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Abstract— Automatic detection of Facial Action Units (AUs)
is crucial for facial analysis systems. Due to the large individual
differences, performance of AU classifiers depends largely on
training data and the ability to estimate facial expressions of a
neutral face. In this paper, we present a real-time Facial Action
Unit intensity estimation and occurrence detection system
based on appearance (Histograms of Oriented Gradients) and
geometry features (shape parameters and landmark locations).
Our experiments show the benefits of using additional labelled
data from different datasets, which demonstrates the general-
isability of our approach. This holds both when training for
a specific dataset or when a generic model is needed. We also
demonstrate the benefits of using a simple and efficient median
based feature normalisation technique that accounts for person-
specific neutral expressions. Finally, we show that our results
outperform the FERA 2015 baselines in all three challenge tasks
- AU occurrence detection, fully automatic AU intensity and
pre-segmented AU intensity estimation.

I. INTRODUCTION

Over the past few years, there has been an increased inter-
est in machine understanding and recognition of affective and
cognitive mental states, especially based on facial expression
analysis [20]. As the face is considered the main channel
of nonverbal communication, facial expression analysis is
used in different applications to facilitate human computer
interaction [3], [17]. Moreover, automatic analysis of facial
expressions can be used as a tool in studying some medical
conditions, such as depression [10].

Automatic detection and analysis of facial Action Units
[7] (AUs) is one of the main building blocks in automatic
facial expressions analysis. This includes detecting AUs as
they occur on the face and estimating their intensities, which
would in turn allow us to analyse their occurrence, co-
occurrence and dynamics.

Yet, there are a lot of challenges in automatic detection
of AUs, namely: unbalanced training datasets, individual
differences (difficulty in finding a universal reference of the
neutral expression), pose variation and occlusion.

In this paper, we present an automatic real-time approach
for AU detection based on appearance and geometric fea-
tures. We address the individual difference challenge by
presenting and comparing detection results when a person-
specific normalisation approach is employed. We show that
our approach generalises well when trained on one dataset
and tested on a different one. We argue that - when a
generalisable approach is desired - cross-dataset learning can
improve the performance of AU detection, especially with the
difficulty of having a completely balanced dataset of natural
expressions.

A high level overview of our AU detection and intensity
estimation system can be seen in Figure 1.

The main contributions of our work are as follows:
demonstrating how occurrence detection can be significantly
improved for certain AUs by using person-specific neutral
expression normalisation; demonstrating the benefits of using
multiple datasets for generic model training; presenting a full
AU detection pipeline that is capable of running real-time
(20-30 fps). Finally, all of our training and testing code is
available to the research community'.

II. PREVIOUS WORK

AU recognition has received a lot of attention over the past
years. We refer the reader to recent surveys and challenges
[6], [22], [23], [25]. In the following paragraphs, we review
the most relative work to ours.

Wu ef al.[26] demonstrated that it is possible to build AU
recognition systems that generalise across datasets. They,
however, found that performance was hugely affected by
the training dataset (and in some cases the generalisation
is very poor) and that retraining approaches on target data
were helpful. They also found that the datasets need to be
carefully balanced in order to achieve a good performance.
Our work confirms some of their findings, demonstrating that
generalisation is indeed possible.

Li et al.[14] proposed a technique for building generic
models for AU recognition by using generic domain knowl-
edge that governs AU behaviours and showed that their
results improve the model’s ability to generalise across
datasets. In our work, we improve the generalisability by
learning the dimensionality reduction technique from a broad
set of datasets.

Chu et al.[4] demonstrated how to personalise a generic
AU classifier in an unsupervised manner. They introduced
a Selective Transfer Machine (STM), to personalise a
generic classifier by attenuating person-specific biases. STM
achieved this effect by simultaneously learning a classifier
and re-weighting the training samples that are most relevant
to the test subject. In contrast to their work, our work
attempts to perform person normalisation in a much simpler
manner and is able to adapt to a person online.

