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Objectives

» The course focuses on algorithms used in bioinformatics

» The algorithms presented in this course could be also applied
in other data-rich fields.

» At the end of the course the student should be able to
describe the main aspects of the algorithms.

» The student should understand how bioinformatics combines
biology and computing.

» The exam papers will not contain biological questions.

» References and links to additional material at the end of the
lecture notes may help the students to understand better the
applications of the algorithms (this is not essential to answer
exam questions).



Overview of the course

First we learn how to compare two and then one or more DNA
sequences. Searching a database for nearly exact matches (using
Blast algorithm) is the most important routine work in a
Bioinformatics lab. The big efforts in sequencing human genomes
and also single cell genomes will require new algorithms. We will
show some examples of the first wave. We learn how to build trees
to study sequences relationship and how to cluster biological data
using K-means and the Markov clustering algorithms. We use
hidden Markov models to predict exon/intron arrangements in a
gene or the structure of a membrane protein. Then we look at an
algorithm to reconstruct genetic network (Wagner algorithm). A
set of biochemical reactions could be simulated using the Gillespie
algorithm. Material and figure acknowledgments at the end of the
Notes and during the lectures.



Topics and List of algorithms

» Basic concepts in genetics.

» Dynamic programming (Longest Common Subsequence,
Needleman-Wunsch, Smith-Waterman, Hirschberg, Nussinov).

> Progressive alignment (Clustal).
» Homology database search (Blast, Patternhunter).

» Next Generation sequencing (De Bruijn graph,
Burrows-Wheeler transform)

» Phylogeny - parsimony-based - (Fitch, Sankoff).
» Phylogeny - distance based - (UPGMA,Neighbor Joining).
» Clustering (K-means, Markov Clustering)

» Hidden Markov Models applications in Bioinformatics
(Genescan, TMHMM).

» Pattern search in sequences (Gibbs sampling).

» Biological Networks reconstruction (Wagner) and simulation
(Gillespie).



Basic concepts in genetics

DNA, RNA, protein, the genetic code, the gene, exons, introns, the
genome, the cell



Basic concepts in genetics
DNA could be thought as a string of symbols from a 4-letter
(bases) alphabet, A (adenine), T (thymine), C (cytosine) and G
(guanine). In the double helix A pairs with T, C with G (so only
the sequence of one filament is vital to keep). A gene is a string of
DNA that contains information for a specific cell function. The
Genome is the entire DNA in a cell nucleus.
RNA is same as DNA but T is replaced by U (uracil); proteins are
strings of amino acids from an alphabet of 20. The proteins have a
3D shape that could be described by a 3 dimensional graph. The
genetic code is a map between 61 triplets of DNA bases and 20
amino acid.
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DNA and chromosomes
In eukaryotes the genetic information is distributed over different
DNA molecules. A human cell contains 24 different such
chromosomes. If all DNA of a human cell would be laid out
end-to-end it would reach approximately 2 meters. The nucleus
however measures only 6um. Equivalent of packing 40 km of fine
thread into a tennis ball with a compression ratio of 10000.
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Reading and writing DNA is cheap and effective
Sequencing costs have plummeted from 2.7 billion dollars for the first
human genome in 2003 down to 1000 dollars today; Base errors is now 1
in 10 million. An average size book could be converted into thousands
DNA sequences each encoding data block, an address specifying the
location of the data block in the bit stream, and flanking common
sequences to facilitate wet lab procedures to enable the reading. This
library could be synthesized by ink-jet printed in high-fidelity DNA
microchips.

Left: DNA reading; bottom left: use of DNA
sequences placed in DNA chip to write DNA
or other information. Bottom right:
advantage of using DNA chips.
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DNA makes RNA makes proteins (the 3D graph below); given the
pairing rule in a DNA double strands molecule, all the information
is in each single strand. The RNA is termed mRNA and is
translated by triplet of bases into a chain of amino acids (the
protein).
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Figure: The central dogma of molecular biology is that DNA is
transcribed to RNA which is translated to protein. The amount of RNA
depends on gene activity which is influenced by other proteins binding
before the start of the gene; different tissues contain cells with different
amount of RNA for each gene



GCA CGA GGA CUA

CGC GGC AUA C
GCG CGG GAC AAC UGC GAA CAA GGG CAC AUC CUG
GCU CGU GAU AAU UGU GAG CAG GGU CAU AUU Cuu

Ala Arg Asp Asn Cys Glu Gin Gly His lle Leu

A R D N C E Q G H I L
AGC
AGU
CCA UCA ACA GUA
CCC UucCC ACC GUC UAA
AAA UUC CCG UCG ACG UAC GUG UAG
AAG AUG UUU CCU UCU ACU UGG UAU GUU UGA
Lys Met Phe Pro Ser Thr Trp Tyr Val stop
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Figure: The genetic code provides the information for the translation of
codons (triplets of bases, in black) into amino acids (single and triple
letter code in red) that are chained together to form a protein; 61 codons
code for 20 amino acids; 3 special codons say “stop”.



The structure of a human gene

A gene starts with the promoter region, which is followed by a
transcribed but non-coding region called 5" untranslated region (5" UTR).
Then follows the initial exon which contains the start codon which is
usually ATG. There is an alternating series of introns and internal exons,
followed by the terminating exon, which contains the stop codon. It is
followed by another non-coding region called the 3' UTR; at the end
there is a polyadenylation (polyA) signal, i.e. a repetition of Adenine
(example AAAAA). The intron/exon and exon/intron boundaries are
conserved short sequences and called the acceptor and donor sites.

Startcodon  €0dons  Donor site

=~ -CATGCCCTTCTCCAACAG.

Transcription
start

_Exon

Poly-Asite

[GecacanaCAATAANTT]



Genes and proteins make networks that look like digital circuits
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Gene networks make cells make tissue

Top: a human cell (it measures 10pum across); bottom: detail of a
stomach tissue
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A bacterium (for example Escherichia coli) measures about 2um in
length, yet it contains about 1,6001m (1.6 mm) of circular double
strands DNA (5 x10° DNA bases in E. coli).

Bacterial Flagellum
Nucleoid (circular DNA)

Electron micrograph of E.coli
(DNA in light stained region)



Comparison between biological systems and system networks
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(previous figure)

from bottom: Molecules (for example genes and proteins),
reactions (interactions between proteins and other molecules),
pathways (composition of reactions, large scale interactions), cells
(composition of pathways), tissues (composition of cells), organs
(composition of tissues), organisms (compositions of organs?).
Also diseases are linked because they share common genes (see
below).




Dynamic programming algorithms for sequence alignment

Longest common subsequence, Needleman-Wunsch, Smith
Waterman, Affine gap, Hirschberg algorithm, RNA folding.



Sequence Alignment: The Biological problem

TGCATTGCGTAGGC

*  Single nucleotide polymorphisms {SNPs
g R { ) TGCATTCCGTAGGC

— 1 every few hundred bp, mutation rate* = 10

*  Shortindels {=insertion/de!etion} . TGCATT——--TAGGC
— 1 every few kb, mutation rate v. variable - I
TGCATTCCGTAGGC
= Microsatellite (STR) repeat number
— 1 every few kb, mutation rate <1073 TGCTCATCATCATC
TGCTCATCA——————
*  Minisatellites
— 1 every few kb, mutation rate < 10-1

*  Repeated genes

<
— rRNA, histones <100bp
= Large deletions, duplications, inversions
— Rare, e.g. Y chromosome 1-5kb

Figure: Type and frequency of mutations in the human genome per
generation; mutations changes DNA bases or rearrange DNA strings at
different scales. In sequence alignment we compare sequences that are
different because of mutations.
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Sequence Alignment

Alignment is a way of arranging two DNA or protein sequences to
identify regions of similarity that are conserved among species.
Each aligned sequence appears as a row within a matrix. Gaps are
inserted between the residues (=amino acids) of each sequence so
that identical or similar bases in different sequences are aligned in
successive positions. Each gap spans one or more columns within
the alignment matrix. Given two strings x = x1, x2, , X\,

Y = y1,¥2,,yn, an alignment is an assignment of gaps to positions
0,,M inx, and 0,, N in y, so as to line up each letter in one
sequence with either a letter, or a gap in the other sequence.

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC———
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC



Edit distance
may compare

Hamming distance

always compares
ith letter of v with i*h letter of v with

ith |letter of w jth letter of w
V = ATATATAT Just one shift V = - ATATATAT

——————— >

W = TATATATA Make it all line up W = TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance
is a trivial task is a non-trivial task

Figure: The Hamming distance is a column by column number of
mismatches; the Edit distance between two strings is the minimum
number of operations (insertions, deletions, and substitutions) to
transform one string into the other.



Alignment as a Path in the Edit Graph
w®£\ﬁ]T2 @S @n‘.l TSEXG@?

first alignment
0122345677

S v= AT_GTTAT_

=

v

T ~T w= ATCGT_A_C

cH _ ( 0123455667
¥ |

? 4 ' ‘| second alignment

T, N 0122345677

A - v=  AT_GTTAT_

? [ w= ATCG_TA_C
; T 0123445667

The score of the alignment paths are 5.

Figure: Create a matrix M with one sequence as row header and the
other sequence as column header. Assign a 1 where the column and row
site matches (diagonal segments), zero otherwise (horizontal or vertical
segments); sequence alignment can be viewed as a Path in the Edit
Graph. The edit graph is useful to introduce the dynamic programming
technique.



Dynamic programming, DP

DP is a method for reducing a complex problem to a set of identical
sub-problems. The best solution to one sub-problem is independent from
the best solution to the other sub-problems. Recursion is a top-down
mechanism, we take a problem, split it up, and solve the smaller
problems that are created; DP is a bottom-up mechanism: we solve all
possible small problems and then combine them to obtain solutions for
bigger problems. The reason that this may be better is that, using
recursion, it is possible that we may solve the same small subproblem
many times. Using DP, we solve it once. Consider the Fibonacci Series:
F(n)=F(n—1)+ F(n—2) where F(0) =0 and F(1) = 1. A recursive
algorithm will take exponential time to find F(n) while a DP solution
takes only n steps. A recursive algorithm is likely to be polynomial if the
sum of the sizes of the subproblems is bounded by kn. If, however, the
obvious division of a problem of size n results in n problems of size n-1
then the recursive algorithm is likely to have exponential growth.



The Longest Common Subsequence (LCS)

A subsequence of a string v, is a set of characters that appear in
left-to-right order, but not necessarily consecutively. A common
subsequence of two strings is a subsequence that appears in both
strings. Substrings are consecutive parts of a string, while
subsequences need not be.

A longest common subsequence is a common subsequence of
maximal length. Example:

vi =(A,C,B,D,E,G,C,E,D,
vw=(B,E,G,C,F,E,U,B,K)
the LCSis (B,E, G, C,E, B).
With respect to DNA sequences:

vi =AAACCGTGAGTTATTCGTTCTAGAA
v2 =CACCCCTAAGGTACCTTTGGTTC
LCS is ACCTAGTACTTTG

B, G) and



The Longest Common Subsequence (LCS)

» The LCS problem is the simplest form of sequence alignment;
it allows only insertions and deletions (no mismatches).

» Given two sequences v = v; Vo, Vv, and w = wy wa , w,. The
LCS of v and w is a sequence of positions in v:
1< ii <ip<< i< mand a sequence of positions in w:
1 < ji < jo < < j < nsuch that iy letter of v equals to
Je-letter of w and t is maximal

» In the LCS problem, we score 1 for matches and 0 for indels;
in DNA sequence alignment we will use different scores for
match, mismatch and gap.



The Longest Common Subsequence

LCS(v,w)

for 7 € 1 ton
S;.0€ 0

for j € 1tom
Sp,; €0

for 7 € 1ton
for j € 1tom

S,

i-1,7
S;,; € max Si.4-1 )
Sig,5-1 + 1, iF vy = wy
T 59f

J

s = 5;

T si = sia
b;; « o IF s = S5
if s ;=550 +1

return (s, ,, b)

Figure: It takes O(nm) time to fill in the n by m dynamic programming
matrix. The pseudocode consists of two nested for loops to build up a n
by m matrix.



* The Global Alignment Problem tries to <

find the longest path between vertices \k_wcal\
(0,0) and (n,m) in the edit graph. anw;_‘
Global Y
* The Local Alignment Problem tries to find alignment

the longest path among paths between
arbitrary vertices (i,j) and (i}, j’) in the edit
graph.
¢ Global Alignment
—=T—-CC2C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

O S B R L L A N I O
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

¢ Local Alignment—better alignment to find conserved

segment

tccCAGTTATGTCAGgggacacgagcatgcagagac
AR RRE RN
aattgecegecgtegttttcagCAGTTATGTCAGate

Figure: The same sequences could be used in both alignments; we need
to set the match score, the mismatch and gap penalties.



Needleman-Wunsch algorithm (Global alignment)

1: Initialization (two sequences of length M and N).
a. F(0,00 =0
b. F(0,)) =-jxd
c. F(1,0) =-ixd

2. Main Iteration. Filling-in partial alignments
Foreachi=1...... M
Foreachj=1......N
F(i-1,j)—d [case 1]

F(i, J) = max F(i, j-1)-d [case 2]
F(i-1,j-1) + s(x. y)) [case 3]
UpP, if [case 1]

Ptr(ij) = LEFT if [case 2]

DIAG if [case 3]

3.  Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back
optimal alignment



Match: 2; Gap: -1; Mismatch=-1

pengl?;:-h A C G C T G
a1 |0 1 2 3 4 5 6
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Match: 2; Gap: -1; Mismatch=-1

-3

-2
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Match: 2; Gap: -1; Mismatch=-1

Alclglc| T @
0|12 3 4|58
0 O« -1 ‘AcGCTG-
Cc 1 1<+-0 :C[—ATGT
A 2 | -1
T3 1
G 4 3
|
TS5 2




Match: 2; Gap: -1; Mismatch=-1

0 1 2 3 4 5 6
0 Q-1 ‘AcceTG- r
1 1 L;Ci—TGT
2 0 +--1
3 1
4 3
]
5 2




Match: 2; Gap:

-1; Mismatch=-1
A C | G C T G

0 1 2 3 e 5 6
o 19 (_AcGeTG
c 1] CATG-T-
A 2 1
T 3 0
G 4 2+ 1
T 5 3«2



The choice of scores (match, gap and mismatch) depends on the
data

x A G C
M.atch1 N 0 1 2 3
Mismatch -1
Gap -2 0 Q-2+-4+-6
1 12\1 1e=-3
ARAC All- bl
B ttn N
Aree A2 -;1\-11\04--2
~
s a3l b5 b
| A S
ARAC c4/-8 5 4 -1
AG-C

Figure: Given a m x n matrix, the overall complexity of computing all
sub-values is O(nm). The final optimal score is the value at position n,m.
In this case we align the sequences AGC and AAAC.



