Objectives

- The course focuses on algorithms used in bioinformatics.
- The algorithms presented in this course could be also applied in other data-rich fields.
- At the end of the course the student should be able to describe the main aspects of the algorithms.
- The student should understand how bioinformatics combines biology and computing.
- The exam papers will not contain biological questions.
- References and links to additional material at the end of the lecture notes may help the students to understand better the applications of the algorithms (this is not essential to answer exam questions).
Overview of the course

First we learn how to compare two and then one or more DNA sequences. Searching a database for nearly exact matches (using Blast algorithm) is the most important routine work in a Bioinformatics lab. The big efforts in sequencing human genomes and also single cell genomes will require new algorithms. We will show some examples of the first wave. We learn how to build trees to study sequences relationship and how to cluster biological data using K-means and the Markov clustering algorithms. We use hidden Markov models to predict exon/intron arrangements in a gene or the structure of a membrane protein. Then we look at an algorithm to reconstruct genetic network (Wagner algorithm). A set of biochemical reactions could be simulated using the Gillespie algorithm. Material and figure acknowledgments at the end of the Notes and during the lectures.
Topics and List of algorithms

- Basic concepts in genetics.
- Dynamic programming (Longest Common Subsequence, Needleman-Wunsch, Smith-Waterman, Hirschberg, Nussinov).
- Progressive alignment (Clustal).
- Homology database search (Blast, Patternhunter).
- Next Generation sequencing (De Bruijn graph, Burrows-Wheeler transform)
- Phylogeny - parsimony-based - (Fitch, Sankoff).
- Phylogeny - distance based - (UPGMA, Neighbor Joining).
- Clustering (K-means, Markov Clustering)
- Hidden Markov Models applications in Bioinformatics (Genescan, TMHMM).
- Pattern search in sequences (Gibbs sampling).
- Biological Networks reconstruction (Wagner) and simulation (Gillespie).
Basic concepts in genetics

DNA, RNA, protein, the genetic code, the gene, exons, introns, the genome, the cell
Basic concepts in genetics

DNA could be thought as a string of symbols from a 4-letter (bases) alphabet, A (adenine), T (thymine), C (cytosine) and G (guanine). In the double helix A pairs with T, C with G (so only the sequence of one filament is vital to keep). A gene is a string of DNA that contains information for a specific cell function. The Genome is the entire DNA in a cell nucleus.

RNA is same as DNA but T is replaced by U (uracil); proteins are strings of amino acids from an alphabet of 20. The proteins have a 3D shape that could be described by a 3 dimensional graph. The genetic code is a map between 61 triplets of DNA bases and 20 amino acid.
DNA and chromosomes

In eukaryotes the genetic information is distributed over different DNA molecules. A human cell contains 24 different such chromosomes. If all DNA of a human cell would be laid out end-to-end it would reach approximately 2 meters. The nucleus however measures only 6 µm. Equivalent of packing 40 km of fine thread into a tennis ball with a compression ratio of 10000.
Reading and writing DNA is cheap and effective

Sequencing costs have plummeted from 2.7 billion dollars for the first human genome in 2003 down to 1000 dollars today; Base errors is now 1 in 10 million. An average size book could be converted into thousands DNA sequences each encoding data block, an address specifying the location of the data block in the bit stream, and flanking common sequences to facilitate wet lab procedures to enable the reading. This library could be synthesized by ink-jet printed in high-fidelity DNA microchips.

[Graph and diagrams showing cost per raw megabase of DNA sequence and comparison of information density among different storage media.]
DNA makes RNA makes proteins (the 3D graph below); given the pairing rule in a DNA double strands molecule, all the information is in each single strand. The RNA is termed mRNA and is translated by triplet of bases into a chain of amino acids (the protein).
Figure: The central dogma of molecular biology is that DNA is transcribed to RNA which is translated to protein. The amount of RNA depends on gene activity which is influenced by other proteins binding before the start of the gene; different tissues contain cells with different amount of RNA for each gene.
Figure: The genetic code provides the information for the translation of codons (triplets of bases, in black) into amino acids (single and triple letter code in red) that are chained together to form a protein; 61 codons code for 20 amino acids; 3 special codons say “stop”.
The structure of a human gene

A gene starts with the promoter region, which is followed by a transcribed but non-coding region called 5’ untranslated region (5’ UTR). Then follows the initial exon which contains the start codon which is usually ATG. There is an alternating series of introns and internal exons, followed by the terminating exon, which contains the stop codon. It is followed by another non-coding region called the 3’ UTR; at the end there is a polyadenylation (polyA) signal, i.e. a repetition of Adenine (example AAAAAA). The intron/exon and exon/intron boundaries are conserved short sequences and called the acceptor and donor sites.
Genes and proteins make networks that look like digital circuits.
Gene networks make cells make tissue

Top: a human cell (it measures $10 \mu m$ across); bottom: detail of a stomach tissue
A bacterium (for example *Escherichia coli*) measures about $2 \mu m$ in length, yet it contains about $1,600 \mu m$ (1.6 mm) of circular double strands DNA (5×10^6 DNA bases in E. coli).
Comparison between biological systems and system networks
from bottom: Molecules (for example genes and proteins), reactions (interactions between proteins and other molecules), pathways (composition of reactions, large scale interactions), cells (composition of pathways), tissues (composition of cells), organs (composition of tissues), organisms (compositions of organs?). Also diseases are linked because they share common genes (see below).
Dynamic programming algorithms for sequence alignment

Longest common subsequence, Needleman-Wunsch, Smith Waterman, Affine gap, Hirschberg algorithm, RNA folding.
Sequence Alignment: The Biological problem

- Single nucleotide polymorphisms (SNPs)
 - 1 every few hundred bp, mutation rate* ≈ 10⁻⁹

- Short indels (=insertion/deletion)
 - 1 every few kb, mutation rate v. variable

- Microsatellite (STR) repeat number
 - 1 every few kb, mutation rate ≤ 10⁻³

- Minisatellites
 - 1 every few kb, mutation rate ≤ 10⁻¹

- Repeated genes
 - rRNA, histones

- Large deletions, duplications, inversions
 - Rare, e.g. Y chromosome

Figure: Type and frequency of mutations in the human genome per generation; mutations changes DNA bases or rearrange DNA strings at different scales. In sequence alignment we compare sequences that are different because of mutations.
Sequence Alignment

Alignment is a way of arranging two DNA or protein sequences to identify regions of similarity that are conserved among species. Each aligned sequence appears as a row within a matrix. Gaps are inserted between the residues (=amino acids) of each sequence so that identical or similar bases in different sequences are aligned in successive positions. Each gap spans one or more columns within the alignment matrix. Given two strings $x = x_1, x_2, \ldots, x_M$, $y = y_1, y_2, \ldots, y_N$, an alignment is an assignment of gaps to positions 0, M in x, and 0, N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence.

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCAGCGTGATTTGCCCCGAC
```

```
-AGGCTATCACCTGACCTCCAGGCCGAG--TGC
TAG--CTATCAC--GACCGC--GGTGATTTGCCCCGAC
```
Hamming distance always compares i-th letter of v with i-th letter of w:

$v = \text{ATATATAT}$

$w = \text{TATATATA}$

Hamming distance: $d(v, w) = 8$

Computing Hamming distance is a trivial task.

Edit distance may compare i-th letter of v with j-th letter of w:

$v = -\text{ATATATAT}$

$w = \text{TATATATA}$

Edit distance: $d(v, w) = 2$

Computing edit distance is a non-trivial task.

Figure: The Hamming distance is a column by column number of mismatches; the Edit distance between two strings is the minimum number of operations (insertions, deletions, and substitutions) to transform one string into the other.
Figure: Create a matrix M with one sequence as row header and the other sequence as column header. Assign a 1 where the column and row site matches (diagonal segments), zero otherwise (horizontal or vertical segments); sequence alignment can be viewed as a Path in the Edit Graph. The edit graph is useful to introduce the dynamic programming technique.
Dynamic programming, DP

DP is a method for reducing a complex problem to a set of identical sub-problems. The best solution to one sub-problem is independent from the best solution to the other sub-problems. **Recursion is a top-down mechanism**, we take a problem, split it up, and solve the smaller problems that are created; **DP is a bottom-up mechanism**: we solve all possible small problems and then combine them to obtain solutions for bigger problems. The reason that this may be better is that, using recursion, it is possible that we may solve the same small subproblem many times. Using DP, we solve it once. Consider the Fibonacci Series:

\[F(n) = F(n - 1) + F(n - 2) \]

where \(F(0) = 0 \) and \(F(1) = 1 \). A recursive algorithm will take exponential time to find \(F(n) \) while a DP solution takes only \(n \) steps. A recursive algorithm is likely to be polynomial if the sum of the sizes of the subproblems is bounded by \(kn \). If, however, the obvious division of a problem of size \(n \) results in \(n \) problems of size \(n-1 \) then the recursive algorithm is likely to have exponential growth.
The Longest Common Subsequence (LCS)

A subsequence of a string v, is a set of characters that appear in left-to-right order, but not necessarily consecutively. A common subsequence of two strings is a subsequence that appears in both strings. Substrings are consecutive parts of a string, while subsequences need not be.

A longest common subsequence is a common subsequence of maximal length. Example:

$\nu_1 = \langle A, C, B, D, E, G, C, E, D, B, G \rangle$ and $\nu_2 = \langle B, E, G, C, F, E, U, B, K \rangle$.

the LCS is $\langle B, E, G, C, E, B \rangle$.

With respect to DNA sequences:

$\nu_1 =$AAAACCGTGAAGTACTTTCTTAGAA
$\nu_2 =$CACCCCCCTAAGGTACCTTTGGTTC

LCS is ACCTAGTACTTTT
The Longest Common Subsequence (LCS)

- The LCS problem is the simplest form of sequence alignment; it allows only insertions and deletions (no mismatches).
- Given two sequences \(v = v_1 \ldots v_m \) and \(w = w_1 \ldots w_n \). The LCS of \(v \) and \(w \) is a sequence of positions in \(v \):
 \[1 < i_1 < i_2 < \ldots < i_t < m \]
 and a sequence of positions in \(w \):
 \[1 < j_1 < j_2 < \ldots < j_t < n \]
 such that \(i_t \)-letter of \(v \) equals to \(j_t \)-letter of \(w \) and \(t \) is maximal.
- In the LCS problem, we score 1 for matches and 0 for indels; in DNA sequence alignment we will use different scores for match, mismatch and gap.
The Longest Common Subsequence

Figure: It takes $O(nm)$ time to fill in the n by m dynamic programming matrix. The pseudocode consists of two nested for loops to build up a n by m matrix.

```
LCS(v, w)
for i ← 1 to n
    s_i,0 ← 0
for j ← 1 to m
    s_0,j ← 0
for i ← 1 to n
    for j ← 1 to m
        s_i,j ← max \{ s_{i-1,j}, s_{i,j-1}, s_{i-1,j-1} + 1, \text{ if } v_i = w_j \}
        b_i,j ← \text{ if } s_i,j = s_{i-1,j}
        \text{ if } s_i,j = s_{i,j-1}
        \text{ if } s_i,j = s_{i-1,j-1} + 1
return (s_{n,m}, b)
```
• The **Global Alignment Problem** tries to find the longest path between vertices $(0,0)$ and (n,m) in the edit graph.

• The **Local Alignment Problem** tries to find the longest path among paths between *arbitrary vertices* (i,j) and (i', j') in the edit graph.

• **Global Alignment**

  ```
  --T--CC-C-AGT--TATGT-CAGGGACACG-A-GCATGCAGA-GAC  
  AATTGCGGCGC-GTCGT-T-TTCAG-----CA-GTTATG-T-CAGAT--C
  ```

• **Local Alignment**—better alignment to find conserved segment

