A version of monoidal categories (Szlachányi (2012))

Structural transformations need not be invertible:

\[\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C) \]
\[\lambda : I \otimes A \to A \]
\[\rho : A \to A \otimes I \]
Skew monoidal categories

A version of monoidal categories (Szlachányi (2012))

Structural transformations need not be invertible:

\[\alpha : (A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C) \]
\[\lambda : I \otimes A \rightarrow A \]
\[\rho : A \rightarrow A \otimes I \]

Example

- For \(C \) with coproducts, \((X/C) \) with

\[(X \overset{a}{\rightarrow} A) \oplus (X \overset{b}{\rightarrow} B) := X \overset{\text{inl}}{\rightarrow} X + X \overset{a+b}{\rightarrow} A + B \]

- For \(C \) cocomplete, \(\mathcal{[J,C]} \) with unit \(J \) and tensor

\[F \star G := (\text{lan}_J F) \circ G \ (\text{Altenkirch et al. (2010))}. \]
A version of monoidal categories (Szlachányi (2012))

Structural transformations need not be invertible:

\[\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C) \]
\[\lambda : I \otimes A \to A \]
\[\rho : A \to A \otimes I \]

Recently studied very actively (*list not exhaustive!*):

Past work
Linton (’69), Kock (’71a, ’71b), Guitart (’80), Jacobs (’94), Seal (’13), …

\(\mathcal{C} \) monoidal
\(\mathbb{T} \) a monoidal monad
reflexive coequalizers in \(\mathcal{C} \) +
preservation conditions

\(\Rightarrow \)

\(\mathcal{C}^{\mathbb{T}} \) monoidal
Past work
Linton ('69), Kock ('71a, '71b), Guitart ('80), Jacobs ('94), Seal ('13), ...

\[C \text{ monoidal} \]
\[\mathbb{T} \text{ a monoidal monad} \]
\[\Rightarrow \]
\[C^{\mathbb{T}} \text{ monoidal} \]
reflexive coequalizers in \(C + \)
preservation conditions

This work
\[C \text{ skew monoidal} \]
\[\mathbb{T} \text{ a strong monad} \]
\[\Rightarrow \]
\[C^{\mathbb{T}} \text{ skew monoidal} \]
reflexive coequalizers in \(C + \)
preservation conditions
Past work
Linton (’69), Kock (’71a, ’71b), Guitart (’80), Jacobs (’94), Seal (’13), …

\[C \text{ monoidal} \]
\[\mathcal{T} \text{ a monoidal monad} \quad \Rightarrow \quad C^\mathcal{T} \text{ monoidal} \]

reflexive coequalizers in \(C \) + preservation conditions

This work
\[C \text{ skew monoidal} \]
\[\mathcal{T} \text{ a strong monad} \quad \Rightarrow \quad C^\mathcal{T} \text{ skew monoidal} \]

monoids are \(T \)-monoids
Monoidal case \((\mathcal{C}, \mathbb{T} \text{ monoidal})\)

Definition (Kock (1971))

For \((A, a), (B, b), (C, c) \in \mathcal{C}^\mathbb{T}\) a map \(h : A \otimes B \rightarrow C\) in \(\mathcal{C}\) is *bilinear* if it is linear in each argument:

\[
\begin{align*}
T(A) \otimes B & \xrightarrow{T(A) \otimes \eta} T(A) \otimes T(B) \xrightarrow{\kappa} T(A \otimes B) \xrightarrow{Th} TC \\
A \otimes B & \xrightarrow{h} C
\end{align*}
\]

\[
\begin{align*}
T(A) \otimes B & \xrightarrow{T(A) \otimes \eta} T(A) \otimes T(B) \xrightarrow{\kappa} T(A \otimes B) \xrightarrow{Th} TC \\
A \otimes B & \xrightarrow{h} C
\end{align*}
\]

\[
\begin{align*}
A \otimes T(B) & \xrightarrow{\eta \otimes T(B)} T(A) \otimes T(B) \xrightarrow{\kappa} T(A \otimes B) \xrightarrow{Th} TC \\
A \otimes b & \xrightarrow{h} C
\end{align*}
\]

\[
\begin{align*}
A \otimes T(B) & \xrightarrow{\eta \otimes T(B)} T(A) \otimes T(B) \xrightarrow{\kappa} T(A \otimes B) \xrightarrow{Th} TC \\
A \otimes b & \xrightarrow{h} C
\end{align*}
\]
Monoidal case \((\mathcal{C}, \top \text{ monoidal})\)

