
Many emerging information appliances
assist motorists as they travel on today’s

congested roads:

� Route planners give detailed instructions on the
sequence of roads to follow to reach a particular des-
tination. The information may be presented via a dis-
play mounted on the dashboard or as audio using the
speakers attached to the vehicle’s entertainment
system.

� Roadside monitors identify congested roads and
transmit reports to wireless receivers in vehicles. Cars
equipped with computers can report their own speed
to improve the quality of this information. The cen-
tral system can broadcast all the information to pro-
vide users with a global perspective.

� The Global Positioning System (GPS) can be used to
make vehicles aware of their current location.

� Mobile phones enable communication while traveling.

However, these services do not link to
each other, and using them while dri-
ving can be dangerously distracting.

This article reports on an inte-
grated system that uses congestion
information to guide routing, both
in advance and while in transit. It
offers two novel features:

� Historic information about con-
gestion is collected and retained
for use when planning routes.

� GPS tracks vehicles while they
undertake journeys, and the
Global System for Mobile Com-
munications (GSM) Short Mes-
sage Service (SMS) maintains
communications between a mov-
ing vehicle and a central planning
service to suggest revised routes
avoiding congestion.

What is congestion?
We need a useful definition of congestion. What

offends drivers?
There are many possible answers, such as the num-

ber of vehicles per mile on a road divided by the number
the road was designed to bear, or the speed of traffic
compared to the speed limit for that class of road. Fur-
ther options include the length of queues of traffic trav-
eling at similar speeds and measurements of traffic
density compared to a predetermined set of values. In
practice, most drivers want to know how much longer a
journey is likely to take under the prevailing conditions,
compared with traveling on an empty road.

We based the provision of routes discussed in this arti-
cle on minimizing the time taken to complete a journey.
Consequently, the definition of congestion used here is
the ratio of the current speed of traffic to the limit for that
class of road. We can use this ratio, combined with the
lengths of the relevant road sections, to calculate delays.

Available technologies
Several new technologies that have recently become

generally available can help solve the problem.
Computer programs to calculate routes for motorists

have been available for several years. Microsoft
AutoRoute (http://www.microsoft.com/AutoRoute/)
comes in versions with route data for both Great Britain
and Europe, and Vicinity Corporation’s MapBlast
(http://www.mapblast.com/) offers a similar online
service in the United States.

However, both programs assume the capacity of roads
remains static. The algorithms calculate a vehicle’s
speed solely on the basis of the class of road on which it
is traveling (one speed for motorways or freeways,
another for A-roads or main roads, and so on). No atten-
tion is paid to variations in the traffic density with time.

A possible solution relies on the data offered by the
Trafficmaster system. According to the Highways
Agency, Department of the Environment, Transport, and
the Regions (http://www.highways.gov.uk/), there are
10,458 km of trunk roads in the UK. Trafficmaster

0272-1716/00/$10.00 © 2000 IEEE

Information Appliances

2 May/June 2000

An integrated system uses

road congestion information

to guide routing. GPS tracks

vehicles, and the GSM short

message service maintains

communications with a

central planning service.

John Fawcett and Peter Robinson
University of Cambridge

Adaptive Routing
for Road Traffic

(http://www.trafficmaster.co.uk/)
has installed sensors every few kilo-
meters that measure the speed of
vehicles moving on each stretch of
road (see Figure 1). Trafficmaster
uses two techniques:

� On major roads with separate car-
riageways, sensors mounted on
bridges and using infrared trans-
ceivers capture the speed of indi-
vidual cars.

� On smaller roads, cameras
mounted on roadside poles iden-
tify the central four characters in
vehicles’ registration numbers
and timestamp the sightings. The
results from adjacent sensors
when correlated give the vehicle’s
average speed while traveling
between them.

The information returns over a very
high frequency (VHF) packet radio
system to a control center for
rebroadcast to users.

Trafficmaster offers two main
types of display. Subscribers can see
maps of any part of the road net-
work with annotations indicating
areas of congestion. An alternative
free service gives warnings of con-
gestion within about 20 km of the
receiver, together with an indication
of the affected directions of travel.
The first service indicates the speed of traffic on roads
experiencing congestion; the second simply reports the
duration of the anticipated delay.

