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3.1 Overall introduction 
Medicine has 
evolved rapidly 
in the last 25 
years. 
Nowadays, it 
uses novel data 
gathering 
technologies to 
enable large-
scale collection 
of observational 
data on complex 
biomedical 
systems, 
enabled by 
data-mining in 
order to exploit population studies, which are the basis of evidence-based medicine. . It is 
worth mentioning that there are recent technological breakthroughs on diagnostic and 
interventional imaging as well as a new generation of therapeutic devices; the first facilitates 
the creation of image-based models to further personalise patient models, while the second 
opens the possibility of exploring in parallel multiple treatments and their expected effects. 

However, a new paradigm shift is about to occur: personalised medicine promises to 
revolutionise the practice of medicine, transform the global healthcare industry, and 
ultimately lead to longer and healthier lives. The Digital Patient is part of this new paradigm, 
grounded on the principle that it is possible to produce predictive, patient-specific 
mathematical models for personalised healthcare.   

In many ways, modelling is able to complement data-mining, and the power of combining 
such approaches lies within leveraging their strengths for transforming observational data 
into knowledge. Building a model is a useful (and thrilling) scientific activity because it aims 
to reproduce the main features of a real system with the minimum number of parameters. 



 

DISCIPULUS – 288143 43 May 2013 

The objective is to gain a better understanding of how each of the different components 
contributes to the overall process. In this manner, modelling in medicine, fed by clinical 
research data, should aim to support clinical decision-making systems, and ultimately help 
the clinician to provide improved prevention and screening, diagnosis, prognosis, and/or a 
prediction of response to treatment.  

The development of robust patient-specific models, as they become available, will 
significantly advance prevention and treatment of disease. Although models in healthcare 
can potentially have many uses, there is an increasing urgency to address the prevention of 
chronic diseases through lifestyle improvements as the best path to a healthier population. 
For example, chronic diseases are overwhelming western countries’ healthcare systems. 
Between 70% and 80% of Europe’s healthcare costs are spent on chronic care, amounting 
for some €700bn annually86. Chronic diseases account for over 86% of deaths in the EU. 
However, much of this disease burden is preventable, or may be delayed or diminished, 
through a combination of primary prevention measures, screening, and early intervention. 
While primary prevention focuses on healthy living, secondary prevention (early screening 
and diagnosis) and tertiary prevention (early intervention to slow the progression of diseases 
already identified) also play important roles in reducing the burden of chronic disease87. 

Ideally, we would have a full understanding of all biological processes in both health and 
disease, as well as of the relationships between structure and function at all scales, and this 
complete knowledge would be represented usefully in a collection of inter-compatible 
mathematical models at all relevant scales, validated against experimental and clinical data, 
customizable for individual patients, and accessible through a convenient and interactive 
user interface for use by health professionals and patients. With this resource, one would be 
able to simulate diseases and pathologies and to explore patient-specific therapeutic 
intervention strategies, including evolution over time and realistic evaluation of prognosis. 
This is, of course, the long-term vision of the Digital Patient. 

In reality, our understanding at all scales is only partial, and available data is incomplete, as 
explained in other chapters of this document. Nonetheless,  

(i) current knowledge of anatomy and physiology is extensive on many levels and 
much of it has already been successfully represented in mathematical models, 
and  

(ii) relevant data is abundant, despite being incomplete and despite the many issues 
of standardisation, accessibility, and interoperability.  

Given this state of affairs, this chapter focuses on the challenges that must be met for 
constitution of the constellation of mathematical models that will underpin the Digital Patient. 
Here, we address the goal of “generalization and wide use deployment of the concept of 
integrative modelling.88” At the outset, we point out that the “Digital Patient” will certainly not 
be a unified, monolithic, all-encompassing mathematical model of the human body from gene 
to organism. Rather, it will consist of many sorts of models that will be invoked as needed, 
depending on the nature of the question at hand, the types of data available, and the degree 
of understanding of the subject under scrutiny. It is important to say that in this chapter we 
describe the overall picture with only a limited focus on the details; however, in order to 
address this, we have included numerous useful references for parts we could only touch 

                                                
86 http://digitalresearch.eiu.com/extending-healthy-life-years/report/section/executive-summary 
87 http://www.epha.org/a/5131 
88 Hunter et al. 2013, Interface Focus 3:20130004 
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upon because of space constraints. Lastly, we acknowledge that some aspects are up for 
debate, since the field is a rapidly evolving one, with a wide range of contributions from many 
different disciplines. We would like to emphasise that what has been traded off in detail has 
been gained in richness of diversity, in the spirit of what is needed for the development of a 
Digital Patient. 

Although clear boundaries among types of models are hard to define (which will facilitate the 
development of what will later be defined as “hybrid” modelling methodologies), this chapter 
will roughly demarcate two major modelling categories that will systematically appear 
throughout. This categorisation is not absolute, but rather delineates the terms of reference 
that are used when distinguishing between different types of models that embrace a large 
variety of modelling techniques and fit different purposes in the context of the Digital Patient: 

Phenomenological models are related to the empirical observations of a 
phenomenon, where a phenomenon is understood as an observable fact or 
event.  When considering how to achieve the realisation of the Digital Patient, 
these models occupy a central position whenever a quick means is needed to 
represent pathologies quantitatively for both basic science and practical 
applications. 

Mechanistic models, on the other hand, aim at reaching a better understanding 
of the mechanisms that underlie the behaviour of the various endpoints of the 
biomedical process.  

Mechanistic models often investigate the molecular and cellular basis of 
biomedical processes through their physico-chemical properties. They are able to 
consider events at different orders of magnitude for both spatial scales (from 
intracellular to cell, tissue, and organ) and time scales (from the 10-14 s of the 
molecular interactions to the hours, months and years of the biomedical 
processes).  

The diversity among the available models is clear, but their “integration” does not imply that 
they will all necessarily be interlinked. Further along in this chapter, we address several 
different pathologies and present modelling strategies for each of them. The models range 
from probabilistic, data-driven (“phenomenological”) models with no “mechanistic” 
underpinning, to multi-scale, multi-physics models based on state-of-the-art understanding of 
the underlying anatomy and physiological mechanisms. However, while recognising that 
different communities favour one or the other approach, it would not serve the present 
purpose to focus on the relative advantages or disadvantages of “phenomenological” versus 
“mechanistic” modelling, since most models combine elements of both, and the real 
challenge lies in providing appropriate tools for quantitative exploration of a variety of clinical 
challenges. We will invoke both approaches, as appropriate, addressing the following key 
challenges to be faced for achievement of the integrated Digital Patient on the following 
topics: 

● Selection of mathematical modelling approach 
● Model personalisation in the face of multiscale complexity 
● Impact of data quality on model personalisation 
● Coping with complexity 
● Formalisation and generalisation of model testing and validation strategies 
● Translation and Clinical utilisation of models 
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3.2 Key challenges 

3.2.1 Selection of mathematical modelling approach 

To realise the Digital Patient, a first scientific challenge that needs to be addressed is the 
selection of the most adequate mathematical modelling approach. There is not a unique way 
of creating a model and many aspects determine this selection, such as model purpose 
and/or data availability. In a broad sense, the choice might be between phenomenological 
and mechanistic mathematical models, but a recurrent topic when modelling any disease is 
the strong link and dependency between these two modelling approaches. One example is 
the case of complex multi-omics structured data (embracing genotype information, 
metabolomics datasets, and subclinical and clinical phenotypes), which would use both data 
assimilation and novel mechanistic methodologies to elucidate pathological mechanisms.  

Another particularly relevant example is faced when dealing with the challenge of 
comorbidities. Comorbidity is the term used to address diseases, often chronic ones, co-
occurring in the same individual; i.e. an illness may develop, but health conditions also 
depend on another simultaneously occurring pathological process elsewhere, like for 
example inflammation, diabetes, or respiratory problems. As a result of this complexity, it is 
likely that modellers will often find themselves in between the two types of modelling 
methodologies, since there is no clear practical separation between phenomenological and 
mechanistic methods. 