Similar to our work, Jeni et al.[12] used person-normalised
appearance features for AU intensity estimation, but they did
not report on the effects of such normalisation.
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Fig. 1: Overview of the AU detection or intensity estimation pipeline.

III. DATA

In our experiments, we mainly used three datasets: DISFA
[16], BP4D-Spontaneous [27] and SEMAINE [18]. All three
of the datasets consist of video data of people responding to
emotion-elicitation tasks.

The BP4D dataset includes videos of 41 participants (21
used for training models and 20 for validating them). It
includes annotations for 11 AUs for occurrence and 5 AUs
for intensities. In total, the dataset consists of 150k high
resolution AU labelled images. The annotated SEMAINE
subset [24] - used in our work - contains recordings of
31 participants (15 for training and 16 for validation). It
consists of one minute long recordings at 50H z, leading to
93k frames labelled for 5 AU occurrences. More information
on the challenge data can be found in Valstar et al.[24].

DISFA contains videos of 27 participants (14 used for
training and 13 for validation). It includes 4 minute-long
videos of spontaneous facial expression, annotated for 12
AUs. DISFA contains over 130k frames. For every video
frame, the intensity of 12 AUs was manually annotated on a
six-point ordinal scale.

All of the datasets share three AUs in common (2, 12, and
17). SEMAINE and DISFA share AUs 2, 12, 17, 25. BP4D
and DISFA share AUs 1, 2, 4, 6, 12, 15, 17. This allows us
to experiment with cross-dataset training generalisation.

IV. FEATURE EXTRACTION

In our work, we use two main types of features: appear-
ance and geometry ones. In order to extract them, we rely
on tracking certain landmarks on a face, followed by face
alignment. The following sections describe our features in
more details.

A. Face tracking

We use Constrained Local Neural Field (CLNF) [2] facial
landmark detector and tracker for face tracking and to extract
geometry based features (explained in Section IV-D). We
use the open source CLNF implementation [2]. It uses a
Structural SVM face detector [13], followed by CLNF.

CLNF is an instance of a Constrained Local Model (CLM)
[5], that uses more advanced patch experts and optimisation

Fig. 2: Example of stable points used for alignment of the
face to a common reference frame, followed by masking.

function. The model we used was trained on Multi-PIE [11]
and in-the-wild [21] facial datasets.

The CLM model we use can be described by parame-
ters p = [s, R, p, t] that can be varied to acquire various
instances of the model: the scale factor s; object rotation R
(first two rows of a 3D rotation matrix); 2D translation t; a
vector describing non-rigid variation of shape p. The point
distribution model (PDM) is:

X; = 8- R(ii + ‘I>Zp) + t. (1)

Here x; = (x,%) denotes the 2D location of the i feature
point in an image, X; = (X, Y, Z) is the mean value of the
ith element of the PDM in the 3D reference frame, and the
vector ®; is the i eigenvector obtained from the training
set that describes the linear variations of non-rigid shape of
this feature point, and the vector ¥, is the i" eigenvector
that describes the linear variations of non-rigid shape.

In CLM (and CLNF), we estimate the maximum a pos-
teriori probability (MAP) of the face model parameters p
given an initial location of the parameters determined by a
face detection step.

B. Alignment and masking

In order to better analyse the texture of the face, we
need to map it to a common reference frame and to remove
changes due to scaling and in plane rotation. To do this,
we used a similarity transform from the currently detected
landmarks to a representation of frontal landmarks from a
neutral expression (a projection of mean shape from a 3D
PDM). The resulting is a 112 x 112 pixel image of the face



with 45 pixel interpupilary distance. To compute the similar-
ity transformation, we used Procrustes superimposition that
minimised the mean square error between aligned pixels.

In order to reduce the effect of large facial expressions
(such as mouth opening and brow raises) on the similarity
transform, we only use the most stable facial landmark
points for the similarity transform. To determine such stable
points we observed the most stable CLNF detected landmark
points under facial expression on the on CK+ dataset [15] .
CK+ contains videos of people showing a number of facial
expressions whilst their head pose stays still and most of
the expressions start from a neutral frame. The most stable
points from CLNF tracker can be seen in Figure 2.