The information is also available to anyone equipped
with a cellular telephone. When the cell phone user calls
the appropriate number, information from the cellular
network determines the caller’s position. Then the Traf-
ficmaster system reports the current state of traffic on
nearby roads using synthesized speech, including both
the speed and anticipated delay. The latter is surpris-
ingly accurate.

Two further technologies also prove relevant.
The GPS1 uses a constellation of satellites in low earth

orbit (LEO) to provide a positioning system with accu-
racy of a few tens of meters using relatively inexpensive
ground receivers. Auxiliary services such as differential
correction and dead reckoning improve the accuracy to
a few centimeters.

GSM-SMS provides reliable delivery of text messages
up to 160 characters in length between mobile phones.
This has been packaged to provide a convenient way
for mobile workers to interact with computers at their
bases.2

Associated work
The idea of using traffic monitoring and computer

support to alleviate the problems of congestion is not

new. Several significant results have been achieved.
The Royal Automobile Club (RAC, http://www.rac.

co.uk/) offers a route-planning service that takes
account of the currently congested roads as reported by
the Trafficmaster system. The service uses the current
congestion information at the time of planning the
route. It does not account for the fact that conditions
may differ when the journey actually starts or, indeed,
may change during the course of a journey.

Similar monitoring systems are appearing elsewhere
in Europe and in the United States. The Calendar+ sys-
tem developed by Schaffer and Alway at the University
of Washington (http://www.cs.washington.edu/) com-
bines routes from MapBlast with congestion informa-
tion from the Washington State Department of
Transportation (Puget Sound Traffic Conditions,
http://www.wsdot.wa.gov/PugetSoundTraffic/) online
reports to advise travelers of likely delays. However, this
neither uses historical data to predict delays nor sug-
gests alternative routes to avoid them.

Cameron et al.3 described a simulator that models
traffic flows through urban areas. This uses a massively
parallel computer to simulate the behavior of a large
number of vehicles in real time. It is intended for use in
designing road networks rather than optimizing their
use after construction.

Bar-Noy and Schieber4 discussed the problem of

IEEE Computer Graphics and Applications 3

1 Trafficmaster
sensor coverage
in the UK.

planning a route through a road network susceptible to
blockages. Their mobile agent only becomes aware of
blockages slightly before encountering them, so routes
have to be sufficiently intelligently planned to incor-
porate flexibility for bypassing blockages as they arise.
The approach presented in this article takes a broader
view of the network and so can plan more radical alter-
native routes.

Awerbuch et al.5 discussed possible trade-offs
between the size of the data held at each node in a graph
and the time taken to perform a routing calculation. This
subtlety isn’t really necessary when traversing graphs
with the complexity of a road network.

Mitchell and Papadimitriou6 described the problem
of finding a shortest path through a plane divided into
sectors where different speeds can be achieved. Their
algorithm would support the calculation of routes for
off-road driving, but that’s a different problem.

Aims
The project described in this article investigated pos-

sible ways to integrate congestion information from the
Trafficmaster system with a route planner in such a way
that the recommended route would reflect the conges-
tion anticipated at the (future) time when the journey
would be undertaken. Moreover, the traveler should be
notified if congestion at the time of travel makes an alter-
native route preferable.

System structure
The overall system consists of several modules, as

shown in Figure 2:

� The system collects congestion information from a
variety of different network services. Converters for
any electronic data source can be written indepen-
dently and the software can be asked to dynamically
add (or remove) data sources from the system with-
out restarting.

� These data are collated into a single queue and copies
distributed to registered data recipients, including,
in particular, a map manager that accumulates his-
toric information and a live data service that informs
clients of unanticipated congestion.

� The map manager annotates a detailed road map with
congestion information for different times of the day
and days of the week. The optimum time granularity—
determined to be 15 minutes—adequately captures
trends in traffic congestion. Quadratic interpolation
used between 15-minute aggregated samples estimates
the instantaneous congestion at intermediate times.