Aim

Construct \((-) \star (_): \mathcal{C}^\top \times \mathcal{C}^\top \to \mathcal{C}^\top\) satisfying

1. \(\mathcal{C}^\top (A \star B, C) \cong \text{Bilin}_\mathcal{C}(A, B; C)\)

2. A suitable preservation property to guarantee coherence
Monoidal case \((\mathcal{C}, \top\mathrm{monoidal})\)

Aim

Construct \((-) \star (=) : \mathcal{C}^\top \times \mathcal{C}^\top \to \mathcal{C}^\top\) satisfying

1. \(\mathcal{C}^\top(A \star B, C) \cong \text{Bilin}_\mathcal{C}(A, B; C)\)

2. A suitable preservation property to guarantee coherence

Construction (Linton 1969)

Reflexive coequalizer in \(\mathcal{C}^\top\):

\[
\begin{align*}
T(T(A) \otimes T(B)) & \xrightarrow{T\kappa} T^2(A \otimes B) \xrightarrow{\mu} T(A \otimes B) \xrightarrow{\text{coeq.}} A \star B \\
& \Downarrow T(a \otimes b)
\end{align*}
\]

NB: \(U : \mathcal{C}^\top \to \mathcal{C}\) creates reflexive coequalizers if \(T\) preserves them
Monoidal case \((\mathcal{C}, \mathbb{T} \text{ monoidal})\)

Aim

Construct \((-) \star (=) : \mathcal{C}^\mathbb{T} \times \mathcal{C}^\mathbb{T} \rightarrow \mathcal{C}^\mathbb{T}\) satisfying

1. \(\mathcal{C}^\mathbb{T}(A \star B, C) \cong \text{Bilin}_\mathcal{C}(A, B; C)\)

2. if every \((-) \otimes X\) and \(X \otimes (-)\) preserve reflexive coequalizers, so do \((-) \star (A, a)\) and \((A, a) \star (-)\)

Construction (Linton 1969)

Reflexive coequalizer in \(\mathcal{C}^\mathbb{T}\):

\[
\begin{array}{ccc}
T(T(A) \otimes T(B)) & \xrightarrow{T \kappa} & T^2(A \otimes B) & \xrightarrow{\mu} & T(A \otimes B) \\
& \xrightarrow{T(a \otimes b)} & T(a \otimes b)
\end{array}
\]

\(\text{coeq.}\) \(\rightarrow\) \(A \star B\)

NB: \(U : \mathcal{C}^\mathbb{T} \rightarrow \mathcal{C}\) creates reflexive coequalizers if \(T\) preserves them
Monoidal case \((\mathcal{C}, \top \text{ monoidal})\)

Proposition (Guitart ('80), Seal ('13))

Suppose that

- \(\mathcal{C}\) has all reflexive coequalizers,
- \(T\) preserves reflexive coequalizers,
- Every \((-) \otimes X\) and \(X \otimes (-)\) preserves reflexive coequalizers

Then \((\mathcal{C}^\top, \ast, TI)\) is a monoidal category.

Other versions are available: e.g. closed, symmetric, cartesian...
Skew monoidal case (\mathcal{C} skew monoidal, \overline{T} strong)

Classify left-linear maps

Construct an action $\mathcal{T} \times \mathcal{C} \to \mathcal{T}$

Extend to a skew monoidal structure on \mathcal{T}
Skew monoidal case (\(\mathcal{C} \) skew monoidal, \(\mathcal{T} \) strong)

Classify left-linear maps

Construct an action \(\mathcal{C}^\mathcal{T} \times \mathcal{C} \to \mathcal{C}^\mathcal{T} \)