Finally, efforts from the modelling community are needed to use existing VPH reference 
ontologies to annotate the resulting models and to make them available through VPH 
common model repositories. This formalisation will enable interoperability between models in 
general. Examples of initiatives pursuing this objective are the two EU-funded VPH projects 
VPH-Share89 and p-medicine90. These two projects are collaborating together and seeking 
complementarities. VPH-Share is working to provide the essential services and 
computational infrastructure for the sharing of clinical and research data and tools, facilitating 
the construction and operation of new VPH workflows, and collaborations between the 
members of the VPH community. In this project, evaluating the effectiveness and fitness-for-
purpose of the infostructure and developing a thorough exploitation strategy are key activities 
to create confidence and engage the communities. P-medicine intends to go from data 
sharing and integration via VPH models to personalised medicine.  The emphasis is on 
formulating an open, modular framework of tools and services, so that p-medicine can be 
adopted gradually, including efficient secure sharing and handling of large personalized data 
sets, enabling demanding Virtual Physiological Human (VPH) multiscale simulations (e.g., in 
silico oncology), building standards-compliant tools and models for VPH research, drawing 
on the VPH Toolkit91 and providing tools for large-scale, privacy-preserving data and 
literature mining, a key component of VPH research. 

                                                
89 http://www.vph-share.eu 
90 http://www.p-medicine.eu 
91 http://toolkit.vph-noe.eu/ 
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An important consideration valid for mechanistic and phenomenological 
models is that biomedical systems characterisation is more rationally and 
robustly addressed when driven by a comprehensive, rather than selective, 
use of all the available information, provided the varying degree of accuracy of 
the components of the evidence base is correctly recognized.  

Among the wealth of methods available for phenomenological modelling, 
Bayesian techniques for multi-parameter evidence synthesis have 
demonstrated a rational and exhaustive use of the whole body of information 
available for decision models. 92  

Recently, methodologies resulting in a combination of Bayesian inference for 
partially observed Markov process models and nonlinear dynamical systems 
approaches have also been developed. 93  

Other techniques encompass formal methods. It is worth noting that novel concepts and 
terminologies originally developed in the theoretical computer science domain (for example 
executable models, expressivity, abstraction, statistical model checking, stabilization, reach 
ability analysis, formal verification), which are scarcely known by other modelling 
communities (for example engineers and physicists), are providing important insights and 
tools for modelling and analysing complex biological systems. The key concept here is the 
distinction between the mathematical model and the computational model. The two terms are 
tightly related, since the computational model is a mathematical model executed by a 
computer.  

Other approaches (including process algebra, hybrid systems, Petri nets, state-charts) 
provide a battery of methodologies94. One example is the verification of a property 
representing a condition of illness or the effect of a drug; we could imagine that at the clinical 
level, computer-aided therapies and treatments will develop into intervention strategies 
undertaken under acute disease conditions or due to external factors (like infections) to 
contrast cascade effects. In non-acute states, predictive inference will propose prevention 
plans for comorbidity management.  

Additional methodologies are based on dynamical systems theory, particularly chaos and 
fractals95. In healthy tissue, a full repertoire of receptors and ion channels respond to 
mechanical micro-stress events and generate small highly variable noise in a variety of 
physiological signals such as heartbeat, blood pressure, gait, and nephrons96 etc. In disease 
or aging conditions, we commonly observe a reduction of such variability and more 
smoothness. This difference in biological signals has been used to extract useful information 

                                                
92  see an example in Ades AE, Welton NJ, Caldwell D, Price M, Goubar A, Lu G. Multiparameter evidence synthesis in 
epidemiology and medical decision-making. J Health Serv Res Policy. 2008 Suppl 3:12-22 
93  EDWARD L. IONIDES, ANINDYA BHADRA, YVES ATCHADÉ AND AARON KING Iterated Filtering, The Annals of 
Statistics 2011, Vol. 39, No. 3, 1776–1802 
94  Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25: 1239-1249; Bartocci E, Corradini F, Di Berardini 
M, Merelli E, Tesei L (2010) Shape calculus. a spatial mobile calculus for 3 d shapes. Scientific Annals of Computer Science 20: 
2010; Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: SFM. Springer, number 5016 in 
Lecture Notes in Computer Science, pp. 215-264; Setty Y, Cohen IR, Dor Y, Harel D (2008) Four-dimensional realistic modeling 
of pancreatic organogenesis. Proc Natl Acad Sci USA 105: 20374-20379; Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka 
SA, et al. (2011) Toward real-time simulation of cardiac dynamics. In: Proceedings of the 9th International Conference on 
Computational Methods in Systems Biology. New York, NY, USA: ACM, CMSB '11, pp. 103-112. doi: 
10.1145/2037509.2037525. URL http://doi.acm.org/10.1145/2037509.2037525 
95  Seely AJ, Macklem P. Fractal variability: an emergent property of complex dissipative systems. Chaos. 2012 
Mar;22(1):013108. doi: 10.1063/1.3675622 
96  Laugesen JL, Mosekilde E, Holstein-Rathlou NH. Synchronization of period-doubling oscillations in vascular coupled 
nephrons. Chaos. 2011 Sep;21(3):033128. doi: 10.1063/1.3641828. 
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about the state of the patients and to create diagnostic tests. The mathematical 
characteristics of these signals resemble those found in deterministic chaos, fractals, and 
self-organizing emergent properties of complex dissipative systems; in many cases, the 
physiological signals are studied by means of wavelets. Cardiovascular physiological signals 
provide a rich literature of fractal and/or chaotic behaviour, particularly related to the His-
Purkinje network of the heart97 98. While the gait of healthy adults follows a scale-free law 
with long-range correlations extending over hundreds of strides, the fractal properties of gait 
are modified in Parkinson's disease. Notably, we observe a decrease in the gait correlation 
and changes in stride length and gait variability99 100 101. In the case of Alzheimer's disease, 
the analysis of the fractal dimension of the EEG is used to discriminate patients affected by 
the disease from control groups with an accuracy of 99.3%, sensitivity of 100%, and a 
specificity of 97.8%102. 

3.2.2 Model personalisation in the face of multiscale complexity  

The formulation of mathematical models for medicine represents a real challenge, not only 
because we do not fully understand all the pathophysiological mechanisms, but also because 
many illnesses are prolonged in duration and, in the case of chronic diseases (like for 
instance stroke, diabetes, arthritis, osteoporosis, atherosclerosis, etc.), are generally 
managed rather than cured. Including ageing as one of the elements in personalised models 
is an example in itself of such complexity, and we have devoted a box to that (see Box at the 
end of the chapter). 

One possible strategy to model disease over time is to use hypothesis-based models that 
combine mechanistic and phenomenological elements corresponding to the degree of 
understanding of the different components. These models should be adjusted to represent 
specific time-points in the patient’s evolution in order to calculate expected progression of 
clinical indicators based on probabilistic models that are, in turn, rooted in population data. 
This approach takes advantage of state-of-the-art knowledge of the (patho-)physiology while 
also exploiting the mass of data becoming available from clinical trials and epidemiology, on 
one hand, and GWAS and other molecular data, on the other hand. In appropriate cases, 
and as pointed out in the VPH Vision document (Hunter al. 2013), “the VPH initiative may be 
of substantial help by providing mechanistic model descriptions of the phenotypic effects 
originating from genomic network variation103. Such causally cohesive genotype–phenotype 
models are very advanced multiscale physiological models with an explicit link to molecular 
information and with the capacity to describe, for example, how genetic variation manifests in 
phenotypic variation at various systemic levels up to the tissue, organ and whole-organism 
level.” 