� The routing service uses the connectivity and capac-
ity information in the map manager to find an opti-
mal route between a pair of points for a given time of
departure, in terms of minimizing the time taken to
make a journey. The optimization criterion could eas-
ily be changed to minimizing fuel consumption, emis-
sions, or a trade-off among several.

� The live data service monitors the current positions
of clients and current congestion along their antici-
pated routes, and advises them of revised journey
times and revised routes to avoid congestion.

� An administration console allows an operator to mon-
itor and control the system, for example, to introduce
new data sources dynamically.

Data collection
Trafficmaster made the raw sen-

sor data from its entire network
available to the AT&T Research Lab-
oratory in Cambridge using a special
VHF radio receiver. This informa-
tion is then distributed to nominat-
ed users over standard transport
control protocol/Internet protocol
(TCP/IP) socket connections.
Reports are delivered as lines of text
giving a time stamp, the Ordnance

Information Appliances

4 May/June 2000

Client Client Client

Live
data service

Client Client

Routing
service

1

Map
manager

Administration
console

Road
map15 4 3 2

Congestion packet
input queue

1

Network

Data
sources

Congestion packets

2 Overall struc-
ture of the
system.

One-way road Two-way road Limited access junction

3 Representing
different types
of road and
junction.

Survey grid coordinates (OSGB) of
the sensor, the name of the sensor’s
location, the direction of traffic flow,
and the traffic speed, together with
some other housekeeping details.
These are interspersed with text
messages reporting road restrictions
for repairs or because of accidents.
This collection of information was
massaged into a standard form by a
Trafficmaster data source filter and
the resulting packets inserted into
the processing queue.

Adaptors for other data sources
could be written similarly. For
example, the British Broadcasting
Corporation (BBC) broadcasts traf-
fic information in data subcarriers
of its radio and television services
and through its Web pages, and
these data could be fed into the sys-
tem as well.

Map manager
We represented the road network

using a directed graph with each
edge depicting a one-way road and
each node corresponding to a junction. Two-way roads
were represented as a pair of edges, one in each direc-
tion. This model permits easy modeling of one-way
roads and limited access junctions (see Figure 3). We
didn’t model the exact routes of roads between junc-
tions, assuming them to be straight lines. Given the fre-
quency of junctions, assuming that roads run straight
between them doesn’t introduce significant error into
the calculations.

Obviously the level of congestion on roads changes
with the time of day. This leads to a specific requirement
regarding the algorithm used to calculate routes.
Weights (or costs) attached to the edges in the directed
graph represent the speed of traffic on the correspond-
ing roads (in the direction of the edge) and have to vary
with the time of day.

This raises an important question: What temporal
granularity should we use to record congestion infor-
mation? If the timing is too precise, the size of the stored
data will be too large, and if the timing is too coarse, the
predicted route times will be inaccurate. After collect-
ing congestion reports for a couple of months, we decid-
ed to record road capacities for 15-minute intervals for
24 hours each day and 7 days each week. Weekends dif-
fer sufficiently from weekdays to make this necessary,
but seasonal variations through the year are generally
not worth recording. Consequently, every edge in the
road map carries 572 bytes of speed information.

The system revises the speed information for an edge
at the current time-of-week every time it receives a new
congestion report by calculating a running average:

revised = α × old + (1 − α) × new

This effectively calculates a geometrically weighted

average of all the past values. Empirical evidence sug-
gested a value of 0.5 for α to give a good balance
between rapid response to new reports and long-term
stability. (Note that duplicate reports are suppressed,
since they would bias the accumulated statistics. Also,
reports are generated even in the absence of conges-
tion; otherwise, the expected speed on roads would
decrease monotonically.)

The entire map database including revised conges-
tion averages is check-pointed to disk at regular inter-
vals and archives are kept.

Routing service
The routing service takes any two points in the map

and an intended start time, and calculates the quickest
route between the two points given the anticipated con-
gestion from historic information. The resulting itiner-
ary lists roads, junctions, distances, and estimated
times, and is optimal with respect to minimizing the
time taken.

Live data service
The live data service serves two functions. First, it pro-

vides the data needed by graphical user interfaces to
display a map of the road system overlaid with current
congestion information (see Figure 4).

