The environment may
then respond with an acknowledgement (aout +) which re-
sets the completion detection circuit, thus causingrout �.
Once all of the flip-flops in the ripple counter reach zero,
completion will not be detected because all of the flip-flops
will make a negative transition. However the roll over from

all 1’s to 0’s triggers the end detection flip-flop which raises
finished to clearloadack . A new value may then be
loaded.

This design requires geometry planning to ensure that
internal delays are minimised. In particular the propaga-
tion of the load signal must clear thefinished signal
before the environment has time to react to theloadack
signal and lowerload . This timing requirement could be
removed by adding a matched delay to theloadack sig-
nal. There is a similar critical path when clearing the ripple
completion detection since the clear signal must be removed
before the flip-flops will detect another edge on their clock
inputs. This timing requirement can be reduced to the out-
put environment not reacting too quickly (around 2 gate de-
lays) and loweringaout whenrout � occurs. A matched
delay could similarly be added torout to guarantee this
timing constraint is met, but the output environment may
well be slow enough to make this unnecessary.



6 FPGA Arbiter Design

Arbiters (mutual exclusion elements) are also rarely
present in standard cell libraries though they are essen-
tial for many self-timed systems. Typically an arbiter is
constructed from an RS flip-flop (orRS flip-flops — Fig-
ure 3) to resolve which request (ra or rb ) arrived first. If
both requests arrive simultaneously then the flip-flop will
go metastable but will eventually resolve to respond to one
request. To filter out the metastable state, Seitz [10] pro-
posed that two inverters powered from the RS flip-flop be
used (see Figure 3a for a CMOS variant). This frequently
used solution can be constructed easily from transistors but
not from standard cells. The Philips team [6] proposed the
use of four input NOR gates to act as filters since they have a
higher threshold voltage. However, this technique increases
the load on the outputs of the RS flip-flop which will make
metastability resolution slower. Furthermore, although the
solution is suitable for ASICs, it is inappropriate for FPGAs
because threshold levels cannot be controlled in this way.

Designing an arbiter on an FPGA is even more diffi-
cult. In order to minimise metastability effects the built in
flip-flops must be used — typically D-latches — since they
will have the highest gain and lowest feedback times. Con-
versely, flip-flops constructed from combinatorial blocks
have longer feedback paths and often have lower gain so
metastability resolution is poor. Another problem is filter-
ing out the metastable case. One solution is to use a clocked
circuit to sample the request signals using D-latches, per-
form a simple function to determine which acknowledge
should be raised, and then latch the output function (see Fig-
ure 3c). Whilst this does introduce a clock into the circuit
it is a simple solution which will fail only if the metastable
state is not resolved between clock edges. In practice (see
Section 7) this design is reliable provided the slew rate of
the request signals is reasonably fast (less than one gate de-
lay). However, the latency through this arbiter is long which
is less desirable.

A local clock may be provided for the FPGA arbiter (see
Figure 3d). The local clock is enabled when any of the in-
puts, outputs or internal nodes is active (high). This frees
the arbiter from a global clock at the expense of substan-
tially more circuitry (an extra 3 CLBs).

7 Arbiter Tester

Testing arbiters to ensure that they resolve metastable
conditions cleanly is difficult because the outputs cannot be
easily viewed without passing the signal through an output
pad which is likely to modify any metastable response. In-
stead we decided to see whether the erroneous signals from
arbiters resulted in side effects in the receiving control cir-
cuits.
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We began by designing a four-phasecall module (some-
times called amixer) which acts as a hardware subroutine



module XI_ARBITER(aa_RLOC_R0C1,ab_RLOC_R0C1,ra,rb,reset,ck);

input reset; // reset
input ra,rb; // request signals
input ck; // sampling clock
output aa_RLOC_R0C1,ab_RLOC_R0C1; // acknowledge signals

reg lra_RLOC_R0C0,lrb_RLOC_R0C0;
reg aa_RLOC_R0C1,ab_RLOC_R0C1;
initial begin

lra_RLOC_R0C0=0;
lrb_RLOC_R0C0=0;
aa_RLOC_R0C1=0;
ab_RLOC_R0C1=0;

end

always @(posedge ck)
begin

lra_RLOC_R0C0 <= ra;
lrb_RLOC_R0C0 <= rb;
aa_RLOC_R0C1 <= (lra_RLOC_R0C0 & ˜lrb_RLOC_R0C0) |

(lra_RLOC_R0C0 & aa_RLOC_R0C1);
ab_RLOC_R0C1 <= (lrb_RLOC_R0C0 & ˜lra_RLOC_R0C0) |

(lrb_RLOC_R0C0 & ˜aa_RLOC_R0C1);
end

// ensure feedback via a short path
CRITICAL(aa_RLOC_R0C1);

endmodule

Figure 4. Verilog code for a Xilinx TM arbiter

call allowing multiple accesses to a shared resource (see
Figure 5). An arbiter is required because thecall mod-
ule can cope with simultaneous requests. A request signal
is sent from a client to the subroutine, and after the subrou-
tine acknowledges, the acknowledge is routed back to the
appropriate client.