                                                
97  Sharma V. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new 
frontier. Open Cardiovasc Med J. 2009 Sep 10;3:110-23. doi: 10.2174/1874192400903010110. 
98  Schmitt DT, Ivanov PCh. Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced 
age: a new mechanistic picture of cardiac control in healthy elderly. Am J Physiol Regul Integr Comp Physiol. 2007 
Nov;293(5):R1923-37. Epub 2007 Aug 1. 
99  Hausdorff JM. Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, 
and fractal-like scaling Chaos. 2009 Jun;19(2):026113. doi: 10.1063/1.3147408 
100  Hausdorff JM, Ashkenazy Y, Peng CK, Ivanov PC, Stanley HE, Goldberger AL. When human walking becomes random 
walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A. 2001 Dec 15;302(1-4):138-47 
101  Beuter A, Modolo J. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease. Chaos. 
2009 Jun;19(2):026114. doi: 10.1063/1.3127585 
102  Ahmadlou M, Adeli H, Adeli A. Alzheimer Dis Assoc Disord. 2011 Jan-Mar;25(1):85-92. doi: 
10.1097/WAD.0b013e3181ed1160. Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease 
103  Shublaq N, Sansom C, Coveney PV. 2013 Patient- specific modelling in drug design, development and selection including 
its role in clinical decision- making. Chem. Biol. Drug Des. 81, 5–12. (doi:10. 1111/j.1747-0285.2012.01444.x) 
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Consider also the amount of data routinely collected on the millions of patients treated in 
worldwide healthcare systems, not to mention the rapidly expanding knowledge of human 
genetics. We are now at a point where computing power and mathematical modelling are 
becoming able to make use of such vast amounts of information, despite the inevitable noise 
from ‘random variation’. New perspectives may be required in which systems can learn from 
data, even generated at the individual level. One may even conjecture that it may be possible 
to develop individual disease models for each person. For example, consider the case of 
identical twins with similar lifestyles; one develops a chronic disease 30 years before the 
other. Is it possible to create models that are capable of accommodating such apparent 
discrepancies? The answer is positive in principle, because models can input lifestyle 
information as well as physiological, metabolic, and genomic data. Nevertheless, this will 
require not only the coupling between models at different time and length scales, as well as 
the description of different physical phenomena, but also between different 
(phenomenological and mechanistic) modelling paradigms. Until recently, the complexities of 
many diseases have made them almost intractable for modellers, biologists, and clinicians. 
Current computational capacities should enable effective modelling of systems that are 
relevant for therapy. A more systematic, all-encompassing, intelligent and informed update of 
the models would provide a way forward in order to overcome fragmentation and to address 
lack of data.  

It should be stressed that this is also a technological challenge. For example, multiple 
interacting processes are typically well described individually by different modelling 
approaches, like ordinary vs partial differential equations (ODEs vs. PDEs). When such 
heterogeneous models are coupled naively, the resulting hypermodel104 may become difficult 
or impossible to solve. It is thus necessary to develop better – and where possible generic – 
ways to deal with such coupling problems, so that they can be embedded in open access 
software libraries for common research use, even if individual researchers or teams lack a 
deep understanding of the underlying complex mathematical, numerical, and computational 
techniques involved.  

Last but not least, it is essential to highlight the role of boundary conditions for models.  
These boundary conditions will have to be personalisable, robust and efficient. 

3.2.3 Impact of data quality on model personalisation  

Biomedical data sources commonly include incomplete entries mainly because of the 
difficulties at the data collection stage (see chapters 1 and 2 for more details). On the one 
hand, this complicates the modelling process that needs to cope with this situation, while on 
the other hand it reduces the confidence of the conclusions derived from the models that 
have been built. Bayesian statistical inference provides a mathematically consistent 
framework for encoding uncertain information at the time of observation by obtaining a 
posterior measure over the space of “trajectories” of the biomedical process. For example, 
although missing data and the difficulty of dealing with lifestyle or self-reported questionnaire 
data will decrease the quality of the data, the statistical inference provides a powerful means 
to constrain probability measures over the causal spaces. Bayesian methods could also 

                                                
104  Within this document we use the term ‘hypermodel’ to describe a concrete instance of an integrative model, built as the 
orchestration of multiple computer models that might run on different computers at different locations, using different simulation 
software stacks. Typically a hypermodel is a computational model that might operate on multiple spatial scales, perhaps from 
molecular through cellular to organ and patient level, and/or on multiple temporal scales, from acute response upwards, and/or 
might include descriptions of physical, chemical and biological processes. 
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make use of the available information to predict missing values105. The impact of using these 
methods would need to be evaluated during model validation. 

There will always be issues with the quality of data collected routinely in hospitals, especially 
if the aim is to use models in clinical practice, because data quality depends on many factors, 
including human skill. This issue could potentially be addressed by the development of new 
methods able to integrate the knowledge from experts and the data collected. 

3.2.4 Coping with complexity  

The complexity of most diseases and the different answers that various types of data would 
provide remind of the popular tale “The Blind Men and the Elephant” by John Godfrey Saxe 
(1816-1887). The author writes about a group of blind men who touch an elephant. Each 
person feels only one part, such as the side or the tusk; so when they describe to each other 
what they have found, they are in complete disagreement. 

For many diseases the most important step is the identification of key model parameters, 
which can often be measured with only limited accuracy. This issue becomes more critical 
when multiscale models exhibit nonlinear behaviour, where small variations in certain input 
parameters could produce significant differences in the output predictions. Clearly some 
parameters cannot be directly measured on the patient of interest, so one has to use values 
derived from estimated population mean and variance or from animals. When identification of 
key parameters that could actually be determined or estimated is problematic, non-
parametric models might also be effective. 

It is becoming evident that in order to approach the complexity, model order-reduction 
techniques are sorely needed, while to overcome the sparsity and the variable relevancy and 
quality of the data it is often important to consider coupling mechanistic with 
phenomenological modelling.   

For single-scale models, researchers have developed a number of methods to account for 
uncertainties and variability, most of which require Monte Carlo techniques. However, in the 
case of large multiscale models intended as the orchestration of multiple submodels, 
transformation of some or all of these submodels into stochastic models leads to heavy 
computational costs. For example, in the VPHOP project referenced below in the Exemplars 
section, a full cell-to-organism multiscale musculo-skeletal model in which only the daily 
physical activity and the related risk of falling were modelled as a stochastic process. The 
estimation of the risk of bone fracture over 10 years required over 65k core-hours of 
calculations for each patient. While the final VPHOP hypermodel runs 50 times faster, this 
was achieved by introducing considerable simplifications in some of the most complex 
processes. 

The applied mathematics community has developed a number of methods – such as 
Markov-Chain Monte Carlo106 and the method of Morris107 – that address aspects of this 
problem. Nonetheless, we need to target these general modelling techniques to the specific 
problems, validate them extensively, and make them available to the VPH research 
community in ways that make their widespread adoption possible given their considerable 

                                                
105  Nguyen, V. A., Koukolikova-Nicola, Z., Bagnoli, F., & Lioʼ, P. , 2009 Noise and non-linearities in high-throughput data. J 
STAT MECH THEORY doi:10.1088/1742-5468/2009/01/P01014 
106  Persi Diaconis. The Markov chain Monte Carlo revolution. Bulletin of the American Mathematical Society. 46 (2009), 179-
205. MSC (2000): Primary 60J20. Posted: November 20, 2008 
107  Jeffrey S. Morris. "Statistical Methods for Proteomic Biomarker Discovery Based on Feature Extraction or Functional 
Modeling Approaches" Statistics and Its Interface 5.1 (2012): 117-136. 
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complexity. We also need to strengthen the stochastic physics background of our students 
and post-docs as our research sector develops in this direction. 

In the case of phenomenological models, an illustrative example is the study of links between 
morbidities and risk evaluation for a specific pathology. The phenomenological model aims at 
organising the wealth of observations within a formal structure. One aspect of this challenge 
is that the connection between data availability and the creation of the phenomenological 
model is often bridged by human experts, causing a major bottleneck in their ability to 
understand and engineer complex biomedical systems.  