The red circles indicate the location of traffic reports,
and the white numbers are the traffic speeds in miles
per hour at these sites. The text area at the bottom logs
human-readable reports delivered by data sources such
as the Trafficmaster system.

Secondly, information from the live data service is
used to advise clients already on the road of alterations
to their itineraries recommended in light of recently
received congestion information.

IEEE Computer Graphics and Applications 5

4 Live congestion information.

Routing algorithms
Routing is well studied in computer science,7 but

some of the standard algorithms turn out to be lacking
or inappropriate for this application in one or more
respects.

Breadth-first and priority-first searches
Breadth-first search and priority-first search would

work and might be expected to find an optimal route,
but they require substantial computational effort
because they explore inappropriate parts of the graph
in addition to the relevant parts. It’s not clear what
heuristics should be used with priority-first search to
find good routes in a reasonable time. Some of the early
commercial route planners were notoriously ineffective
in this respect and would, for example, lead the driver
through miles of twisting country lanes rather than
heading a few miles directly away from the destination
to reach a motorway junction.

Dijkstra’s algorithm
Dijkstra’s algorithm guarantees to find the best route

(with respect to minimizing the total cost of edges in the
route) between two nodes, if a route actually exists. The
algorithm considers edges with the smallest cost first,
but this means it cannot know how much time will have
elapsed since the start of the journey when any partic-
ular link is traversed. This application cannot determine
the weight of an edge until it knows the time of travel.
It can evaluate the weights only at an estimated time,
and the start time of the journey provides as good an
approximation as any.

A better estimation of the time when an edge will be
traversed can be derived by interpolation from the
straight-line distance between the edge and the start
and an estimate of the total journey time. However, this
improves matters only slightly. The algorithm guaran-
tees to terminate in all circumstances. The asymptotic
cost is O(v2) for a graph with v vertices.

Lee’s algorithm
Originally used for track routing on printed circuits and

integrated circuits, Lee’s algorithm8 suits changing road
capacity more naturally than Dijkstra’s. This algorithm
also finds the best route with respect to optimizing some

metric, as long as such a route exists. The method simu-
lates an inkblot spreading out over a piece of paper, cen-
tered on the start point. The area covered represents
vertices already explored. The real time is known upon
traversal of each edge, so the algorithm can calculate the
correct value of the delay (because the delays depend on
time and day). When the destination vertex is reached,
the algorithm traces the route back to the start.

When used for track routing in very large scale inte-
grated (VLSI) circuit design applications, a Lee router
explores the surfaces of a circuit board by making equal-
sized steps in all permissible directions, beginning with
the start node. The search takes a breadth-first approach
and is initialized by putting the start node in a queue of
nodes to explore. Items in the queue are tagged with the
distance (number of steps) already spent in reaching
that point.

At each computation step the router examines the
queue. An empty queue means no route exists. Other-
wise, the algorithm extracts and examines the head of
the queue. If the head of the queue is the required des-
tination node, then a route has been found. Using a sim-
ple induction can prove that the path taken by the router
is the quickest route from the start. If the head of the
queue is not the destination node, then the router con-
siders equal-sized steps in all (valid) directions to reach
further nodes. These nodes move to the end of the
queue, with their distance-so-far indicators increment-
ed by one. However, a node already in the queue or
already explored is not added again, since a shorter
route to that location has already been found. If the
quickest path to the destination does indeed go through
that location, there can be no need to go via the new
intermediate point, as that route would take at least as
long as the previously discovered one.

In the road-traffic routing application, the step sizes
are unequal because roads have differing lengths and
levels of congestion, which change the time taken to tra-
verse them. The distance-so-far attached to items in the
queue equals the total time spent in reaching that loca-
tion from the start. As the router explores nodes and
finds them not to be the destination node, it considers
new locations. It marks these new locations as reach-
able in a time equal to the time taken to reach the
explored node plus the time taken to drive along the
joining road at the relevant time-of-day (computed from
the user-supplied start date and time of the journey and
the time-so-far into the route). The newly reached nodes
must be inserted into the queue in increasing order of
arrival time. For this reason, the router uses a time-
ordered list to store the list of vertices to explore, rather
than a simple queue. Duplication in the time-ordered
list needs careful attention: If a node being added is
already in the queue, then only the entry with the lower
time is kept. This may involve removing an existing
queue item. Otherwise, the algorithm proceeds as
described above. It also guarantees to find the shortest
route (in terms of time), as long as one exists.