Extend to a skew monoidal structure on \(\mathcal{C}^\mathcal{T} \)

Background assumption:
\(\mathcal{C} \) skew monoidal, \(\mathcal{T} \) strong (\(st : T(A) \otimes B \to T(A \otimes B) \))
Factoring the proof

\[\mathcal{C} \text{ has reflexive coequalizers, which } T \text{ preserves} \]

\[\mathcal{C}^\top \text{ has reflexive coequalizers} \]

\[\mathcal{C} \text{ has a } (1, 2, 3)\text{-left linear classifier} \]

\[\mathcal{C}^\top \text{ skew monoidal} \]

\[\mathcal{C} \text{ acts on } \mathcal{C}^\top \]

\[(\cdot) \otimes \mathcal{X} \text{ preserves reflexive coeqs.} \]

\[\mathcal{C} \text{ closed or } \alpha \text{ invertible} \]

or

\[(\cdot) \otimes \mathcal{X} \text{ preserves reflexive coeqs.} \]
Factoring the proof

\(\mathcal{C} \) has reflexive coequalizers, which \(T \) preserves

\(\mathcal{C} \) has a \((1, 2, 3)\)-left linear classifier

\((_ \otimes X) \) preserves reflexive coeqs.

\(\mathcal{C} \) acts on \(\mathcal{C}^T \)

\(\mathcal{C}^T \) skew monoidal
Left-linear maps

Definition (c.f. Kock (1971))

For \((A, a), (B, b) \in \mathcal{C}^\mathsf{T}\) and \(P \in \mathcal{C}\), a map \(h : A \otimes P \to C\) is left linear if

\[
\begin{array}{c}
\xrightarrow{T(A) \otimes P} \xrightarrow{\mathsf{st}_{A,B}} \xrightarrow{T(A \otimes P)} \xrightarrow{Th} \xrightarrow{TB}
\end{array}
\]

\[
\begin{array}{c}
\downarrow \mathsf{a} \otimes P \quad \downarrow h \\
A \otimes P \quad \quad \quad B
\end{array}
\]
Left-linear classifiers

Definition (c.f. Guitart ('80), Jacobs ('94), Seal ('13))

A left-linear classifier is a family of maps $\sigma_{A,P} : A \otimes P \to A \star P$ such that

1. $(A \star P, \tau_{A,P}) \in \mathcal{C}^{\mathbb{T}}$
2. $\sigma_{A,B}$ is left-linear,
3. Every left-linear map $A \otimes P \to B$ factors uniquely:

$$
\begin{array}{ccc}
A \otimes P & \xrightarrow{\sigma} & A \star P \\
\forall \text{ left-linear maps} & \downarrow & \exists! \text{ algebra map} \\
& B & \\
\end{array}
$$

Determines an isomorphism $\mathcal{C}^{\mathbb{T}}(A \star P, B) \cong \text{LeftLin}_C(A, P; B)$.

Left-linear classifiers

Definition (c.f. Guitart ('80), Jacobs ('94), Seal ('13))

A left-linear classifier is a family of maps $\sigma_{A,P} : A \otimes P \to A \ast P$ such that

1. $(A \ast P, \tau_{A,P}) \in \mathcal{C}^\top$
2. $\sigma_{A,B}$ is left-linear,
3. Every left-linear map $A \otimes P \to B$ factors uniquely:

$$
A \otimes P \xrightarrow{\sigma} A \ast P
$$

\forall left-linear maps $\downarrow \exists!$ algebra map $\downarrow B$

Determines an isomorphism $\mathcal{C}^\top(A \ast P, B) \cong \text{LeftLin}_\mathcal{C}(A, P; B)$.