3.2.5 Formalisation and generalisation of model testing and validation strategies  

In general, scientific progress towards creating and validating any model generally relies on 
asking the right questions, and this is far from a banal statement. Different modelling 
methodologies often answer slightly different questions and, as a consequence, different 
studies use methodologies that are difficult to cross-compare. Differences between an 
approximate and an exact model are usually remarkably less than the disparity between the 
exact model and the real biological process108. In such cases, the knowledge that an "expert 
system" could provide to understand a specific pathology and predict its course is often 
placed into question rather than believed and built upon. 

One fundamental aspect of personalised models of any kind is that they should always be 
subjected to a sensitivity and robustness analysis, concepts that are intimately linked to the 
notion of “validation”. The sensitivity analysis aims to identify the most influential model 
parameters, including dependencies among input parameters and between inputs and 
outputs. The robustness analysis aims to evaluate the probability that the model will not 
deviate much from a reference state in the face of perturbations. If a given biological process 
itself is robust to external perturbations, then analysis of successful models that represent 
that process will be valuable to further our understanding of the biological mechanisms 
underlying the real system's robustness. Moreover, models will only be adopted in the clinic 
once they have satisfied the sensitivity and robustness requirements that will make them 
useful in practice. Only by knowing their limitations and how well they are able to make 
credible predictions or diagnoses with small or large differences in the input data will 
clinicians feel confident enough to use them as a tool for personalised diagnosis and 
treatment, since this is directly linked to issues of patient safety. Here lies one of the main 
challenges of the Digital Patient: clinical acceptance of the patient models that will be 
developed in the future. This is further discussed in the sections below. 

3.2.6 Translation and Clinical utilisation of models  

Even though mechanistic models are complex in nature, some have already entered the 
clinical arena in the form of software applications embedded in diagnostic or therapeutic 
devices. Examples of such models are pressure wave propagation models as implemented 
in the Nexfin monitor, by BMeye B.V. to evaluate central blood pressure and cardiac output 
from finger plethysmography. Another example of a device is the pacemaker with IAD 
(Medtronic and others), where a model-based decision algorithm controls the defibrillation 
action. At an early stage in the promotion of models for clinical use, the more or less generic 
models used in the applications above could be expanded and personalized to increase the 
use of validated models in the clinic.  

                                                
108  D. J. Wilkinson, Stochastic modeling for quantitative description of heterogeneous biological systems, Nat. Rev. Genet., 
2009, 10, 122-133 
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In pharma, clinical pharmacology is an integral part of clinical trials and the approval of a new 
drug. Empirical (non-mechanistic), semi-mechanistic (e.g. pharmacokinetic/ pharmaco-
dynamic – PKPD models) and more mechanistic methods (e.g. physiologically based 
pharmacokinetics – PBPK models) have been part of quantitative pharmacology, or 
pharmacometrics. New mechanistic models in drug development are trying to include more 
information about the biology, pharmacology, disease, and physiology in order to describe 
and quantify the interactions between xenobiotics and patients, including beneficial effects 
and side effects that result from such interfaces. A new emerging area called systems 
pharmacology is being developed as an approach to translational medicine that combines 
computational and experimental methods to elucidate, validate, and apply new 
pharmacological concepts to the development and use of small molecule and biological 
drugs to determining mechanisms of action of new and existing drugs in preclinical and 
animal models, as well as in patients. Approaches related to pharmacometrics – in particular 
PKPD modelling – are increasingly being applied in the development of novel therapeutics. 
The impact of these investments is being supported by both pharmaceutical research 
organizations and regulatory agencies109. 

Non-mechanistic methods such as non-compartmental analysis (NCA) require regulatory 
approval for new drug application (NDA). NCA provides a framework to use statistical 
moment analysis to estimate pharmacokinetic parameters dependent on total drug exposure. 
Some of the parameters obtained from NCA have a practical meaning and can be 
interpreted, such as the volume of distribution or clearance. However, the parameters 
provide little insight into physiology, nor how patients will behave towards a different set of 
conditions. NCA still plays an important role in bioequivalence studies and rapid analysis, but 
the utility and impact of pharmacokinetic data has increased massively since the arrival of 
the more mechanistic population approaches. 

In the cancer field, models of the MAP kinase pathway around the EGF receptor can be used 
for the individualization of the treatment of some cancers110, and models of the Warburg 
effect advise the dynamic dosing of new glycolytic inhibitors of tumorigenesis111,112. A final 
example is the differential network-based drug design models for parasitic diseases such as 
malaria and trypanosomiasis113.  

These examples indicate that simple models that cover a relatively small part of a pathology 
or mechanical process are most likely to be adopted for clinical use soonest. As mentioned 
above, a key point in this process is the validation of the models before actual clinical 
adoption can occur on a larger scale. Proof of the specificity and sensitivity of models in, for 
instance, diagnostic tools, is and will continue to be crucial to this adoption process. In the 
textbook developed by the VPH Network of Excellence (to be published by OUP), Viceconti 
and Graf draft a framework for pre-clinical and clinical model validation, as well as for clinical 
acceptance.  While such a framework may appear complex and demanding, we believe it is 
only in this way that the natural resistance against computer simulations will be overcome, 
proving conclusively that the Digital Patient technologies are accurate, robust, and clinically 
effective. 

                                                
109  Van der Graff, P., CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e8 
110  K Oda, Y Matsuoka, A Funahashi & H Kitano, A comprehensive pathway map of epidermal growth factor receptor 
signaling, Molecular  Systems Biology 1:2005.0010, 2005 
111  H Pelicano et al. Glycolysis inhibition for anticancer treatment, Oncogene (2006) 25, 4633-4646 
112  D. A. Tennant, R. V. Durán and E. Gottlieb, Targeting metabolic transformation for cancer therapy, NATURe RevIeWS | 
Cancer, 10, 267-277, 2010 
113  Tekwani BL: Current antiparasitic drug targets and a paradigm shift in discovery of new antiparasitic drugs and vaccines. 
Curr Drug Targets 2008, 9:921 
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An example of multiscale complexity: Ageing 

In the latest VPH NoE strategy document (Hunter et al., VPH Vision 2013) it was 
written: “age is the dominant risk factor for most complex diseases. The making of 
multiscale physiological models capturing the ageing process defines a very 
ambitious long-term theoretical – experimental research programme of vital 
importance to the VPH vision.”  

Ageing is a hurdle to overcome and its inclusion in personalised models for the 
Digital Patient is a challenge that multi-scale models will need to resolve. Already 
when merely considering the multifarious interconnections between ageing and 
lifestyle and genetic factors, one can appreciate the complexity of this dynamic 
process. The age factor is successfully used in epidemiological studies to specify, 
for example, the contact rate of the spread in an infectious disease, which 
summarizes the infectious effectiveness of contacts between susceptible and 
infectious subjects. However, even for population/epidemiological studies where 
functional biological relationships between the different causes and effects of 
ageing in the model are not relevant, epidemic models that take into account the 
age structure of a population are very intricate. 

One possibility is to identify genomic markers most closely associated with age 
and related disease traits. In the VPH-FET roadmap114, it was highlighted that “[...] 
combining genomic, proteomic, metabolomic and environmental factors may 
provide insights into pathogenomic mechanisms and lead to novel therapeutic 
targets”. In diseases precipitated by complex interplays of genetic predisposition 
and a broad spectrum of environmental and nutritional factors, the challenge is 
immense. In this context, epidemiological factors such as urbanicity, geographical 
distribution, migration behaviour, and maternal risk factors such as infections, 
malnutrition and adverse life events during pregnancy, have been suggested as 
being relevant to different extents. It is clear that a combination of different types of 
modelling paradigms will be necessary to establish the relationship between these 
factors and the interplay with genetic determinants, which thus far remains 
unknown. Integrated, system-based investigations are a promising approach to 
obtaining deeper insights into the disease aetiology and its management or cure.  