How good is an alignment?

The score of an alignment is calculated by summing the rewarding
scores for match columns that contain the same bases and the
penalty scores for gaps and mismatch columns that contain
different bases. A scoring scheme specifies the scores for matches
and mismatches, which form the scoring matrix, and the scores for
gaps, called the gap cost. There are two types of alignments
for sequence comparison. Given a scoring scheme, calculating a
global alignment is a kind of global optimization that forces the
alignment to span the entire length of two query sequences,
whereas local alignments identify regions of high similarity within
two sequences.



Maybe it is OK to have an unlimited # of gaps in the beginning and end:

---------- CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC-~-GACCGC--GETCG~~~~~~========
Xi tereei e X
Changes:

>

1. Initialization
Forall i, j,
F(i, 0)= 0
F(0,))=0

R N 2. Termination
max; F(i, N)
Fopr =max | max; F(M, )




The local alignment: the Smith-Waterman algorithm

Idea: Ignore badly aligning regions: Madifications to

Needleman-Wunsch

€.8. X = 233acCCCCEREs

Y = cccgggaaccaacc

Initialization: F(0,j)=F(i,0)=0

0
Iteration: F(i, j) = max F(i—1,j)—d "
Fli,j—1)—-d

Fli—1,j—1) +s(x, y)
Termination:
1. If we want the best local alignment...
Fopr = max;; F(i, j)
2. If we want all local alignments scoring >t
For all i, j find F(j, j) > t, and trace back



Example, Local alignment TAATA vs TACTAA
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Affine gap: two penalties for gap insertion

Insertions and deletions often occur in blocks longer than a single

nucleotide. if there are many gaps we do not want to penalise too
much; so we think at due penalties: one for the first gap (opening)
and one, smaller, for the following required gaps.

Y(m)
y(n)=d+ (n-1)xe
| | e
gap gap d
open extend

To compute optimal alignment,

At position i,j, need to “remember” best score if gap is open
best score if gap is not open

F(i,j):  score of alignment x,...x to y,...y;
if x; aligns to y,

G(i, j):  score if x; aligns to a gap after y;
H(i, j):  score if y, aligns to a gap after x;

V(i,]) = best score of alignment x;...x; to y;...y;



Affine gap: two penalties for gap insertion
Time complexity - As before O(nm), as we only compute four matrices
instead of one.
Space complexity: there's a need to save four matrices (for F, G, H and
V respectively) during the computation. Hence, O(nm) space is needed,
for the trivial implementation.

Initialization:  V(i,0)=d + (i— 1)xe
V(0,j)=d +(j—1)xe

Iteration:
V(i. J) = max{ F(i, ). G(i, ]). H(i, ) }

F(i, 1) = Vii—1,]=1) +s(x, ¥)

V(i-1,j)-d
G(i, J) = max {
Gli—-1,j)-e

Vi, j-1)-d
H(i, j) = max
H{i,j-1)-e

Termination: similar



Space-Efficient Sequence Alignment, Hirschberg algorithm

In comparison of long DNA fragments, the limited resource in
sequence alignment is not time but space. Hirschberg in 1975
proposed a divide-and-conquer approach that performs alignment
in linear space for the expense of just doubling the computational
time. The time complexity of the dynamic programming algorithm
for sequence alignment is roughly the number of edges in the edit
graph, i.e., 0(nm). The space complexity is roughly the number of
vertices in the edit graph, i.e., 0(nm). However, if we only want to
compute the score of the alignment (rather than the alignment
itself), then the space can be reduced to just twice the number of
vertices in a single column of the edit graph, i.e., O(n).



Space-Efficient Sequence Alignment, Hirschberg algorithm

It is easy to compute F(M, N) in linear space

Allocate ( column[1] )
Allocate ( column[2] )

= For i=1...M
If i>1,then:
Free( column[i-2] )
Allocate( column[i])
For j=1...N

Fi,j) = ...

Figure: Space complexity of computing just the score itself is O(n); we
only need the previous column to calculate the current column, and we
can then throw away that previous column once we have done using it



Space-Efficient Sequence Alignment, Hirschberg algorithm

Linear-Space Sequence Alignment
w2

o = oo =




Space-Efficient Sequence Alignment Hirschberg algorithm

The reduction comes from observation that the only values needed
to compute the alignment scores s,; (column j) are the alignment
scores Sy j_j (column j — 1). Therefore, the alignment scores in the
columns before j — 1 can be discarded while computing alignment
scores for columns j, j 4+ 1,.... The longest path in the edit graph
connects the start vertex (0,0) with the sink vertex (n, m) and
passes through an (unknown) middle vertex (i, m/2 ) (assume for
simplicity that m is even). Let's try to find its middle vertex
instead of trying to find the entire longest path. This can be done
in linear space by computing the scores s, ,,/». (lengths of the
longest paths from (0,0) to (i, m/2 ) for 0 < i < n) and the scores
of the paths from (i, m/2 ) to (n,m). The latter scores can be
computed as the scores of the paths s/“"*¢ from (n,m) to (i, m/2
) in the reverse edit graph (i.e., the graph with the directions of all
edges reversed). The value S; > + Slrf;]";’zse is the length of the
longest path from (0,0) to (n, m) passing through the vertex (i,
m/2). Therefore, max;[S; m/> + Sre"erse] computes the length of

i,m/2
the longest path and identifies a middle vertex.



Space-Efficient Sequence Alignment, Hirschberg algorithm

Computing these values requires the time equal to the area of the
left rectangle (from column 1 to m/2) plus the area of the right
rectangle (from column m/2 + 1 to m) and the space O(n). After
the middle vertex (i, m/2 ) is found the problem of finding the
longest path from (0,0) to (n, m) can be partitioned into two
subproblems: finding the longest path from (0,0) to the middle
vertex (i, m/2) and finding the longest path from the middle vertex
(i, m/2 ) to (n, m). Instead of trying to find these paths, we first
try to find the middle vertices in the corresponding rectangles.
This can be done in the time equal to the area of these rectangles,
which is two times smaller than the area of the original rectangle.
Computing in this way, we will find the middle vertices of all
rectangles in time = area + area/2 + area/4 +.. <2 * area and
therefore compute the longest path in time 0(nm) and space O(n).



Space-Efficient Sequence Alignment, Hirschberg algorithm

NSOk LD

Path (source, sink)

if source and sink are in consecutive columns
output the longest path from the source to the sink
else

middle < middle vertex between source and sink
Path (source, middle)

Path (middle, sink)



Space-Efficient Sequence Alignment, Hirschberg algorithm: details

M72

X
F(M/2, k) / Fr(M/2, N-k)
y

K

* lterate this procedure to the left and right!

N

I N-K*

M/2 M/2



Space-Efficient Sequence Alignment, Hirschberg algorithm: details

Now, we can find k™ maximizing F(M/2, k) + F1(M/2, k)
Also, we can trace the path exiting column M/2 from k'

o

+|

Y

|
|
|
AT
|
|
|
|

b
-+

Conclusion: In O(NM) time, O(N) space,
we found optimal alignment path at column M/2



Nussinov Algorithm: The Biological problem

Mir-166 E coli5S rRNA

Hepatitis C
internal
ribosome
entry site

B. subtilis SRP RNA

Figure: Examples of RNA molecules in nature; many molecules of RNA
do not translate into proteins; using the pairing rule A-T, C-G, the
molecule could find regions of perfect pairing so to have intrachain
interactions. Therefore, the molecule folds into 2 Dimensional shape
(termed secondary structure) and then into 3 Dimensional shape (tertiary
structure) and regulates cell processes by interacting with proteins.



Folding i.e. intra chain alignment of a RNA molecule

The intrachain folding of RNA reveals the RNA Secondary
Structure

This tells which bases are paired in the subsequence from Xx; to x;
Every optimal structure can be built by extending optimal

substructures.
/:\ o/o\ /c\ /G\
% \ \ NN
b b 1S 5 5
i+1 1 i+1 t j i s 1
had! i i i i
i,j pair i unpaired j unpaired bifu';:ation

Figure: Set of paired positions on interval [/, j]. Suppose we know all
optimal substructures of length less than j — i + 1. The optimal
substructure for [/, j] must be formed in one of four ways: i,j paired; i
unpaired; j unpaired; combining two substructures. Note that each of
these consists of extending or joining substructures of length less than
j—i+1



Nussinov dynamic programming algorithm for RNA folding

1. Let v(/,j) be the maximum number of base pairs in a folding
of subsequence S[i . . . j].
2. forl<i<nandi<j<n:
fori=1,...,n:~(i,i)=0;
for2<i<n:~(i,i—1)=0
v(i+1,))
v(i,j—1)
y(i+1,j—1)+0(i,))
maxij<k<j [y (i, k) + 7 (k +1,))]
3. Where 6(i,j) = 1 if x; and x; are a complementary base pair
i.e. (A, U)or(C, G), and 6(i,j) = 0, otherwise.

7 (i,J) = max

There are O(n?) terms to be computed, each requiring calling of
O(n) already computed terms for the case of bifurcation. Thus
overall complexity is O(n®) time and O(n?) space.



Nussinov algorithm for RNA folding
Note that only the upper (or lower) half of the matrix needs to be
filled. Therefore, after initialization the recursion runs from smaller
to longer subsequences as follows:

for| =1tondo

fori=1to(n+1—1)do

j=i+1

compute (i, )

end for

ook N=

end for

k -1 I
-

\ i
[#en] [Foa-v | —] sen |
T

E+l




Nussinov algorithm: example

G G G Alalaluclc
Glo E . clelc[a[a[A]u]c[c
xample:

Glojo Glojolofolofol1]2]3
G 0 GGGAAAUCC Glofolofofofo[1]2]3
A ™ G 0/0jo[0|0[1[22
A A A A ololofo]M1]1
A N A ofofqf1[1]1
U ATY A o d[1]1]1
o 6=¢ U ololo]o

& c 0/0]o0
c [0

G c olo]

Figure: order: top left, bottom left,
right: a matrix will be filled along
the diagonals and the solution can
be recovered through a traceback
step.

Fill up the table (DP
matrix) -- diagonal by
diagonal

J

A
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Approximate Search algorithms

Blast, Patternhunter, spaced seeds



Homology search algorithms: The Biological problem

It is common to observe strong sequence similarity between a
protein and its counterpart in another species that diverged
hundreds of millions of years ago. Accordingly, the best method to
identify the function of a new gene or protein is to find its
sequence- related genes or proteins whose functions are already
known. The Basic Local Alignment Search Tool (BLAST) is a
computer program for finding regions of local similarity between
two DNA or protein sequences. It is designed for comparing a
query sequence against a target database. It is a heuristic that
finds short matches between query and database sequences and
then attempts to start alignments from these seed hits. BLAST is
arguably the most widely used program in bioinformatics. By
sacrificing sensitivity for speed, it makes sequence comparison
practical on huge sequence databases currently available.



BLAST (Basic Local Alighment Search Tools

While Dynamic Programming (DP) is a nice way to construct
alignments, it will often be too slow. Since the DP is O(n?),
matching two 9x10° length sequences would take about 9x10'8
operations. BLAST is an alignment algorithm which runs in O(n)
time. The key to BLAST is that we only actually care about
alignments that are very close to perfect. A match of 70% is
worthless; we want something that matches 95% or 99% or more.
What this means is that correct (near perfect) alignments will have
long substrings of nucleotides that match perfectly. Most popular
Blast-wise algorithms use a seed-and-extend approach that
operates in two steps: 1. Find a set of small exact matches (called
seeds) 2. Try to extend each seed match to obtain a long inexact
match.



BLAST (Basic Local Alignment Search Tools)

The steps are as follows:

1.
2.

Split query into overlapping words of length W (the W-mers)

Find a neighborhood of similar words for each word (see the
figure next slide).

Lookup each word in the neighborhood in a hash table to find
where in the database each word occurs. Call these the seeds.

Extend all seeds collections until the score of the alignment
drops off below a threshold.

Report matches with overall highest scores.



BLAST (Basic Local Alignment Search Tools)

BLAST provides a trade off between speed and sensitivity, with the
setting of a "threshold” parameter T. A higher value of T yields
greater speed, but also an increased probability of missing weak
similarities.

keyword

Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKIFLENVIRD

GVE 18
GRK 16 )
GIK 16 Neighborhood

_ GGK 14 words
neighborhood GLK 13

score threshold GNE 12
(T=13) GRK 11

GEE 11

GDK 11

extension

Query: 22 VLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK &0
+++DN +G + IR L G+K I+ L+ E+ RG++K
Sbjct: 226 IIKDNGRGFSGEKQIRNLNYGIGLKVIADLV-EKHRGIIK 263

Hieh-scorine Pair (HSP)



BLAST (Basic Local Alignment Search Tools)

To speed up the homology search process, BLAST employs a
filtration strategy: It first scans the database for length-w word
matches of alignment score at least T between the query and
target sequences and then extends each match in both ends to
generate local alignment (in the sequences) whose alignment score
is larger than a threshold x. The matches are called high-scoring
segment pairs (HSPs). BLAST outputs a list of HSPs together
with E-values that measure how frequent such HSPs would occur
by chance. A HSP has the property that it cannot be extended
further to the left or right without the score dropping significantly
below the best score achieved on part of the HSP. The original
BLAST algorithm performs the extension without gaps. Variants
are gapped Blast, psi-blast and others.