  ```
  tccCAGTTATGTCAGgggacacgagcatgcagagac  
  aattgccgccgtcttttcagCAGTTATGTCAGatc
  ```

Figure: The same sequences could be used in both alignments; we need to set the match score, the mismatch and gap penalties.
Needleman-Wunsch algorithm (Global alignment)

1. Initialization (two sequences of length M and N).
 a. $F(0, 0) = 0$
 b. $F(0, j) = -j \times d$
 c. $F(l, 0) = -l \times d$

2. Main Iteration. Filling-in partial alignments

 For each $i = 1 \ldots M$

 For each $j = 1 \ldots N$

 $F(i, j) = \max \left\{
 \begin{align*}
 &F(i-1, j) - d \quad \text{[case 1]} \\
 &F(i, j-1) - d \quad \text{[case 2]} \\
 &F(i-1, j-1) + s(x_i, y_j) \quad \text{[case 3]}
 \end{align*}
 \right\}$

 $\text{Ptr}(i, j) = \left\{
 \begin{align*}
 &\text{UP}, \quad \text{if [case 1]} \\
 &\text{LEFT}, \quad \text{if [case 2]} \\
 &\text{DIAG}, \quad \text{if [case 3]}
 \end{align*}
 \right\}$

3. Termination. $F(M, N)$ is the optimal score, and from $\text{Ptr}(M, N)$ can trace back optimal alignment
Match: 2; Gap: -1; Mismatch=-1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gap penalty=-1; match=+2; mismatch=-1
\[
\begin{array}{cccccccc}
& & A & C & G & C & T & G \\
0 & 0 & -1 & -2 & -3 & -4 & -5 & -6 \\
C & -1 & -1 & 1 & 0 & -1 & -2 & -3 \\
A & -2 & 1 & 0 & 0 & -1 & -2 & -3 \\
T & -3 & 0 & 0 & -1 & -1 & 1 & 0 \\
G & -4 & -1 & -1 & 2 & 1 & 0 & 3 \\
T & -5 & -2 & -2 & 1 & 1 & 3 & 2 \\
\end{array}
\]

Match: 2; Gap: -1; Mismatch=-1
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACGCTG--C--ATGT
Match: 2; Gap: -1; Mismatch=-1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>C</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

ACGCTG--CA--TGT
Match: 2; Gap: -1; Mismatch=-1

-ACGCTTG
CATG--T--
The choice of scores (match, gap and mismatch) depends on the data.

Figure: Given a m x n matrix, the overall complexity of computing all sub-values is $O(nm)$. The final optimal score is the value at position n,m. In this case we align the sequences AGC and AAAC.
How good is an alignment?

The score of an alignment is calculated by summing the rewarding scores for match columns that contain the same bases and the penalty scores for gaps and mismatch columns that contain different bases. A scoring scheme specifies the scores for matches and mismatches, which form the scoring matrix, and the scores for gaps, called the gap cost. There are two types of alignments for sequence comparison. Given a scoring scheme, calculating a global alignment is a kind of global optimization that forces the alignment to span the entire length of two query sequences, whereas local alignments identify regions of high similarity within two sequences.
Maybe it is OK to have an unlimited # of gaps in the beginning and end:

\[
\begin{align*}
\text{CTATCACCTGACCTCCAGGCGATGCCCTTCCGGC} \\
\text{GCGAGTTTCATCTATCAC-GACCGC-GGTCG-}
\end{align*}
\]

Changes:

1. **Initialization**

 For all \(i, j, \)

 \[
 F(i, 0) = 0 \\
 F(0, j) = 0
 \]

2. **Termination**

 \[
 F_{\text{OPT}} = \max \left\{ \max_i F(i, N), \max_j F(M, j) \right\}
 \]
The local alignment: the Smith-Waterman algorithm

Idea: Ignore badly aligning regions: Modifications to Needleman-Wunsch

e.g. \(x = \text{aaaaccccgggg} \)
\(y = \text{cccgggaaaccaacc} \)

Initialization: \(F(0, j) = F(i, 0) = 0 \)

Iteration: \(F(i, j) = \max \begin{cases} 0 \\ F(i-1, j) - d \\ F(i, j-1) - d \\ F(i-1, j-1) + s(x_i, y_j) \end{cases} \)

Termination:
1. If we want the **best** local alignment...
 \(F_{\text{OPT}} = \max_{i,j} F(i, j) \)
2. If we want all local alignments **scoring** > \(t \)
 For all \(i, j \) find \(F(i, j) > t \), and trace back
Example, Local alignment **TAATA vs TACTAA**

\[
\begin{array}{lcccccccc}
\text{x} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\text{y} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & & & & & & & \\
\text{T} & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 2 & 0 & 0 & 2 & 1 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 1 & 1 & 0 & 1 & 3 \\
\downarrow & & & & & & & \\
\text{T} & 0 & 0 & 0 & 0 & 2 & 0 & 1 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 1 & 0 & 0 & 3 & 1 \\
\end{array}
\]

\[
\begin{array}{lcccccccc}
\text{x} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\text{y} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & & & & & & & \\
\text{T} & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 2 & 0 & 0 & 2 & 1 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 1 & 1 & 0 & 1 & 3 \\
\downarrow & & & & & & & \\
\text{T} & 0 & 0 & 0 & 0 & 2 & 0 & 1 \\
\downarrow & & & & & & & \\
\text{A} & 0 & 0 & 1 & 0 & 0 & 3 & 1 \\
\end{array}
\]
Affine gap: two penalties for gap insertion

Insertions and deletions often occur in blocks longer than a single nucleotide. If there are many gaps we do not want to penalise too much; so we think at due penalties: one for the first gap (opening) and one, smaller, for the following required gaps.

\[\gamma(n) = d + (n - 1)\times e \]

To compute optimal alignment,

At position \(i,j \), need to “remember” best score if gap is open

best score if gap is not open

\[
F(i, j): \quad \text{score of alignment } x_1 \ldots x_i \text{ to } y_1 \ldots y_j \\
\quad \text{if } x_i \text{ aligns to } y_j
\]

\[
G(i, j): \quad \text{score if } x_i \text{ aligns to a gap after } y_j
\]

\[
H(i, j): \quad \text{score if } y_j \text{ aligns to a gap after } x_i
\]

\[
V(i, j) = \text{best score of alignment } x_1 \ldots x_i \text{ to } y_1 \ldots y_j
\]
Affine gap: two penalties for gap insertion

Time complexity - As before $O(nm)$, as we only compute four matrices instead of one.

Space complexity: there’s a need to save four matrices (for F, G, H and V respectively) during the computation. Hence, $O(nm)$ space is needed, for the trivial implementation.

\[
\begin{align*}
\textbf{Initialization:} & \quad V(i, 0) &= d + (i - 1)xe \\
& \quad V(0, j) &= d + (j - 1)xe \\
\textbf{Iteration:} & \quad V(i, j) &= \max \{ F(i, j), G(i, j), H(i, j) \} \quad \mathbf{\land} \\
& \quad F(i, j) &= V(i - 1, j - 1) + s(x_i, y_j) \\
& \quad G(i, j) &= \max \left\{ V(i - 1, j) - d, G(i - 1, j) - e \right\} \\
& \quad H(i, j) &= \max \left\{ V(i, j - 1) - d, H(i, j - 1) - e \right\} \\
\textbf{Termination:} & \quad \text{similar}
\end{align*}
\]
In comparison of long DNA fragments, the limited resource in sequence alignment is not time but space. Hirschberg in 1975 proposed a divide-and-conquer approach that performs alignment in linear space for the expense of just doubling the computational time. The time complexity of the dynamic programming algorithm for sequence alignment is roughly the number of edges in the edit graph, i.e., $O(nm)$. The space complexity is roughly the number of vertices in the edit graph, i.e., $O(nm)$. However, if we only want to compute the score of the alignment (rather than the alignment itself), then the space can be reduced to just twice the number of vertices in a single column of the edit graph, i.e., $O(n)$.
It is easy to compute $F(M, N)$ in linear space.

Allocate (column[1])
Allocate (column[2])

For $i = 1 \ldots M$
 If $i > 1$, then:
 Free(column[$i-2$])
 Allocate(column[i])
 For $j = 1 \ldots N$
 $F(i, j) = \ldots$

Figure: Space complexity of computing just the score itself is $O(n)$; we only need the previous column to calculate the current column, and we can then throw away that previous column once we have done using it.
Space-Efficient Sequence Alignment, Hirschberg algorithm

Linear-Space Sequence Alignment

first pass: 1
2nd pass: 1/2
3rd pass: 1/4
4th pass: 1/8
5th pass: 1/16
Space-Efficient Sequence Alignment Hirschberg algorithm

The reduction comes from observation that the only values needed to compute the alignment scores $s_{\star j}$ (column j) are the alignment scores $s_{\star j-1}$ (column $j - 1$). Therefore, the alignment scores in the columns before $j - 1$ can be discarded while computing alignment scores for columns $j, j + 1, \ldots$. The longest path in the edit graph connects the start vertex $(0,0)$ with the sink vertex (n, m) and passes through an (unknown) middle vertex $(i, m/2)$ (assume for simplicity that m is even). Let’s try to find its middle vertex instead of trying to find the entire longest path. This can be done in linear space by computing the scores $s_{\star, m/2}$ (lengths of the longest paths from $(0,0)$ to $(i, m/2)$ for $0 < i < n$) and the scores of the paths from $(i, m/2)$ to (n,m). The latter scores can be computed as the scores of the paths $s_{\star, m/2}^{reverse}$ from (n,m) to $(i, m/2)$ in the reverse edit graph (i.e., the graph with the directions of all edges reversed). The value $S_{i, m/2} + S_{i, m/2}^{reverse}$ is the length of the longest path from $(0,0)$ to (n, m) passing through the vertex $(i, m/2)$. Therefore, $\max_i[S_{i, m/2} + S_{i, m/2}^{reverse}]$ computes the length of the longest path and identifies a middle vertex.
Computing these values requires the time equal to the area of the left rectangle (from column 1 to \(m/2 \)) plus the area of the right rectangle (from column \(m/2 + 1 \) to \(m \)) and the space \(O(n) \). After the middle vertex \((i, \ m/2)\) is found the problem of finding the longest path from \((0,0)\) to \((n, m)\) can be partitioned into two subproblems: finding the longest path from \((0,0)\) to the middle vertex \((i, \ m/2)\) and finding the longest path from the middle vertex \((i, \ m/2)\) to \((n, m)\). Instead of trying to find these paths, we first try to find the middle vertices in the corresponding rectangles. This can be done in the time equal to the area of these rectangles, which is two times smaller than the area of the original rectangle. Computing in this way, we will find the middle vertices of all rectangles in \(time = area + area/2 + area/4 + \ldots < 2 \times area \) and therefore compute the longest path in time \(O(nm) \) and space \(O(n) \).
1. **Path** (source, sink)
2. **if** source and sink are in consecutive columns
3. output the longest path from the source to the sink
4. **else**
5. middle < middle vertex between source and sink
6. **Path** (source, middle)
7. **Path** (middle, sink)
Space-Efficient Sequence Alignment, Hirschberg algorithm: details

• Iterate this procedure to the left and right!
Space-Efficient Sequence Alignment, Hirschberg algorithm: details

Now, we can find k^* maximizing $F(M/2, k) + F^r(M/2, k)$

Also, we can trace the path exiting column $M/2$ from k^*

Conclusion: In $O(NM)$ time, $O(N)$ space, we found optimal alignment path at column $M/2$
Nussinov Algorithm: The Biological problem

Figure: Examples of RNA molecules in nature; many molecules of RNA do not translate into proteins; using the pairing rule A-T, C-G, the molecule could find regions of perfect pairing so to have intrachain interactions. Therefore, the molecule folds into 2 Dimensional shape (termed secondary structure) and then into 3 Dimensional shape (tertiary structure) and regulates cell processes by interacting with proteins.
Folding i.e. intra chain alignment of a RNA molecule

The intrachain folding of RNA reveals the RNA Secondary Structure
This tells which bases are paired in the subsequence from x_i to x_j
Every optimal structure can be built by extending optimal substructures.

Figure: Set of paired positions on interval $[i, j]$. Suppose we know all optimal substructures of length less than $j - i + 1$. The optimal substructure for $[i, j]$ must be formed in one of four ways: i,j paired; i unpaired; j unpaired; combining two substructures. Note that each of these consists of extending or joining substructures of length less than $j - i + 1$.
Nussinov dynamic programming algorithm for RNA folding

1. Let $\gamma(i,j)$ be the maximum number of base pairs in a folding of subsequence $S[i \ldots j]$.

2. for $1 \leq i \leq n$ and $i < j \leq n$:
 for $i = 1, \ldots, n$: $\gamma(i,i) = 0$;
 for $2 \leq i \leq n$: $\gamma(i, i-1) = 0$
 \[
 \gamma(i,j) = \max \begin{cases}
 \gamma(i+1,j) \\
 \gamma(i,j-1) \\
 \gamma(i+1,j-1) + \delta(i,j) \\
 \max_{i<k<j} [\gamma(i,k) + \gamma(k+1,j)]
 \end{cases}
 \]

3. Where $\delta(i,j) = 1$ if x_i and x_j are a complementary base pair i.e. (A, U) or (C, G), and $\delta(i,j) = 0$, otherwise.

There are $O(n^2)$ terms to be computed, each requiring calling of $O(n)$ already computed terms for the case of bifurcation. Thus overall complexity is $O(n^3)$ time and $O(n^2)$ space.
Nussinov algorithm for RNA folding

Note that only the upper (or lower) half of the matrix needs to be filled. Therefore, after initialization the recursion runs from smaller to longer subsequences as follows:

1. for $l = 1$ to n do
2. for $i = 1$ to $(n + 1 - l)$ do
3. $j = i + l$
4. compute $\gamma(i, j)$
5. end for
6. end for
Nussinov algorithm: example

Figure: order: top left, bottom left, right: a matrix will be filled along the diagonals and the solution can be recovered through a traceback step.
Approximate Search algorithms

Blast, Patternhunter, spaced seeds
It is common to observe strong sequence similarity between a protein and its counterpart in another species that diverged hundreds of millions of years ago. Accordingly, the best method to identify the function of a new gene or protein is to find its sequence-related genes or proteins whose functions are already known. The Basic Local Alignment Search Tool (BLAST) is a computer program for finding regions of local similarity between two DNA or protein sequences. It is designed for comparing a query sequence against a target database. It is a heuristic that finds short matches between query and database sequences and then attempts to start alignments from these seed hits. BLAST is arguably the most widely used program in bioinformatics. By sacrificing sensitivity for speed, it makes sequence comparison practical on huge sequence databases currently available.
While Dynamic Programming (DP) is a nice way to construct alignments, it will often be too slow. Since the DP is $O(n^2)$, matching two 9×10^9 length sequences would take about 9×10^{18} operations. BLAST is an alignment algorithm which runs in $O(n)$ time. The key to BLAST is that we only actually care about alignments that are very close to perfect. A match of 70% is worthless; we want something that matches 95% or 99% or more. What this means is that correct (near perfect) alignments will have long substrings of nucleotides that match perfectly. Most popular Blast-wise algorithms use a seed-and-extend approach that operates in two steps: 1. Find a set of small exact matches (called seeds) 2. Try to extend each seed match to obtain a long inexact match.
The steps are as follows:

1. Split query into overlapping words of length W (the W-mers)
2. Find a neighborhood of similar words for each word (see the figure next slide).
3. Lookup each word in the neighborhood in a hash table to find where in the database each word occurs. Call these the seeds.
4. Extend all seeds collections until the score of the alignment drops off below a threshold.
5. Report matches with overall highest scores.
BLAST (Basic Local Alignment Search Tools)

BLAST provides a trade off between speed and sensitivity, with the setting of a "threshold" parameter T. A higher value of T yields greater speed, but also an increased probability of missing weak similarities.