In mechanistic-type models, the physiological aspects of ageing can be 
represented as time-dependent changes in relevant model parameters. On a 
population level, a number of such factors have been identified, including bone 
density in women, gradual reduction of renal function (i.e. falling GFR), reduced 
mobility (e.g., increased sitting-to-standing time), elevated pule arterial pressure, 
elevated TPR (total peripheral resistance), and left ventricular hypertrophy.. As the 
mechanisms responsible for these age-related changes become elucidated, the 
corresponding details in the models can be adjusted accordingly, and when the 
mechanisms are unknown these changes will be reflected in appropriate 
phenomenological model parameters. However, ageing is perhaps a case where 
phenomenological models are easier to build (taking advantage of the wealth of 
observational data available) compared to the mechanistic ones, since mechanistic 
aspects of ageing are less well known. 

 

                                                
114 https://www.biomedtown.org/biomed_town/VPHFET/reception/vphfetpublicrep/plfng_view 
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3.3 Modelling different pathologies - exemplars 
Patho-physiological phenomena must be interpreted from clustering of extracted features, 
time evolution, and multi-parameter analysis. For “black box” or data-driven models, this 
might be enough; an additional step of formulation of cause-effect relationships is needed for 
“mechanistic models”. In any case, the lack of data covering decades hampers the 
effectiveness of most types of models. There are very few longitudinal studies available and 
this is one of the greatest challenges in modelling disease. Six examples in which modelling 
has been successfully used in clinical applications are described below in relative detail, but 
we also highlight areas in which gaps and unmet needs are evident. A comprehensive view 
of the six is presented in the table below and descriptions follow below in the text. 

TABLE 1: COMPARATIVE OVERVIEW OF MAIN FEATURES OF SIX DIFFERENT PATHOLOGIES 

Pathology Comorbidities Phenomenological modelling Mechanistic modelling 
Breast 
cancer 

COPD; CHF; stroke Tumor diameter growth; biopsies; 
histology; development of stage 
diagnosis 

Cell invasiveness based on 
prognostic and diagnostic 
molecular markers 

Osteoporo-
sis 

Several types of 
cancers (breast, 
prostate, multiple 
myelomas); endocrine 
unbalance; infections 
(HIV); therapies 
(HAART) 

Bone mineral density;  
Wolff’s law;  
development of Frax tool. 

Molecule-to-cell,  
cell-to-tissue coupling models,  
for example osteocytes, 
hormones 

Atheroscler
osis 

Inflammation; obesity; 
diabetes 

Imaging: CT, MRI or US 3D+T 
with resolution of 1 mm per voxel; 
arterial elasticity; plaque 
biomechanics in general; 
restenosis after stenting 

Proliferation and migration of 
vascular smooth muscle cells; 
plasma lipoproteins (LDL and 
HDL), 

Cardiomyo-
pathy 

Obesity; diabetes; 
coronary artery 
disease; hypertension; 
infection 

ECG patterns; abundance of 
longitudinal studies 
(Framingham115, Dawber, 
Busselton) 

Energy metabolism based on 
glycolysis; mitochondrial 
functionality; lactate production; 
ionic (sodium) currents; 
excitation / contraction of single 
cells 

Dementia Stroke and heart 
failure prediction tools 
predict dementia 
(Kaffashian116) 

Cognitive tests and memory; EEG 
patterns; MRI; brain mapping; 
network models of atrophy; use of 
longitudinal data 

β-Amyloid plaques; 
neurofibrillary tangles; tau 
phosphorylation 

Stroke Hypertension; 
coronary disease and 
diabetes; the Charlson 
comorbidity 

Cognitive tests and memory; 
performance; Charlson index; 
neuroimaging 

Based on oxidative DNA 
damage and repair; 
vasoconstrictor such as 
endothelin-1 

                                                
115  Thomas R. Dawber, M.D., Gilcin F. Meadors, M.D., M.P.H., and Felix E. Moore, Jr., National Heart Institute, 
National Institutes of Health, Public Health Service, Federal Security Agency, Washington, D. C., Epidemiological 
Approaches to Heart Disease: The Framingham Study Presented at a Joint Session of the Epidemiology, Health 
Officers, Medical Care, and Statistics Sections of the American Public Health Association, at the Seventy-eighth 
Annual Meeting in St. Louis, Mo., November 3, 1950. 
116  Kaffashian S, et al "Predicting cognitive decline: A dementia risk score vs the Framingham vascular risk 
scores" Neurology 2013; 80: 1300–1306. 
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3.3.1 Breast Cancer 

Multistage cancer models are widely used to model solid tumours that appear to develop 
through well-defined phenomenological stages, including initiation, pseudo-tumoral and 
cancer transformation117. Here the histological analysis, screening, and clinical incidence 
data could be used to calibrate, validate and check the consistency of the several sources of 
evidence and define the stage of the cancer. The phenomenology of breast cancer disease 
is related to its aggressiveness, which stems from its rapid recurrence and metastasis 
positioning. Phenomenological models of breast cancer use a wide range of parameters 
related to imaging, pathology, basic research, clinical trials, clinical practice, genetic 
predisposition, and epidemiology. The most meaningful parameter set from these analyses 
could be wrapped to construct new phenomenological parameters to describe growth 
rhythms, growth delays, and time constants. This modus operandi introduces a vast 
simplification by turning a system with a large number of constituents specific to the used 
techniques into a limited number of effective degrees of freedom embedded in a few 
phenomenological parameters118. For example, in breast cancer, a diffuse redness provides 
evidence that inflammatory processes are involved in the pathogenesis of this disease, which 
is rare but the most aggressive form of breast cancer.  

It is clear though that in order to understand the processes behind tumour growth and 
treatment, other (more mechanistic) approaches are required. For example, the 
ContraCancrum project119 aimed at bringing together different levels of biocomplexity 
producing an integrated oncosimulator and validating it on two dedicated clinical studies 
concerning glioma and lung cancer. The project modelled and simulated cancer vs. normal 
tissue behaviour at different levels of biocomplexity, and also modelled a facet of the 
systemic circulation via pharmacokinetics, and synthesised models of hematological 
reactions to chemotherapy.120,121  

One interesting proposition is to try harnessing the power of epidemiological studies in 
conjunction with a systemic mechanistic approach, as proposed by Sokhansanj and 
Wilson122. They describe a mathematical model that mimics the kinetics of base excision 
repair and thus permits them to investigate in silico the effects of genetic variation in this 
important DNA repair pathway. As written in 123 “If one succeeds in constructing a 
mathematical model that reasonably represents the biochemical reality, the payoff is large. 
One can experiment with the model by increasing or decreasing inputs (corresponding, say, 
to changes in diet) or by raising or lowering activities of enzymes (corresponding to genetic 

                                                
117  see an example in Wai-yuan Tan, Leonid Hanin Handbook Of Cancer Models With Applications (Series in 
Mathematical Biology and Medicine) World Scientific Pub Co Inc; 1 edition (August 11, 2008) 
118  Bastogne T, Samson A, Vallois P, Wantz-Mézières S, Pinel S, Bechet D, Barberi-Heyob M. 
Phenomenological modeling of tumor diameter growth based on a mixed effects model. J Theor Biol. 2010 Feb 
7;262(3):544-52.) 
119  http://www.contracancrum.eu/ 
120  A. Roniotis, K. Marias, V. Sakkalis, and G. Stamatakos "Mathematical guide for developing a heterogeneous, 
anisotropic and 3-dimensional glioma growth model using the diffusion equation", Information Technology 
Applications in Biomedicine (IEEE-ITAB 2009), Larnaca, Cyprus, 2009. 
121  G. S. Stamatakos, D. Dionysiou, S. Giatili, E. Kolokotroni, Ε. Georgiadi, A. Roniotis,V. Sakkalis, P. Coveney, 
S. Wan, S. Manos, S. Zasada, A. Folarin, P. Büchler, T. Bardyn, S. Bauer, M. Reyes, T. Bily, V. Bednar, M. 
Karasek, N. Graf, R. Bohle, E. Meese, Y.-J. Kim, H. Stenzhorn, G. Clapworthy, E. Liu, J. Sabczynski, and K. 
Marias, “The ContraCancrum Oncosimulator: Integrating Biomechanisms Across Scales in the Clinical Context”, 
4th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation, Athens, Greece, 
September 8-9, 2010. 
122  Sokhansanj BA, Wilson DM. Estimating the impact of human base excision repair protein variants on the 
repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006;15:1000–8 
123  http://cebp.aacrjournals.org/content/15/5/827.full 
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polymorphisms), or eliminating entire reactions completely (corresponding to gene-knockout 
experiments). One can take apart and put back together the biochemical network piece by 
piece to determine how it works. In contrast to biological experiments, these in silico 
experiments are quick and inexpensive and, if done well, can give real insight into the 
genetic and molecular network”. 