Need to build in a preservation property to guarantee coherence
Definition

For \((A, a), (B, b) \in \mathcal{C}^\square\) and \(P_1, \ldots, P_n \in \mathcal{C}\), a map

\[h : \left(\cdots \left((A \otimes P_1) \otimes P_2 \right) \cdots \otimes P_{n-1} \right) \otimes P_n \to B \]

is \(n\)-left linear if

\[
\begin{align*}
T(A) \otimes P_1 \otimes \cdots \otimes P_n & \xrightarrow{\text{st} \otimes^n} T(A \otimes P_1 \otimes \cdots \otimes P_n) & \xrightarrow{T h} & T B \\
A \otimes P_1 \otimes \cdots \otimes P_n & \xrightarrow{a \otimes P_1 \otimes \cdots \otimes P_n} & A \otimes P_1 \otimes \cdots \otimes P_n & \xrightarrow{h} & B \\
\end{align*}
\]

where \(\text{st}^{\otimes 1} := \text{st}\) and \(\text{st}^{\otimes (n+1)} := \text{st} \circ \text{st}^{\otimes n}\).
n-left linear maps

Definition

For \((A, a), (B, b) \in C^\uparrow\) and \(P_1, \ldots, P_n \in C\), a map

\[
h : \left(\cdots \left((A \otimes P_1) \otimes P_2 \right) \cdots \otimes P_{n-1} \right) \otimes P_n \rightarrow B
\]

is \(n\)-left linear if

\[
T(A) \otimes P_1 \otimes \cdots \otimes P_n \xrightarrow{st \otimes^n} T(A \otimes P_1 \otimes \cdots \otimes P_n) \xrightarrow{Th} TB
\]

where \(st^{\otimes 1} := st\) and \(st^{\otimes(n+1)} := st \circ st^{\otimes n}\).

\(\leadsto\) An \(n\)-parameter version of left-linearity.
Definition

A \textit{n-left linear classifier} is a family of maps \(\sigma_{A,P_1} : A \otimes P_1 \to A \star P_1 \) such that

1. \((A \star P_1, \tau_{A,P_1}) \in \mathcal{C}^\uparrow\)

2. \(\sigma_{A,B}\) is left-linear,

3. Every \(n\)-left linear map \((\cdots ((A \otimes P_1) \otimes P_2) \cdots) \otimes P_n \to B\) factors uniquely:

\[
\begin{array}{c}
A \otimes P_1 \otimes \cdots \otimes P_n \\
\sigma \otimes P_2 \otimes \cdots \otimes P_n \\
\forall \text{ } n\text{-left linear}
\end{array}
\]

\[
\xrightarrow{\sigma \otimes P_2 \otimes \cdots \otimes P_n}
\]

\[
\begin{array}{c}
(A \star P_1) \otimes P_2 \otimes \cdots \otimes P_n \\
\exists! (n-1)\text{-left linear map}
\end{array}
\]

\[
\xrightarrow{\exists! (n-1)\text{-left linear map}}
\]

\[
B
\]

A \((1, \ldots, n)\)-left linear classifier\ is a 1-left linear classifier that is also an \(i\)-left linear classifier \((1 \leq i \leq n)\).
n-left linear classifiers

Lemma

If $h : (\cdots ((A \otimes P_1) \otimes P_2) \cdots) \otimes P_{n+1} \rightarrow B$ is $(n+1)$-left linear, then (if they exist)

1. The transpose $\tilde{h} : A \otimes P_1 \otimes \cdots \otimes P_n \rightarrow [P_{n+1}, B]$ is n-left linear,

2. $h \circ \alpha^{-1} : (A \otimes P_1 \cdots \otimes P_{n-1}) \otimes (P_n \otimes P_{n+1}) \rightarrow B$ is n-left linear

Lemma

If C has an n-left linear classifier and satisfies either

- C is closed, or
- α is invertible

Then C has an $(n+1)$-left linear classifier.
Factoring the proof

\[C \text{ has reflexive coequalizers, which } T \text{ preserves} \]

\[C^\top \text{ has reflexive coequalizers} \]

\[C \text{ has a } (1, 2, 3)\text{-left linear classifier} \]

\[\alpha \text{ invertible or } \alpha \text{ invertible} \]

\[\alpha \text{ invertible or } \alpha \text{ invertible} \]

\[(-) \otimes X \text{ preserves reflexive coeqs.} \]

\[C \text{ acts on } C^\top \]

\[C^\top \text{ skew monoidal} \]
Proposition

If \(C \) has a \((1, 2, 3)\)-left linear classifier \(\sigma_{A,B} : A \otimes B \to A \star B \), then

1. \(\star : C^\top \times C \to C^\top \) is a skew action, and
2. The free-forgetful adjunction \(F : C \leftrightarrow C^\top : U \) is strong.
Proposition

If C has a $(1, 2, 3)$-left linear classifier $\sigma_{A,B} : A \otimes B \to A \star B$, then

1. $\star : C^\top \times C \to C^\top$ is a skew action, and
2. The free-forgetful adjunction $F : C \leftrightarrow C^\top : U$ is strong.