Statistical significance in Blast

> Assume that the length m and n of the query and database
respectively are sufficiently large; a segment-pair (s, t)
consists of two segments, one in m (say the amino acid string:
VALLAR) and one in n (say PAMMAR), of the same length.
We think of s and t as being aligned without gaps and score
this alignment using a substitution score; the alignment score
for (s, t) is denoted by o(s, t).

» Given a cutoff score x, a segment pair (s, t) is called a
high-scoring segment pair (HSP), if it is locally maximal and
o(s,t) > x and the goal of BLAST is to compute all HSPs.

» The BLAST algorithm has three parameters: the word size W,
the word similarity threshold T and the minimum match score
X.



For protein sequences, BLAST operates as follows

The list of all words of length W that have similarity > T to some
word in the query sequence m is generated. The database
sequence n is scanned for all hits t of words s in the list. Each such
seed (s, t) is extended until its score o(s, t) falls a certain distance
below the best score found for shorter extensions and then all best
extensions are reported that have score > x. In practice, W is
usually 4 for proteins.

The list of all words of length W that have similarity > T to some
word in the query sequence m can be produced in time
proportional to the number of words in the list. These are placed
in a keyword tree and then, for each word in the tree, all exact
locations of the word in the database n are detected in time linear
to the length of n. The original version of BLAST did not allow
indels, making hit extension very fast.

Note that the use of seeds of length W and the termination of
extensions with fading scores are both steps that speed up the
algorithm, but also imply that BLAST is not guaranteed to find all
HSPs.



For DNA sequences, BLAST operates as follows

» The list of all words of length W in the query sequence m is
generated. The database n is scanned for all hits of words in
this list. Blast uses a two-bit encoding for DNA. This saves
space and also search time, as four bases are encoded per
byte. In practice, W is usually 12 for DNA.

» HSP scores are characterized by two parameters, W and A.
The expected number of HSPs with score at least Z is given
by the E-value, which is: E(Z) = Wmne 4.

» Essentially, W and X are scaling-factors for the search space
and for the scoring scheme, respectively.

> As the E-value depends on the choice of the parameters W
and A, one cannot compare E-values from different BLAST
searches.



For a given HSP (s, t) we transform the raw score Z = o (s, t)
into a bit-score thus: Z' = % Such bit-scores can be
compared between different BLAST searches. To see this,
solve for Z in the previous equation and then plug the result

into the original E-value.

E-values and bit scores are related by E = mn2~%'

The number of random HSPs (s, t) with o(s,t) > x can be
described by a Poisson distribution. Hence the probability of
finding ex?ctly k HSPs with a score > S is given by

P(k) = Ee

The probability of finding at least one HSP by chance is
P=1-P(X=0)=1-e"F, called the P-value, where E is
the E-value for Z.

BLAST reports E-values rather than P-values as it is easier,
for example, to interpret the difference between an E-value of
5 and 10, than to interpret the difference between a P-value
of 0.993 and 0.99995. For small E-values < 0.01, the two
values are nearly identical.



Example of Blast output

Blast of human beta globin DNA against human DNA

Score E
Sequences producing significant nments: {bits) Value
13849266 |gb| AF4A7523.1| Homo sapiens gamma A hemoglobin - ] la=-
27.1|HUMHEG3E Human gamma-globin mENA, 3! 28 le-
1| Homo sapiens A-gamma globi e 280 la-T2
Human messenger 2 le-66
1 Homo sapilens he - Te-34
gb AF339400.1 Homo sapiens hapl - 3e-33

>gi| 28380636 ref | NG

Length = 8

Score = 149 bits

Identities = 183/219 (83%)
Strand = Plus / Flus

.3| Homo sapiens beta globin region (HBB8) on chromosome 11

Query: 287 ttgggagatgocacaaageoacctggatgatotocaagggoacetitgoccagotgagtgaa 326

Shjct: 54409 tteoggaaaageotgttatgotoacggatgacotcaaaggeacotttgotacactgagtgac 54468

Query: 327 ctgoactgtgacaagotgoatgtggatoctgagaactte 365

Sbjct: 54469 ctgoactgtaacaageotgoacgtggaccctgagaactte 54507



It is possible to search a protein sequence against a DNA database

tgacadagargagargragttcadt tadcgagctacagaaaa

thg|acc frag| atg| agaltgt| oot frea| dtita| dglage|tac|agalaaa
LT x M RC RS LLUL S Y R K

titga|oct|aga|tga| gat || gt| cacltttitacltan| gct|aca| gaa [aa
x P R x DV VHVPFY x 8§ T E

ttlgac|cta| gat |gag] atgtogltic| act|tt|adt|gag| talcag| aaala
DL D EMS S FTPFTE L Q@ K

Figure: Blast DNA query (top) against a database of proteins will
process all the potential triplets forming codons



Example of Blast Pitfalls

BLAST may also miss a hit

GAGTACTCAACACCAACAT TAGTGGGCAATGGAARAT
U PR reeeer 1ot [
GAATACTCAACAGCAACAT CAATGGGCAGCAGAARAT

i
9 matches
In this example, despite a clear homology, there is no sequence of
continuous matches longer than length 9. BLAST uses a length 11
and because of this, BLAST does not recognize this as a hit!

Resolving this would require reducing the seed length to 9, which
would have a damaging effect on speed



Patternhunter

The biggest problem for BLAST is low sensitivity (and low speed).
Massive parallel machines are built to do Smith Waterman
exhaustive dynamic programming. A spaced seed is formed by two
words, one from each input sequence, that match at positions
specified by a fixed pattern and one don’t care symbol respectively.
For example, the pattern 1101 specifies that the first, second and
four-th positions must match and the third one contain a
mismatch. PatternHunter (PH) was the first method that used
carefully designed spaced seeds to improve the sensitivity of DNA
local alignment. Spaced seeds have been shown to improve the
efficiency of lossless filtration for approximate pattern matching,
namely for the problem of detecting all matches of a string of
length m with g possible substitution errors.



Blast vs PH vs PH 11l

If you want to speed up, have to use a longer seed. However, we
now face a dilemma: increasing seed size speeds up, but looses
sensitivity; decreasing seed size gains sensitivity, but looses speed.
How do we increase sensitivity and speed simultaneously? Spaced
Seed: nonconsecutive matches and optimized match positions.
Represent BLAST seed by 11111111111, Spaced seed:
111010010100110111 where 1 means a required match and 0
means dont care position. This simple change makes a huge
difference: significantly increases hit to homologous region while
reducing bad hits. Spaced seeds give PH a unique opportunity of
using several optimal seeds to achieve optimal sensitivity, this was
not possible by BLAST technology. PH Il uses multiple optimal
seeds; it approaches Smith-Waterman sensitivity while is 3000
times faster. Example: Smith-Waterman (SSearch): 20 CPU-days,
PatternHunter Il with 4 seeds: 475 CPU-seconds: 3638 times
faster than Smith-Waterman dynamic programming at the same
sensitivity



Sensitivity: The probability to find a local alignment. Specificity:
In all local alignments, how many alignments are homologous

Consecutive Positions

‘ [O]®)
6 hits

L ]
7 hits
7 hits I
@

On a 70% conserved region:
Consecutive
Expected # hits: 1.07

Probl[at least one hit]: 0.30

Non-Consecutive Pgsitions

000000000
00 ) 5 hits
0000 I I P

I 3 hits
@000 L O]

Non-consecutive
0.97
0.47



= 111010010100110111 (called a model)
= Eleven required matches (weight=11)
= Seven “don't care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT..

e veerr re reerr reerrd

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT..
111010010100110111

= Hit = all the required matches are satisfied.
= BLAST seed model = 11111111111

111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111



In PatternHunter, the spaced model has often weight 11 and
length 18.

0.8

0.67

sensitivity

0.2

0.49"

= Solid curves: Multiple (1, 2, 4, 8,
16) weight-12 spaced seeds.

= Dashed curves: Optimal spaced
seeds with weight = 11, 10, 9, 8.

= Typically, *Doubling the seed
_ number” gains better sensitivity
than “decreasing the weight by

hY

0

0.6 0.7 . .P.& 0.9 1
similarity



The non-consecutive seed is the primary difference and strength of
Patternhunter

Sensitivity: PH weight 11 seed vs BLAST 11 & 10

04k A

aa / / i

as x; / 4
as I,r" fi 4

aat /] .

probabiHy ol o l=ast 1 Hi

!
a3 | ;f g
i
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Homology search algorithms growing usage

0,94

0.8+

PH 8 seeds: 996 sac
sensitivity F'H 4 seeds: 575 sec

0,74

F‘-Ii seed. 214 sec
BLAST. 676 sec

i (SSearch. 20 days)
0.6

0570 Eil 4 30 il 70

allgnment score

Figure: sensitivity versus alignment score



Progressive alignment

Clustal



Challenges of extending dynamic programming to n sequences

» For two sequences, there are three ways to extend an
alignment

» for n sequences, a n-dimensional dynamic programming
hypercube has to be computed and for each entry we have to
evaluate (2" — 1) predecessors.

> Given 3 sequences, the figure below shows a three-dimensional
alignment path matrix: there are = (23 — 1) = 7 ways to
extend an alignment.

1 2 3 4 5 6 7
ABC AB- ABC ABC ABC AB- AB-
ABC ABC AB- ABC AB- AB- ABC
ABC ABC ABC AB- AB- ABC AB-




Progressive alignment

>

Progressive alignment methods are heuristic in nature. They
produce multiple alignments from a number of pairwise
alignments.

Perhaps the most widely used algorithm of this type is
CLUSTALW.

Given N sequences, align each sequence against each other
and obtain a similarity matrix; similarity = exact matches /
sequence length (percent identity)

Create a guide tree using the similarity matrix; the tree is
reconstructed using clustering methods such as UPGMA or
neighbor-joining (explained later).

Progressive Alignment guided by the tree.

Pairwise Alignment Guide Tree Iterative Multiple Alignment

1 P
s 3
. P
_3 .
e ] ———MM——

—4

1+

1+
1+

w o

2
3
4
2+3
4
4




Progressive alignment

Not all the pairwise alignments build well into multiple sequence
alignment (MSA); the progressive alignment builds a final
alignment by merging sub-alignments with a guide tree.

TAGT TGG--
T-GT -GGAT
TAGT TGG--
T-GT ~— g‘(_;g ;ul:f(_; —GEGAT
TA-T AT
T-GT GGAT
TA-T --AT
AC--R
ACG-R
CC--A
A-GTR
A-G-B
Merging of
‘Suballgnments
AC-A AGTR
ACGR AG-A
ce-a /:Wm ,\
Lequence 0 “Sequence Alignment
Subalignment AGTA AGA
ACR ACGR

CCR

‘Sequence to
“Sequence Alignment

ACA ccr



Progressive alignment

1) vy Vo V3 Vy 2) V1
v, | - Vs
v, | .17 -
vy| .87 .28 -

v, | .59 .33 .62 -

Calculate:

Vi3 = alignment (v;, v;)
V1,34 = alignment ((v; 3), v,)
Vi,2,5,4 = alignment((vy ; ,),V,)

Figure: Progressive alignment of 4 sequences: 1) distance matrix from

pairwise alignment; 2) pairwise alignment score analysis; tree showing the
best order of progressive alignment, 3) building up the alignment.
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(k~1)log(pij/pip;) where the k is a scaling factor.

background probabilities of finding the amino acids i and j in any

conserved regions of protein sequences in a MSA, we compute pj;
protein sequence. Finally we compute:

i.e. for each column of the MSA, the probability of two amino

Blosum is a symmetric amino acid replacement matrix used as
acids i and j replacing each other, and p; and p; are the

scoring matrix in Blast search and in phylogeny. Using only the

A matrix to measure amino acid changes
Scorej;

EEEEEEEEEEEE G



Entropy measure of a multiple alignment

AAA
AAA
AAT
ATC

Let's start from an alignment of four sequences (above the first
three columns); Compute the frequencies for the occurrence of
each letter in each column of multiple alignment pA = 1,
pT=pG=pC=0 (1st column);

pA = 0.75, pT = 0.25, pG=pC=0 (2nd column);

pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column);

Compute entropy of each column: E = —3"y_, - ¢ 7 pxlog (px)
The entropy for a multiple alignment is the sum 7of7e7ntropies of
each column of the alignment.