```
Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKKRISGLIYEETRGVLKIFLENVIRD

GVK 18
GAK 16
GIK 16
GGK 14
GLK 13
GNK 12
GRK 11
GEK 11
GDK 11

neighborhood score threshold (T = 13)
```

```
extension

Query: 22 VLRDNIQGITKPAIRRLARRGGVKKRISGLIYEETRGVLK 60
+++DN +G + IR L G+K I+ L+ E+ RG++K
Sbjct: 226 IIKDNGRGFSGKQIRNLNYGIGLKIADLV-EKHRGIIK 263

High-scoring Pair (HSP)
```
To speed up the homology search process, BLAST employs a filtration strategy: It first scans the database for length-\(w\) word matches of alignment score at least \(T\) between the query and target sequences and then extends each match in both ends to generate local alignment (in the sequences) whose alignment score is larger than a threshold \(x\). The matches are called high-scoring segment pairs (HSPs). BLAST outputs a list of HSPs together with E-values that measure how frequent such HSPs would occur by chance. A HSP has the property that it cannot be extended further to the left or right without the score dropping significantly below the best score achieved on part of the HSP. The original BLAST algorithm performs the extension without gaps. Variants are gapped Blast, psi-blast and others.
Assume that the length m and n of the query and database respectively are sufficiently large; a segment-pair (s, t) consists of two segments, one in m (say the amino acid string: VALLAR) and one in n (say PAMMAR), of the same length. We think of s and t as being aligned without gaps and score this alignment using a substitution score; the alignment score for (s, t) is denoted by $\sigma(s, t)$.

Given a cutoff score x, a segment pair (s, t) is called a high-scoring segment pair (HSP), if it is locally maximal and $\sigma(s, t) \geq x$ and the goal of BLAST is to compute all HSPs.

The BLAST algorithm has three parameters: the word size W, the word similarity threshold T and the minimum match score x.
For protein sequences, BLAST operates as follows

The list of all words of length W that have similarity $\geq T$ to some word in the query sequence m is generated. The database sequence n is scanned for all hits t of words s in the list. Each such seed (s, t) is extended until its score $\sigma(s, t)$ falls a certain distance below the best score found for shorter extensions and then all best extensions are reported that have score $\geq x$. In practice, W is usually 4 for proteins.

The list of all words of length W that have similarity $\geq T$ to some word in the query sequence m can be produced in time proportional to the number of words in the list. These are placed in a keyword tree and then, for each word in the tree, all exact locations of the word in the database n are detected in time linear to the length of n. The original version of BLAST did not allow indels, making hit extension very fast.

Note that the use of seeds of length W and the termination of extensions with fading scores are both steps that speed up the algorithm, but also imply that BLAST is not guaranteed to find all HSPs.
For DNA sequences, BLAST operates as follows

- The list of all words of length \(W \) in the query sequence \(m \) is generated. The database \(n \) is scanned for all hits of words in this list. Blast uses a two-bit encoding for DNA. This saves space and also search time, as four bases are encoded per byte. In practice, \(W \) is usually 12 for DNA.

- HSP scores are characterized by two parameters, \(W \) and \(\lambda \). The expected number of HSPs with score at least \(Z \) is given by the E-value, which is:
 \[
 E(Z) = W m n e^{-\lambda Z}.
 \]

- Essentially, \(W \) and \(\lambda \) are scaling-factors for the search space and for the scoring scheme, respectively.

- As the E-value depends on the choice of the parameters \(W \) and \(\lambda \), one cannot compare E-values from different BLAST searches.
For a given HSP \((s, t)\) we transform the raw score \(Z = \sigma(s, t)\) into a bit-score thus: \(Z' = \frac{\lambda Z - \ln W}{\ln 2}\). Such bit-scores can be compared between different BLAST searches. To see this, solve for \(Z\) in the previous equation and then plug the result into the original E-value.

E-values and bit scores are related by \(E = mn2^{-Z'}\).

The number of random HSPs \((s, t)\) with \(\sigma(s, t) \geq x\) can be described by a Poisson distribution. Hence the probability of finding exactly \(k\) HSPs with a score \(\geq S\) is given by

\[
P(k) = \frac{E^k}{k!} e^{-E}
\]

The probability of finding at least one HSP by chance is

\[P = 1 - P(X = 0) = 1 - e^{-E},\]

called the P-value, where \(E\) is the E-value for \(Z\).

BLAST reports E-values rather than P-values as it is easier, for example, to interpret the difference between an E-value of 5 and 10, than to interpret the difference between a P-value of 0.993 and 0.99995. For small E-values \(< 0.01\), the two values are nearly identical.
Example of Blast output

Blast of human beta globin DNA against human DNA

Sequences producing significant alignments:

- gi|19849266|gb|AF487523.1| Homo sapiens gamma A hemoglobin (HGB1... 289 1e-75
- gi|183868|gb|M11427.1|HUMHBG3E Human gamma-globin mRNA, 3' end 289 1e-75
- gi|44887617|gb|AY534688.1| Homo sapiens A-gamma globin (HBG1) ge... 280 1e-72
- gi|31726|emb|V00512.1|HSGGL1 Human messenger RNA for gamma-globin 260 1e-66
- gi|38683401|ref|NR_001589.1| Homo sapiens hemoglobin, beta pseud... 151 7e-34
- gi|18462073|gb|AF339400.1| Homo sapiens haplotype PB26 beta-glob... 149 3e-33

ALIGNMENTS

>gi|28380636|ref|NG_000007.3| Homo sapiens beta globin region (HBB0) on chromosome 11

Length = 81706

Score = 149 bits (75), Expect = 3e-33

Identities = 183/219 (83%)

Strand = Plus / Plus

Query: 267 ttggagatgcccacaaggcaccttgatgccaccaaggccacttttgccccagctgatgtaa 326

Sbjct: 54409 ttcggaaagctgatgtcactgcgtacagccagctgcggccctgctacactgatgac 54468

Query: 327 ctgcactgtgacaaagtctgatgtagctcctgagaacttc 365

Sbjct: 54469 ctgcactgtaacaaagtctgacagtggacctgagaacttc 54507
It is possible to search a protein sequence against a DNA database

Figure: Blast DNA query (top) against a database of proteins will process all the potential triplets forming codons
Example of Blast Pitfalls

BLAST may also miss a hit

In this example, despite a clear homology, there is no sequence of continuous matches longer than length 9. BLAST uses a length 11 and because of this, BLAST does not recognize this as a hit!

Resolving this would require reducing the seed length to 9, which would have a damaging effect on speed
The biggest problem for BLAST is low sensitivity (and low speed). Massive parallel machines are built to do Smith Waterman exhaustive dynamic programming. A spaced seed is formed by two words, one from each input sequence, that match at positions specified by a fixed pattern and one don’t care symbol respectively. For example, the pattern 1101 specifies that the first, second and four-th positions must match and the third one contain a mismatch. PatternHunter (PH) was the first method that used carefully designed spaced seeds to improve the sensitivity of DNA local alignment. Spaced seeds have been shown to improve the efficiency of lossless filtration for approximate pattern matching, namely for the problem of detecting all matches of a string of length m with q possible substitution errors.
Blast vs PH vs PH II

If you want to speed up, have to use a longer seed. However, we now face a dilemma: increasing seed size speeds up, but looses sensitivity; decreasing seed size gains sensitivity, but looses speed. How do we increase sensitivity and speed simultaneously? Spaced Seed: nonconsecutive matches and optimized match positions. Represent BLAST seed by 11111111111; Spaced seed: 111010010100110111 where 1 means a required match and 0 means dont care position. This simple change makes a huge difference: significantly increases hit to homologous region while reducing bad hits. Spaced seeds give PH a unique opportunity of using several optimal seeds to achieve optimal sensitivity, this was not possible by BLAST technology. PH II uses multiple optimal seeds; it approaches Smith-Waterman sensitivity while is 3000 times faster. Example: Smith-Waterman (SSearch): 20 CPU-days, PatternHunter II with 4 seeds: 475 CPU-seconds: 3638 times faster than Smith-Waterman dynamic programming at the same sensitivity.
Sensitivity: The probability to find a local alignment. Specificity: In all local alignments, how many alignments are homologous

On a 70% conserved region:

Consecutive
- Expected # hits: 1.07
- Prob[at least one hit]: 0.30

Non-consecutive
- Expected # hits: 0.97
- Prob[at least one hit]: 0.47
111010010100110111 (called a model)
- Eleven required matches (weight=11)
- Seven “don’t care” positions

```
GAGTACTCAACACCACACATTTAGTGGCAATGGAAAT...
||| |||| |||| |||| |||| ||||
GAATACTCAACAGCAAACACTAATGGCAGCAGAAAT...
111010010100110111
```
- Hit = all the required matches are satisfied.
- BLAST seed model = 11111111111