In order to remove non-facial information from the image,
we also perform masking of the image (see Figure 2). This
is done using a convex hull surrounding the aligned feature
points. We translate the eyebrow landmarks slightly to still
capture the wrinkling of the forehead. Our normalisation
technique is similar to the one presented by Mavadati et
al.[16].

C. Appearance features

Once the face is aligned to a 112 x 112 image, we can
extract appearance features from it. In this step, Histograms
of Oriented Gradients (HOGs) are extracted as proposed by
Felzenswalb er al.[9]. We use blocks of 2 x 2 cells, of 8 x
8 pixels. This leads to 12 x 12 blocks of 31 dimensional
histograms, leading to a 4464 dimensional vector describing
the face. We use the dlib [13] implementation of HOGs.

In order to reduce the dimensionality of the HOG feature
vector, we use Principal Component Analysis (PCA). Since
we wanted our dimensionality reduction to be as general
as possible to the problem of facial expression analysis, we
did not restrict the training data to FERA 2015 dataset [24].
For constructing the data for the PCA, we used CK+ [15],
DISFA [16], AVEC 2011 [23], FERA 2011 [25], and FERA
2015 datasets. Applying PCA to images (subsampling from
peak and neutral expressions) and keeping 95% of explained
variability lead to a reduced basis of 1379 dimensions. This
allowed for more generic model training and not needing to
recompute the PCA basis for specific datasets.

D. Geometry

As geometry based features, we used the non-rigid shape
parameters and landmark locations in object space inferred
during CLNF model tracking (p and ®;p from Equation 1).
This led to a 23 + 204 = 227 dimensional vector describing
geometry.

Together both of the descriptors led to a 1606 dimensional
vector, that describes appearance of the face. This feature
vector is used in all of the following experiments.

E. Neutral expression extraction

Some facial expressions are very difficult to determine if
a neutral facial expression of a person is not known. Some
people appear more smiley or more frowny even if their faces
are at rest [19]. We believe it is important to calibrate for
this, by correcting for person-specific neutral expression.

We propose a simple method for estimating a neutral
expression descriptor by computing a median value of face
descriptors in a video sequence of a person. This relies
on the assumption that neutral expression is contained in
the majority of frames. This assumption holds for certain
datasets (such as SEMAINE and DISFA), but not others
(such as BP4D). This assumption also holds for real-life
situations, where expression monitoring would take place —
most of the time people are not displaying facial expressions
and their interactions are dominated by neutral faces [1].

The extracted median face is then subtracted from the
feature descriptor leading to a normalised feature. In this
paper, we refer to this model as dynamic and the non-
normalised one as static. This is because the normalised
feature vector describes dynamic change from neutral rather
than absolute expression.

We keep a histogram for each element in our feature vector
to efficiently compute the median (as the feature value ranges
are known in advance). This also allows us to use such
normalisation online.

V. CLASSIFICATION AND REGRESSION

For AU occurence detection, we used Support Vector
Machines (SVM), and for AU intensity estimation, we used
Support Vector Regression (SVR). In both cases, we used lin-
ear kernels as complex kernels did not improve performance
and significantly slowed down training. Furthermore, we are
especially interested in approaches that allow for real-time
applications. In both cases we used the liblinear library [8].

Due to the unbalanced nature of AU occurrence, it was
very important to re-balance the training data. This was
done by under-sampling the negative AU samples from
training data, leading to an equal number of positive and
negative samples. This had a very large impact on the
SEMAINE dataset (up to 50% increase in F1 performance
on development set), especially for less frequently occurring
AUs, such as 17 and 28.

The use of linear kernels also allows for very quick
classification and regression. We combine the dimensionality
reduction step of PCA with the support vector weights, which
results in a single dot product between our feature vector and
the resulting weights.