Example of a multiple sequence alignment

HEA_HUMAN VLS PADKTHVERANGKYGAHAGEY GA-~EALERMFLSFPTTETYFPHF-DL 48
HEA_HORSE - L5 AADKTHVERAISEY GGHAGE Y GA-—EALERMFLGFPTTETY FPHF-DL 48
HEB_HIHAN - ~VHLTPEEKSAVTALUGKVI--VDEVGG--EALGRLLVVYPUTQRFFESFGDL 48
HEB_HORSE =V LS CEEKAAVLALUDE V= =EEEVGG==EALGRLLVVYFUTQRFFDSFCDL 48

GLBS_PETIA PIVDTGSVAPLSAAEKTHKIRSAIAPVYSTYETSGY--DILVEFFTSTPAMEFFPEFEGL 58

MYG_FHYCA - VLIEGEWQLVLHVWAKVEADVAGHG]--DILIRL FKSHPETLEKFDRFKHL 49
GLE1_GLYDI GLEAAQROVIAATWED IAGADNGAGYGIDCLIKFLSAHP QIAAYFGFS--~ 48
GLB3_CHITH = GDPVGILYAVFKADPSTMAKFTOFAGK 44
LGBZ_LUPLU  =-=-=ceei GALTE&UMLV‘KSSWEZP‘NMJ.PW——RIFILWLE]RPM TS!’LJ\DT 50
HBA_HUHAN 3 HGSAQVEGHGKEVADALTHAVAHVDD: MPHALSALSDLHA--HKLRVDPYV 96
HBA_HORSE 3= GIAQVEAHGEEVGDALTLAVGHLDD: LPGALINLIDLHA--HKLRVDEV 96
HEE_HUMAN STPDAVIGHPEVEAHCKEVLGAFSDGLAHLDN LEGTFATLSELHC--DELHVDPE 101
HBE_HORSE SHPGAVMGNPEVEAHGKEV LHS FGE GVHHLDN- LEGTFAALSELHC--DELHVDFPE 101
GLBS_PETMA TTADQLFESADVRNHAER I INAVNDAVASMDDT- ~-EFMSNELRD L 3GKHA--KSFQVDPQ 114
MYG_PHYCA KTEAENKASED LKKHGVTVLTALGAT LERKGH- HEAELKPLAQSHA--TEHKIPIK 102
GLB1_GLYDI =~ -----i GASDPGVAAL GAKVLAQIGYAVIHL GDE- - GEIVAQMKAVGVRHEGYGNKHIKAQ 101
GLB3_CHITH DLES-IKGTAPFEIHANRIVGFFSKITGE LPN----~ TEADVNTFVASHE-~-FRGVTHD 95
LGBZ_LUPLU SEVP==QNNPELQAHACKVFELVYEAATQLQVTGYVVIDATLFNLGSVHV===5KGVADA 105
HEA_HUMAN NFELLSHCLLVTLAAHLPAEFTPAVHAS LDEFLASYSTYLTE 141
HBA_HORSE NFELLSHCLLSTLAVHLENDFTPAVHAS LDKFLSSVSTVLTSKYR: - 141
HED_HUHAN WFRLLGEVLYCVLAHHFGRE FTPFYQAAY QIVVAGYANALAHKYH = 146
HBB_HORSE NFRLLGNVLVVYLARHFGKD FTPELQAS ¥ QKVVAGVANALAHK

GLBS_FETMA YFEVLAAVIADTVAAG=========DAGFEKLMSNICTLLRSA

MYG_PHYCA YLEFISEATIHVLHSRHPGDFGADAQGAMNKALELFRED IAAKYKELGYQG 153
GLB1_GLYDT YFEPLGASLLSAMEHR IGGRMNARAKDAVARAYADISGALISGLOE- 147
GLB3_CHITH QLMNFRAGFY SYMRARTD - - - FAGAEAAN GATLD TFFGHI FEKI-

LGB2_LUPLU HFPYVKEATLETTKEVVGAKUSEELNSANT IAYDELATVIKKEMNDAR--~ 153

Figure: Chemical properties of amino acids are in color code. The globin
proteins from different species could be easily aligned because they have
many similar substrings in common.



Insight into protein structure (3D graph) from MSA analysis

Figure: Human globin 3D structure. The small amount of changes in the
globin alignment suggests that globin are likely to have very similar
structure (3 D graph). Columns rich of gaps often correspond to
unstructured regions (loops); conserved regions often correspond to
binding sites or regions where one protein interacts with a DNA sequence
or with another protein.



Genome alignments

Burrows- Wheleer transform, de Bruijn graph.



Burrows- Wheleer transform: saving memory in alignment problems

» The current sequencing procedures are characterized by highly
parallel operations, much lower cost per base, but
(unfortunately) they produce several millions of "reads”, short
stretches of DNA bases (usually 35-400 bp).

> In many experiments, e.g., in ChIP-Seq, the task is now to
align these reads to a reference genome.

» The main effort is to reduce the memory requirement for
sequence alignment (such as Bowtie, BWA and SOAP2); the
Burrows- Wheleer transform, BWT (a text compression
method) is used.



Burrows-Wheeler Transform

INPUT (example): T = "abraca”; then we sort lexicographically

all the cyclic shifts of T

For all i # |, the character L[i] is followed in T by FJi]; for any
character ch, the i-th occurrence of ch in F corresponds to the i-th

occurrence of ch in L.

OUTPUT: BWT(T)=caraab and the index I=1, that denotes the
position of the original word T after the lexicographical sorting.
The Burrows-Wheeler Transform is reversible, in the sense that,
given BWT(T) and an index |, it is possible to recover the original

word T.

F L

|

aabrac

acaabr
bracala
caabra
racaalb

bW~ O

abracal— 1

T:

nphpWNEHO

F L
| }
012345
a c 0+t =(135240)
B 21 134502
a r 2
b a3 w=abraca
c a 4 135240
r b 5



Burrows-Wheeler Transform in alignment: example

Reversible permutation used originally in compression
Once BWT(T) is built, all else shown here is discarded

$acaacg $acaacg
aacg$ac aacg$ac
acaacg$ acaacg$
acaacg$ —>acgSaca —= acgSaca —> gcS$aaac
B caacgSa caacg$a BWT)
cgSacaa cg$acaa
g$acaac g$acaac

Figure: in red the analogy with the suffix array (from Wall lab in
Harvard); Note that the cycle and the sort procedures of the
Burrows-Wheeler induces a partial clustering of similar characters
providing the means for compression.



Burrows-Wheeler Transform in alignment: example

Property that makes BWT(T) reversible is LF Ma

pping

ith occurrence of a character in Last column is same text
occurrence as the ith occurrence in the First column

$acaacg)
Rank:Z\‘.aacg$ac
(alcaacgs
[@acaacg$ acg$aca
caacg$[a

T A
cg$acaa

> BWT(T)

™ Rank: 2

g$acaac)



Burrows-Wheeler Transform in alignment: example

To recreate T from BWT(T), repeatedly apply rule: T = BWT]

LF(i) ] + T; i = LF()).

Where LF(i) maps row i to row whose first character corresponds
to i"s last per LF Mapping

OO0 DD
DD PLOWO @

Q00000 e
o o -

Final T

aacg caacg acaacg

e o0 we»




Burrows-Wheeler Transform in alignment: example

t a t atatata $§ $ t a t at st st a
a t at at at a § t a § t a t a t a ¢ a
t at atat a8 t a a t a 5 t a t a t a t
a t at a t a $§ t a t a t a t a § t a t a t
t at atas$ 1t azt a a t a t a t a § t a t
at at a8t ata t a t a t ma t a t a $ t
t at as$tatat a t a $ ¢ a t a t a 1t a
a t a $ t at at a t t a t a $ t a t a t =
t a $t atat at a t 2 t a t & $ t = "
a $ t at at at a t t a t = t a ¢t a § ¢t .
$ t atatatat a P a t a €t a t a t a $

Figure: in the left,the word "tatatatata$” undergoes cyclic shift and it is
sorted in the right. Note that the BWT (tatatatata$) is a word
(atttttaaaa$) with good clustering of T's and A's and so it can be
written in a more compact way. The DNA is from an alphabet of 4
symbols so the clustering happens very often



Next Generation sequencing: The Biological problem
Instead of considering a DNA sequence, for sake of clarity, let's
consider an english sentence and we trim all spaces.
Copies of the sentence are divided into fragments called reads
which could be converted into kmers. We would like to assemble
the original sentence using the reads or the kmers.

Generate random ‘reads’ ' ‘ How do we assemble?

wasit o guatisden inastheep spachofine

Convert reads into “Kmers”
Kmer: a substring of defined length
Reads: i

Kmers : sth ast wor
(k=3) the sth ors
heb the rst
ebe hea sto
bes eag tof
est age oft
sto geo fti




Three methods to reconstruct the original sequence (a) from the
reads (one method (b) uses the reads, two use k-mers derived from
the reads (c,d); from Pevzner’s paper (see citation)
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Graph approaches in alignment

(a) An example small circular genome. In (b) reads were
represented as nodes in a graph, and edges represented alignments
between reads. Following the edges in numerical order allows one
to reconstruct the circular genome by combining alignments
between successive reads. In (c) reads are divided into all possible
k-mers (k = 3), ATGGCGT comprises ATG, TGG, GGC, GCG and
CGT. Following a Hamiltonian cycle (indicated by red edges)
allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive nodes) is shifted by
one position. (d) Modern short-read assembly algorithms construct
a de Bruijn graph by representing all k-mer prefixes and suffixes as
nodes and then drawing edges that represent k-mers having a
particular prefix and suffix. For example, the k-mer edge ATG has
prefix AT and suffix TG. Finding an Eulerian cycle allows one to
reconstruct the genome by forming an alignment in which each
successive k-mer (from successive edges) is shifted by one position.



Hamiltonian graph using reads
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Genome: ATGGCGTGCA.

Figure b: The Hamiltonian graph is a graph in which each read is
represented by a node and overlap between reads is represented by
an arrow (called a directed edge) joining two reads. For instance,
two nodes representing reads may be connected with a directed
edge if the reads overlap by at least five nucleotides.

The Hamiltonian cycle, is a path that travels to every node
exactly once and ends at the starting node, meaning that
each read will be included once in the assembly.



Hamiltonian graph using k-mers

Figure c: The Hamiltonian cycle approach can be generalized to
make use of k-mers by constructing a graph as follows. First, from
a set of reads, make a node for every k-mer appearing as a
consecutive substring of one of these reads. Second, given a
k-mer, define its suffix as the string formed by all its nucleotides
except the first one and its prefix as the string formed by all of its
nucleotides except the last one. k-mer to another using a
directed edge if the suffix of the former equals the prefix of
the latter, that is, if the two k-mers completely overlap except for
one nucleotide at each end. Third, look for a Hamiltonian cycle,
which represents a candidate genome because it visits each
detected k-mer.



Hamiltonian graph

There is no known efficient algorithm for finding a Hamiltonian
cycle in a large graph with millions (let alone billions) of nodes.
The Hamiltonian cycle approach was feasible for sequencing the
first microbial genome in 1995 and the human genome in 2001.
The computational problem of finding a Hamiltonian cycle
belongs to the class of problems that are collectively called
NP-Complete.



Eulerian graph

Figure d: Instead of assigning each k-mer contained in some read
to a node, we will now assign each such k-mer to an edge. This
allows the construction of a de Bruijn graph. First, form a node
for every distinct prefix or suffix of a k-mer, meaning that a given
sequence of length kK — 1. Then, connect node x to node y with a
directed edge if some k-mer has prefix x and suffix y, and label the
edge with this k-mer.



Eulerian graph

We visit all edges of the de Bruijn graph, which represents all
possible k-mers; traveling will result in spelling out a candidate
genome; for each edge that is traversed, one records the first
nucleotide of the k-mer assigned to that edge. Euler considered
graphs for which there exists a path between every two nodes
(called connected graphs). He proved that a connected graph
with undirected edges contains an Eulerian cycle exactly
when every node in the graph has an even number of edges
touching it. The case of directed graphs (that is, graphs with
directed edges) is similar. For any node in a directed graph, define
its indegree as the number of edges leading into it and its
outdegree as the number of edges leaving it. A graph in which
indegrees are equal to outdegrees for all nodes is called
balanced.



Eulerian graph

Eulers theorem states that a connected directed graph has
an Eulerian cycle if and only if it is balanced. In particular,
Eulers theorem implies that our de Bruijn graph contains an
Eulerian cycle as long as we have located all k-mers present in the
genome. Indeed, in this case, for any node, both its indegree and
outdegree represent the number of times the k — 1-mer assigned to
that node occurs in the genome. To see why Eulers theorem must
be true, first note that a graph that contains an Eulerian cycle is
balanced because every time we traverse an Eulerian cycle and we
need to pass through a particular vertex, we enter on one edge of
the cycle and exits on the next edge. This pairs up all the edges
touching each vertex, showing that half the edges touching the
vertex lead into it and half lead out from it. It is a bit harder to
see the converse: that every connected balanced graph contains an
Eulerian cycle.



De Bruijn graph: represent the data as a graph

The De Bruijn graph for k = 4 and a two character alphabet
composed of the digits 0 and 1. This graph has an Eulerian cycle
because each node has indegree and outdegree equal to 2.
Following the blue numbered edges in order from 1 to 16 traces an
Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101,
1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording the
first character of each edge label spells the cyclic superstring
0000110010111101.

1001 0110




Hamiltonian and Eulerian graph complexity

The time required to run a computer implementation of Eulers
algorithm is roughly proportional to the number of edges in the de
Bruijn graph. In the Hamiltonian approach, the time is potentially
a lot larger, because of the large number of pairwise alignments

needed to construct the graph and the NP-Completeness of finding
a Hamiltonian cycle.



Summary of the De Bruijn graph method

Sequencing is easy, we generate sub-strings (reads) at random
from throughout the genome. In next generation sequencing we
have 10s of millions of reads. The difficult part is how we put them
back together again in the right order. An intuitive way to do this
may be in all versus all comparisons to search for overlaps. This is
how traditional assemblers work. The solution offered by the De
Bruijn approach is to represent the data as a graph.

The first step of the De Bruijn assembler is to deconstruct the
sequencing reads into its constitutive kmers. As specified before a
K-mer is a substring of defined length. If we split reads in kmers
we control the size and the overlapping. To Kmerize the
dataset, we move through our read in one letter increments from
the beginning to the end untill we have recorded all possible 3
letter words. We then do this for all reads in the dataset. From this
point on the algorithm operates on kmers rather than on the reads.



Details of the De Bruijn graph method

The next stage is to represent the stored kmers in the De Bruijn
graph. This is done by searching for overlaps of k — 1. The graph
has all consecutive kmers by k — 1 bases.

-Adding kmers from a second read of an overlapping region of the
genome shows how the graph can be extended. It also reveals the
redundancy in the data which need not be stored by the computer.
This is how memory efficiency is achieved. -Adding a kmers from a
third read that comes from a similar but non-overlapping part of
the genome illustrates the effect of repeats, i.e. we get a branch in
the graph (see figure in the next slide). Long unbranched
stretches represent unique sequence in the genome, branches
and loops are the result of repeats.



Details of the De Bruijn graph method

Build a De-Bruijn graph from the kmers
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Details of the De Bruijn graph method

The final step is to remove redundancy, result in the final De
Bruijn Graph representation of our genome. From this graph, we
can see examples of both the strengths and weaknesses of this
approach. Strength is that the information from millions of reads is
stored in computer memory in a graph that is proportional to the
genome size. Another strength is that the overlaps between reads
are implicit in the graph, so all the millions versus millions of
comparisons are not required. On the downside, information is
lost as repetitive sequences are collapsed into a single
representation (see figue next slide). Another problem is that
while this may be a satisfying solution to a computational person,
it is not practically useful to a biologist who wants to annotate
genes etc.