Adaptive traffic routing needs a further modification
because the cost of an edge may change between the
exploration and trace-back phases, which can cause the
tracer to find no routes with the expected cost. Merging

Information Appliances

6 May/June 2000

The final route produced by Lee’s

algorithm is optimal in the sense that

starting at a time specified by the user and

taking into account the time when each

section of road would be driven, the

output route offered the quickest

path to the destination.

the trace-back and exploration phases fixes this—the
explorer builds a tree as it runs, and when it finishes, the
optimum route is the unique path through the tree from
the destination leaf to the root (the start vertex). A tree
is built rather than a general graph because the algo-
rithm does not explore cycles.

This algorithm’s cost is difficult to express. It is best
described as polynomial in the number of edges. The
worst case only occurs when there is no route between
the start and destination vertices, and so is unlikely to
occur in practical road maps, especially if ferry crossings
are included in the map. The average cost is less than that
of Dijkstra’s algorithm because it stops considering routes
when they are longer than the best route so far from the
source to the destination. Lee’s algorithm can be seen as
taking a local view, whereas Dijkstra’s takes a global view,
considering all edges at once, which wastes time.

Soukup’s algorithm
Based on Lee’s algorithm, Soukup’s routing algorithm

uses heuristics to limit the search and prioritize the
order of vertex exploration. These modifications mean
that the algorithm cannot guarantee to find the opti-
mum route or even to find a route if one exists. We
expected that the running time of a Lee router on a
graph of the sparseness of a road map would be only a
fraction of a second, so optimizations motivated by lim-
iting the search space to improve performance don’t
apply.

Bellman-Ford routing algorithm
Bellman-Ford7 is a distance-vector routing scheme

used by the early Arpanet routers and implementations
of Routing Information Protocol (RIP, for DECnet and
Novell IPX packet routing). Each node maintains a table
that lists the quickest route to every other node. At reg-
ular intervals, the nodes broadcast their tables to their
neighbors, which update their tables accordingly and
propagate the information to their neighbors, and so on.
Care has to be taken with cycles. Calculating a route
between two nodes is an O(log n) operation for a graph
with n nodes—it only involves a look-up in the table held

by the start node. Using an appropriate data structure
(for example, a heap, red-black tree, B-tree, or a hash
table), this can be very efficient.

The disadvantage for adaptive traffic routing is that
the amount of storage required for all the tables is vast
and increases as the square of the number of nodes in
the graph. While routes can be provided with very little
computation, maintaining the tables carries a large
expense. This arduous housekeeping must be done even
when no users are requesting routes.

Fast Lee routing
On balance, we used Lee’s algorithm because it gives

satisfactory results in a reasonable time without adding
undue complexity. The final route produced is optimal
in the sense that starting at a time specified by the user
and taking into account the time when each section of
road would be driven, the output route offered the
quickest path to the destination.

Performance improves by representing the edges in
Lee’s inkblot as events in a time-ordered list, in a sim-
ilar way to how an event-based simulator models sig-
nal changes propagating through a piece of hardware.
This allows the algorithm to develop the perimeter of
the inkblot extremely quickly, avoiding parts of the
graph already passed or still some distance away. Find-
ing a route from one end of the United Kingdom to the
other takes an imperceptible fraction of a second on a
modest PC.

The images in Figure 5 show the routes offered by the
system to cross London at similar times on Sunday and
Monday mornings. On Sunday, the program recom-
mends using the M25 orbital motorway, but given the
known congestion of the M25 on a Monday with com-
muters, it suggests a direct route through the center of
London instead. Actually, this scenario is unrealistic,
reflecting the absence of congestion sensors in central
London, but it nevertheless demonstrates the principle.