```
111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
1111010010100110111
......
```
In PatternHunter, the spaced model has often weight 11 and length 18.

- Solid curves: Multiple (1, 2, 4, 8, 16) weight-12 spaced seeds.
- Dashed curves: Optimal spaced seeds with weight = 11, 10, 9, 8.

Typically, “Doubling the seed number” gains better sensitivity than “decreasing the weight by 1”.

- Two weight-12
- One weight-11
- One weight-12
The non-consecutive seed is the primary difference and strength of Patternhunter.

Sensitivity: PH weight 11 seed vs BLAST 11 & 10
Homology search algorithms growing usage

Figure: sensitivity versus alignment score
Progressive alignment

Clustal
Challenges of extending dynamic programming to n sequences

- For two sequences, there are three ways to extend an alignment.
- For n sequences, a n-dimensional dynamic programming hypercube has to be computed and for each entry we have to evaluate \((2^n - 1)\) predecessors.
- Given 3 sequences, the figure below shows a three-dimensional alignment path matrix: there are \(= (2^3 - 1) = 7\) ways to extend an alignment.
Progressive alignment

- Progressive alignment methods are heuristic in nature. They produce multiple alignments from a number of pairwise alignments.
- Perhaps the most widely used algorithm of this type is CLUSTALW.
- Given N sequences, align each sequence against each other and obtain a similarity matrix; similarity = exact matches / sequence length (percent identity)
- Create a guide tree using the similarity matrix; the tree is reconstructed using clustering methods such as UPGMA or neighbor-joining (explained later).
- Progressive Alignment guided by the tree.
Progressive alignment

Not all the pairwise alignments build well into multiple sequence alignment (MSA); the progressive alignment builds a final alignment by merging sub-alignments with a guide tree.
Progressive alignment

Figure: Progressive alignment of 4 sequences: 1) distance matrix from pairwise alignment; 2) pairwise alignment score analysis; tree showing the best order of progressive alignment, 3) building up the alignment.
A matrix to measure amino acid changes

Blosum is a symmetric amino acid replacement matrix used as scoring matrix in Blast search and in phylogeny. Using only the conserved regions of protein sequences in a MSA, we compute p_{ij} i.e. for each column of the MSA, the probability of two amino acids i and j replacing each other, and p_i and p_j are the background probabilities of finding the amino acids i and j in any protein sequence. Finally we compute:

$$Score_{ij} = (k^{-1})\log\left(\frac{p_{ij}}{p_i p_j}\right)$$ where the k is a scaling factor.
Entropy measure of a multiple alignment

Let's start from an alignment of four sequences (above the first three columns); Compute the frequencies for the occurrence of each letter in each column of multiple alignment $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column);
$p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column);
$p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25$, $p_G = 0$ (3rd column);
Compute entropy of each column: $E = - \sum_{X=A,C,G,T} p_X \log (p_X)$
The entropy for a multiple alignment is the sum of entropies of each column of the alignment.
Example of a multiple sequence alignment

Figure: Chemical properties of amino acids are in color code. The globin proteins from different species could be easily aligned because they have many similar substrings in common.
Insight into protein structure (3D graph) from MSA analysis

Figure: Human globin 3D structure. The small amount of changes in the globin alignment suggests that globin are likely to have very similar structure (3D graph). Columns rich of gaps often correspond to unstructured regions (loops); conserved regions often correspond to binding sites or regions where one protein interacts with a DNA sequence or with another protein.
Genome alignments

Burrows- Wheeler transform, de Bruijn graph.
Burrows-Wheeler transform: saving memory in alignment problems

- The current sequencing procedures are characterized by highly parallel operations, much lower cost per base, but (unfortunately) they produce several millions of "reads", short stretches of DNA bases (usually 35-400 bp).
- In many experiments, e.g., in ChIP-Seq, the task is now to align these reads to a reference genome.
- The main effort is to reduce the memory requirement for sequence alignment (such as Bowtie, BWA and SOAP2); the Burrows-Wheeler transform, BWT (a text compression method) is used.
Burrows-Wheeler Transform

INPUT (example): $T = \text{“abraca”}$; then we sort lexicographically all the cyclic shifts of T
For all $i \neq I$, the character $L[i]$ is followed in T by $F[i]$; for any character ch, the i-th occurrence of ch in F corresponds to the i-th occurrence of ch in L.
OUTPUT: $\text{BWT}(T) = \text{caraab}$ and the index $I = 1$, that denotes the position of the original word T after the lexicographical sorting. The Burrows-Wheeler Transform is reversible, in the sense that, given $\text{BWT}(T)$ and an index I, it is possible to recover the original word T.

[Diagram showing the Burrows-Wheeler Transform process with an example input and output.]
Burrows-Wheeler Transform in alignment: example

Reversible permutation used originally in compression
Once $BWT(T)$ is built, all else shown here is discarded

Figure: in red the analogy with the suffix array (from Wall lab in Harvard); Note that the cycle and the sort procedures of the Burrows-Wheeler induces a partial clustering of similar characters providing the means for compression.
Property that makes BWT(T) reversible is LF Mapping: the occurrence of a character in the Last column is the same text occurrence as the ith occurrence in the First column.
Burrows-Wheeler Transform in alignment: example

To recreate T from BWT(T), repeatedly apply rule: $T = BWT[LF(i)] + T; i = LF(i)$.

Where LF(i) maps row i to row whose first character corresponds to i’’s last per LF Mapping
Figure: in the left, the word "tatatatata$" undergoes cyclic shift and it is sorted in the right. Note that the BWT(tatatatata$) is a word (atttttaaaaa$) with good clustering of T’s and A’s and so it can be written in a more compact way. The DNA is from an alphabet of 4 symbols so the clustering happens very often
Next Generation sequencing: The Biological problem

Instead of considering a DNA sequence, for sake of clarity, let’s consider an English sentence and we trim all spaces. Copies of the sentence are divided into fragments called reads which could be converted into kmers. We would like to assemble the original sentence using the reads or the kmers.

Convert reads into “Kmers”

Kmer: a substring of defined length

Reads: the age of the best of times it was the age of wisdom it was the age of foolishness...

Generate random 'reads' → How do we assemble?

Kmers: the age of the best of times it was the age of wisdom it was the age of foolishness...

(k=3)

the age of the best of times it was the age of wisdom it was the age of foolishness...
Three methods to reconstruct the original sequence (a) from the reads (one method (b) uses the reads, two use k-mers derived from the reads (c,d); from Pevzner’s paper (see citation).
Graph approaches in alignment

(a) An example small circular genome. In (b) reads were represented as nodes in a graph, and edges represented alignments between reads. Following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. In (c) reads are divided into all possible k-mers \((k = 3)\), ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is shifted by one position. (d) Modern short-read assembly algorithms construct a de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive edges) is shifted by one position.
Figure b: The Hamiltonian graph is a graph in which each read is represented by a node and overlap between reads is represented by an arrow (called a directed edge) joining two reads. For instance, two nodes representing reads may be connected with a directed edge if the reads overlap by at least five nucleotides. **The Hamiltonian cycle, is a path that travels to every node exactly once and ends at the starting node, meaning that each read will be included once in the assembly.**
Hamiltonian graph using k-mers

Figure c: The Hamiltonian cycle approach can be generalized to make use of k-mers by constructing a graph as follows. **First**, from a set of reads, make a node for every k-mer appearing as a consecutive substring of one of these reads. **Second**, given a k-mer, define its suffix as the string formed by all its nucleotides except the first one and its prefix as the string formed by all of its nucleotides except the last one. **K-mer to another using a directed edge if the suffix of the former equals the prefix of the latter**, that is, if the two k-mers completely overlap except for one nucleotide at each end. **Third**, look for a Hamiltonian cycle, which represents a candidate genome because it visits each detected k-mer.
There is no known efficient algorithm for finding a Hamiltonian cycle in a large graph with millions (let alone billions) of nodes. The Hamiltonian cycle approach was feasible for sequencing the first microbial genome in 1995 and the human genome in 2001. The computational problem of finding a Hamiltonian cycle belongs to the class of problems that are collectively called NP-Complete.
Eulerian graph

Figure d: Instead of assigning each k-mer contained in some read to a node, we will now assign each such k-mer to an edge. This allows the construction of a de Bruijn graph. First, form a node for every distinct prefix or suffix of a k-mer, meaning that a given sequence of length $k - 1$. Then, connect node x to node y with a directed edge if some k-mer has prefix x and suffix y, and label the edge with this k-mer.
Eulerian graph

We visit all edges of the de Bruijn graph, which represents all possible k-mers; traveling will result in spelling out a candidate genome; for each edge that is traversed, one records the first nucleotide of the k-mer assigned to that edge. Euler considered graphs for which there exists a path between every two nodes (called connected graphs). He proved that a connected graph with undirected edges contains an Eulerian cycle exactly when every node in the graph has an even number of edges touching it. The case of directed graphs (that is, graphs with directed edges) is similar. For any node in a directed graph, define its indegree as the number of edges leading into it and its outdegree as the number of edges leaving it. A graph in which indegrees are equal to outdegrees for all nodes is called balanced.
Eulcrs theorem states that a connected directed graph has an Eulerian cycle if and only if it is balanced. In particular, Euler’s theorem implies that our de Bruijn graph contains an Eulerian cycle as long as we have located all k-mers present in the genome. Indeed, in this case, for any node, both its indegree and outdegree represent the number of times the $k-1$-mer assigned to that node occurs in the genome. To see why Euler’s theorem must be true, first note that a graph that contains an Eulerian cycle is balanced because every time we traverse an Eulerian cycle and we need to pass through a particular vertex, we enter on one edge of the cycle and exits on the next edge. This pairs up all the edges touching each vertex, showing that half the edges touching the vertex lead into it and half lead out from it. It is a bit harder to see the converse: that every connected balanced graph contains an Eulerian cycle.
De Bruijn graph: represent the data as a graph

The De Bruijn graph for \(k = 4 \) and a two character alphabet composed of the digits 0 and 1. This graph has an Eulerian cycle because each node has indegree and outdegree equal to 2. Following the blue numbered edges in order from 1 to 16 traces an Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording the first character of each edge label spells the cyclic superstring 0000110010111101.
The time required to run a computer implementation of Euler's algorithm is roughly proportional to the number of edges in the de Bruijn graph. In the Hamiltonian approach, the time is potentially a lot larger, because of the large number of pairwise alignments needed to construct the graph and the NP-Completeness of finding a Hamiltonian cycle.
Summary of the De Bruijn graph method

Sequencing is easy, we generate sub-strings (reads) at random from throughout the genome. In next generation sequencing we have 10s of millions of reads. The difficult part is how we put them back together again in the right order. An intuitive way to do this may be in all versus all comparisons to search for overlaps. This is how traditional assemblers work. The solution offered by the De Bruijn approach is to represent the data as a graph. The first step of the De Bruijn assembler is to deconstruct the sequencing reads into its constitutive kmers. As specified before a K-mer is a substring of defined length. **If we split reads in kmers we control the size and the overlapping.** To Kmerize the dataset, we move through our read in one letter increments from the beginning to the end untill we have recorded all possible 3 letter words. We then do this for all reads in the dataset. From this point on the algorithm operates on kmers rather than on the reads.
The next stage is to represent the stored kmers in the De Bruijn graph. This is done by searching for overlaps of $k - 1$. The graph has all consecutive kmers by $k - 1$ bases.

- Adding kmers from a second read of an overlapping region of the genome shows how the graph can be extended. It also reveals the redundancy in the data which need not be stored by the computer. This is how memory efficiency is achieved.

- Adding a kmers from a third read that comes from a similar but non-overlapping part of the genome illustrates the effect of repeats, i.e. we get a branch in the graph (see figure in the next slide). **Long unbranched stretches represent unique sequence in the genome, branches and loops are the result of repeats.**
Details of the De Bruijn graph method

Build a De-Bruijn graph from the kmers

Simplify the graph as much as possible:

A De Bruijn Graph

It was the
The final step is to remove redundancy, result in the final De Bruijn Graph representation of our genome. From this graph, we can see examples of both the strengths and weaknesses of this approach. Strength is that the information from millions of reads is stored in computer memory in a graph that is proportional to the genome size. Another strength is that the overlaps between reads are implicit in the graph, so all the millions versus millions of comparisons are not required. **On the downside, information is lost as repetitive sequences are collapsed into a single representation** (see figure next slide). Another problem is that while this may be a satisfying solution to a computational person, it is not practically useful to a biologist who wants to annotate genes etc.
Details of the De Bruijn graph method

De Bruijn assemblies ‘broken’ by repeats longer than kmer

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity,..."

The final assembly (k=3)

wor times it was the foolishness st wisdom
incredulity age epoch be of belief

A better assembly (k=20)

"It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,..."

Sequencing errors:

- k=3: sthebentof → sth the ebe ent tof
- k=10: sthebentof
- Mostly unaffected kmers
- Mostly unaffected kmers
- 100% wrong kmer
Phylogeny (parsimony)

Fitch, Sankoff algorithms
Phylogeny: The Biological problem

The computational comparison of DNA sequences from different species provides a methodology to understand evolution. Top: a tree of influenza strains; bottom: phylogeny.
Phylogenetic analysis

The reconstruction of the evolutionary history of species formation could be done by comparing DNA and amino acid sequences. A phylogeny is a tree where the leaves are existing species; an internal node is node with degree greater than one. Internal nodes represent common ancestors. We typically do not have DNA data for internal nodes. Here we use the terms species and taxa in a synonymous way. We compute the tree for each column of an alignment.

Figure: tree representation: \(((a, (b, c)), (d, e))\); trees could also be unrooted.
Phylogeny using parsimony (≡ economy of mutations)

Biological aims: from sequence alignment to phylogeny (a tree) by minimising the number of changes (mutations). Parsimony means economy; there are two main algorithms (Fitch, Sankoff); the output trees are rooted (below the difference between rooted, left, and unrooted, right)

(a) Parsimony Score = 3
(b) Parsimony Score = 2
Fitch parsimony model for DNA sequences

Fitch downpass algorithm

Bottom-up phase: Determine set of possible states for each internal node; top-down phase: Pick states for each internal node. If the descendant state sets S_q and S_r overlap, then the state set of node p will include the states present in the intersection of S_q and S_r. If the descendant state sets do not overlap, then the state set of p will include all states that are the union of S_q and S_r. States that are absent from both descendants will never be present in the state set of p.

1. $S_p \leftarrow S_q \cap S_r$
2. if $S_p = 0$ then
3. $S_p \leftarrow S_q \cup S_r$
4. $l \leftarrow l + 1$
5. end if

Initialization: $R_i = [s_i]$; Do a post-order (from leaves to root) traversal of tree Determine R_i of internal node i with children j, k: $R_i = \begin{cases} R_j \cap R_k & \text{if } R_j \cap R_k \neq 0 \\ R_j \cup R_k & \text{otherwise} \end{cases}$
Assume that we have the final state set F_a of node a, which is the immediate ancestor of node p (S_p) that has two children q (S_q) and r (S_r).

1. $F_p \leftarrow S_p \cap F_a$
2. if $F_p \neq F_a$ then
3. if $S_q \cap S_r \neq 0$ then
4. $F_p \leftarrow ((S_q \cup S_r) \cap F_a) \cup S_p$
5. else
6. $F_p \leftarrow S_p \cup F_a$
7. end if
8. end if

$R_i(s) = \begin{cases}
0 & \text{if } s_i = s \\
\infty & \text{otherwise}
\end{cases}$

$R_i(s) = \min_{s'} \{ R_j(s') + S(s', s) \} + \min_{s'} \{ R_k(s') + S(s', s) \}$

If the downpass state set of p includes all of the states in the final set of a, then each optimal assignment of final state to a can be combined with the same state at p to give zero changes on the branch between a and p and the minimal number of changes in the subtree rooted at p. If the final set of a includes states that are not present in the downpass set of p, then there is a change on the branch between a and p.
Figure: Fitch

Figure: Parsimony-score = number of union operations
Sankoff general parsimony or Sankoff optimisation

Sankoff downpass algorithm

1. for all i do
2. \(h_i^{(q)} \leftarrow \min_j (c_{ij} + g_j^{(q)}) \)
3. \(h_i^{(r)} \leftarrow \min_j (c_{ij} + g_j^{(r)}) \)
4. end for
5. for all i do
6. \(g_i^{(p)} \leftarrow h_i^{(q)} + h_i^{(r)} \)
7. end for

Sankoff parsimony is based on a cost matrix \(C = c_{ij} \), the elements of which define the cost \(c_{ij} \) of moving from a state i to a state j along any branch in the tree. The cost matrix is used to find the minimum cost of a tree and the set of optimal states at the interior nodes of the tree.
1. \(F_p \leftarrow 0 \)
2. for all \(i \) in \(F_a \) do
3. \(m \leftarrow c_{i1} + g_1^{(p)} \)
4. for all \(j \neq 1 \) do
5. \(m \leftarrow \min(c_{ij} + g_j^{(p)}, m) \)
6. end for
7. for all \(j \) do
8. if \(c_{ij} + g_j^{(p)} = m \) then
9. \(F_p \leftarrow F_p \cup j \)
10. end if
11. end for
12. end for

1. for all \(j \) do
2. \(f_j^{(p)} \leftarrow \min_i(f_i^{(a)} - h_i^{(p)} + c_{ij}) \)
3. end for

Complexity: if we want to calculate the overall length (cost) of a tree with \(m \) taxa, \(n \) characters, and \(k \) states, it is relatively easy to see that the Fitch algorithms has complexity \(O(mnk) \) and the Sankoff algorithm is of complexity \(O(mnk^2) \).
Sankoff: example of downpass

Figure: If the leaf has the character in question, the score is 0; else, score is ∞. Each mutation $a \rightarrow b$ costs the same in Fitch and differently in Sankoff parsimony algorithm (weighted matrix in A). An example of a weighted matrix for Sankoff (for proteins) is the Blosum, presented before in this course.
Figure: Example of Sankoff algorithm. Note that in the parsimony approaches (Fitch and Sankoff) the tree (i.e. the topology and leaves order) is the hypothesis you are testing. So you try different trees and select the one that is most parsimonious for each column of the alignment, then you select the tree that is the most representative.