Details of the De Bruijn graph method

De Bruijn assemblies ‘broken’ by repeats longer than kmer
(== Tie]best of times,[T7as Micworst of times,[TWas Tjage of wisdom [Tias icJage of
foolishness,[TWas Thojepoch of belief, [[Was cjepoch of incredulity,....

The final assembly (k=3)
wor  times ltwasthe foolishness st  wisdom

incredulity age  epoch  be  of  pelief

Repeat with a longer “kmer” length
A better assembly (k=20)

Sequencing errors:

Mostly
sth the ohe ent jof | acected
heb ben nto kmers

k=
sthebentof \.
k=10

sthebentof 100% wrong kmer



Phylogeny (parsimony)

Fitch, Sankoff algorithms



Phylogeny: The Biological problem

The computational comparison of DNA sequences from different species

provides a methodology to understand evolution. Top: a tree of influenza
strains; bottom: phylogeny.
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Phylogenetic analysis
The reconstruction of the evolutionary history of species formation
could be done by comparing DNA and amino acid sequences. A
phylogeny is a tree where the leaves are existing species; an
internal node is node with degree greater than one. Internal nodes
represent common ancestors. We typically do not have DNA data
for internal nodes. Here we use the terms species and taxa in a
synonymous way. We compute the tree for each column of an

alignment.

Internal Nodes
(hypothetical ancestors)
Branches

Existing
genes,
populations.
o1 species

Mg oWk

|

Root
{or ancestral node)

Leaves
(or terminal nodes)

Figure: tree representation: ((a, (b, c)),(d,e)); trees could also be



Phylogeny using parsimony (= economy of mutations)
Biological aims: from sequence alignment to phylogeny (a tree) by
minimising the number of changes (mutations). Parsimony means
economy; there are two main algorithms (Fitch,Sankoff); the
output trees are rooted (below the difference between rooted, left,
and unrooted, right)




Fitch parsimony model for DNA sequences
Fitch downpass algorithm

Bottom-up phase: Determine set of possible states for each
internal node; top-down phase: Pick states for each internal node.
If the descendant state sets S, and S, overlap, then the state set
of node p will include the states present in the intersection of Sq
and S,. If the descendant state sets do not overlap, then the state
set of p will include all states that are the union of S5 and 5.
States that are absent from both descendants will never be present
in the state set of p.

Initialization: R; =[s;]; Do a
Sp— SqN S post-order (from leaves to root)
if S, = 0 then traversal of tree Determine R; of
S, S,US |Ig.teinal node i with children j, k:

=

F=1+1 RiNRc if RN Re#0
end if Ri\URx  otherwise

R wb-



Assume that we have the final
state set F, of node a, which is
the immediate ancestor of node p
(Sp) that has two children q (Sq)
and r (5;).

1. Fo < SN Fa

2. if F, # F, then

3. if S¢( Sr # 0 then

4. Fp e ((SUS)NF)USH
5. else

6. Fp < Sp,UF

7. end if

8. end if

Ri(s) = 0 ifs; —'s
0o otherwise

R,‘ (S) =

ming {R; (s") + S (s',s)} +

ming {Rk (s') + S (s',s)}

If the downpass state set of p
includes all of the states in the
final set of a, then each optimal
assignment of final state to a can
be combined with the same state
at p to give zero changes on the
branch between a and p and the
minimal number of changes in
the subtree rooted at p. If the
final set of a includes states that
are not present in the downpass
set of p, then there is a change
on the branch between a and p.
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Figure: Fitch
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ACCA ACCG ACCA ATCC
7\ 7\

ATCG ATCC ATCG ACCG
Score: 6 Score: 5

Figure: Parsimony-score = number of union operations



Sankoff general parsimony or Sankoff optimisation
Sankoff downpass algorithm

NoosEw DdE

for all i do

hl(q) «— minj(cj + gj(q))
hI(r) +— minj(c;; + gj(r))
end for

for all i do

gl_(P) o h’(q) + hl(r)

end for

Sankoff parsimony is based on a
cost matrix C = ¢jj, the elements
of which define the cost ¢;; of
moving from a state i to a state j
along any branch in the tree.
The cost matrix is used to find
the minimum cost of a tree and
the set of optimal states at the
interior nodes of the tree.



Sankoff: finding optimal state sets (left) and uppass algorithm (right)

1. F,+0 1 _
2. for all i in F, do ' f‘i;)a'” d‘f G )
3. m« cy _|_g1(p) 2. 6 — m/n,~(fi - h,- —i-C,'J')
4. for all j # 1 do 3. end for
5. m <« min(c; —i—g-(p), m) Complexity: if we want to
/ calculate the overall length (cost)
6. end for :
_ of a tree with m taxa, n
7. for all j do characters, and k states, it is
8. if ¢j + gj(p) = m then relatively easy to see that the
9. Fp + FolUj Fitch algorithms has complexity
. O(mnk) and the Sankoff
10. end if . . .
algorithm is of complexity
11. end for O(mnk?).
12. end for



Sankoff: example of downpass

(B) ;:g(:t
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t 3 3 1 0
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Figure: If the leaf has the character in question, the score is 0; else,
score is oo Each mutation a— > b costs the same in Fitch and differently
in Sankoff parsimony algorithm (weighted matrix in A). An example of a
weighted matrix for Sankoff (for proteins) is the Blosum, presented before
in this course



example of uppass

Figure: Example of Sankoff algorithm. Note that in the parsimony
approaches (Fitch and Sankoff) the tree (i.e. the topology and leaves
order) is the hypothesis you are testing. So you try different trees and
select the one that is most parsimonious for each column of the
alignment, then you select the tree that is the most representative.



Phylogeny (distance based algorithms)

Additivity, UPGMA, Neighbor Joining



Phylogeny based on a matrix of distances
Distance methods convert the changes counted in each column of the
alignment, top figure, into a single distance matrix, bottom figure
(dissimilarity matrix= 1 - similarity) to construct a tree and are kin to
clustering methods. We can use the same matrix we use for Blast search,
for example the Blosum matrix or others. The UPGMA outputs a rooted
tree while the neighbour joining outputs an unrooted tree.

Species Characters
A ACTGTTCGTTCTGA
B ACCGTTCCTTCTAG
c CCTGTTGCTTCTGA
D ACTGTCCCTTCTAG

A B Cc D

— 075 035 027
075 - 085 033
035 085 - 031
027 033 031 -

Lo N o TR = = B £



Additivity: when a distance matrix could be converted into a tree

A matrix D is additive if for every four indices i,j,k,| we can write
the following: D,:,' + Dy < Dy + DJ'/ =Dy + Djk- If the distance
matrix is not additive we could find the tree which best fits he
distance matrix.

D]\ D]K
U|V|W|X v WX
U UN J o
V{2 Kl
wWi2|2 W12
X{2]1]1 x[2[1]1




The additivity property

Top: distance matrix does not turn into a tree; Bottom: the
distance matrix turns into a tree.
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UPGMA: Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a sequential clustering algorithm that computes the
distance between clusters using average pairwise distance and
assigns a height to every vertex in the tree, effectively assuming
the presence of a molecular clock and dating every vertex. The
algorithm produces an ultrametric tree : the distance from the root
to any leaf is the same (this corresponds to a constant molecular
clock: the same proportion of mutations in any pathway root to
leaf). Input is a distance matrix of distances between species; the
iteration combines the two closest species until we reach a single
cluster.




UPGMA is also hierarchical clustering

o

Aol

Initialization: Assign each species to its own cluster C;

Each such cluster is a tree leaf

Iteration:

Determine i and j so that d(C;, C;) is minimal

Define a new cluster C, = C;|J C; with a corresponding node
at height d(G;, C;)/2

Update distances to Ci using weighted average

Remove C; and C;

. Termination: stop when just a single cluster remains



Neighbor Joining, NJ

6 6 & 6
2 4 2 2
3 3 4 3 B : 3 4
Figure: NJ starts with a star topology (i.e. no neighbors have been
joined) and then uses the smallest distance in the distance matrix to find

the next two pairs to move out of the multifurcation then recalculate the
distance matrix that now contains a tip less.

Identify i,j as neighbor if their distance is the shortest.
Combine i,j into a new node u.
Update the distance matrix.

Distance of u from the rest of the tree is calculated

Aol

If only 3 nodes are left finish.



The distance between any taxon (=species) pair i and j is denoted
as d(i, j) and can be obtained from the alignment. NJ iteratively
selects a taxon pair, builds a new subtree, and agglomerates the
pair of selected taxa to reduce the taxon set by one. Pair selection
is based on choosing the pair i, j that minimizes the following Q
(matrix) criterion:

QUi,j) = (r = 2)d(i,j) — Yy d(is k) = iy d(j, k)

where r is the current number of taxa and the sums run on the
taxon set. NJ estimates the length of the branch (f, u) using
d(f.u) = 3d(F.8) — zgy (i d(F. k) — iy (g, b))

and d(g, u) is obtained by symmetry. Finally, NJ replaces f and g
by u in the distance matrix, using the reduction formula:

d(u, k) = L[d(f, k) — d(f, u)] + L[d(g. k) — d(g. u)]

NJ still reconstructs the correct tree when the distance matrix is
perturbed by small noise and that NJ is optimal regarding tolerable
noise amplitude.



Figure: One NJ agglomeration step. In the current tree (a), the taxon
set contains a, b, ¢, d, e, f, and g; some are original taxa, whereas the
others (i.e., a, f, and g) correspond to subtrees built during the previous
steps. Tree (b): after selection of the (f, g) pair, a new subtree is built,
and both f and g are replaced by a unique taxon denoted as u. NJ
terminates when the central node is fully resolved. Neighbor joining on a
set of r taxa requires r-3 iterations. At each step one has to build and
search a Q matrix. Initially the Q matrix is size r2, then the next step it is
(r —1)?, etc. This leads to an algorithm with a time complexity of O(r3).



Distance matrix

Step1

S,= (sumall DYN-2),
where N s the # of
OTUs in the set.

Step2
Calculate pair with

Step3

Create a node (U) that
joins pair with lowest
M, such that
Su=Dyl2 +(5,- 52.

Step 4

Join i and j according to
above and make all
other taxa in form of
a star. Branches in black
are of unknown length.
Branches in red are of
known length.

Step 5.

Calculate new distance
‘matrix of all ther taxa
Dy = D+ D= Dy,
where i and j are those
selected from above.

A B CDE U C D E U C U U U

B|s cl3 cl3 U |2

cla 7 Dl 7 U |3 4 Fle 6

Df7 10 7 E|l5 6 5 Fl7 8 6

El6 9 6 5 Fl7 8 9 8

Fls 118 9 8
Si= =75 S = =7 Suy = (434702 = 65 5= (24611 =8
Sy=(5+7+10+49+11/4 =105 5. = (3+7+6=8)3 =8 So=GrarB)2=7.5 Suy=(2+6Y1 =8
Sc=(+747+6+8)/4 = 8 S5=(6+7+549Y3 =9 )2 = 6.5 S= (6+6)1 =12

Sp=(7+10+745+9)4 = 9.5
;= (6+9+6+5+8)4 = 8.5
5= (B+11+8+9+8Y4 = 11

Smallest are
Ma=5-75-105=-13
Mog=5-95-85

13
Choose one of these (AB here).

Uy joins A and B:

©

5= (5+6+5+8)3 =8
5= (748+9+8)3 = 10.6

Mpe=5-9-8=-12
Choose one of these (DE here).

U, joins Dand E
Soup = Doe2 + (Sp- S92 =3
Sevz = Dodl2 +(Se - SpV2 =2

Figure: http://www.evolution-
textbook.org/content/free/tables/Ch_27/T11_EVOW_Ch27.pdf

Sy = (3+4+6)
;= (748+6)2 = 105

Smallest is
Mcy,=3-65-75=-11

ns C and Uy:

Surus = Deuyf2 + (01 = S0

Us
Scuy = Deunf2 + (Sc— sug‘n);z

Mo, -8=-14
Choose one of these (M, here).
U, joins U, and Uy:

Suata = Dinunf2 + (Sca = 2 = 1
=1 85304 = Dugoy2 + in - 82 =1

Uy

els

calculation.

For last pair, connect
U and F with branch
length = 5.

Comments

Note this is the same
tree we started with
(drawn in unrooted
form here).



Clustering

K means, Markov Clustering algorithm



Algorithms for clustering: The Biological problem

We can use microarrays (DNA chips) to measure the activity
(expression level) of the genes in different cells, tissues under
varying conditions (with a drug) and at different time points.
Expression level is estimated by measuring the amount of mRNA
for that particular gene. More mRNA usually indicates more gene
activity. Microarray data are usually transformed into a set of large
matrices. The clustering analysis allows scientists to identify
changes of activity in genes and functional similarity among genes.



Clustering gene expression data

Sample # 57
?
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Clustering gene expression data

There are two typical experiments:

= Differentiation
® Compare expression levels under different conditions
* A test T;represents expression levels of a condition
® E g, cancer or drug-treated cell vs. normal cell

= Temporal expression E
® Explore temporal evolution of expression levels
* Atest T;represents expression levels at a given time
® F g, study cell response to heat-shock, starvation

Gene expression profile

Figure: The color of the spot indicates activation with respect to control
(red) or repression with respect to the control (green) or absence of
regulation (yellow) of a gene, or error in the technological process
(black). The sample can be all the genes of an organism (example the
6000 genes of yeast), or a selection of genes of interest (+ control genes).



K-Means Clustering: Lloyd Algorithm

1. Arbitrarily assign the k cluster centers
2. while the cluster centers keep changing

3. Assign each data point to the cluster Ci corresponding to the
closest cluster representative (center) (1 < i < k)

4. After the assignment of all data points, compute new cluster
representatives according to the center of gravity of each
cluster, that is, the new cluster representative is v \ |C| for
all v in C for every cluster C



Progressive greedy K-means Algorithm

O S
A W N RO

W NGO R WM

Select an arbitrary partition P into k clusters
while forever

bestChange<— 0

for every cluster C

for every element i not in C

if moving i to cluster C reduces its clustering cost
if cost(P) — cost(P;_,c) > bestChange
bestChange < cost(P) — cost(P;_ )

i

C «C

. if bestChange > 0
. Change partition P by moving i’ to C’

. else

return P



Progressive greedy K-means Algorithm
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Figure: K-means progression from left to right and top to bottom; stars
are center points (the centers of the cluster).