3.3.2 Osteoporosis 
Bone is one of the most adaptable tissues in the body. Accurate phenotypic descriptions of 
human skeletal phenomena are starting to accumulate124. During adulthood, there is a stable 
equilibrium (homeostasis) with the formation of new bone by the osteoblasts and the removal 
of older bone tissue by the bone-resorbing osteoclasts. This homeostasis can be perturbed 
by aging (osteoporosis), infections (osteomyelitis125), changes in physical activity, or through 
metabolism. Due to the deposition of collagen in particular directions by osteoblasts, bone 
acquires anisotropic properties with an alignment of the principal directions of the bone 
(trabeculae) with the principal direction of stresses, known as Wolff’s law. Hence there is a 
direct relationship between bone adaptation and mechanical loading. This sensitive 
equilibrium is broken at a later stage in life when the osteoblast activity is reduced, leading to 
osteoporosis and an increased fragility of bone. The osteoporosis case shows an excellent 
example of mechanistic modelling put to the service of the clinical community.  

The mechanistic approach lends itself with relative ease to the understanding of 
osteoporosis; bone and muscle have been active and successful research strands in 
biomechanics for decades. Multiscale modelling and simulation approaches have tried to 
bridge the spatial and temporal gaps involved. For example: by detailed modelling of 
musculoskeletal anatomy and neuromotor control that define the daily loading spectrum, 
including paraphysiological overloading events; by modelling fracture events as they occur at 
the organ level and are influenced by the elasticity and geometry of bone, which leads 
directly to the tissue scale as bone elasticity and geometry are determined by tissue 
morphology and finally reaching the cell, as cell activity changes tissue morphology and 
composition over time. Some examples of this are found in 126,127 

Several types of phenomenological models have also been proposed, for example based on 
PDE solvers using histological and micro-CT image information128, a topological osteoactivity 
metric, i.e., the resorption-formation steady-state is represented as a torus in 
multidimensional phase space129, a process-algebraic specification (for example, the space-
defined Shape Calculus), which provides an effective multiscale description of the process. 
The phenomenological approaches make use of abundant bone mineral density data in 
health and pathology (for example osteoporosis130). 

                                                
124  see for example Groza T, Hunter J, Zankl A. Decomposing phenotype descriptions for the human skeletal 
phenome. Biomed Inform Insights. 2013;6:1-14. doi: 10.4137/BII.S10729. Epub 2013 Feb 4 
125  Liò P, Paoletti N, Moni M.A., Atwell K, Merelli E. and Viceconti M, Modelling osteomyelitis, BMC 
Bioinformatics, 13: S12, doi:10.1186/1471-2105-13-S14-S12. 
126  Gerhard FA, Webster DJ, van Lenthe GH, Müller R. In silico biology of bone modelling and remodelling: 
adaptation. Philos Trans A Math Phys Eng Sci. 2009 May 28;367(1895):2011-30. doi: 10.1098/rsta.2008.0297. 
127  Bonjour, J.P., et al., Peak bone mass and its regulation, in Pediatric Bone, Second Edition, F.H. Glorieux, 
J.M. Pettifor, and H. Jüppner, Editors. 2011, Academic Press Inc, Elsevier. 
128  Viceconti, M., Clapworthy, G., Testi, D., Taddei, F., and McFarlane, N. (2011). Multimodal fusion of 
biomedical data at different temporal and dimensional scales. Comput Methods Programs Biomed., 102:227–237. 
129  Moroz A, Crane MC, Smith G, Wimpenny DI. Phenomenological model of bone remodeling cycle containing 
osteocyte regulation loop. Biosystems. 2006 Jun;84(3):183-90 
130  Liò P, Merelli E.and Paoletti N, (2012) Disease processes as hybrid dynamical systems, Proceedings of the 
1st International Workshop on Hybrid Systems and Biology (HSB 2012), EPTCS 92, pp. 152-166; Paoletti, N., 
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One associated and interesting aspect of phenomenological modelling is its use in identifying 
the major reasons for osteoporotic fractures. While intensive work continues into evaluating 
bone loss and the aetiology of skeletal osteolysis throughout the ageing process, the single 
major cause for an osteoporotic fracture is the occurrence of falls. The accurate prediction of 
fracture risk can therefore only be achieved by observational studies that lead to an 
understanding of the factors that play a beneficial or detrimental role in modifying an 
individual’s risk of fall. Fall risk assessment currently varies from questionnaire-based 
evaluation of health and medication factors to intensive laboratory measurements for 
quantification of gait and balance parameters131. However, most of these tools have been 
shown to discriminate poorly between fallers and non-fallers132,133. The best assessment 
tools currently achieve a sensitivity and specificity of around 75%134,135. In clinical 
assessments, the single best predictor for falls has been the existence of a previous 
fall136,137,138. While this increases the accuracy of fall risk assessment in retrospective studies 
where subjects have already fallen, identification of future fallers becomes challenging in 
prospective cases when a prognosis for a subject who has not yet fallen is required. In 
subjects with no previous falls, kinematic abnormalities during gait and balance seem to 
contain important information related to the likelihood of a future fall139. The successful 
identification and inclusion of such functional indices – including balance 140,141, temporal and 
spatial variability during gait 142,143, muscle strength144 – is now thought to contribute towards 

                                                                                                                                                   
Lioʼ, P., Merelli, E., & Viceconti, M. (2012). Multilevel computational modeling and quantitative analysis of bone 
remodeling.. IEEE/ACM Trans Comput Biol Bioinform, 9(5), 1366-1378, Liò, P., Merelli, E., Paoletti, N., & 
Viceconti, M. (2011). A combined process algebraic and stochastic approach to bone remodeling. Electronic 
Notes in Theoretical Computer Science, 277(1), 41-52 
131  Persad CC, Cook S, Giordani B: Assessing falls in the elderly: should we use simple screening tests or a 
comprehensive fall risk evaluation? European journal of physical and rehabilitation medicine 2010, 46(2):249-259 
132  Gates S, Smith LA, Fisher JD, Lamb SE: Systematic review of accuracy of screening instruments for 
predicting fall risk among independently living older adults. Journal of rehabilitation research and development 
2008, 45(8):1105-1116. 
133  Oliver D, Papaioannou A, Giangregorio L, Thabane L, Reizgys K, Foster G: A systematic review and meta-
analysis of studies using the STRATIFY tool for prediction of falls in hospital patients: how well does it work? Age 
and ageing 2008, 37(6):621-627. 
134  Persad CC, Cook S, Giordani B: Assessing falls in the elderly: should we use simple screening tests or a 
comprehensive fall risk evaluation? European journal of physical and rehabilitation medicine 2010, 46(2):249-259 
135  Yamada MA, H.; Nagai, K.; Tanaka, B.; Uehara, T.; Aoyama, T.: Development of a New Fall Risk  
Assessment Index for Older Adults. International Journal of Gerontology 2012, 6:160-162 
136  Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ: Will my patient fall? JAMA : the journal of the American 
Medical Association 2007, 297(1):77-86 
137  Bongue B, Dupre C, Beauchet O, Rossat A, Fantino B, Colvez A: A screening tool with five risk factors was 
developed for fall-risk prediction in community-dwelling elderly. Journal of clinical epidemiology 2011, 
64(10):1152-1160. 
138  Gerdhem P, Ringsberg KA, Akesson K, Obrant KJ: Clinical history and biologic age predicted falls better than 
objective functional tests. Journal of clinical epidemiology 2005, 58(3):226-232 
139  Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ: Will my patient fall? JAMA : the journal of the American 
Medical Association 2007, 297(1):77-86 
140  Sherrington C, Lord SR, Close JC, Barraclough E, Taylor M, O'Rourke S, Kurrle S, Tiedemann A, Cumming 
RG, Herbert RD: A simple tool predicted probability of falling after aged care inpatient rehabilitation. Journal of 
clinical epidemiology 2011, 64(7):779-786 
141  Swanenburg J, de Bruin ED, Uebelhart D, Mulder T: Falls prediction in elderly people: a 1-year prospective 
study. Gait & posture 2010, 31(3):317-321 
142  Taylor ME, Delbaere K, Mikolaizak AS, Lord SR, Close JC: Gait parameter risk factors for falls under simple 
and dual task conditions in cognitively impaired older people. Gait & posture 2013, 37(1):126-130 
143  Hamacher D, Singh NB, Van Dieen JH, Heller MO, Taylor WR: Kinematic measures for assessing gait 
stability in elderly individuals: a systematic review. Journal of the Royal Society, Interface / the Royal Society 
2011, 8(65):1682-1698 
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accurate predictions of fall risk when combined with established clinical parameters (e.g. 
medication, cognition), and may therefore allow improved stratification of elderly subjects in a 
clinical setting. Here, by investigating the functional movement and muscular control 
characteristics that differentiate subjects who are most susceptible to falling, observational 
studies are important in improving our understanding of the aetiology of falls, but may well 
play a key role pushing the boundaries for the early clinical identification and stratification of 
subjects at risk of falls.  