The sitting-still problem
A problem still arises from the quantization of the

changing speeds on individual edges in the graph. This

IEEE Computer Graphics and Applications 7

5 Recommend-
ed routes for
the same jour-
ney at similar
times on differ-
ent days.

will affect any algorithm that attempts to find an opti-
mal route.

Suppose a route being explored has reached junction
j at time τ, from which there are two routes to some ver-
tex k (possibly via one or more intermediates), as shown
in Figure 6. If both routes are heavily congested at time
τ, but r1 slightly less so than r2, then r1 will be selected.
However, in a few minutes the congestion may have
cleared considerably on r2, and it may be that waiting
those few minutes and then taking r2 results in a quick-
er route overall. Of course, it is never sensible to “sit still”
at junction j—the driver should take the r2 branch imme-
diately, as this will always give the same or better time
to reach k.

The solution adopted is to reduce the granularity of
speed data samples in the edges by interpolating
between the values for consecutive time slots. When esti-
mating the time it would take to drive from one road
junction to a neighboring junction at a specific time of
the week, the distance between the junctions is divided
by the traffic speed at that time. Quadratic interpola-
tion used within each time slot improves the estimates
of speed.

Real-time routing
The second goal of this project was to calculate

revised routes in the light of actual congestion infor-
mation received at the time of travel. This uses two fur-
ther pieces of technology.

The Navstar GPS and the GSM-SMS extend the func-
tionality of the routing software. We envisage that soon
cars, vans, and trucks will be fitted with GPS receivers
and GSM telephones (or some similar wireless commu-
nications technology). With a Car-PC (Kontron Embed-
ded Computers, http://www.kontron.com) or similar
device installed, lightweight code can be executed on
the move, and the full potential of the GPS and GSM-
SMS hardware can be realized.

At regular intervals (in either time or distance cov-
ered) the equipment in the car determines its location
using the GPS receiver and sends the coordinates, along
with an identifier, by GSM-SMS to an SMS server back
at base. The identifier is looked up in a table of previ-
ously recommended routes to determine where this dri-
ver is heading. The routing service is then called to
calculate a revised route from the current location of the

vehicle to its known destination. This route is compared
with that given to the driver before the journey started.

If, in light of accidents for example, the best route has
changed, the server returns the revised route to the dri-
ver by GSM-SMS. Alternatively, the best route may not
change, but the road speeds might, making the esti-
mated time of arrival significantly different. In this case,
the server advises the driver to follow current directions
but that the estimated time of arrival has increased (or
decreased) by the appropriate amount. The server also
describes any likely congestion ahead.

The additional service is implemented through the
SMS server at the AT&T Research Laboratory in Cam-
bridge.2 This effectively presents a standard command-
line interface on the computer running the routing
services through GSM-SMS. Commands are sent as
short messages and responses returned similarly.

In this case, the command carries arguments speci-
fying the driver’s current position and the identity of
the route:

GSMRelay 544606 262498

robinson_route_42

The response indicates anticipated congestion:

20MpH on M25 J27-J28

20MpH on M1 J9-J8

25MpH on M1 J12-J11

15MpH on M6 J7-J6

20MpH on M6 J10-J9

20MpH on M6 J10a-J10

The advisory function checks each active route for new
congestion and generates text when appropriate, relay-
ing it to the driver as soon as possible. To simplify the
presentation of information to the user, and to improve
the user interface, a combined functionality informa-
tion appliance could be created by passing the conges-
tion advice as speech, either generated on the server
and relayed as a voice message to the mobile phone, or
forwarded as a command directly to a speech synthe-
sizer in the car.

The routing algorithm is sufficiently fast that a single
server can support several hundred clients whose posi-
tions are monitored every couple of minutes. A more
elaborate scheme would use congestion reports as
indices back into currently active journeys and only
reconsider directly affected users, but this isn’t necessary
in practice. As the computing power available in a stan-
dard car increases, the whole system could be distrib-
uted and recalculations performed locally in the vehicle.

Conclusions
Whilst not a commercial product, the software has

demonstrated that adaptive computerized route gener-
ation could help drivers cope with the growing conges-
tion on UK roads. Although it doesn’t tackle the causes
of congestion, the software could prove useful in mini-
mizing the delays resulting from queues of traffic.