Phylogeny (distance based algorithms)

Additivity, UPGMA, Neighbor Joining
Phylogeny based on a matrix of distances

Distance methods convert the changes counted in each column of the alignment, top figure, into a single distance matrix, bottom figure (dissimilarity matrix = 1 - similarity) to construct a tree and are kin to clustering methods. We can use the same matrix we use for Blast search, for example the Blosum matrix or others. The UPGMA outputs a rooted tree while the neighbour joining outputs an unrooted tree.

<table>
<thead>
<tr>
<th>Species</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ACTGTTGTTCTGA</td>
</tr>
<tr>
<td>B</td>
<td>ACCGTTCTTCTAG</td>
</tr>
<tr>
<td>C</td>
<td>CCTGTTGCTTCTGA</td>
</tr>
<tr>
<td>D</td>
<td>ACTGTCCCTTCTAG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>–</td>
<td>0.75</td>
<td>0.35</td>
<td>0.27</td>
</tr>
<tr>
<td>B</td>
<td>0.75</td>
<td>–</td>
<td>0.85</td>
<td>0.33</td>
</tr>
<tr>
<td>C</td>
<td>0.35</td>
<td>0.85</td>
<td>–</td>
<td>0.31</td>
</tr>
<tr>
<td>D</td>
<td>0.27</td>
<td>0.33</td>
<td>0.31</td>
<td>–</td>
</tr>
</tbody>
</table>
Additivity: when a distance matrix could be converted into a tree

A matrix D is additive if for every four indices i,j,k,l we can write the following: $D_{ij} + D_{kl} \leq D_{ik} + D_{jl} = D_{il} + D_{jk}$. If the distance matrix is not additive we could find the tree which best fits the distance matrix.
The additivity property

Top: distance matrix does not turn into a tree; Bottom: the distance matrix turns into a tree.
UPGMA: Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a sequential clustering algorithm that computes the distance between clusters using average pairwise distance and assigns a height to every vertex in the tree, effectively assuming the presence of a molecular clock and dating every vertex. The algorithm produces an ultrametric tree: the distance from the root to any leaf is the same (this corresponds to a constant molecular clock: the same proportion of mutations in any pathway root to leaf). Input is a distance matrix of distances between species; the iteration combines the two closest species until we reach a single cluster.
UPGMA is also hierarchical clustering

1. Initialization: Assign each species to its own cluster C_i
2. Each such cluster is a tree leaf
3. Iteration:
4. Determine i and j so that $d(C_i, C_j)$ is minimal
5. Define a new cluster $C_k = C_i \cup C_j$ with a corresponding node at height $d(C_i, C_j)/2$
6. Update distances to C_k using weighted average
7. Remove C_i and C_j
8. Termination: stop when just a single cluster remains
Neighbor Joining, NJ

Figure: NJ starts with a star topology (i.e. no neighbors have been joined) and then uses the smallest distance in the distance matrix to find the next two pairs to move out of the multifurcation then recalculate the distance matrix that now contains a tip less.

1. Identify i,j as neighbor if their distance is the shortest.
2. Combine i,j into a new node u.
3. Update the distance matrix.
4. Distance of u from the rest of the tree is calculated.
5. If only 3 nodes are left finish.
The distance between any taxon (=species) pair \(i \) and \(j \) is denoted as \(d(i, j) \) and can be obtained from the alignment. NJ iteratively selects a taxon pair, builds a new subtree, and agglomerates the pair of selected taxa to reduce the taxon set by one. Pair selection is based on choosing the pair \(i, j \) that minimizes the following \(Q \) (matrix) criterion:

\[
Q(i,j) = (r - 2)d(i,j) - \sum_{k=1}^{r} d(i,k) - \sum_{k=1}^{r} d(j,k)
\]

where \(r \) is the current number of taxa and the sums run on the taxon set. NJ estimates the length of the branch \((f, u)\) using

\[
d(f, u) = \frac{1}{2}d(f, g) - \frac{1}{2(r-2)}[\sum_{k=1}^{r} d(f,k) - \sum_{k=1}^{r} d(g,k)]
\]

and \(d(g, u) \) is obtained by symmetry. Finally, NJ replaces \(f \) and \(g \) by \(u \) in the distance matrix, using the reduction formula:

\[
d(u, k) = \frac{1}{2}[d(f,k) - d(f,u)] + \frac{1}{2}[d(g,k) - d(g,u)]
\]

NJ still reconstructs the correct tree when the distance matrix is perturbed by small noise and that NJ is optimal regarding tolerable noise amplitude.
Figure: One NJ agglomeration step. In the current tree (a), the taxon set contains a, b, c, d, e, f, and g; some are original taxa, whereas the others (i.e., a, f, and g) correspond to subtrees built during the previous steps. Tree (b): after selection of the (f, g) pair, a new subtree is built, and both f and g are replaced by a unique taxon denoted as u. NJ terminates when the central node is fully resolved. Neighbor joining on a set of r taxa requires r-3 iterations. At each step one has to build and search a Q matrix. Initially the Q matrix is size r^2, then the next step it is $(r – 1)^2$, etc. This leads to an algorithm with a time complexity of $O(r^3)$.
Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td></td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Step 1: S Calculations

- \(S_{ij} = (\sum_{k \neq i,j} d_{ij})/(N-2) \)
- \(N \) is the number of OTUs in the set.

Example:
- \(S_{AB} = (5+7+4+6+8)/4 = 7.5 \)
- \(S_{CD} = (5+7+10+9+11)/4 = 10.5 \)
- \(S_{DE} = (4+7+10+7+5)/4 = 8 \)
- \(S_{EF} = (6+8+7+11+8)/4 = 8.5 \)
- \(S_{EF} = (8+11+8+9+8)/4 = 11 \)

Step 2: Calculate Pair with Smallest \(M_i \)

- Smallest are:
 - \(M_{A_3} = 5 - 7.5 = -2.5 \)
 - \(M_{D_E} = 5 - 9.5 = -4.5 \)

Choose one of these (A3 here).

Step 3: Create a Node with Lowest \(M_i \)

- U1 joins A and B:
 - \(S_{A_3U_1} = D_{AB}/2 + (S_A - S_B)/2 = 1 \)
- U2 joins D and E:
 - \(S_{D_2E_2} = D_{DE}/2 + (S_D - S_E)/2 = 3 \)
- U3 joins C and U1:
 - \(S_{C_3U_1} = D_{C_3}/2 + (S_C - S_{U_1})/2 = 2 \)

Step 4: Join i and j according to S

Example Diagrams:
- Join A and B:
- Join D and E:
- Join C and U1:

Branches in black are of unknown length.

Step 5: Calculate New Distance Matrix of All OTUs with \(D_{U_i} = D_{A_i} + D_{B_i} - D_{A_i} \)

Where i and j are those selected from above.

Comments:

Note this is the same tree we started with (drawn in unrooted form here).

Figure: http://www.evolution-textbook.org/content/free/tables/Ch_27/T11_EVOW_Ch27.pdf
Clustering

K means, Markov Clustering algorithm
We can use microarrays (DNA chips) to measure the activity (expression level) of the genes in different cells, tissues under varying conditions (with a drug) and at different time points. Expression level is estimated by measuring the amount of mRNA for that particular gene. More mRNA usually indicates more gene activity. Microarray data are usually transformed into a set of large matrices. The clustering analysis allows scientists to identify changes of activity in genes and functional similarity among genes.
Clustering gene expression data

$E_{ij} = \text{EXPRESSION LEVEL OF GENE } i \text{ IN SAMPLE } j$

Sample # 57

gene 1000
Clustering gene expression data

There are two typical experiments:

- **Differentiation**
 - Compare expression levels under different conditions
 - A test T_j represents expression levels of a condition
 - E.g., cancer or drug-treated cell vs. normal cell

- **Temporal expression**
 - Explore temporal evolution of expression levels
 - A test T_j represents expression levels at a given time
 - E.g., study cell response to heat-shock, starvation

Figure: The color of the spot indicates activation with respect to control (red) or repression with respect to the control (green) or absence of regulation (yellow) of a gene, or error in the technological process (black). The sample can be all the genes of an organism (example the 6000 genes of yeast), or a selection of genes of interest (+ control genes).
K-Means Clustering: Lloyd Algorithm

1. Arbitrarily assign the k cluster centers
2. while the cluster centers keep changing
3. Assign each data point to the cluster C_i corresponding to the closest cluster representative (center) $(1 \leq i \leq k)$
4. After the assignment of all data points, compute new cluster representatives according to the center of gravity of each cluster, that is, the new cluster representative is $\sum v \div |C|$ for all v in C for every cluster C
Progressive greedy K-means Algorithm

1. Select an arbitrary partition P into k clusters
2. while forever
 3. $\text{bestChange} \leftarrow 0$
 4. for every cluster C
 5. for every element i not in C
 6. if moving i to cluster C reduces its clustering cost
 7. if $\text{cost}(P) - \text{cost}(P_{i \rightarrow C}) > \text{bestChange}$
 8. $\text{bestChange} \leftarrow \text{cost}(P) - \text{cost}(P_{i \rightarrow C})$
 9. $i' \leftarrow i$
 10. $C' \leftarrow C$
 11. if $\text{bestChange} > 0$
 12. Change partition P by moving i' to C'
 13. else
 14. return P
Progressive greedy K-means Algorithm

Figure: K-means progression from left to right and top to bottom; stars are center points (the centers of the cluster).
Progressive greedy K-means Algorithm

The quality of the cluster results could be assessed by ratio of the distance to nearest cluster and cluster diameter. A cluster can be formed even when there is no similarity between clustered patterns. This occurs because the algorithm forces k clusters to be created. Linear relationship with the number of data points; the complexity is $O(nKI)$ where $n =$ number of points, $K =$ number of clusters, $I =$ number of iterations.
Results of a clustering procedure on microarray data

The aims is clustering gene expression: visualising and analyzing vast amounts of biological data as a whole set can be difficult. It is easier to interpret the data if they are partitioned into clusters combining similar data points.

Figure: Clustering analysis obtained using Hierarchical clustering (UPGMA). The clusters are coloured differently.
Markov Clustering algorithm, MCL

Unlike most clustering algorithms, the MCL does not require the number of expected clusters to be specified beforehand. The basic idea underlying the algorithm is that dense clusters correspond to regions with a larger number of paths.

ANALOGY: We take a random walk on the graph described by the similarity matrix, but after each step we weaken the links between distant nodes and strengthen the links between nearby nodes. A random walk has a higher probability to stay inside the cluster than to leave it soon. The crucial point lies in boosting this effect by an iterative alternation of expansion and inflation steps.

An **inflation parameter** is responsible for both strengthening and weakening of current. (Strengthens strong currents, and weakens already weak currents). An **expansion parameter**, r, controls the extent of this strengthening / weakening. In the end, this influences the granularity of clusters.
The input of MCL could be an adjacency matrix
MCL Algorithm

1. Input is an un-directed graph, with power parameter e (usually $= 2$), and inflation parameter r (usually $= 2$).
2. Create the associated adjacency matrix
3. Normalize the matrix; $M'_{pq} = \frac{M_{pq}}{\sum_i M_{iq}}$
4. Expand by taking the e-th power of the matrix; for example, if $e = 2$ just multiply the matrix by itself.
5. Inflate by taking inflation of the resulting matrix with parameter r: $M_{pq} = \frac{(M_{pq})^r}{\sum_i (M_{iq})^r}$
6. Repeat steps 4 and 5 until a steady state is reached (convergence).
The number of steps to converge is not proven, but experimentally shown to be 10 to 100 steps, and mostly consist of sparse matrices after the first few steps. There are several distinct measures informing on the clustering and its stability such as the following clustering entropy:

\[
S = -\frac{1}{L} \sum_{ij} \left(P_{ij} \log_2 P_{ij} + (1 - P_{ij}) \log_2 (1 - P_{ij}) \right)
\]

where the sum is over all edges and the entropy is normalized by the total number of edges. This might be used to detect the best clustering obtained after a long series of clusterings with different granularity parameters each time.

The expansion step of MCL has time complexity \(O(n^3) \). The inflation has complexity \(O(n^2) \). However, the matrices are generally very sparse, or at least the vast majority of the entries are near zero. Pruning in MCL involves setting near-zero matrix entries to zero, and can allow sparse matrix operations to improve the speed of the algorithm vastly.
Figure: Progression from left to right and top to bottom

Figure: Biological applications: protein families analysis (tribeMCL)
Hidden Markov Models in Bioinformatics

Viterbi, Forward, Backward, Genscan, TMHMM, sensitivity, accuracy
Hidden Markov Models: The biological problem

Identifying genes and their parts (exons and introns) in a genome is an important challenge; another problem we will work on is about membrane proteins that are important for cell import/export. In this case we would like to predict the location in the aminoacid sequence of all the transmembrane helices. The prediction of gene parts and of the membrane protein topology (i.e. which parts are outside, inside and buried in the membrane) will require to train the model with a database of experimentally determined genes / transmembrane helices and to validate the model with another database. The figure below describes a 7 helix membrane protein forming a sort of a cylinder (3D graph) across the cell membrane.
HMMs form a useful class of probabilistic graphical models used to find genes, predict protein structure and classify protein families. Definition: A hidden Markov model (HMM) has an Alphabet = b_1, b_2, \ldots, b_M, set of states $Q = 1, \ldots, K$, and transition probabilities between any two states $a_{ij} =$ transition prob from state i to state j
$a_{i1} + \ldots + a_{iK} = 1$, for all states $i = 1, K$
Start probabilities a_{0i}
$a_{01} + \ldots + a_{0K} = 1$
Emission probabilities within each state $e_i(b) = P(x_i = b | \pi_i = k)$
$e_i(b_1) + \ldots + e_i(b_M) = 1$, for all states $i = 1, K$
A Hidden Markov model is memoryless: $P(\pi_{t+1} = k | \text{whatever happened so far}) = P(\pi_{t+1} = k | \pi_1, \pi_2, \ldots, \pi_t, x_1, x_2, \ldots, x_t) = P(\pi_{t+1} = k | \pi_t)$ at each time step t, only matters the current state π_t
The dishonest casino model

http://ai.stanford.edu/~serafim/
The dishonest casino

- Known: The structure of the model
- The transition probabilities
- Hidden: What the casino did (ex FFFFFLLLLLLLLLFFFF)
- Observable: The series of die tosses, ex 3415256664666153...
- What we must infer:
 - When was a fair die used?
 - When was a loaded one used?
Given a sequence $x = x_1 x_N$, a parse of x is a sequence of states $\pi = \pi_1, \pi_N$.
Given a sequence \(x = x_1 \ldots x_N \) and a parse \(\pi = \pi_1, \ldots, \pi_N \),

To find how likely is the parse: (given our HMM)

\[
P(x, \pi) = P(x_1, \ldots, x_N, \pi_1, \ldots, \pi_N) = \prod \frac{P(x_n | \pi_n) P(\pi_n | \pi_{n-1}) \cdots P(x_2 | \pi_2) P(\pi_2 | \pi_1) P(x_1 | \pi_1)}{P(\pi_1)} = a_{0\pi_1} a_{\pi_1\pi_2} \cdots a_{\pi_{N-1}\pi_N} e_{\pi_1}(x_1) \cdots e_{\pi_N}(x_N)
\]
The three main questions on HMMs

1. Evaluation
 GIVEN a HMM M, and a sequence x,
 FIND $\text{Prob}[x \mid M]$

2. Decoding
 GIVEN a HMM M, and a sequence x,
 FIND the sequence π of states that maximizes $P[x, \pi \mid M]$

3. Learning
 GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,
 FIND parameters $\theta = (e_i(.), a_{ij})$ that maximize $P[x \mid \theta]$

Evaluation: forward algorithm or the backwards algorithm; decoding: Viterbi; Learning: Baum Welch $=$ forward-backward algorithm (not here)
Let's not be confused by notation

\[P[x \mid M]: \quad \text{The probability that sequence } x \text{ was generated by the model; The model is: architecture (\#states, etc)} \]
\[+ \text{ parameters } \theta = a_{ij}, e_i(.) \]
So, \(P[x \mid \theta] \), and \(P[x] \) are the same, when the architecture, and the entire model, respectively, are implied
Similarly, \(P[x, \pi \mid M] \) and \(P[x, \pi] \) are the same
In the **LEARNING** problem we always write \(P[x \mid \theta] \) to emphasize that we are seeking the \(\theta \) that maximizes \(P[x \mid \theta] \)
GIVEN \(x = x_1 x_2 \ldots x_N \)

We want to find \(\pi = \pi_1, \ldots, \pi_N \), such that \(P[x, \pi] \) is maximized

\[\pi^* = \text{argmax}_\pi P[x, \pi] \]

We can use dynamic programming!

Let \(V_k(i) = \max_{\{\pi_1, \ldots, i-1\}} P[x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-1}, x_i, \pi_i = k] \)

= Probability of most likely sequence of states ending at state \(\pi_i = k \)
Decoding main idea

Given that for all states k, and for a fixed position i,

$$V_k(i) = \max_{\{\pi_1, ..., \pi_{i-1}\}} P[x_1 ... x_{i-1}, \pi_1, ..., \pi_{i-1}, x_i, \pi_i = k]$$

What is $V_k(i+1)$?

From definition,

$$V_l(i+1) = \max_{\{\pi_1, ..., \pi_i\}} P[x_1 ... x_i, \pi_1, ..., \pi_i, x_{i+1}, \pi_{i+1} = l]$$

$$= \max_{\{\pi_1, ..., \pi_i\}} P(x_{i+1}, \pi_{i+1} = l | x_1 ... x_i, \pi_1, ..., \pi_i) P[x_1 ... x_i, \pi_1, ..., \pi_i]$$

$$= \max_{\{\pi_1, ..., \pi_i\}} P(x_{i+1}, \pi_{i+1} = l | \pi_i) P[x_1 ... x_{i-1}, \pi_1, ..., \pi_{i-1}, x_i, \pi_i]$$

$$= \max_k P(x_{i+1}, \pi_{i+1} = l | \pi_i = k) \max_{\{\pi_1, ..., \pi_{i-1}\}} P[x_1 ... x_{i-1}, \pi_1, ..., \pi_{i-1}, x_i, \pi_i = k]$$

$$= e_l(x_{i+1}) \max_k a_{kl} V_k(i)$$
The Viterbi Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
- \(V_0(0) = 1 \) (0 is the imaginary first position)
- \(V_k(0) = 0 \), for all \(k > 0 \)

Iteration:
- \(V_j(i) = e_j(x_i) \times \max_k a_{kj} V_k(i-1) \)
- \(\text{Ptr}_j(i) = \arg\max_k a_{kj} V_k(i-1) \)

Termination:
- \(P(x, \pi^*) = \max_k V_k(N) \)

Traceback:
- \(\pi_N^* = \arg\max_k V_k(N) \)
- \(\pi_{i-1}^* = \text{Ptr}_{\pi_i}(i) \)
The Viterbi Algorithm

Similar to “aligning” a set of states to a sequence

Time:

$O(K^2N)$

Space:

$O(KN)$
Valid directions in the alignment problem. Valid directions in the decoding problem.
Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π_1 according to prob $a_{0\pi_1}$
2. Emit letter x_1 according to prob $e_{\pi_1}(x_1)$
3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
4. Until emitting x_n

Figure:
Evaluation

\[P(x) \quad \text{Probability of } x \text{ given the model} \]

\[P(x_i,...,x_j) \quad \text{Probability of a substring of } x \text{ given the model} \]

\[P(\pi_i = k \mid x) \quad \text{Probability that the } i^{th} \text{ state is } k, \text{ given } x \]

A more refined measure of which states \(x \) may be in
The Forward Algorithm

We want to calculate

\[P(x) = \text{probability of } x, \text{ given the HMM} \]

Sum over all possible ways of generating \(x \):

\[P(x) = \sum_{\pi} P(x, \pi) = \sum_{\pi} P(x \mid \pi) P(\pi) \]

To avoid summing over an exponential number of paths \(\pi \), define

\[f_k(i) = P(x_1 \ldots x_i, \pi_i = k) \quad (\text{the forward probability}) \]
The Forward Algorithm derivation

Define the forward probability:

\[f_i(i) = P(x_1...x_i, \pi_i = l) \]

\[= \sum_{\pi_1...\pi_{i-1}} P(x_1...x_{i-1}, \pi_1,..., \pi_{i-1}, \pi_i = l) \cdot e_l(x_i) \]

\[= \sum_k \sum_{\pi_1...\pi_{i-2}} P(x_1...x_{i-1}, \pi_1,..., \pi_{i-2}, \pi_{i-1} = k) \cdot a_{kl} \cdot e_l(x_i) \]

\[= e_l(x_i) \sum_k f_k(i-1) \cdot a_{kl} \]
The Forward Algorithm

We can compute $f_k(i)$ for all k, i, using dynamic programming!

Initialization:

$f_0(0) = 1$

$f_k(0) = 0$, for all $k > 0$

Iteration:

$f_i(i) = e_i(x_i) \sum_k f_{k(i-1)} a_{kl}$

Termination:

$P(x) = \sum_k f_k(N) a_{k0}$

Where, a_{k0} is the probability that the terminating state is k

(usually = a_{0k})
Comparison between Viterbi and Forward

VITERBI

Initialization:

\[V_0(0) = 1 \]
\[V_k(0) = 0, \text{ for all } k > 0 \]

Iteration:

\[V_j(i) = e_j(x_i) \max_k V_{k(i-1)} a_{kj} \]

Termination:

\[P(x, \pi^*) = \max_k V_k(N) \]

FORWARD

Initialization:

\[f_0(0) = 1 \]
\[f_k(0) = 0, \text{ for all } k > 0 \]

Iteration:

\[f_j(i) = e_i(x_i) \sum_k f_k(i-1) a_{kl} \]

Termination:

\[P(x) = \sum_k f_k(N) a_{k0} \]
Motivation for the Backward Algorithm

We want to compute

\[P(\pi_i = k \mid x), \]

the probability distribution on the \(i^{th} \) position, given \(x \)

We start by computing

\[P(\pi_i = k, x) = P(x_1 \ldots x_i, \pi_i = k, x_{i+1} \ldots x_N) \]

\[= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid x_1 \ldots x_i, \pi_i = k) \]

\[= P(x_1 \ldots x_i, \pi_i = k) P(x_{i+1} \ldots x_N \mid \pi_i = k) \]
The Backward Algorithm derivation

Define the backward probability:

\[b_k(i) = P(x_{i+1}...x_N \mid \pi_i = k) \]

\[= \sum_{\pi_{i+1}...\pi_N} P(x_{i+1}, x_{i+2}, ..., x_N, \pi_{i+1}, ..., \pi_N \mid \pi_i = k) \]

\[= \sum_I \sum_{\pi_{i+1}...\pi_N} P(x_{i+1}, x_{i+2}, ..., x_N, \pi_{i+1} = I, \pi_{i+2}, ..., \pi_N \mid \pi_i = k) \]

\[= \sum_I e_I(x_{i+1}) a_{kl} \sum_{\pi_{i+1}...\pi_N} P(x_{i+2}, ..., x_N, \pi_{i+2}, ..., \pi_N \mid \pi_{i+1} = I) \]