For both SVM and SVR models and in all of the experi-
ments, we validated the C' parameter during model training.

VI. EXPERIMENTS

For experimental evaluation, we compare the results of
using our dynamic model (using person-specific neutral ex-
pression normalisation) with static model (using no normal-
isation techniques). We also compare generic model training
to targeted model training. And finally, we present how our
system performs on FERA 2015 [24] test sets and compare
our results to the two proposed baselines.

A. Dynamic model

The first task in our experiments was to test if our
proposed dynamic model (person-specific neutral expression



TABLE I: Importance of per-person normalisation, showing validation results (F1). We are only displaying detection results
where using a dynamic model had a significant positive effect, for the effect on other AUs was smaller or negative. Notice
how some AUs are recognised much better when a person-specific appearance is taken into account, especially in DISFA
and SEMAINE datasets, where a median feature is much more likely to represent a neutral expression.

SEMAINE DISFA BP4D
AU2 | AUI2 | AUL7 | AU25 | AU45 AU2 | AUS | AU6 | AU9 | AUILS | AUL7 | AU20 || AU4 | AU6 || Mean
Static 0.34 0.58 0.15 0.46 0.38 0.13 | 0.14 | 044 | 0.23 0.28 0.23 0.10 0.44 | 0.76 0.33
Dynamic 0.59 0.61 0.44 0.52 0.42 026 | 0.17 | 0.58 | 0.46 0.48 0.43 0.22 0.53 | 0.79 0.46

TABLE II: Cross-dataset generalisation, showing validation results (F1) across all datasets. Here, the model is validated on

all joint-datasets, with the intention of building a single model
on joint datasets leads to better generalisation. Also note how
possibly due to the more diverse training samples and more r

that generalises well for different datasets. Note how training
BP4D and DISFA are better at generalising than SEMAINE,
eliable ground truth labels.

SEMAINE i DISFA i BP4D [ Al
Static models
Training on || AU2 | AUI2 | AU17 || AU2 | AUI2 | AUL7 || AU2 | AUI2 | AU17 || Mean
SEMAINE 0.31 0.55 0.09 0.26 0.58 0.12 0.33 0.77 0.55 0.40
BP4D 0.29 0.48 0.13 0.29 0.70 0.21 0.34 0.87 0.62 0.44
DISFA 0.30 0.52 0.15 0.13 0.80 0.21 0.27 0.78 0.54 0.41
Combined 0.40 0.54 0.35 0.29 0.76 0.22 0.35 0.87 0.60 0.49
Dynamic models
SEMAINE 0.53 0.59 0.35 0.24 0.70 0.10 0.27 0.67 0.10 0.39
BP4D 0.40 0.50 0.17 0.35 0.59 0.26 0.30 0.86 0.58 0.44
DISFA 0.45 0.47 0.21 0.23 0.77 0.40 0.34 0.59 0.47 0.44
Combined 0.42 0.58 0.22 0.33 0.74 0.34 0.35 0.83 0.58 0.49

normalisation) helps with AU detection. To test this we
trained a static and dynamic feature based AU occurrence
classifiers on SEMAINE, DISFA and BP4D datasets.

The results of this can be seen in Table I. It can be clearly
seen that for SEMAINE and DISFA datasets the dynamic
model has a large positive effect on detection scores for
certain AUs. This is not the case for BP4D, where the
assumption of neutral expression occurring in the majority
of frames does not hold and sometimes the dynamic model
leads to decreased performance. This leads us to conclude
that it has to be applied selectively to certain AUs and that
it can only be applied to datasets where neutral expressions
are common. Hence the choice between static or dynamic
features will depend on both the AUs and datasets consid-
ered. It is interesting to note that the accurate recognition of
certain AUs (2, 4, 9, 15, 17, 20) seems to require knowing
the neutral facial expression whilst others can be recognised
quite reliably without accounting for it (6, 7, 10, 12).

B. Generic model training

In our next experiment, we wanted to see the viability of
using one of the datasets to train AU occurrence detector
for another dataset, and if extra training data from other
datasets helps. This is especially important if we want our
AU detectors to function in real world scenarios.