Two call modules were then coupled to an event ring so
that events could be inserted or extracted (see Figure 6).
If an arbitration fails then either an event will fail to be
inserted or extracted, or an extra event will be inserted or
extracted. Thus, sequences of inserts followed by extracts
can be performed to test the circuit. Because the circuit is
self-timed, the tester does not need to be fast. In fact it
is advantageous to allow periods between sequences of in-
serts and extracts to allow events to spin freely around the
ring, thereby ensuring that the self-timed circuit does not
become phase locked with the tester which might otherwise
avoid chances for metastability. Changes in environment
temperature will also add randomness to the timing proper-
ties which helps to stress the circuit.

This test procedure was performed on a number of dif-
ferent arbiter designs on XilinxTM 4000 series FPGAs. De-
signs based on RS flip-flops failed due to poor metastability
characteristics. The only design which failed to produce
an error after 4 billion insert and extract sequences was the
D latch based design presented in Figure 3c. However, this
circuit does fail if the slew rate of the request signals was
long. In particular, we were using the parallel port on a lap-
top computer to provide test sequences. This had a long rise
time which, despite buffering on the XilinxTM chip, caused
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errors. Adding a TTL buffer was sufficient to clean up the
signal.

8 Analysis of FPGA Arbiter Reliability

A statistical failure rate of the circuit in Figure 3c can
be determined on the basis of the characteristics given by
Xilinx [14]. A generally accepted equation for the mean
time between failures (MTBF) for a latch is [5]:

MTBF =
ek2:t

f1:f2:k1

where:

k1 the metastability-catching setup time window of the
latch



k2 the gain-bandwidth product in the feedback path of the
master latch of the latch

f1 is the frequency of the asynchronous data input

f2 is the latch clock frequency

t is the time allowed for metastability to be resolved

k2 can be measured experimentally and for XilinxTM

XC4005E-3 parts is quoted as19:4ns�1. k1 is also around
0:1ns for D-latches in this device andf2 is often around
100MHz . In normal asynchronous operationf1, the input
frequency to the arbiter, would be no more thanf2=4— the
time for a cyclera+! aa+! ra� ! aa�.

For the circuit being analysed,t is the time between
clock edges (10ns at100MHz ) minus the time to pass data
from the outputs of the first D latch pair, over a local routing
network through a function block (F or G) to the next pair
of D-latches. Based on the manufacturer’s worst case delay
characteristics, one can determine thatt is at least3ns.

This yields a worst case MTBF of around 240 years.
This MTBF may be substantially improved upon (if re-
quired) by adding an extra pair of D-latches to the inputs
so that the request signals are sampled twice, rather than
once, before being used. This will, of course, add an extra
50% to the latency.

9. Conclusions

Geometry- and floor- planning tools have been been
proposed to ensure that critical self-timed characteristics
(equipotential regions and isochronic forks) are met. A case
study demonstrate how these techniques can be applied to
enable rapid production of designs on FPGAs without the
need for laborious hand placement and routing.

Whilst floor-planning is often supported by CAD soft-
ware, geometry planning is an innovation we have been
working on. Both techniques are only possible with sup-
port from place and route tools. The effect of long pro-
grammable interconnect delays is similar to the significant
wire delays exhibited by deep submicron CMOS technol-
ogy. In order to manage these delays, CAD software will
have to allow the designer to specify delay bounds on wires.
Whilst the intention will no doubt be to assist designers of
clocked circuits, we hope that it will also provide additional
constraint mechanisms to allow automated place and route
of self-timed designs for ASICs.

The other significant problem we have tackled is the de-
sign of a reliable arbiter for commercial (clocked) FPGAs.
Experimental results give us confidence in this design and
an analysis of the metastable characteristics adds further re-
assurance. This work, together with earlier work on self-
timed cell sets, provides a practical toolkit for rapidly proto-
typing self-timed circuits on commercial (clocked) FPGAs.
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