\[= \sum_I e_I(x_{i+1}) a_{kl} b_I(i+1) \]
The Backward Algorithm

We can compute $b_k(i)$ for all k, i, using dynamic programming

Initialization:

$$b_k(N) = a_{k0}, \text{ for all } k$$

Iteration:

$$b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)$$

Termination:

$$P(x) = \sum_l a_{0l} e_l(x_1) b_l(1)$$
What is the running time, and space required, for Forward and Backward?

Time: $O(K^2N)$
Space: $O(KN)$

Useful implementation technique to avoid underflows
Viterbi: sum of logs
Forward/Backward: rescaling at each position by multiplying by a constant
Identifying genes and their parts (exons and introns)

GenScan

- N - intergenic region
- P - promoter
- F - 5’ untranslated region
- E_{sngl} – single exon (intronless) (translation start -> stop codon)
- E_{init} – initial exon (translation start -> donor splice site)
- E_k – phase k internal exon (acceptor splice site -> donor splice site)
- E_{term} – terminal exon (acceptor splice site -> stop codon)
- I_k – phase k intron: 0 – between codons; 1 – after the first base of a codon; 2 – after the second base of a codon
Identifying genes and their parts (exons and introns)

In order to identify genes and their parts (exons and introns) we need to know their length distribution (see example in figures below). Human genes comprise about 3% of the human genome; average length: $\sim 8,000$ DNA base pairs (bp); 5-6 exons/gene; average exon length: ~ 200 bp; average intron length: $\sim 2,000$ bp; $\sim 8\%$ genes have a single exon and some exons can be as small as 1 or 3 bp. Below the statistics we could implement into a HMM.
Identifying genes and their parts (exons and introns)

Figure: The model (left) and the output (right) of Genscan prediction of a genomic region; the result is a segmentation of a genome sequence, i.e. the colours map the HMM states with the predicted functional genomic segments.
Prediction of aminoacid segments included in membrane proteins

Figure: top: the 3D graph previous figure could be represented as a 2D graph; bottom, 3 state prediction: each amino acid could be in the membrane (h), outside the cell (o) or inside the cell (i)
Figure: The THMM model: a three state prediction model (h,o,i) could be then refined adding more states, for example caps, i.e. the boundary between outside and membrane and inside and membrane. This refinement improves the prediction of the topology of the protein.
Sequence Length: 274
Sequence Number of predicted TMHs: 7
Sequence Exp number of AAs in TMHs: 153.74681
Sequence Exp number, first 60 AAs: 22.08833
Sequence Total prob of N-in: 0.04171

<table>
<thead>
<tr>
<th>Sequence</th>
<th>TMHMM2.0</th>
<th>outside</th>
<th>1</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>27</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>inside</td>
<td>50</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>62</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>outside</td>
<td>85</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>104</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>inside</td>
<td>127</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>131</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>outside</td>
<td>154</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>158</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>inside</td>
<td>201</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>outside</td>
<td>224</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>TMhelix</td>
<td>228</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>TMHMM2.0</td>
<td>inside</td>
<td>251</td>
<td>274</td>
</tr>
</tbody>
</table>

![TMHMM posterior probabilities for Sequence](image_url)
Assessing performances: Sensitivity and specificity

1. be predicted to occur: Predicted Positive (PP)
2. be predicted not to occur: Predicted Negative (PN)
3. actually occur: Actual Positive (AP)
4. actually not occur: Actual Negative (AN)
5. True Positive \(TP = PP \cap AP \)
6. True Negative \(TN = PN \cap AN \)
7. False Negative \(FN = PN \cap AP \)
8. False Positive \(FP = PP \cap AN \)
9. Sensitivity: probability of correctly predicting a positive example \(Sn = TP/(TP + FN) \)
10. Specificity: probability of correctly predicting a negative example \(Sp = TN/(TN + FP) \) or
11. probability that positive prediction is correct \(Sp = TP/(TP + FP) \)
Gibbs sampling: the Biological problem
Gibbs sampling: the Biological problem

given a set of sequences, find the motif shared by all or most sequences; while its starting position in each sequence is unknown, each motif appears exactly once in one sequence and it has fixed length.

Figure: Several genes are co-regulated (activated or repressed) by same protein that binds before the gene start (transcription factor)
Gibbs Sampling is an example of a Markov chain Monte Carlo algorithm; it is an iterative procedure that discards one l-mer after each iteration and replaces it with a new one. Gibbs Sampling proceeds slowly and chooses new l-mers at random increasing the odds that it will converge to the correct solution. It could be used to identify short strings, motifs, common to all co-regulated genes which are not co-aligned. The algorithm in brief:

1. Randomly choose starting positions $s = (s_1, ..., s_t)$ and form the set of l-mers associated with these starting positions.
2. Randomly choose one of the t sequences
3. Create a profile p from the other $t - 1$ sequences.
4. For each position in the removed sequence, calculate the probability that the l-mer starting at that position was generated by p.
5. Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.
6. Repeat steps 2-5 until there is no improvement.
Gibbs sampling

Considering a set of unaligned sequences, we choose initial guess of motifs

1. Select a random position in each sequence

Figure: motifs in purple, the rest of the sequences in green; next figures: theta is the weight matrix i.e. the frequency of each base in the aligned set of motifs; red the best fitting motif; in y axis the likelihood of each motif with respect to the current weight matrix.
2. Build a weight matrix

3. Select a sequence at random
4. Score possible sites in seq using weight matrix

5. Sample a new site proportional to likelihood
6. Update weight matrix

7. Iterate until convergence (no change in sites/θ)
Wagner algorithm
Biological Networks: the biological problem

A biological network is a group of genes in which individual genes can influence the activity of other genes. Let assume that there are two related genes, B and D neither is expressed initially, but E causes B to be expressed and this in turn causes D to be expressed the addition of CX by itself may not affect expression of either B or D both CX and E will have elevated levels of mRNA\(_B\) and low levels of mRNA\(_D\).

Figure: We have E only; B is a Primary Target of E; Production of mRNA\(_B\) is enhanced by E; D is a Secondary Target of E; Production of mRNA\(_D\) is enhanced by B.
What is a genetic perturbation? It is an experimental manipulation of gene activity by manipulating either a gene itself or its product. Such perturbations include point mutations, gene deletions, overexpression, inhibition of translation, or any other interference with the activity of the product.

Figure: E and CX both present; B is a Primary Target; Production of RNA_B is enhanced by E; Production of RNA_D is decreased (prevented)
Network reconstruction: direct and indirect effects

When manipulating a gene and finding that this manipulation affects the activity of other genes, the question often arises as to whether this is caused by a direct or indirect interaction? An algorithm to reconstruct a genetic network from perturbation data should be able to distinguish direct from indirect regulatory effects.

Consider a series of experiments in which the activity of every single gene in an organism is manipulated. (for instance, non-essential genes can be deleted, and for essential genes one might construct conditional mutants.) The effect on mRNA expression of all other genes is measured separately for each mutant.
How to reconstruct a large genetic network from n gene perturbations in fewer than n^2 steps?

Motivation: perturb a gene network one gene at a time and use the effected genes in order to discriminate direct vs. indirect gene-gene relationships.

Perturbations: gene knockouts, over-expression, etc.

Method: For each gene g_i, compare the control experiment to perturbed experiment and identify the differentially expressed genes. Use the most parsimonious graph that yields the graph as its reachable graph.
The nodes of the graph correspond to genes, and two genes are connected by a directed edge if one gene influences the activity of the other.
Figure: The figure illustrates three graphs (Figs. B, C, D) with the same accessibility list Acc (Fig. A). There is one graph (Fig. D) that has Acc as its accessibility list and is simpler than all other graphs, in the sense that it has fewer edges. Let’s call Gpars the most parsimonious network compatible with Acc.
Figure A shows a graph representation of a hypothetical genetic network of 21 genes. Figure B shows an alternative representation of the network shown in A. For each gene i, it simply shows which genes activity state the gene influences directly. In graph theory, a list like that shown in Fig. B is called the adjacency list of the graph. We will denote it as $\text{Adj}(G)$, and will refer to $\text{Adj}(i)$ as the set of nodes (genes) adjacent to (directly influenced by) node i. One might also call it the list of nearest neighbors in the gene network, or the list of direct regulatory interactions.

When perturbing each gene in the network shown in Figure A, one would get the list of influences on the activities of other genes shown in Figure C.

Starting from a graph representation of the network in Figure A, one arrives at the list of direct and indirect causal interactions in Figure C by following all paths leaving a gene. That is, one follows all arrows emanating from the gene until one can go no further.
The adjacency list completely defines the structure of a gene network.

In graph theory, the list $\text{Acc}(G)$ is called the accessibility list of the graph G, because it shows all nodes (genes) that can be accessed (influenced in their activity state) from a given gene by following paths of direct interactions. In the context of a genetic network one might also call it the list of perturbation effects or the list of regulatory effects. $\text{Acc}(i)$ is the set of nodes that can be reached from node i by following all paths of directed edges leaving i. $\text{Acc}(G)$ then simply consists of the accessibility list for all nodes i.
The adjacency matrix of a graph G, $A(G) = (a_{ij})$ is an n by n square matrix, where n is the number of nodes (genes) in the graph. An element a_{ij} of this matrix is equal to one if and only if a directed edge exists from node i to node j. All other elements of the adjacency matrix are zero.

The accessibility matrix $P(G) = p_{ij}$ is also an n by n square matrix. An element p_{ij} is equal to one if and only if a path following directed edges exists from node i to node j. Otherwise p_{ij} equals zero.

Adjacency and accessibility matrices are the matrix equivalents of adjacency and accessibility lists.

Let's first consider only graphs without cycles, where cycles are paths starting at a node and leading back to the same node. Graphs without cycles are called acyclic graphs.

Later generalize to graphs with cycles.

An acyclic directed graph defines its accessibility list, but the converse is not true.

In general, if Acc is the accessibility list of a graph, there is more than one graph G with the same accessibility list.
Figure: A shortcut is an edge connecting two nodes, i and j that are also connected via a longer path of edges. The shortcut e is a shortcut range $k+1$. That is, when eliminating e, i and j are still connected by a path of length $k+1$.
Wagner Algorithm

- Step 1: Graphs without cycles only (acyclic directed graph)
- Step 2: Graphs with cycles

- Step 1: Shortcut:

 A **shortcut-free graph** compatible with an accessibility list is a **unique** graph with the fewest edges among all graphs compatible with the accessibility list, i.e., a shortcut-free graph is the most parsimonious graph.
Theorem

Let Acc be the accessibility list of an acyclic digraph. Then there exists exactly one graph G_{pars} that has Acc as its accessibility list and that has fewer edges than any other graph G with Acc as its accessibility list.

This means that for any list of perturbation effects there exists exactly one genetic network G with fewer edges than any other network with the same list of perturbation effects.

Definition: An accessibility list Acc and a digraph G are compatible if G has Acc as its accessibility list. Acc is the accessibility list induced by G.

Definition: Consider two nodes i and j of a digraph that are connected by an edge e. The range r of the edge e is the length of the shortest path between i and j in the absence of e. If there is no other path connecting i and j, then $r = \infty$.
Let $\text{Acc}(G)$ be the accessibility list of an acyclic directed graph, G_{pars} its most parsimonious graph, and $V(G_{\text{pars}})$ the set of all nodes of G_{pars}. Then the following equation (1):
\[
\forall i \in V(G_{\text{pars}}) \ldots \text{Adj}(i) = \text{Acc}(i) \setminus \bigcup_{j \in \text{Acc}(i)} \text{Acc}(j)
\]
In words, for each node i the adjacency list $\text{Adj}(i)$ of the most parsimonious genetic network is equal to the accessibility list $\text{Acc}(i)$ after removal of all nodes that are accessible from any node in $\text{Acc}(i)$.
Example

Figure: $\text{Adj}(1) = \text{Acc}(1) - (\text{Acc}(2) + \text{Acc}(3) + \text{Acc}(4) + \text{Acc}(5) + \text{Acc}(6)) = (2, 3, 4, 5, 6) - (3 \cup (5, 6) \cup 6) = (2, 4)$
Proof: I will first prove that every node in Adj(i) is also contained in the set defined by the right hand side of (1).

Let x be a node in Adj(i). This node is also in Acc(i). Now take, without loss of generality any node $j \in Acc(i)$. Could x be in Acc(j)? If x could be in Acc(j) then we could construct a path from i to j to x. But because x is also in Adj(i), there is also an edge from i to x. This is a contradiction to Gpars being shortcut-free. Thus, for no $j \in Acc(i)$ can x be in Acc(j). x is therefore also not an element of the union of all Acc(j) shown on the right-hand side of (1). Thus, subtracting this union from Acc(i) will not lead to the difference operator in (1) eliminating x from Acc(i). Thus x is contained in the set defined by the right-hand side of (1).
Next to prove: Every node in the set of the right-hand side of (1) is also in Adj(i).
Let \(x \) be a node in the set of the right-hand side of (1). Because \(x \) is in the right hand side of (1), \(x \) must a fortiori also be in Acc(i).
That is, \(x \) is accessible from \(i \). But \(x \) can not be accessible from any \(j \) that is accessible from \(i \).
For if it were, then \(x \) would also be in the union of all Acc\((j)\). Then taking the complement of Acc\((i)\) and this union would eliminate \(x \) from the set in the right hand side of (1). In sum, \(x \) is accessible from \(i \) but not from any \(j \) accessible from \(i \). Thus \(x \) must be adjacent to \(i \).
Let i, j, and k be any three pairwise different nodes of an acyclic directed shortcut-free graph G. If j is accessible from i, then no node k accessible from j is adjacent to i.

Proof: Let j be a node accessible from node i. Assume that there is a node k accessible from j, such that k is adjacent to i. That is, $j \in \text{Acc}(i)$, $k \in \text{Acc}(j)$ and $k \in \text{Adj}(i)$. That k is accessible from j implies that there is a path of length at least one from j to k. For the same reason, there exists a path of length at least one connecting i to j. In sum, there must exist a path of length at least two from i to k. However, by assumption, there also exists a directed edge from i to k. Thus, the graph G can not be short-cut free.
Step 2: How about graphs with cycles?

Two different cycles have the same accessibility list
Perturbations of any gene in the cycle influences the activity of all other genes in the same cycle
Can't decide a unique graph if cycle happens
Not an algorithmic but an experimental limitation
Figure: Basic idea: Shrink each cycle (strongly connected components) into one node and apply the algorithm of step 1. A graph after shrinking all the cycles into nodes is called a condensation graph.
How good is this algorithm?

1. Unable to resolve cycled graphs
2. Require more data than conventional methods using gene expression correlations.
3. There are many networks consistent with the given accessibility list. The algorithm construct the most parsimonious one.
4. The same problem was proposed around 1980 which is called transitive reduction.
5. The transitive reduction of a directed graph G is the directed graph G' with the smallest number of edges such for every path between vertices in G, G' has a path between those vertices.
6. An $O(V)$ algorithm for computing transitive reduction of a planar acyclic digraph was proposed by Sukhamay Kundu. (V is the number of nodes in G)
Complexity

- Measures of algorithmic complexity are influenced by the average number of entries in a node's accessibility list. Let $k < n - 1$ be that number.
- For all practical purposes, there will be many fewer entries than that, not only because accessibility lists with nearly n entries are not accessibility lists of acyclic digraphs, but also because most real-world graphs are sparse.
- During execution, each node accessible from a node j induces one recursive call of PRUNEACC, after which the node accessed from j is declared as visited.
- Thus, each entry of the accessibility list of a node is explored no more than once.
- However, line 15 of the algorithm loops over all nodes k adjacent to j. If $a = |\text{Adj}(j)|$, on average, then overall computational complexity becomes $O(nka)$.
Comments on the code

The algorithm itself takes the accessibility list of a graph and eliminates entries inconsistent with Theorem 2 and Corollary 2.

It does so recursively until only the adjacency list of the shortcut-free graph is left.

The algorithm is shown as pseudocode. Because it operates on lists, programming languages such as perl or library extensions of other languages permitting list operations will facilitate its implementation.

(In Appendix a perl implementation of the algorithm, where accessibility and adjacency list are represented by a two-dimensional hashing array.)

1. for all nodes \(i \) of \(G \)
 \[\text{Adj}(i)=\text{Acc}(i) \]

2. for all nodes \(i \) of \(G \)
 if node \(i \) has not been visited
 call \text{PRUNE_ACC}(i)
 end if

3. \text{PRUNE_ACC}(i)
 for all nodes \(j \in \text{Acc}(i) \)
 if \(\text{Acc}(j)=\emptyset \)
 declare \(j \) as visited.
 else
 call \text{PRUNE_ACC}(j)
 end if

4. for all nodes \(j \in \text{Acc}(i) \)
 for all nodes \(k \in \text{Adj}(j) \)
 if \(k \in \text{Acc}(i) \)
 delete \(k \) from \(\text{Adj}(i) \)
 end if

5. declare node \(i \) as visited

6. end \text{PRUNE_ACC}(i)
The algorithm needs an accessibility list for each node i, $Acc(i)$, which would be obtained from gene perturbation data and subsequent gene activity measurements for a genetic network.

In lines one and two, for each node i the adjacency list $Adj(i)$ is initialized as equal to the accessibility list.

The algorithm will delete elements from this $Adj(i)$ until the adjacency list of the most parsimonious network of $Acc(G)$ is obtained.

for all nodes i of G
\[
Adj(i) = Acc(i)
\]

for all nodes i of G
if node i has not been visited
\[
call \text{PRUNE}_\text{ACC}(i)
\]
end if

PRUNE_ACC(i)
for all nodes $j \in Acc(i)$
if $Acc(j) = \emptyset$
\[
declare j \text{ as visited.}
\]
else
\[
call \text{PRUNE}_\text{ACC}(j)
\]
end if

for all nodes $j \in Acc(i)$
for all nodes $k \in Adj(j)$
if $k \in Acc(i)$
\[
delete k \text{ from Adj}(i)
\]
end if
declare node i as visited
end PRUNE_ACC(i)
The master loop in lines 3–6 cycles over all nodes of \(G \), and calls the routine \(\text{PRUNE_ACC} \) for each node \(i \).

In the last statement of this routine (line 19) the calling node is declared as visited.

A visited node is a node whose adjacency list \(\text{Adj}(i) \) needs not be modified any further.

This is the purpose of the conditional statement in the master loop (line 4), which skips over nodes that have already been visited.