It is noteworthy that the phenomenological modelling could in principle be applied to study 
the system: human body, sensor networks, prostheses, which could be tested and validated 
in a very effective way without a precise mechanistic model.  

3.3.3 Atherosclerosis  

Atherosclerosis is a multifactorial disease in which not only genetic, biochemical, and 
physiological factors play a role, but also environmental and life-style factors. This pathology 
is a prime example of complex processes acting along multiple biological, length and time 
scales. In this disease, lifestyle is particularly important and its interaction with genetic 
components can be subtle; for example, a single locus of lipoprotein A appears to identify 
patients at risk of aortic and mitral valve calcification145. Investigations regarding 
atherosclerosis have focused on various aspects of the disease to improve risk assessment 
for cardiovascular events, studying biomarkers related to the onset and progression of 
atherosclerosis, or applying experimental methods to investigate underlying disease 
mechanisms. Modelling in systems biology is also particularly active146,147. From a 
mechanical perspective, it is well known that the development of atherosclerotic plaque is 
most prevalent in regions of low shear stress. Computational investigations have considered 
certain aspects of the development of atherosclerosis connected to specific haemodynamic 
conditions. Their aim is to study possible hypotheses regarding the main processes of 
arterial pathogenesis. These models often use non-linear reaction-diffusion equations 
describing the transport and reaction of various species involved in the process148. Recently, 
a first version of a platform-based prediction of atherosclerosis was published149. It applies 
diffusion-reaction equations based on a patient-specific reconstruction of arterial segments 
and predicts plaque growth. 

However, time constraints – i.e. the disease may need a long time to develop – make 
mechanistic modelling difficult, and that is where statistical modelling often comes into play. 
There is a plethora of epidemiological studies and statistical modelling to predict risk linked to 
progression; for example, a recent study showed that sedentary participants had a 22% 

                                                                                                                                                   
144  Delbaere K, Van den Noortgate N, Bourgois J, Vanderstraeten G, Tine W, Cambier D: The Physical 
Performance Test as a predictor of frequent fallers: a prospective community-based cohort study. Clinical 
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145  Thanassoulis G, et al.2013.. http://muhc.ca/sites/default/files/nejm%20pre-publication%20copy.pdf 
146  Ramsey SA, Gold ES, Aderem A. A systems biology approach to understanding atherosclerosis. EMBO Mol 
Med. 2010 Mar;2(3):79-89. doi: 10.1002/emmm.201000063. 
147  Huan T, Zhang B, Wang Z, Joehanes R, Zhu J, Johnson AD, Ying S, Munson PJ, Raghavachari N, Wang R, 
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increased carotid atherosclerosis progression compared to active counterparts 150, and it is 
noteworthy that the statistical/epidemiological studies are the ones informing healthcare 
policy makers151. Modelling should make use of all data available by using the best modelling 
paradigms fit for each purpose and it is the integration of these that will allow making 
substantial progress. An interesting idea has been presented in152, where hybrid 
mechanistic/data-driven approaches are proposed in order to overcome some of the 
limitations of mechanistic models via the use of machine learning (and vice-versa). The 
proposed framework attempts to develop a modelling workflow in which, instead of learning 
in the space of data, intelligent machines will learn in the space of mechanistic models. It is 
noteworthy that much of the data on atherosclerosis come from autopsies, since control data 
from a healthy population over long periods of time prove difficult to obtain. It would be ideal 
to consider phenomenological models as a way to augment the imaging information content. 
The challenge is to characterize the role of personalised modelling and how to integrate 
physiological, environmental, and lifestyle data.  

3.3.4 Cardiomyopathy 

Modelling techniques have been used with success in describing human anatomy, 
physiology, and disease. The use of novel technologies harnessing the power of 
mathematical models has progressed towards predictive cardio-patho/physiology from 
patient-specific measurements, for example153 in order to improve diagnosis, treatment 
planning and delivery, and optimization of implantable devices by making cardiac models 
patient-specific using clinical measurements. Advanced cardiac models, for example154, have 
been used as a starting point and used state-of-the-art clinical imaging to develop new and 
personalized models of individual cardiac physiology. There are interesting and promising 
results in this area, ranging from arrhythmias to myocardial deformation, cardiac wall motion, 
and patient-specific tissue information such as myocardial scar location155,156,157,158.  

Current genome technologies may enable insights into personal behaviour and stress 
conditions that produce changes in DNA methylation in different tissues, like the heart159. 
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Challenges in phenomenological modelling could also look at medical and surgical 
interventions (for instance stents) and disease early predictors, as exemplified in160 and 
making use of signal-based analyses. One challenge would be to consider 
phenomenological models to include comorbidities lie diabetes, as well as prior knowledge 
such as medication or medication history. This is reflected by the finding that patients that 
are scheduled for a peripheral artery intervention do much better if they are already on 
statins and aspirin161. Regular aspirin use is associated with an elevated risk for neovascular 
age-related macular degeneration162. Other factors that are difficult to include in a 
mechanistic assessment are, for example, ethnicity, gender, and lifestyle. 

3.3.5 Dementia 

Dementia is not a single disease, but is rather an umbrella syndrome that includes many 
different forms163. All neurodegenerative diseases share a number of common distinctive 
pathological hallmarks, such as extensive neuronal death and clinical symptoms like 
compromised function in the affected brain regions. Although in many cases few proteins are 
found to have significantly different concentrations between healthy and diseased neurons, 
the basic mechanism of dementia is still unclear164. Effective pharmaceutical treatment of 
dementia is currently not available.  

Mechanistic models can provide an essential and much needed platform for improved 
understanding of dementia.. A clear exemplar is the case of vascular dementia, in which the 
use of a patient’s anatomical and physiological characteristics and mechanistic models of 
plaque progression could lead to the development of powerful tools to help to elucidate the 
relationship between progression of disease in time, and cognitive impairment. There is also 
much to gain in better capturing the mechanistic complexities of the blood-brain barrier and 
its relationship to neural behaviour. Another compelling case is the role of detailed modelling 
and analysis of the microvasculature and its relationship with stroke and Alzheimer’s 
disease, which has been recently addressed by 165. 