For this experiment, we chose the three AUs (2, 12, and
17) that occur in all three datasets of interest - SEMAINE,
BP4D, and DISFA. We wanted to asses how well training
on each dataset generalises to the AU prediction in general
(validated on the joint dataset - SEMAINE + BP4D +
DISFA).

Note that for DISFA, which has intensity labels rather
than occurence ones, we binarised the labels by assuming

presence at A intensity level, whereas BP4D was labelled as
occurring at B-level intensities and SEMAINE at A-level.

The results of this training task can be seen in Table II.
From the results we can see that some BP4D and DISFA
generalise better than SEMAINE, possibly due to more
balanced data distribution and more reliable ground truth
labels (higher ICC scores between AU coders [24], [16]).
Furthermore, we can see that using all of the datasets together
leads to the most generic model. This is not surprising as
we are testing on the same three datasets, but as the three
datasets are quite different, these results are encouraging.
Interestingly, jointly-trained static models produce the best
classifier for certain AUs more often than dynamic models.
This is possibly because the dynamic features extracted from
BP4D are less reliable, as fewer frames contain neutral
expressions.

C. Targeted model training

In the next set of experiments, we wanted to see if
we can use additional labelled data from other datasets to
train models that perform well on a target dataset. This is
different from the previous section where the goal was to
build a generic rather than a targeted model. The difference
in methodology was that we validated on the target dataset
rather than on joint datasets, in cases where only two datasets
contain the AU labels (e.g. AU1) we used their combination
instead of using all three datasets.

The results of targeted training are shown in Table III. We
can see that the use of additional training data has a positive
benefit on BP4D dataset for a number of AUs tested, and
only in some instances has a negative effect. Furthermore, the
difference between AU accuracies when trained on different
datasets are small, meaning that our framework generalises



TABLE III: Cross-dataset training, showing testing results (F1) on SEMAINE and BP4D. We report the best performing
model (static or dynamic). Note how the results of training on one dataset and testing on a different one does not lead to
hugely different results (Exepct for AUs 15 and 17, which very rarely occur in DISFA); This indicates the generalisability

of our approach.

SEMAINE BP4D
Training on || AU2 | AULI2 | AU17 | AU25 || AUl | AU2 | AU4 | AU6 | AUI2 | AUL5 | AU17
SEMAINE 0.54 0.61 0.44 0.52 - 0.34 - - 0.80 - 0.58
DISFA 0.45 0.54 0.23 0.46 044 | 034 | 0.50 | 0.76 0.83 0.26 0.54
BP4D 0.46 0.51 0.18 043 | 035 | 0.53 | 0.79 0.87 0.44 0.62

Combined 0.47 0.58 0.38 0.47

0.45

036 | 0.55 | 0.78 0.87 0.44 0.61

TABLE IV: Cross-dataset generalisation (Pearson correlation
coefficients) on BP4D intensity, using the static model.

Fully automatic Pre-segmented

Trained on || AU6 | AUI2 | AUL7 || AU6 | AUI2 | AUL7
BP4D 0.75 0.86 0.50 0.67 0.85 0.35
DISFA 0.74 0.83 0.38 0.50 0.76 0.32

Combined 0.76 0.86 0.52 0.63 0.86 0.38

well. The exceptions to this are AUs 15 and 17, they occur
quite rarely in the DISFA and SEMAINE datasets, possibly
explaining the discrepancy.

The same experiment was performed for AU intensity
estimation. The results can be seen in Table IV. Results
showed that training on DISFA and testing on BP4D has
a small degradation in performance, however the drop is
small considering that the datasets differ from each other
significantly. Finally, using both of the datasets at once is
often beneficial.

D. Final results on FERA 2015 test sets

To see how well our results generalise on the test sets
of the FERA 2015 challenge, we picked the best performing
models on validation subsets for evaluation. In case of similar
performance between models, we chose the model trained
on combined datasets with the idea that it would generalise
better, having been trained on more diverse data.