Progressive greedy K-means Algorithm

The quality of the cluster results could be assessed by ratio of the
distance to nearest cluster and cluster diameter. A cluster can be
formed even when there is no similarity between clustered patterns.
This occurs because the algorithm forces k clusters to be created.
Linear relationship with the number of data points; the complexity
is O(nKI) where n = number of points, K = number of clusters, |
= number of iterations.

distance=5
distance=20 @ size=5
AN
e ®/
AN
(o Y

size=5



Results of a clustering procedure on microarray data

The aims is clustering gene expression: visualising and analyzing vast
amounts of biological data as a whole set can be difficult. It is easier to
interpret the data if they are partitioned into clusters combining similar
data points.

Figure: Clustering analysis obtained using Hierarchical clustering
(UPGMA). The clusters are coloured differently.



Markov Clustering algorithm, MCL

Unlike most clustering algorithms, the MCL does not require the number
of expected clusters to be specified beforehand. The basic idea
underlying the algorithm is that dense clusters correspond to regions with
a larger number of paths.

ANALOGY: We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links between distant
nodes and strengthen the links between nearby nodes. A random walk
has a higher probability to stay inside the cluster than to leave it soon.
The crucial point lies in boosting this effect by an iterative alternation of
expansion and inflation steps.

An inflation parameter is responsible for both strengthening and
weakening of current. (Strengthens strong currents, and weakens already
weak currents). An expansion parameter, r, controls the extent of this
strengthening / weakening. In the end, this influences the granularity of

clusters.



The input of MCL could be an adjacency matrix




MCL Algorithm

1. Input is an un-directed graph, with power parameter e (usually
=2), and inflation parameter r (usually =2).

2. Create the associated adjacency matrix

: . o Mpg
3. Normalize the matrix; I\/Ipq =My

4. Expand by taking the e-th power of the matrix; for example, if
e = 2 just multiply the matrix by itself.

5. Inflate by taking inflation of the resulting matrix with

parameter r : Mpq = 72(%;;’,,)3,
i\Miq

6. Repeat steps 4 and 5 until a steady state is reached
(convergence).



MCL Algorithm complexity and entropy analysis

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and mostly consist of
sparse matrices after the first few steps. There are several distinct
measures informing on the clustering and its stability such as the
following clustering entropy:

S=-1/L} ;(Pilog2Pj+ (1 — Pj)logs(1 — Pj)) where the sum is
over all edges and the entropy is normalized by the total number of
edges. This might be used to detect the best clustering obtained
after a long series of clusterings with different granularity
parameters each time.

The expansion step of MCL has time complexity O(n®). The
inflation has complexity O(n?). However, the matrices are
generally very sparse, or at least the vast majority of the entries are
near zero. Pruning in MCL involves setting near-zero matrix entries
to zero, and can allow sparse matrix operations to improve the
speed of the algorithm vastly.
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Figure: Progression from left to right and top to bottom

Figure: Biological applications: protein families analysis (tribeMCL)



Hidden Markov Models in Bioinformatics

Viterbi, Forward, Backward, Genscan, TMHMM, sensitivity,
accuracy



Hidden Markov Models: The biological problem
Identifying genes and their parts (exons and introns) in a genome is an
important challenge; another problem we will work on is about membrane
proteins that are important for cell import/export. In this case we would
like to predict the location in the aminoacid sequence of all the
transmembrane helices. The prediction of gene parts and of the
membrane protein topology (i.e. which parts are outside, inside and
buried in the membrane) will require to train the model with a database
of experimentally determined genes / transmembrane helices and to
validate the model with an other database. The figure below describes a
7 helix membrane protein forming a sort of a cylinder (3D graph) across
the cell membrane.

EXTRACELLULAR
N-terminus- 3B

CYTOPLASMIC
Helix L



Basic of Hidden Markov Models

HMMs form a useful class of probabilistic graphical models used to
find genes, predict protein structure and classify protein families.
Definition: A hidden Markov model (HMM) has an Alphabet =
b1, by, , by , set of states Q = 1, ..., K, and transition
probabilities between any two states

ajj = transition prob from state i to state j

ajp + +ajx =1, for all statesi = 1,K

Start probabilities ag;

apr + +aok =1

Emission probabilities within each state e;(b) = P(x; = b|m; = k)
ei(bl) + + e;(bM) = 1, for all states i = 1,K

A Hidden Markov model is memoryless: P(7m:11 = k| whatever
happened so far) = P(m¢y1 = k|m1, T2, , Tty X1, X2, , X¢) =

P(my1 = k|m¢) at each time step t, only matters the current
state ¢



The dishonest casino model

0.95

P(1|F) = 1/8
P(2IF) = 1/6
P(3|F) = 1/
P(4|F) = 1/8
P(5|F) = 1/6
P(6|F) = 1/6

http://ai.stanford.edu/ serafim/

0.05

0.05

0.95

P(IL) = 1/10
P(IL) = 1/10
P(GIL) = 1110
P@IL) = 1110
P(5|L) = 1/10
P(IL) = 1/2



The dishonest casino

Known: The structure of the model

v

v

The transition probabilities
Hidden: What the casino did (ex FFFFFLLLLLLLFFFF)
Observable: The series of die tosses, ex 3415256664666153...

What we must infer:

v

v

v

When was a fair die used?

v

When was a loaded one used?

v



A “parse” of a sequence

! } | |

X1 X2 X3 XL

L
PI"(X, ﬂ‘-) = aOﬂl He)’[/ (XI) ) aﬂ/ﬂ“l
i=1

Given a sequence x = xyxp, a parse of x is a sequence of states 7
=T1,, TN



Given a sequence X = Xj.....Xy
and a parse &t = Ty, ......, Ty,

To find how likely is the parse:
(given our HMM)

P(x, 1) = P(Xy, o) Xy TTq, weens, T) =% X, X3 X
P(xy, 7oy | Toy1) P(Xnqs Ty | Tycp) e P(Xg, 78, | 704) P
(xq, 74) =
P(xy | my) Plmmy | 7y ) coeP(x, | 7,) P, | m,) P(x, | )
P(J'l:l) =

Qg1 Aty e Bt St (K)o B (Xy)



The three main questions on HMMs

1. Evaluation
GIVEN aHMM M, and a sequence x,

FIND Prob[x | M ]
2. Decoding

GIVEN aHMM M, and a sequence x,

FIND the sequence rt of states that maximizes P[x, 7w | M ]
3. Learning

GIVEN

a HMM M, with unspecified transition/emission probs.,
and a sequence X,

FIND parameters 0 = (e(.), aiJ) that maximize P[x | 6]

Evaluation: forward algorithm or the backwards algorithm;

decoding: Viterbi; Learning: Baum Welch = forward-backward
algorithm (not here)



Lets not be confused by notation

P[x ]| M]: The probability that sequence x was generated by
the model; The model is: architecture (#states, etc)

+ parameters 0 = ay el.)
So, P[x ]| 0], and P[ x] are the same, when the architecture,
and the entire model, respectively, are implied
Similarly, P[x, w | M ] and P[ x, it ] are the same

In the LEARNING problem we always write P[x | 6 ] to
emphasize that we are seeking the 6 that maximizes P[x | 6]



= Probability of most likely sequence of states
ending at statem, =k



Decoding main idea

Given that for all states k, and for a fixed position i,
V(i) = maxg, gy Py, 7T, e, T, X, T = K]

What is V(i+1)?

From definition,

V(i+1) = MaX,; I.}P[:ﬁcl...x‘., TCyy eey Ty Kiaqy Ty = 1]

= MaXy, |}P(x|+1r w1 = ] Xqee X0, e, ) P[Xl...xi, TCyyenny T

=maxg, P, Ty = 1] ) POy, 70, o, T, X T

= max, P(X,, T, = | | = K) maxg 3P X770, X, 76=K] =

e (x;,1) max, a V(i)



The Viterbi Algorithm

Input: X = X, Xy

Initialization:
Vo(0) =1 (0 is the imaginary first position)
V,(0)=0,forallk>0

Iteration:

Vili) = g;(x;) x max, a; V(i-1)
Ptrj{i) = argmax, ay V., (i-1)

Termination:
P(x, m*) = max, V. (N)

Traceback:
m,* = argmax, V,(N)
m,* = Ptr (i)



The Viterbi Algorithm

Xy X5 Xgieenitueissininnisnsnanssisoiahinesasesisinivia Xy
State 1
.
2 b
*?,—(i)
/|
K

Similar to “aligning” a set of states to a sequence
O(K2N)

Space:
O(KN)



Valid directions in the Valid directions in the
alignment problem. decoding problem.



Generating a sequence by the model
Given a HMM, we can generate a sequence of length n as follows:
1. Start at state 7y according to prob apr,
2. Emit letter x; according to prob e, (x1)
3. Go to state 7 according to prob ar,r,
4. until emitting x,




Evaluation

P(x) Probability of x given the model
P(x...x;) Probability of a substring of x given the model
P(m,=k | x) Probability that the ith state is k, given x

A more refined measure of which states x may be in



The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2 P(x,m) = X _P(x | m)P(n)

To avoid summing over an exponential number of paths x, define

fi(i) = P(x;..x, w = k) (the forward probability)



The Forward Algorithm derivation

Define the forward probability:

f(i) = P(x;..x, m; = 1)

= E:;1...:rci-1 P(Xye X g, Ty g, 7T = 1) €(X)

= Ek Enl...ni-z P(X1eXigy T0yeens T, g = K) @y €1(x))

=e(x) X, fi(i-1) a



The Forward Algorithm

We can compute f.(i) for all k, i, using dynamic programming!
Initialization:

f,(0)=1

f(0)=0,forallk>0

f,(i) = e/(x) Ek f(i-1) a
Termination:

P(x) = Ek fN) a

Where, a,, is the probability that the terminating state is k
(usually = ag,)



Comparison between Viterbi and Forward

VITERBI
Initialization:
Vy(0)=1
V,(0)=0,forallk>0

Iteration:
Vi(i) = g;(x) max, V,(i-1) a

Termination:

P(x, ©*) = max, V,(N)

FORWARD
Initialization:
f(0)=1
f(0)=0,forallk>0

Iteration:
fi{i) = e (x) Z, f(i-1) a,

Termination:

P(x) = Z, f(N) 2,



Motivation for the Backward Algorithm

We want to compute
P(‘Tl:i = k | X),
the probability distribution on the ith position, given x

We start by computing
P(m, = k, x) = P(x;...%, 7; = K, X;.1..%y)
= P(xl"'xij ﬂ:l = k) P(Xi+1...XN | Xl...Xi, ﬂ:l = k)
= P(x;...x;, 7, = k) P(x

Xy | 7, =k)
Forward, f,(i)

1 g acRivard, B, i)



The Backward Algorithm derivation

Define the backward probability:

b (i) = P(X;q.-Xy | T =k)
=i,
=2 2 o P Xigs oo Xpg Ty =1 Ty ey Ty | 70, = )
=2 &%) 3 LN
=2, e/(x,,,) 3, by(i+1)

Ti+1..7tN P(X: 1 Xi2r wor Xpgr Ty s Ty | 75 =K)

P(Xi10r oo Xpp Ty woey oy | Ty = 1)



The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic
programming

Initialization:
b, (N) = a,,, for all k

Iteration:
b (i) = 2 (x,,,) a by(i+1)

Termination:
P(x) = X, ag €/(x,) by(1)



What is the running time, and space required, for Forward,
and Backward?

Time: O(K2N)
Space: O(KN)
Useful implementation technigue to avoid underflows
Viterbi: sum of logs

Forward/Backward: rescaling at each position by
multiplying by a constant



Identifying genes and their parts (exons and introns)

GenScan

* N -intergenic region

* P-promoter

* F-5"untranslated region

¢ Egq—single exon (intronless) (translation
start -> stop codon)

* E,—initial exon (translation start -> donor
splice site)

* E,—phase k internal exon (acceptor splice
site -> donor splice site)

*  Erm — terminal exon (acceptor splice site ->
stop codon)

Esngl+

(single-exon

* |,—phase kintron: 0 — between codon
after the first base of a codon; 2 — after the
second base of a codon

gene)

——————————— (intergenic p————— o —— —
region)



Identifying genes and their parts (exons and introns)

In order to identify genes and their parts (exons and introns) we
need to know their length distribution (see example in figures
below). Human genes comprise about 3% of the human genome;
average length: ~ 8,000 DNA base pairs (bp); 5-6 exons/gene;
average exon length: ~ 200 bp; average intron length: ~ 2,000
bp; ~ 8% genes have a single exon and some exons can be as small
as 1 or 3 bp. Below the statistics we could implement into a HMM.

exon1 intron1 exon2 intron2 exon3

L3 I

se 3 B ¥

o 8 8 B ¥ ¥




Identifying genes and their parts (exons and introns)

GENSCAN (Burge & Karlin) oo e

62091 cracseTres coan CCCAGGAGEA GGGAGGGCAG GRGCCAGGGC|
62101
2151

2201
62231 7 JCOTATCARE GTTACRACAC]

52301 _ECTTTAAGE AGMCCANTAC ANMCTOECCA SCICCACACA CRGRAGHCTE|
42351 STGEGTITCT GATAGGGAGT GACTCTCTGY GECTATIGGT CTATTTTCGE|
62401 _heccam

wa4s

s2501)

62551

52601 czeTa, Tocoaceerr

721 MICACTOTOR ARGTCTCAGE ATCOTTITAD TTRCTTITAT TIGLTGTTCA
SAACARTTGT TTTCTTTTGT TTANTTCTTG CITICTRTIT TITICTTCTC
COCAATTTT? ACTATTATAC TTANTCCCT? AACATTOTOT ATAACANANG
GRARTATETE TGAGATACAT TAAGTARCTI ARARRARAAC TTTACACAGT|

CTGCCTACTA CATTACTATT TCGAATATAZ CTGTGCITAT TICCATATIC

Figure: The model (left) and the output (right) of Genscan prediction of
a genomic region; the result is a segmentation of a genome sequence, i.e.
the colours map the HMM states with the predicted functional genomic



Prediction of aminoacid segments included in membrane proteins

outside loop

tail
outside

membrane

tail inside

inside loop

amino acid sequence MGDVCDTEFGILVA. . ~SVALRPRKHGRWIV...FWVDNGTEQ. .. PEHMTKLHMM. . .
state sequence ©00000000hhhhh...hhhhifiiiiiihhh...hhhoooo0O...0000000hhh. ..

toploG tail tail - tail tail - loop - '::L-
out short loop long loop

Figure: top: the 3D graph previous figure could be represented as a 2D
graph; bottom, 3 state prediction: each amino acid could be in the
membrane (h), outside the cell (o) or inside the cell (i)



cytoplasmic non-cytoplasmic side

side
cap . cap short loop ==
cyt. helix core non-cyl. > non-cyt. fe—
> loop
— cyt
cap . cap long loop [~
cyt. helix core non-cyt. € non-cyt. |€—

Figure: The THMM model: a three state prediction model (h,o,i) could
be then refined adding more states, for example caps, i.e. the boundary
between outside and membrane and inside and membrane. This
refinement improves the prediction of the topology of the protein.