Mechanistic models based on molecular data are, however, challenged by results from 
epidemiological studies that point to lifestyle factors, such as poor diet and physical and 
cognitive inactivity. This is an area where phenomenological models could consider social 
parameters which are difficult to incorporate in mechanistic contexts; for example, (1) as a 
person-centric model highlighting the context of a patient’s significant relationships; (2) as a 
disability approach, according to which people with dementia are people with cognitive 
disabilities; or (3) as a medical approach, in which people with dementia have a neurological 
disease. Lifestyle is very important, as shown by the finding that individuals with the highest 
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peripheral vascular interventions" Circ Cardiovasc Interv 2012; DOI: 
10.1161/CIRCINTERVENTIONS.112.975862. 
162  Liew G, et al "The association of aspirin use with age-related macular degeneration" JAMA Intern Med 2013; 
DOI: 10.1001/jamainternmed.2013.1583 
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164  Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tümer Z, Pociot F, 
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function for arbitrary vascular networks. Interface Focus 6 April 2013 vol. 3 no. 2 20120078. 
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levels of cardiorespiratory fitness during middle age were significantly less likely to develop 
dementia in their senior years166. Thus, introduction of physical activity can reduce the risk of 
cognitive impairment in old age. Metabolic syndrome and diabetes are also associated to 
dementia167. 

3.3.6 Stroke 

Stroke is yet another case in which modelling could offer much needed help. The rapid loss 
of brain function due to disturbances in the blood supply to the brain can be due to ischemia 
(lack of blood flow) caused by blockage (thrombosis, arterial embolism) or by a 
haemorrhage, which are all suited for rigorous analysis via in silico tools168.  Stroke is one of 
the leading causes of death and acquired handicap. There is already work in the literature169 
developing physiology-based models for acute ischemic stroke. This is a case where most of 
the clinical trials have failed, contrasting with promising results during preclinical stages. This 
continuing discrepancy suggests some misconceptions in the understanding of acute 
ischemic stroke, and this is where modelling techniques can provide assistance for 
understanding its underlying mechanisms. One possible method for identifying the 
shortcomings of present-day approaches is to integrate all relevant knowledge into a single 
mathematical model and to subject that model to challenges via simulations with available 
experimental data.  

Several phenomenological models have been proposed that account for stopping of the 
blood flow in some part of the brain (ischemia), reduced oxygen levels, and damage to 
cells170. Recent models have focused on studying the influence of spreading depression on 
the death of the cells; this is like a transient suppression of all neuronal activities spreading 
slowly across a large region of the brain171. Future models may take age into account: almost 
half of children with haemorrhagic stroke had seizures at presentation or within a week of 
onset172. Also lifestyle plays a key role. An exercise program such as tai chi that focuses 
specifically on balance was found to reduce the incidence of falls173. Phenomenological 
models should consider nutrition and cooking methods; for example, diets that are heavy in 
fried and salty foods could be the most dangerous in terms of stroke risk.  
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3.4 Timeline and impact 
In this section, we try to summarise the long-, mid-, and short-term challenges for modelling 
in the Digital Patient framework. The challenges are ranked according to the developments 
that are required to meet them (short- / mid- / long-term) as well as by their impact (benefit 
for patients). 

Short-term challenges 

● Formalisation of model testing and validation strategies, determining how selection of 
testing strategies should be made independent of model development. 

● To immediately strengthen collaboration between modellers and clinicians, and 
improve uptake and testing of models despite an on-going development process. A 
recommendation in this respect is to call for small focused projects that address early 
stages of the disease modelling process with mixed teams with the goal of early 
testing in small cohorts of patients.  

● Encourage the development of hybrid paradigms in order to capitalise on the potential 
of modelling as a whole for personalised medicine.  

● Development of relatively simple models (see examples provided in previous section 
for cardiovascular diseases and cancer) that address specific topics in patient 
studies, for the expansion of diagnostic methods and therapies in the clinic. 

● Expansion of the set of models that can be applied clinically, with existing models 
applied in particular areas of diagnostics: models describing a small part of 
physiology, with a limited number of inputs and outputs, directed towards a specific 
disease or diagnostic method. 

Mid term challenges 

● Creation of online repositories to house disease- and patient-specific data, through 
which mechanistic model inputs may be linked to patient lifestyle factors (age, fitness, 
diet, etc.)  

● Development of mechanistic models as tools to integrate data into structures that 
enable computation of their implications. 

● Development and validation of customized models for specific pathologies, with 
patient-specific inputs and outputs. 

● Development of hybrid strategies for the combined use of phenomenological and 
mechanistic models 

● Development of mathematical formalisms for multi-scale processes 

● Automatic debugging and systematic testing tools for patient-specific models, 
possibly in combination of machine learning techniques and artificial intelligence 

Long-term challenges 

● Combination of specific models into a large-scale patient model encompassing larger, 
multifactorial pathologies such as heart failure, renal failure, etc. 

● Personalise not only anatomical data but also the physiological/pathological 
processes taking place (multiscale) by linking model parameters to easily obtainable 
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patient data, leading to an individual patient model rather than a statistical patient 
model. 

3.5 Summary and conclusions 

Clinical utilization of models: reasons for optimism 

In this chapter we have made an attempt to cover the mathematical modelling challenges 
that scientists and technologists will need to face in the short-, mid- and long-term to enable 
the realisation of the Digital Patient. The first one to be addressed is the Selection of the 
most adequate mathematical modelling approach. There is not a unique way of creating a 
model and a categorisation typically used to classify the mathematical models by the 
scientific community is distinguishing between phenomenological and mechanistic models. 
The first are built purely based on empirical observations of a phenomenon, while the second 
aim to represent the underlying mechanisms of a biomedical process. Making these models 
widely available in online semantically annotated repositories should enable the development 
of hybrid approaches able to customise and combine (even automatically) phenomenological 
and mechanistic models for use in the Digital Patient. The creation of such models also 
encompasses the challenge of Personalising and extending them to cover multiple scales, 
and including ageing is a representative example of this difficulty.   Models are created using 
real (and non-ideal) biomedical data sources that commonly include incomplete entries, 
available in repositories that are non-standard, difficult to access or that lack interoperability 
features. This complicates even further the modelling process, because it needs to handle 
the uncertainty introduced by the often-incomplete input data and estimated parameters. As 
a result, any future model should come together with an estimated valid range of operation 
and a measure of confidence on the results. 

Nevertheless, as already mentioned during the discussion of the Translation and Clinical 
utilisation of models challenge, despite the complexity of mathematical models of bodily 
functions, some have already entered the clinical arena in the form of software applications 
embedded in diagnostic or therapeutic devices. This indicates that in the short-term, simple 
models that cover a relatively small part of a pathology or process are most likely to be 
adopted for clinical use early on. Prior to actual clinical adoption on a larger scale, another 
key challenge especially relevant in the mid- and long-term is Automating, generalising and 
formalising the process of model testing and validation.  

Concrete recommendations include the following: 

a) Creation of online repositories to house and share disease- and patient-specific data 
and models to enhance collaboration within the VPH community, providing ubiquitous 
access  

b) Develop hybrid methods and strategies to automatically and seamlessly combine 
phenomenological and mechanistic models, exploiting the use of VPH ontologies and 
annotated online repositories containing well-documented and validated models 

c) Develop surrogate modelling methods that make possible to replace computational 
demanding sub-models (typically large PDE models) with estimators developed on 
pre-computed solutions, to provide a fast estimate of the model outputs and an upper 
boundary of the estimation error 

d) Develop integrative modelling frameworks that support the abduction cycle that 
applies inductive reasoning to observations to generate hypotheses on mechanistic 
relationships, verify these against reference observations, and where predictions are 
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in good agreement with observations, incorporate this new mechanistic 
understanding into the inductive reasoning, so facilitating new discovers 

e) Develop fast numerical restart methods that make it possible to employ user 
exploration of the information space to re-run the model with different inputs at very 
low computational cost when compared to the first run 

f) Develop a theoretical framework for the analysis of scale separation, and general 
homogenisation and distribution strategies to define space-time relations across 
scales 

g) Develop strategies to formalise and generalise the testing and validation of 
mathematical models, providing accurate and automatic estimations on the impact 
that incomplete data has in the personalised models 

 
  