```plaintext
for all nodes \( i \) of \( G \)
    \( \text{Adj}(i) = \text{Acc}(i) \)

for all nodes \( i \) of \( G \)
    if node \( i \) has not been visited
        call \( \text{PRUNE\_ACC}(i) \)
    end if

\text{PRUNE\_ACC}(i)
    for all nodes \( j \in \text{Acc}(i) \)
        if \( \text{Acc}(j) = \emptyset \)
            declare \( j \) as visited.
        else
            call \( \text{PRUNE\_ACC}(j) \)
        end if

    for all nodes \( j \in \text{Acc}(i) \)
        for all nodes \( k \in \text{Adj}(j) \)
            if \( k \in \text{Acc}(i) \)
                delete \( k \) from \( \text{Adj}(i) \)
            end if
        end for
    end for

declare node \( i \) as visited
end \text{PRUNE\_ACC}(i)
```
Aside from storing Acc and Adj, the algorithm thus also needs to keep track of all visited nodes.

In an actual implementation, Acc, Adj, and any data structure that keeps track of visited nodes would need to be either global variables or passed into the routine PRUNE_ACC, preferably by reference.

In contrast, the calling node i needs to be a local variable because of the recursivity of PRUNE_ACC.

for all nodes i of G

\[Adj(i) = Acc(i) \]

for all nodes i of G

if node i has not been visited

call PRUNE_ACC(i)

end if

PRUNE_ACC(i)

for all nodes $j \in Acc(i)$

if $Acc(j) = \emptyset$

declare j as visited.

else

call PRUNE_ACC(j)

end if

for all nodes $j \in Acc(i)$

for all nodes $k \in Adj(j)$

if $k \in Acc(i)$

delete k from $Adj(i)$

end if

declare node i as visited

end PRUNE_ACC(i)
Function PRUNE_ACC

It contains of two loops. The first loop (lines 8-13) cycles over all nodes j accessible from the calling node i. If there exists a node accessible from j, then PRUNE_ACC is called from j. If no node is accessible from j, that is, if $Acc(j) = \emptyset$, then j is declared as visited.

Because its accessibility list is empty, its adjacency list must be empty as well ($Adj(i) \subseteq Acc(i)$), and needs no further modification.