As the network of sensors expands, the routing advice
will improve with little extra cost. The extra data should

Information Appliances

8 May/June 2000

k

m

r1

r2j

6 The sitting-
still problem.

enhance accuracy through better modeling of the real
world. At the same time the cost of running Lee’s algo-
rithm shouldn’t increase significantly, so the software
should continue to calculate routes quickly.

Commercial organizations conceivably might use
software similar to that described here. Many compa-
nies already have database facilities available to help
their drivers find delivery addresses and to help the
management team assess performance of their employ-
ees. Adding route planning facilities to the database
could increase productivity and profits for the compa-
ny by reducing wasted time and money when drivers sit
in traffic. This would also help to cut vehicle pollution,
which plagues many inner-city areas.

The software is implemented in Java. This gives it the
ability to run on Web browsers in homes and offices, and
also in hotel rooms and boardrooms via WebTVs. The
system shows how computing, communications, and
location information combined in an information appli-
ance can provide valuable facilities in a genuinely ubiq-
uitous computing environment. �

Acknowledgments
We are very grateful to Trafficmaster UK and AT&T

Research Laboratories, Cambridge, UK for making the
congestion information available.

References
1. I. Getting, “The Global Positioning System,” IEEE Spectrum,

Vol. 30, No. 12, Dec. 1993, pp. 36-38, 43-47.
2. F.M. Stajano and A.H. Jones, “The Thinnest of Clients: Con-

trolling it all via Cellphone,” ACM Mobile Computing and
Communications Review, Vol. 2, No. 4, Oct. 1998, pp. 46-53.

3. G. Cameron, B.J.N. Wylie, and D. McArthur, “Paramics—
Moving Vehicles on the Connection Machine,” Conf. on
High Performance Networking and Computing, Washing-
ton, Nov. 1994, pp. 14-18.

4. A. Bar-Noy and B. Schieber, “The Canadian Traveler Prob-
lem,” Symp. on Discrete Algorithms, ACM Press, New York,
Jan. 1991, p. 261.

5. B. Awerbuch et al., “Compact Distributed Data Structures
for Adaptive Routing,” ACM Symp. on the Theory of Com-
puting, ACM Press, New York, May 1989, pp. 479-489.

6. J.S.B. Mitchell and C.H. Papadimitriou, “The Weighted
Region Problem,” J. ACM, Vol. 38, No. 1, 1991, pp. 18-73.

7. R. Sedgewick, Algorithms, 2nd edition, Addison-Wesley,
Reading, Mass., 1988.

8. C.Y. Lee, “An Algorithm for Path Connectivity and its Appli-
cations,” IRE Trans. on Electronic Computers, Vol. 10, No. 3,
Sept. 1961, pp. 346-365.

John Fawcett is a PhD student at
the Laboratory for Communications
Engineering at the University of
Cambridge in England and a mem-
ber of Churchill College. He is part of
the Sentient Computing group. He
previously studied for a degree in the

Computer Laboratory at the University of Cambridge in
England. His current research focuses on applications for
mobile users, includes services that may be delivered to
vehicles over wireless communications media, and extends
to additional facilities that can be brought about by hav-
ing large numbers of equipped vehicles.

Peter Robinson is a lecturer in the
Computer Laboratory at the Univer-
sity of Cambridge in England, where
he is part of the Rainbow Group
working on computer graphics and
interaction. He is also a Fellow, Pra-
elector, and Director of Studies in

Computer Science at Gonville & Caius College, where he
previously studied for a first degree in mathematics and a
PhD in computer science. His research interests are in the
general area of applied computer science. The main focus
for this is human-computer interaction. He also works on
electronic design automation and, in particular, on sup-
port for self-timed circuits. He is a Chartered Engineer and
a Fellow of the British Computer Society.

Readers may contact Robinson at the University of Cam-
bridge, Computer Laboratory, New Museums Site, Pem-
broke St., Cambridge, England CB2 3QG, e-mail
pr@cl.cam.ac.uk.

IEEE Computer Graphics and Applications 9