Holds in particular if C has a 1-left linear classifier and

- C is closed, or
- α is invertible
Factoring the proof

C has reflexive coequalizers, which T preserves

$\mathcal{C}^\mathbb{T}$ has reflexive coequalizers

C has a $(1, 2, 3)$-left linear classifier

$\mathcal{C}^\mathbb{T}$ skew monoidal

C closed or α invertible

$(-) \otimes X$ preserves reflexive coeqs.
From action to skew monoidal structure

Proposition

Given

1. A skew monoidal category \((\mathcal{C}, \otimes, I)\),
2. A category \(\mathcal{A}\),
3. A skew action \(\star : \mathcal{A} \times \mathcal{C} \rightarrow \mathcal{A}\),
4. A strong adjunction \((U, \text{st}^U) : \mathcal{A} \rightleftarrows \mathcal{C} : (F, \text{st}^F)\)

Then, setting

\[A \circledast B := A \star UB \]

makes \((\mathcal{A}, \star, FI)\) a skew monoidal category.
Proposition

If \mathcal{C} has any of

1. A $(1, 2, 3)$-left linear classifier $A \otimes B \rightarrow A \star B$,
2. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and \mathcal{C} is closed,
3. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and α is invertible

Then $(\mathcal{C}^\top, \star, TI)$ is skew monoidal.
Proposition

If C has any of

1. A (1, 2, 3)-left linear classifier $A \otimes B \rightarrow A \star B$,
2. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and C is closed,
3. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and α is invertible

Then (C^\top, \star, TI) is skew monoidal.

Question: how do we construct a (1, 2, 3)-left linear classifier?
Constructing a left-linear classifier

Construction

Reflexive coequalizer in \mathcal{C}^T:

\[
T(T(A) \otimes P) \xrightarrow{T_{st}} T^2(A \otimes P) \xrightarrow{\mu} T(A \otimes P) \xrightarrow{\text{coeq.}} A \star P
\]

Then

1. $\mathcal{C}^T(A \star P, B) \cong \text{LeftLin}_C(A, P; B)$,

2. If $T(\ - \otimes X)$ preserves reflexive coequalizers, get a $(1, 2, 3)$-left linear classifier.
Proposition

If C has all reflexive coequalizers, T preserves reflexive coequalizers, and any of the following:

1. Every $(-) \otimes P$ preserves reflexive coequalizers,
2. C is closed,
3. α is invertible

Then C has a $(1,2,3)$-left linear classifier:

\[A \otimes B \xrightarrow{\eta} T(A \otimes B) \xrightarrow{\text{coeq.}} A \star B \]
Putting it all together

Theorem

If \(C \) has all reflexive coequalizers, \(T \) preserves reflexive coequalizers, and any of the following:

1. Every \((-) \otimes P\) preserves reflexive coequalizers,
2. \(C \) is closed,
3. \(\alpha \) is invertible

Then \((C^\top, \star, TI)\) is skew monoidal.

Remark

Can also do the calculation directly — but it is much more intricate! (c.f. Seal (2013))
Factoring the proof

\mathcal{C} has reflexive coequalizers, which T preserves

\mathcal{C}^T has reflexive coequalizers

\mathcal{C} has a $(1, 2, 3)$-left linear classifier

\mathcal{C} closed or α invertible

\mathcal{C} closed or α invertible

$(-) \otimes X$ preserves reflexive coeqs.