```plaintext
for all nodes $i$ of $G$
    $Adj(i) = Acc(i)$
for all nodes $i$ of $G$
    if node $i$ has not been visited
        call PRUNE_ACC($i$)
    end if

PRUNE_ACC($i$)
    for all nodes $j \in Acc(i)$
        if $Acc(j) = \emptyset$
            declare $j$ as visited.
        else
            call PRUNE_ACC($j$)
        end if
    for all nodes $j \in Acc(i)$
        for all nodes $k \in Adj(j)$
            if $k \in Acc(i)$
                delete $k$ from $Adj(i)$
            end if
        end for
    declare node $i$ as visited
end PRUNE_ACC($i$)
```
Thus, through the first loop
PRUNE_ACC calls itself recursively
until a node is reached whose
accessibility list is empty.

There always exists such a node,
otherwise the graph would not be
acyclic.

This also means that infinite recursion
is not possible for an acyclic graph.
Thus, the algorithm always terminates.

More precisely, the longest possible
chain of nested calls of PRUNE_ACC
is \((n-1) \) if \(G \) has \(n \) nodes.

For any node \(i \) calling PRUNE_ACC,
the number of nested calls is at most
equal to the length of the longest path
starting at \(i \).

\begin{verbatim}
for all nodes \(i \) of \(G \\
 Adj(i)=Acc(i) \\
for all nodes \(i \) of \(G \\
 if node \(i \) has not been visited \\
 call PRUNE_ACC(i) \\
end if \\
PRUNE_ACC(i) \\
 for all nodes \(j \in Acc(i) \\
 if \(Acc(j)=\emptyset \) \\
 declare \(j \) as visited. \\
 else \\
 call PRUNE_ACC(j) \\
 end if \\
 for all nodes \(j \in Acc(i) \\
 for all nodes \(k \in Adj(j) \\
 if \(k \in Acc(i) \\
 delete \(k \) from \(Adj(i) \) \\
 end if \\
 end for \\
 declare node \(i \) as visited \\
end PRUNE_ACC(i)
\end{verbatim}
The second loop of PRUNE_ACC (lines 14-18) only starts once the algorithm has explored all nodes accessible from the calling node i, that is, as the function calls made during the first loop return.

In the second loop the principle of Corollary 2 is applied.

Specifically, the second loop cycles over all nodes j accessible from i in line 14.

1. for all nodes i of G
 \[Adj(i) = Acc(i) \]

2. for all nodes i of G
 if node i has not been visited
 call PRUNE_ACC(i)
 end if

3. PRUNE_ACC(i)
 for all nodes $j \in Acc(i)$
 if $Acc(j) = \emptyset$
 declare j as visited.
 else
 call PRUNE_ACC(j)
 end if

4. for all nodes $j \in Acc(i)$
 for all nodes $k \in Adj(j)$
 if $k \in Acc(i)$
 delete k from $Adj(i)$
 end if

5. declare node i as visited

6. end PRUNE_ACC(i)
In a slight deviation from what Corollary 2 suggests, line 15 cycles not over all nodes $k \in \text{Acc}(j)$, but only over $k \in \text{Adj}(j)$.

All nodes $k \in \text{Adj}(j)$ are deleted from $\text{Adj}(i)$ in lines 16-18. Cycling only over $k \in \text{Adj}(j)$ saves time, but does not compromise the requirement that all nodes $k \in \text{Adj}(i)$ be removed, because line 14 covers all nodes j accessible from i.

Because of the equality proven in Theorem 2, once this has been done, the adjacency list need not be modified further. This is why upon leaving this routine, the calling node is declared as visited.

Notice also that if a node j with $\text{Acc}(j) = \emptyset$ is encountered, the loop in line 15 is not executed.

for all nodes i of G
\[\text{Adj}(i) = \text{Acc}(i)\]

for all nodes i of G
if node i has not been visited
\[
\text{call PRUNE_ACC}(i)
\]
end if

PRUNE_ACC(i)
for all nodes $j \in \text{Acc}(i)$
if $\text{Acc}(j) = \emptyset$
\[
\text{declare } j \text{ as visited.}
\]
else
\[
\text{call PRUNE_ACC}(j)
\]
end if

for all nodes $j \in \text{Acc}(i)$
for all nodes $k \in \text{Adj}(j)$
if $k \in \text{Acc}(i)$
\[
\text{delete } k \text{ from } \text{Adj}(i)
\]
end if

\[
\text{declare node } i \text{ as visited}
\]
end PRUNE_ACC(i)
for all nodes i of G

 if component[i] has not been defined
 create new node x of G^*
 component[i] = x
 for all nodes $j \in$ Acc(i)
 if $i \in$ Acc(j)
 component[j] = x
 end if
 end for
 end if

for all nodes i of G^*

 Acc$_G^*$(i) = \emptyset

for all nodes i of G

 for all nodes $j \in$ Acc(i)
 if component[i] \neq component[j]
 if component[j] \in Acc$_G^*$ (component[i])
 add component[j] to Acc$_G^*$ (component[i])
 end if
 end if
 end for
Algorithms for Biological Networks
Gillespie algorithm: The Biological problem

Many studies have reported occurrence of stochastic fluctuations and noise in living systems. Observation of gene expression in individual cells has clearly established the stochastic nature of transcription and translation. When using deterministic modeling approaches, for examples differential equations, we assume that the biological system evolves along a fixed path from its initial state. Such an approach cannot be taken for modeling stochastic processes such as gene regulation. Also, using deterministic methods, it is not possible to capture emergent phenomena that arise from inherent randomness. The Gillespie algorithm has been applied to many in silico biological simulations recently.
Consider a system of N molecular species S_1, \ldots, S_N interacting through M elemental chemical reactions R_1, \ldots, R_M. We assume that the system is confined to a constant volume W and is well stirred and at a constant temperature. Under these assumptions, the state of the system can be represented by the populations of the species involved. We denote these populations by $X(t)X_1(t), \ldots, X_N(t)$, where $X_i(t)$ is the number of molecules of species S_i in the system at time t. The well stirred condition is crucial. For each reaction R_j, we define a propensity function a_j, such that $a_j(x)dt$ is the probability, given $X(t) = x$, that one R_j reaction will occur in time interval $[t, t + dt)$. State change vector v_j, whose ith component is defined by $v_{j,i}$, the change in the number of S_i molecules produced by one R_j reaction.
The most important method to simulate a network of biochemical reactions is the Gillespies stochastic simulation algorithm (SSA)

- The Gillespie algorithm is widely used to simulate the behavior of a system of chemical reactions in a well stirred container

- The key aspects of the algorithm is the drawing of two random numbers at each time step, one to determine after how much time the next reaction will take place, the second one to choose which one of the reactions will occur.

- Each execution of the Gillespie algorithm will produce a calculation of the evolution of the system. However, any one execution is only a probabilistic simulation, and the chances of being the same as a particular reaction is vanishingly small.

- Therefore to garner any useful information from the algorithm, it should be run many times in order to calculate a stochastic mean and variance that tells us about the behaviour of the system.

- the complexity of the Gillespie algorithm is $O(M)$ where M is the number of reactions.
Gillespie Algorithm

1. Initialise: set the initial molecule copy numbers, set time \(t = 0 \).

2. Calculate the propensity function \(a_i \) for each reaction, and the total propensity according to equation \(a_0(x) \equiv \sum_{j=1}^{M} a_j(x) \) , \(i = 1, \ldots, M \).

3. Generate two uniformly distributed random numbers \(r_1 \) and \(r_2 \) from the range \((0, 1)\).

4. Compute the time \(\tau \) to the next reaction using equation

\[
\tau = \frac{1}{a_0(x)} \ln \left(\frac{1}{r_1} \right).
\]

5. Decide which reaction \(R_\mu \) occurs at the new time using equation

\[
r_2 > \sum_{k=1}^{\mu-1} a_k \ldots \text{and} \ldots \quad r_2 < \frac{1}{a_0} \sum_{k=1}^{\mu-1} a_k.
\]

6. Update the state vector \(\nu \) by adding the update vector:

\[
\nu(t + \tau) = \nu(t) + (\nu)_\mu
\]

7. Set \(t = t + \tau \). Return to step 2 until \(t \) reaches some specified limit \(t_{MAX} \).
In each step, the SSA starts from a current state $x(t) = x$ and asks two questions: When will the next reaction occur? We denote this time interval by t. When the next reaction occurs, which reaction will it be? We denote the chosen reaction by the index j. To answer the above questions, one needs to study the joint probability density function $p(\tau, j \mid x, t)$ that is the probability, given $X(t) = x$, that the next reaction will occur in the infinitesimal time interval $[t + \tau, t + \tau + dt]$. The theoretical foundation of SSA is given by $p(\tau, j \mid x, t) = a_j(x) \exp(-a_0(x)\tau)$, where $a_0(x) \equiv \sum_{j=1}^{M} a_j(x)$. It implies that the time t to the next occurring reaction is an exponentially distributed random variable with mean $1/a_0(x)$, and that the index j of that reaction is the integer random variable with point probability $a_j(x)/a_0(x)$. The τ is $\tau = \frac{1}{a_0(x)} \ln \left(\frac{1}{r_1} \right)$.

The system state is then updated according to $X(t + \tau) = x + \nu_j$ and this process is repeated until the simulation final time or until some other terminating condition is reached.
Example: ODE versus Gillespie
References and acknowledgements
- http://www.thomas-schlitt.net/Bioproject.html;
 http://www.biostat.wisc.edu/ craven/hunter.pdf
- N. Jones, P. Pevzner An Introduction to Bioinformatics Algorithms
- affine gaps:
 http://courses.cs.washington.edu/courses/cse527/00wi/lectures/lect05.pdf
- Ma B., Tromp J. and Li M. (2002) PatternHunter: faster and...
References and acknowledgements

- UPGMA:
http://www.southampton.ac.uk/ re1u06/teaching/upgma/
- Gascuel O. and Steel M. Neighbor-Joining Revealed Molecular Biology and Evolution 2006
- MCL: http://micans.org/mcl/ani/mcl-animation.html
References and acknowledgements

http://books.google.co.uk/books/about/Biological_Sequence_Analysis.html?id=R5P2GlJvigQC
- Viterbi: http://www.cs.umb.edu/ srevilak/viterbi/
- Lenwood S. Heath Naren Ramakrishnan (Eds) Problem Solving Handbook in Computational Biology and Bioinformatics
http://www.bio.davidson.edu/courses/genomics/chip/chip.html
- Lawrence, Altschul, Boguski, Liu, Neuwald, Wootton, Detecting Subtle Sequence Signals: a Gibbs Sampling Strategy for Multiple Alignment Science, 1993
- A. Wagner Bioinformatics 17, 2001
Software and interesting websites for practicals

- Progressive alignment: http://www.ebi.ac.uk/Tools/msa/clustalw2/;
- HMM: http://www.cbs.dtu.dk/services/TMHMM/
- http://genes.mit.edu/GENSCAN.html
- Gibbs sampling http://bayesweb.wadsworth.org/cgi-bin/gibbs.8.pl?data_type=DNA
- Various libraries to help with Biological data : www.biojava.org; www.bioperl.org; www.biopython.org; C++; www.ncbi.nlm.nih.gov/IEB/ToolBox/; Bioconductor
Some papers with applications of the algorithms described here

Figures acknowledgement (also orally during the lecture; it refers to the numbers in the copies distributed during the lectures, i.e. 4 slides/pages)

Examples of Exam Questions

- Align the two strings: ACGCTG and CATGT, with match score = 1 and mismatch, gap penalty equal -1
- Describe with one example the difference between Hamming and Edit distances
- Discuss the complexity of an algorithm to reconstruct a genetic network from microarray perturbation data
- Discuss the properties of the Markov clustering algorithm and the difference with respect to the k-means and hierarchical clustering algorithms
Examples of Answers Align the two strings: ACGCTG and CATGT, with match score =1 and mismatch, gap penalty equal -1

Describe with one example the difference between Hamming and Edit distances \(TGCATAT \rightarrow ATCCGAT \) in 4 steps; TGCATAT (insert A at front); ATGCATAT (delete 6th T); ATGCATA (substitute G for 5th A); ATGCGGTA (substitute C for 3rd G); ATCCCGAT (Done).
Examples of Answers
Discuss the complexity of an algorithm to reconstruct a genetic network from microarray perturbation data
Reconstruction: $O(nka)$ where n is the number of genes, k is the average number of entries in the accession list; a is the average number of entries in adjacency list. Large scale experimental gene perturbations in the yeast Saccharomyces cerevisiae ($n=6300$) suggests that $k < 50$, $a < 1$, and thus that $nka << n^2$.
Discuss the properties of the Markov clustering algorithm and the difference with respect to the k-means and hierarchical clustering algorithms.

MCL algorithm: We take a random walk on the graph described by the similarity matrix and after each step we weaken the links between distant nodes and strengthen the links between nearby nodes.

The k-means algorithm is composed of the following steps: 1) Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids. 2) Assign each object to the group that has the closest centroid. 3) When all objects have been assigned, recalculate the positions of the K centroids. 4) Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated.

Hierarchical clustering: Start with each point its own cluster. At each iteration, merge the two clusters; with the smallest distance. Eventually all points will be linked into a single cluster. The sequence of mergers can be represented with a rooted tree.