TMHMM http://www.cbs.dtu.dk /services/ TMHMM/

# Sequence Length: 274
A Seguence Number of predicted TME=: 7

¥ Sequence Exp number of AAs in TMHs: 153.74681
N Sequence Exp nwrber, first 60 ARs: 22.08833
¥

Sequence Total prob of N-in: D.04171

N Seguence POSIIBLE N-term signal sequence

Sequence THMEMME . O out=ide 1 26
Sequence ‘TMHMMZ . O ‘THhelix 27 49
Sequence TMHMME . O inzide 50 61
Segquence ‘TMHMMZ . O ‘THhelix 62 84
Sequence TMHMME . O outside 8s 103
Begquence TMHMME . O ‘THhelix 104 126
Sequence TMHMME . O inmide 127 130
Segquence TMHMME . O ‘THhelix 131 153
Sequence TMHMME . O outside 154 157
Smgquence TMHMME . D ‘THhelix 158 180
Sequence THMEMME . O inside 181 200
Sagquence THHMME L O ‘Tihelix 201 223
Sequence THEME . O outside 24 127
HSagquence THMHMMZ L O ‘Thelix 220 250
Segquence THHMME O inside 51 I

50 100 150 200 250

ransmembrane INRIGE  —— outeide



Assessing performances: Sensitivity and specificity

WS NSO R WD

10.

11.

be predicted to occur: Predicted Positive (PP)

be predicted not to occur: Predicted Negative (PN)
actually occur: Actual Positive (AP)

actually not occur: Actual Negative (AN)

True Positive TP = PP AP

True Negative TN = PN () AN

False Negative FN = PN AP

False Positive FP = PP AN

Sensitivity: probability of correctly predicting a positive
example Sn = TP/(TP + FN)

Specificity: probability of correctly predicting a negative
example Sp = TN/(TN + FP) or

probability that positive prediction is correct Sp = TP/(TP +
FP)



Gibbs sampling: the Biological problem



Gibbs sampling: the Biological problem

given a set of sequences, find the motif shared by all or most
sequences; while its starting position in each sequence is unknown,
each motif appears exactly once in one sequence and it has fixed

length.
motif start index
gene start
4
S - =
Sz - =
ss ==
- -
St I

Figure: Several genes are co-regulated (activated or repressed) by same
protein that binds before the gene start (transcription factor)



Gibbs Sampling is an example of a Markov chain Monte Carlo
algorithm; it is an iterative procedure that discards one I-mer after
each iteration and replaces it with a new one. Gibbs Sampling
proceeds slowly and chooses new |-mers at random increasing the
odds that it will converge to the correct solution. It could be used
to identify short strings, motifs, common to all co-regulated genes
which are not co-aligned. The algorithm in brief:

1.

Randomly choose starting positions s = (si,...,5¢) and form
the set of I-mers associated with these starting positions.

Randomly choose one of the t sequences

Create a profile p from the other t -1 sequences.

4. For each position in the removed sequence, calculate the

probability that the I-mer starting at that position was
generated by p.

Choose a new starting position for the removed sequence at
random based on the probabilities calculated in step 4.

Repeat steps 2-5 until there is no improvement



Gibbs sampling
Considering a set of unaligned sequences, we choose initial guess
of motifs

1. Select a random position in each sequence

Sequence set motif instance

Figure: motifs in purple, the rest of the sequences in green; next figures:
theta is the weight matrix i.e. the frequency of each base in the aligned
set of motifs; red the best fitting motif; in y axis the likelihood of each
motif with respect to the current weight matrix.



2. Build a weight matrix

e —[IN

3. Select a sequence at random

e Sesehessasnenanssantatattnsnsnattte

o —11I



4. Score possible sites in seq using weight matrix

Likelihood _ —
(probability) —_

5. Sample a new site proportional to likelihood

Likelihood
(probability)




6. Update weight matrix

Likelihood . - .

(probability) —_ . .
S —
| N S —
.................................................. —

—
—

7. Iterate until convergence (no change in sites/@)

o —[1II



Algorithms for Biological Networks

Wagner algorithm



Biological Networks: the biological problem

A biological network is a group of genes in which individual genes
can influence the activity of other genes.Let assume that there are
two related genes, B and D neither is expressed initially, but E
causes B to be expressed and this in turn causes D to be expressed
the addition of CX by itself may not affect expression of either B or
D both CX and E will have elevated levels of mRNAg and low

levels of mRNAp

Transcription

(=]

MRNAg

Translation

\

MRNAG
.
{n ]

Figure: We have E only; B is a Primary Target of E; Production of
mRNAg is enhanced by E; D is a Secondary Target of E; Production of
mRNAp is enhanced by B



What is a genetic perturbation? it is an experimental manipulation
of gene activity by manipulating either a gene itself or its product.
Such perturbations include point mutations, gene deletions,
overexpression, inhibition of translation, or any other interference
with the activity of the product.

MRNA,

No mRNA,
Transcription

No Translation
OSEn (o]

Figure: E and CX both present; B is a Primary Target; Production of
RNAg is enhanced by E; Production of RNAp is decreased (prevented)




Network reconstruction: direct and indirect effects

When manipulating a gene and finding that this manipulation
affects the activity of other genes, the question often arises as to
whether this is caused by a direct or indirect interaction?

An algorithm to reconstruct a genetic network from perturbation
data should be able to distinguish direct from indirect regulatory
effects.

Consider a series of experiments in which the activity of every
single gene in an organism is manipulated. (for instance,
non-essential genes can be deleted, and for essential genes one
might construct conditional mutants.) The effect on mRNA
expression of all other genes is measured separately for each
mutant.



How to reconstruct a large genetic network from n gene
perturbations in fewer than n? steps?

Motivation: perturb a gene network one gene at a time and
use the effected genes in order to discriminate direct vs.
indirect gene-gene relationships

Perturbations: gene knockouts, over-expression, etc.
Method: For each gene g; , compare the control experiment
to perturbed experiment and identify the differentially
expressed genes Use the most parsimonious graph that yields
the graph as its reachable graph



The nodes of the graph correspond to genes, and two genes are
connected by a directed edge if one gene influences the activity of
the other.

(a)

(b) o: 16 (€) o 216
L 1
2 2:
3 258 3 0258121416
4: 4:
s 12 5 02121416
6 512 6 025121416
7 217 7 2817
8: 8:
9 1015 9: 0125610121415161820
10: 120 10: 012561214161820
1 20 11: 02561214161820
2: 14 12: 021416
13 817 13: 817
4 0 14: 0216
15 0 15: 0216
16: 2 16: 2
17: 8 1. R/



(a)

(©)

Figure: The figure illustrates three graphs (Figs. B,C,D) with the same
accessibility list Acc (Fig. A). There is one graph (Fig. D) that has Acc
as its accessibility list and is simpler than all other graphs, in the sense

that it has fewer edges. Lets call Gpars the most parsimonious network

compatible with Acc.



Figure A shows a graph representation of a hypothetical genetic
network of 21 genes. Figure B shows an alternative representation
of the network shown in A. For each gene i, it simply shows which
genes activity state the gene influences directly. In graph theory, a
list like that shown in Fig. B is called the adjacency list of the
graph. We will denote it as Adj(G), and will refer to Adj(i) as the
set of nodes (genes) adjacent to (directly influenced by) node i.
One might also call it the list of nearest neighbors in the gene
network, or the list of direct regulatory interactions.

When perturbing each gene in the network shown in Figure A, one
would get the list of influences on the activities of other genes
shown in Figure C.

Starting from a graph representation of the network in Figure A,
one arrives at the list of direct and indirect causal interactions in
Figure C by following all paths leaving a gene. That is, one follows
all arrows emanating from the gene until one can go no further.



The adjacency list completely defines the structure of a gene network

In graph theory, the list Acc(G) is called the accessibility list of the
graph G, because it shows all nodes (genes) that can be accessed
(influenced in their activity state) from a given gene by following
paths of direct interactions.

In the context of a genetic network one might also call it the list of
perturbation effects or the list of regulatory effects.

Acc(i) is the set of nodes that can be reached from node i by
following all paths of directed edges leaving i. Acc(G) then simply
consists of the accessibility list for all nodes i



The adjacency matrix of a graph G, A(G) = (aj;) is an n by n
square matrix, where n is the number of nodes (genes) in the
graph. An element aij of this matrix is equal to one if and only if a
directed edge exists from node i to node j. All other elements of
the adjacency matrix are zero.

The accessibility matrix P(G) = pj; is also an n by n square
matrix. An element p;; is equal to one if and only if a path
following directed edges exists from node i to node j. otherwise pj;
equals zero.

Adjacency and accessibility matrices are the matrix equivalents of
adjacency and accessibility lists.

Lets first consider only graphs without cycles, where cycles are
paths starting at a node and leading back to the same node.
Graphs without cycles are called acyclic graphs.

Later generalize to graphs with cycles.

An acyclic directed graph defines its accessibility list, but the
converse is not true.

In general, if Acc is the accessibility list of a graph, there is more
than one graph G with the same accessibility list.



€

r(e)=k+1

Figure: A shortcut is an edge connecting two nodes, i and j that are also
connected via a longer path of edges. The shortcut e is a shortcut range
k+1. That is, when eliminating e, | and j are still connected by a path of
length k+1.



Wagner Algorithm

* Stepl: Graphs without cycles only (acyclic directed
graph)
* Step2: Graphs with cycles

* Step 1: Shortcut: \
@

@

* Ashortcut-free graph compatible with an accessibility
list is a uniqgue graph with the fewest edges among all
graphs compatible with the accessibility list, i.e, a
shortcut-free graph is the most parsimonious graph.



Theorem

> Let Acc be the accessibility list of an acyclic digraph. Then
there exists exactly one graph Gpars that has Acc as its
accessibility list and that has fewer edges than any other
graph G with Acc as its accessibility list.

» This means that for any list of perturbation effects there
exists exactly one genetic network G with fewer edges than
any other network with the same list of perturbation effects.

> Definition: An accessibility list Acc and a digraph G are
compatible if G has Acc as its accessibility list. Acc is the
accessibility list induced by G.

» Definition: Consider two nodes i and j of a digraph that are
connected by an edge e. The range r of the edge e is the
length of the shortest path between i and j in the absence of
e. If there is no other path connecting i and j, then r: = oc.



Theorem

Let Acc(G) be the accessibility list of an acyclic directed graph,
Gpars its most parsimonious graph, and V(Gpars ) the set of all
nodes of Gpars . Then the following equation (1):

Vi € V(Gpars) ... Adj (i) = Acc (i) \ Ujeacc(iyAcc (J)

In words, for each node i the adJacency list Adj( ) of the most
parsimonious genetic network is equal to the accessibility list Acc(i)
after removal of all nodes that are accessible from any node in
Acc(i).



Example

O
\
® ;
®
Figure: Adj(1) = Acc(1) -

(Acc(2) + Acc(3) + Acc(4) + Acc(5) + Acc(6)) = (2,3,4,5,6) -
(BU(5,6)Ub6) =(2,4)



Proof: | will first prove that every node in Adj(i) is also contained
in the set defined by the right hand side of (1).

Let x be a node in Adj(i). This node is also in Acc(i). Now take,
without loss of generality any node j € Acc(i). Could x be in
Acc(j)? If x could be in Acc(j) then we could construct a path from
i to j to x. But because x is also in Adj(i), there is also an edge
from i to x. This is a contradiction to Gpars being shortcut-free.
Thus, for no j € Acc(i) can x be in Acc(j). x is therefore also not
an element of the union of all Acc(j) shown on the right-hand side
of (1). Thus, subtracting this union from Acc(i) will not lead to
the difference operator in (1) eliminating x from Acc(i). Thus x is
contained in the set defined by the right-hand side of (1).



Next to prove: Every node in the set of the right-hand side of (1)
is also in Adj(i).

Let x be a node in the set of the right-hand side of (1). Because x
is in the right hand side of (1), x must a fortiori also be in Acc(i).
That is, x is accessible from i. But x can not be accessible from
any j that is accessible from i.

For if it were, then x would also be in the union of all Acc(j). Then
taking the complement of Acc(i) and this union would eliminate x
from the set in the right hand side of (1). In sum, x is accessible
from i but not from any j accessible from i. Thus x must be
adjacent to i.



Let i, j, and k be any three pairwise different nodes of an acyclic
directed shortcut-free graph G. If j is accessible from i, then no
node k accessible from j is adjacent to i.

Proof: Let j be a node accessible from node i. Assume that there
is a node k accessible from j, such that k is adjacent to i. That is, j
€ Acc(i), k € Acc(j) and k € Adj(i). That k is accessible from j
implies that there is a path of length at least one from j to k. For
the same reason, there exists a path of length at least one
connecting i to j. In sum, there must exist a path of length at least
two from i to k. However, by assumption, there also exists a
directed edge from i to k. Thus, the graph G can not be short-cut
free.