For SEMAINE occurrence, we used only dynamic models
trained on SEMAINE. Results can be found in Table V.

For BP4D occurrence, the models were as follows: static
model trained on combined datasets - AUs 4. 6, 12 and 15;
static model trained on BP4D for the rest of AUs. Results
can be found in Table V.

For fully continuous AU intensity, the models used were
as follows: static model on combined datasets for AUs 6,
12, 17, and the rest were trained on BP4D. For segmented
challenge, AUs 12 and 17 were trained on combined datasets
and the rest on BP4D. Results can be found in Table VI.

As the test labels were not available for us, this represents
a good evaluation of the model generalisation. Our approach
outperforms both of the proposed baselines on all of the
tasks, with the highest gain in performance in the pre-
segmented AU intensity task. The improvement is especially
big for AUs that the baseline fails to detect reliably - 15, 17,
25 and 28.

TABLE VI: Final intensity results (intra-class correlation
coefficient) on FERA 2015 test dataset comparing against
their proposed appearance and geometry based baselines[24].

AU6 | AUIO | AUI2 | AUI4 | AUI7 ]| Mean

Fully automatic

Baseline geom. 0.67 0.73 0.78 0.59 0.14 0.58
Baseline app. 0.62 0.66 0.77 0.39 0.17 0.52
Ours 0.69 0.73 0.83 0.50 0.37 0.62

Pre-segmented

Baseline geom. 0.48 0.51 0.69 0.59 0.05 0.46
Baseline app. 0.33 0.48 0.60 0.50 0.11 0.40
Ours 0.58 0.49 0.70 0.52 0.41 0.54

E. Processing speed

The system is capable of running real-time (20-30 fps) on
the SEMAINE and DISFA datasets on commodity hardware
- dual core 3GHz Intel i3 processor and without any GPU
support. The performance on the BP4D dataset is slower -
5-10 fps, due to the majority of processing being taken up
by very large image loading from disk.

VII. CONCLUSIONS

In this paper, we presented a real-time AU detection and
intensity estimation system. Our experiments show the bene-
fits of a simple person-specific normalisation for certain AU
detection especially on DISFA and SEMAINE datasets. We
also demonstrate that the use of combined training datasets
leads to better AU detectors. This is the case both when
training for a specific dataset or when a generic model is
needed. This is especially important if we want our methods
to work in the real world. Finally, the overall results of our
cross-dataset experiments and FERA 2015 test sets revealed
that our methodology generalises and outperforms the two
baselines on all three tasks demonstrating the effectiveness
and generalisability of our system.

For future work, we would like to explore alternative ways
of neutral expression estimation that do not rely on neutral
expression occurring often. We would also like to explore the
balancing of training data more, both in terms of positive and
negative samples, but also in terms of datasets, as some of
them seem to be able to generalise better than others.
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TABLE V: Final occurence results on FERA 2015 test dataset comparing against their proposed appearance (BA) and
geometry (BG) baselines [24].

BP4D SEMAINE Mean
AU 1 2 4 6 7 10 12 14 15 17 23 2 12 17 25 28 45
BG 0.19 | 0.19 | 0.20 | 0.65 | 0.80 | 0.80 | 0.80 | 0.72 | 0.24 | 031 | 0.32 || 0.57 | 0.60 | 0.09 | 0.45 | 0.25 | 0.40 0.44
BA 0.18 | 0.16 | 0.23 | 0.67 | 0.75 | 0.80 | 0.79 | 0.67 | 0.14 | 0.25 | 0.24 || 0.76 | 0.52 | 0.07 | 0.40 | 0.01 | 0.21 0.40
Ours || 026 | 0.25 | 0.25 | 0.73 | 0.80 | 0.84 | 0.82 | 0.72 | 0.34 | 0.33 | 0.34 || 041 | 0.57 | 0.20 | 0.69 | 0.26 | 0.42 0.48
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