\mathcal{C} acts on \mathcal{C}^T

\mathcal{C}^T skew monoidal

\mathcal{C}^T skew monoidal

\mathcal{C}^T has reflexive coequalizers

\mathcal{C} has reflexive coequalizers, which T preserves
Monoids in skew monoidal categories

Definition

A *monoid* in \mathcal{C} is an object M with $(I \xrightarrow{e} M \xleftarrow{m} M \otimes M)$ such that

\[
\begin{array}{c}
I \otimes M \xrightarrow{e \otimes M} M \otimes M \\
\downarrow \lambda \quad \downarrow m \\
M \quad M
\end{array}
\quad
\begin{array}{c}
M \xrightarrow{\rho} M \otimes I \\
\downarrow \quad \downarrow M \otimes e \\
M \otimes M
\end{array}
\]

\[
\begin{array}{c}
(M \otimes M) \otimes M \xrightarrow{m \otimes M} M \otimes M \\
\downarrow \alpha \\
M \otimes (M \otimes M)
\end{array}
\quad
\begin{array}{c}
M \otimes M \xrightarrow{m} m \\
\downarrow m \\
m
\end{array}
\]

Question: how do we construct free monoids?
Lemma (folklore)

Let \((\mathcal{C}, \boxtimes, I)\) be a monoidal category with finite coproducts \((0, +)\) and \(\omega\)-colimits, and \(X \in \mathcal{C}\) such that

1. Every \((-) \boxtimes P\) preserves coproducts and \(\omega\)-colimits, and
2. \(X \boxtimes (-)\) preserves \(\omega\)-colimits

Then the initial \((I + X \boxtimes -)\)-algebra is the free monoid on \(X\).
Lemma

Let \((\mathcal{C}, \otimes, I)\) be a skew monoidal category with finite coproducts \((0, +)\) and \(\omega\)-colimits, and \(X \in \mathcal{C}\) such that

1. Every \((-) \otimes P\) preserves coproducts and \(\omega\)-colimits, and
2. \(X \otimes (-)\) preserves \(\omega\)-colimits

Then the initial \((I + X \otimes -)\)-algebra is the free monoid on \(X\).
Free monoids as colimits: \((\mathcal{C}, \otimes, I)\) monoidal

Lemma (Dubuc (1974), Melliès (2008), Lack (2008))

There exists a monoidal category \(\mathcal{P}\) such that

\[
\text{MonCat}^{\text{strong}}(\mathcal{P}, \mathcal{C}) \simeq (I/\mathcal{C})
\]

Lemma (Dubuc (1974), Melliès (2008), Lack (2008))

For \((I \overset{x}{\to} X) \in (I/\mathcal{C})\), if

1. \(\mathcal{C}\) has \(\mathcal{P}\)-colimits, and
2. Every \((-) \otimes \mathcal{C}\) and \(\mathcal{C} \otimes (-)\) preserves \(\mathcal{P}\)-colimits

Then \(\text{colim } D_x\) is the free monoid on \((I \overset{x}{\to} X)\), for \(D_x : \mathcal{P} \to \mathcal{C}\) the monoidal functor corresponding to \((I \overset{x}{\to} X)\).
Free monoids as colimits: \((\mathcal{C}, \otimes, I)\) skew monoidal

Lemma

There exists a skew monoidal \(\mathcal{P}\) such that

\[
\text{SkMonCat}_{\text{strong}}(\mathcal{P}, \mathcal{C}) \simeq (I/\mathcal{C})
\]

Lemma

For \((I \xrightarrow{X} X) \in (I/\mathcal{C})\), if

1. \(\mathcal{C}\) has \(\mathcal{P}\)-colimits, and

2. Every \((-) \otimes \mathcal{C}\) and \(\mathcal{C} \otimes (-)\) preserves \(\mathcal{P}\)-colimits

Then \(\text{colim} D_x\) is the free monoid on \((I \xrightarrow{X} X)\), for \(D_x : \mathcal{P} \rightarrow \mathcal{C}\) the monoidal functor corresponding to \((I \xrightarrow{X} X)\).
Monoids in (C^T, \star, TI) as T-monoids

Definition (c.f. Fiore et al. (1999))