Step 2: How about graphs with cycles?
Two different cycles have the same accessibility list
Perturbations of any gene in the cycle influences the activity of all
other genes in the same cycle
Cant decide a unique graph if cycle happens
Not an algorithmic but an experimental limitation
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Figure: Basic idea: Shrink each cycles (strongly connected components)
into one node and apply the algorithm of step 1. A graph after shrinking
all the cycles into nodes is called a condensation graph



How good is this algorithm?

1.

Unable to resolve cycled graphs

2. Require more data than conventional methods using gene

expression correlations.

There are many networks consistent with the given
accessibility list. The algorithm construct the most
parsimonious one.

The same problem was proposed around 1980 which is called
transitive reduction.

. The transitive reduction of a directed graph G is the directed

graph G' with the smallest number of edges such for every
path between vertices in G, G' has a path between those
vertices.

. An O(V) algorithm for computing transitive reduction of a

planar acyclic digraph was proposed by Sukhamay Kundu. (V
is the number of nodes in G)



Complexity

» Measures of algorithmic complexity are influenced by the
average number of entries in a nodes accessibility list. Let
k < n—1 be that number.

» For all practical purposes, there will be many fewer entries
than that, not only because accessibility lists with nearly n
entries are not accessibility lists of acyclic digraphs, but also
because most real-world graphs are sparse.

» During execution, each node accessible from a node j induces
one recursive call of PRUNEACC, after which the node
accessed from j is declared as visited.

» Thus, each entry of the accessibility list of a node is explored
no more than once.

> However, line 15 of the algorithm loops over all nodes k

adjacent to j. If a = |Adj(j)|, on average, then overall
computational complexity becomes O(nka).



Comments on the code

for all nodes i of G

The algorithm itself takes the accessibility list of Adji)=Acc()

a graph and eliminates entries inconsistent with
Theorem 2 and Corollary 2. for all nodes i of G
if node i has not been visited
call PRUNE_ACC(i)
end if

[V R P

It does so recursively until only the adjacency
list of the shortcut-free graph is left.

7 PRUNE_ACC()
for all nodes j eAce(i)

]
The algorithm is shown as psendocode. Because ¢ if dcc(i)=@

it operates on lists, programming languages such o declare / as visited
as perl or library extensions of other languages 11 else
permitting list operations will facilitate its 12 ~ call PRUNE_ACC()
implementation. 13 end if
14 for all nodes j  Acefi)

i ) . 15 for all nodes k  Adj(j)
(In APpendlx a perl 1mp!e1.n.emanon o.f the ] 6 itk edceli)
algorithm, where accessibility and adjacency list | delete k from Adji(i)
are represented by a two-dimensional hashing 18 end if
array.) 19 declare node 7 as visited

20 end PRUNE_ACC(1)



The algorithm needs an
accessibility list for each node ;,
Ace(i), which would be obtained
from gene perturbation data and
subsequent gene activity
measurements for a genetic
network.

In lines one and two, for each not
i the adjacency list Adj(i) is
initialized as equal to the
accessibility list.

The algorithm will delete elemen
from this Adj(i) until the adjacenc
list of the most parsimonious
network of 4ce(G) is obtained.

[

@ s W

10

12

13

14
15
16

-
7

18
19
20

forallnodes i of G
Adjii)=Acc(i)

forallnodes i of G
if node 7 has not been visited
call PRUNE_ACC())
end if

PRUNE_ACC(7)
for all nodes j sdecri)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Aecfi)
for all nodes k = Adj(j)
if bk edee(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)



The master loop in lines 3-6 cycles
over all nodes of G, and calls the
routine PRUNE_ACC for each
node i.

In the last statement of this routine
(line 19) the calling node is
declared as visited.

A visited node is a node whose
adjacency list Adj(i) needs not be
modified any further.

This is the purpose of the
conditional statement in the master
loop (line 4), which skips over
nodes that have already been
visited.
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forallnodes i of G
Adjii)=Acc(i)

forallnodes i of G
if node 7 has not been visited
call PRUNE_ACC())
end if

PRUNE_ACC(7)
for all nodes j sdecri)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Accfi)
for all nodes k = Adj(j)
if bk edee(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)



Aside from storing Acc and Adj, the
algorithm thus also needs to keep
track of all visited nodes.

In an actual implementation, 4cc,
Adj, and any data structure that
keeps track of visited nodes would
need to be either global variables or
passed into the routine
PRUNE_ACC, preferably by
reference.

In contrast, the calling node i needs
to be a local variable because of the
recursivity of PRUNE_ACC.
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for all nodes i of G
Adj(i)=Acc(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(#)
end if

PRUNE_ACC(1)
for all nodes j edecfi)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j & Ace(i)
for all nodes k € Adj(j)
if k edeefi)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)



Function PRUNE_ACC

It contains of two loops. The
first loop (lines 8-13) cycles
over all nodes j accessible
from the calling node i. If
there exists a node accessible
from j, then PRUNE_ACC is
called from j. If no node is
accessible from j, that is, if
Ace(j) =D, thenj is declared
as visited.

Because its accessibility list
is empty, its adjacency list
must be empty as well (4dj(i)
CAecc(i)), and needs no
further modification.

(&)
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for allnodes i of G
Adjfi)=Ace(i)

for allnodes i of G
if node 7 has not been visited
call PRUNE_ACC(f)
end if

PRUNE_ACC(7)
for all nodes j sAcefi)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j = Acc(i)
for all nodes k & Adj(j)
if k edecfi)
delete &k from Adji)
end if
declare node 7 as visited
end PRUNE_ACC(i)



Thus, through the first loop

PRUNE_ ACC calls itself recursively
until a node is reached whose
accessibility list is empty.

There always exists such a node,
otherwise the graph would not be
acyclic.

This also means that infinite recursion
is not possible for an acyclic graph.

Thus, the algorithm always terminates.

More precisely, the longest possible
chain of nested calls of PRUNE_ACC
is (n-1) if G has n nodes.

For any node i calling PRUNE_ACC,
the number of nested calls is at most
equal to the length of the longest path
starting at i.
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for all nodes i of G
Adjfi)=Ace(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(7)
end if

PRUNE_ACC(7)
for all nodes j eAdcefi)
if dec(j)=2
declare j as visited.
else
call PRUNE_ACC(j)
end if

for all nodes j € Ace(i)
for all nodes k = Adj(j)
ifk edee(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)



The second loop of PRUNE ACC

lines 14-18) only starts once the
algorithm has explored all nodes
accessible from the calling node i, that
is, as the function calls made during the
first loop return.

In the second loop the principle of
Corollary 2 is applied.

Specifically, the second loop cycles
over all nodes j accessible from i in line
14.
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for all nodes i of G
Adj{i)=Acc(i)

for allnodes i of G
if node 7 has not been visited
call PRUNE_ACC(i)
end if

PRUNE_ACC(7)
for all nodes j edecti)
if dee(ji=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Ace(i)
for all nodes k = Adj(j)
ifk sdec(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)



In a slight deviation from what Corollary 2
suggests, line 15 cycles not over all nodes

kE&Ace(j) , but only over k € Adj(j).

All nodes k €.A4dj(j) are deleted from Adj(i) in
lines 16-18. Cycling only over k € Adj(j) saves
time, but does not compromise the requirement
that all nodes k € 4dj(i) be removed, because
line 14 covers all nodes j accessible from i.

Because of the equality proven in Theorem 2,
once this has been done, the adjacency list need
not be modified further. This is why upon
leaving this routine, the calling node is declared

as visited.

Notice also that if a node j with dee(j) = Eis
encountered, the loop in line 15 is not executed.

L) b -
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for all nodes i of G
Adj(i)=Ace(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(i)
end if

PRUNE_ACC(7)
for all nodes j edceli)
if Aec(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Aec(i)
for all nodes k = Adj(j)
ifk edcefi)
delete k& from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)



(-0 IR WV R N

for all nodes | of &
if component{i] has not been defined
create new node x of G*
componentfi]=x
for all nodes jeAcciiy
if ieAcc(j)
compement|jJ=x
end if
end if

for all nodes i of G*
Accooi)=2
for all nodes | of &
for all nodes j = Accii)
if componentfi] £ componentfj]
if componentfj]e Accas component(if)
add component[j] to Accg=(component{i])
end if
end if



Algorithms for Biological Networks



Gillespie algorithm: The Biological problem
Many studies have reported occurrence of stochastic fluctuations and
noise in living systems. Observation of gene expression in individual cells
has clearly established the stochastic nature of transcription and
translation. When using deterministic modeling approaches, for examples
differential equations, we assume that the biological system evolves along
a fixed path from its initial state. Such an approach cannot be taken for
modeling stochastic processes such as gene regulation. Also, using
deterministic methods, it is not possible to capture emergent phenomena
that arise from inherent randomness. The Gillespie algorithm has been
applied to many in silico biological simulations recently.
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Gillespie algorithm

Consider a system of N molecular species S;,, Sy interacting
through M elemental chemical reactions Ry, , Ry.

We assume that the system is confined to a constant volume W
and is well stirred and at a constant temperature. Under these
assumptions, the state of the system can be represented by the
populations of the species involved.

We denote these populations by X(t)X1(t),, Xn(t), where Xi(t) is
the number of molecules of species S; in the system at time t. The
well stirred condition is crucial. For each reaction R;, we define a
propensity function aj, such that a;(x)dt is the probability, given
X(t) = x, that one R; reaction will occur in time interval

[t,t + dt). State change vector vj, whose ith component is defined
by v;; the change in the number of S; molecules produced by one
R; reaction.



The most important method to simulate a network of biochemical
reactions is the Gillespies stochastic simulation algorithm (SSA)

>

The Gillespie algorithm is widely used to simulate the behavior
of a system of chemical reactions in a well stirred container

The key aspects of the algorithm is the drawing of two
random numbers at each time step, one to determine after
how much time the next reaction will take place, the second
one to choose which one of the reactions will occur.

Each execution of the Gillespie algorithm will produce a
calculation of the evolution of the system. However, any one
execution is only a probabilistic simulation, and the chances of
being the same as a particular reaction is vanishingly small.

Therefore to garner any useful information from the
algorithm, it should be run many times in order to calculate a
stochastic mean and variance that tells us about the
behaviour of the system.

the complexity of the Gillespie algorithm is O(M) where M is
the number of reactions.



Gillespie Algorithm

1.

Initialise: set the initial molecule copy numbers, set time
t=0.

Calculate the propensity function a; for each reaction, and the
total propensity according to equation ag (x) = Zjl\il aj(x) i
=1,. M

Generate two uniformly distributed random numbers r; and r»
from the range (0, 1).

Compute the time 7 to the next reaction using equation
r=gtmn(L).

Decide which reaction R,, occurs at the new time using
equation rn > Zk 1ak-..and...rn < - Zk 13k -
Update the state vector v by addlng the update vector :
v(t+7)=v(t)+ (V)u

. Set t = t + 7. Return to step 2 until t reaches some specified

limit tpax.



In each step, the SSA starts from a current state x(t) = x and
asks two questions: When will the next reaction occur? We
denote this time interval by t . When the next reaction occurs,
which reaction will it be? We denote the chosen reaction by the
index j. To answer the above questions, one needs to study the
joint probability density function p (7, | x, t) that is the
probability, given X(t) = x, that the next reaction will occur in the
infinitesimal time interval [t + 7, t + 7 + dt]. The theoretical
foundation of SSA is given by p(7,/ | x, t) = aj (x) exp (—ao (x) 7),
where ag (x) = Zjl\il aj (x). It implies that the time t to the next
occurring reaction is an exponentially distributed random variable
with mean 1/ag (x) , and that the index j of that reaction is the
integer random variable with point probability a; (x) /ap (x). The 7
is T = aotx) In (%)

The system state is then updated according to X (t +7) = x + v
and this process is repeated until the simulation final time or until
some other terminating condition is reached.




Example: ODE versus Gillespie
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Examples of Exam Questions
> Align the two strings: ACGCTG and CATGT, with match
score =1 and mismatch, gap penalty equal -1
» Describe with one example the difference between Hamming
and Edit distances
» Discuss the complexity of an algorithm to reconstruct a
genetic network from microarray perturbation data

» Discuss the properties of the Markov clustering algorithm and
the difference with respect to the k-means and hierarchical
clustering algorithms



Examples of Answers Align the two strings: ACGCTG and
CATGT, with match score =1 and mismatch, gap penalty equal -1

0/ 1|2 |3 |4|5]|6
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Describe with one example the difference between Hamming and
Edit distances TGCATAT — ATCCGAT in 4 steps; TGCATAT
(insert A at front); ATGCATAT (delete 6th T); ATGCATA
(substitute G for 5th A); ATGCGTA (substitute C for 3rd G);
ATCCGAT (Done).



Examples of Answers

Discuss the complexity of an algorithm to reconstruct a genetic
network from microarray perturbation data

Reconstruction: O(nka) where n is the number of genes, k is the
average number of entries in the accession list; a is the average
number of entries in adjacency list. Large scale experimental gene
perturbations in the yeast Saccharomyces cerevisiae (n=6300)
suggests that k < 50, a < 1, and thus that nka << n?.



Discuss the properties of the Markov clustering algorithm and the
difference with respect to the k-means and hierarchical clustering
algorithms

MCL algorithm: We take a random walk on the graph described by
the similarity matrix and after each step we weaken the links
between distant nodes and strengthen the links between nearby
nodes.

The k-means algorithm is composed of the following steps: 1)
Place K points into the space represented by the objects that are
being clustered. These points represent initial group centroids. 2)
Assign each object to the group that has the closest centroid. 3)
When all objects have been assigned, recalculate the positions of
the K centroids. 4) Repeat Steps 2 and 3 until the centroids no
longer move. This produces a separation of the objects into groups
from which the metric to be minimized can be calculated.
Hierarchical clustering: Start with each point its own cluster. At
each iteration, merge the two clusters; with the smallest distance.
Eventually all points will be linked into a single cluster. The
sequence of mergers can be represented with a rooted tree.
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