For a strong monad (\mathbb{T}, st), a T-monoid is an object $M \in C$ with

1. A monoid structure $(M \otimes M \xrightarrow{m} M \xleftarrow{e} I)$,
2. An algebra structure (M, τ_M),

Such that the multiplication $m : M \otimes M \to M$ is a left-linear map.
Monoids in \((\mathcal{C}^\mathbb{T}, \star, TI)\) as \(T\)-monoids

Definition (c.f. Fiore et al. (1999))

For a strong monad \((\mathbb{T}, \text{st})\), a \(T\)-monoid is an object \(M \in \mathcal{C}\) with

1. A monoid structure \((M \otimes M \xrightarrow{m} M \leftarrow e I)\),
2. An algebra structure \((M, \tau_M)\),

Such that the multiplication \(m : M \otimes M \to M\) is a left-linear map.

Example

If \(\mathcal{C}\) has two monoidal structures \((\otimes, I)\) and \((\bullet, J)\) related by a *distributivity structure*, then for \(\mathbb{T}\) the free \(\bullet\)-monoid monad on \(\mathcal{C}\), a \(T\)-monoid in \((\mathcal{C}, \otimes, I)\) is a *near semiring object* (Fiore 2016, Fiore & S. 2017).
Monoids in \((\mathcal{C}^\top, \star, TI)\) as \(T\)-monoids

Definition (c.f. Fiore et al. (1999))

A **\(T\)-monoid** is an object \(M \in \mathcal{C}\) with

1. A monoid structure \((M \otimes M \xrightarrow{m} M \leftarrow I)\),
2. An algebra structure \((M, \tau_M)\),

Such that the multiplication \(m : M \otimes M \to M\) is a left-linear map.

Proposition

If \(\mathcal{C}\) has a \((1, 2, 3)\)-left linear classifier \(\sigma_{A,B} : A \otimes B \to A \star B\), then\[
T\text{-Mon}(\mathcal{C}, \otimes, I) \cong \text{Mon}(\mathcal{C}^\top, \star, TI)\]
Monoids in \((\mathcal{C}^{\mathbb{T}}, \star, TI)\) as \(T\)-monoids

Monoidal examples

1. If \(\mathcal{C}\) has finite coproducts,

\[\mathcal{C}^{\mathbb{T}} \cong T-\text{Mon}((\mathcal{C}, +, 0)) \cong \text{Mon}(\mathcal{C}^{\mathbb{T}}) \]

2. For \(M \in \text{Mon}(\mathcal{C})\) and \(M\otimes := (M \otimes (-), m \otimes (-), e \otimes (-))\)

\[(M/\text{Mon}(\mathcal{C})) \cong M\otimes-\text{Mon}(\mathcal{C}) \cong \text{Mon}(\mathcal{C}^{M\otimes}) \]

(Fiore & S. 2017).
Adapted classical construction of monoidal structure on \mathcal{C}^\square to skew monoidal setting.
Adapted classical construction of monoidal structure on C^\top to skew monoidal setting.

Proof simplified by focus on *n-left linear classifiers* and corresponding *skew monoidal actions*.
Adapted classical construction of monoidal structure on C^\top to skew monoidal setting.

Proof simplified by focus on n-left linear classifiers and corresponding skew monoidal actions.

Construction of free monoids in skew setting is as for monoidal categories.
Adapted classical construction of monoidal structure on C^\top to skew monoidal setting.

Proof simplified by focus on n-left linear classifiers and corresponding skew monoidal actions.

Construction of free monoids in skew setting is as for monoidal categories.

Monoids in (C^\top, \star, TI) are T-monoids in (C, \otimes, I).
Adapted classical construction of monoidal structure on $\mathcal{C}^\mathbb{T}$ to skew monoidal setting.

Proof simplified by focus on *n-left linear classifiers* and corresponding *skew monoidal actions*.

Construction of free monoids in skew setting is as for monoidal categories.

Monoids in $(\mathcal{C}^\mathbb{T}, \star, Tl)$ are T-monoids in $(\mathcal{C}, \otimes, I)$.

Associated paper in preparation.