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Abstra
t

We 
onsider the problem of assembling 
on
urrent soft-

ware systems from untrusted or partially trusted off-the-

shelf 
omponents, using wrapper programs to en
apsulate


omponents and enfor
e se
urity poli
ies. In previous work

we introdu
ed the box-� pro
ess 
al
ulus with 
onstrained

intera
tion to express wrappers and dis
ussed the rigorous

formulation of their se
urity properties. This paper ad-

dresses the veri�
ation of wrapper information �ow prop-

erties. We present a novel 
ausal type system that stati-


ally 
aptures the allowed �ows between wrapped possibly-

badly-typed 
omponents; we use it to prove that an example

unidire
tional-�ow wrapper enfor
es a 
ausal �ow prop-

erty.

1 Introdu
tion

A typi
al desktop software environment nowadays 
on-

tains 
omponents � whole programs, plug-ins, or smaller


ode fragments � obtained from different untrusted or

partially-trusted sour
es; they intera
t in intri
ate ways.

Components may be faulty or mali
ious, or designed with a

weaker se
urity poli
y that the user requires � what is legit-

imate marketing data to a vendor may be 
onsidered sensi-

tive by a user. It is dif�
ult for a user to gain assuran
e that

the 
omposed system is se
ure, parti
ularly be
ause many

off-the-shelf 
omponents are only available as obje
t 
ode.

Furthermore 
urrent operating systems fail to provide sup-

port for the kind of �ne-grained poli
ies that 
ould 
ontrol

the exe
ution of su
h 
omponents [GWTB96, FBF99℄.

Re
ent pra
ti
al work advo
ates interposing se
urity


ode at the operating system boundary to observe and mod-

ify the data passing through [WBDF97, Jon99, GRPA97,

GWTB96, FBF99℄. Interposition te
hniques effe
tively en-


apsulate untrusted 
omponents in wrapper programs that

have full 
ontrol over the intera
tions between en
apsulated


omponents and the OS and over the intera
tions among


omponents. The 
ode of a wrapper 
an, for instan
e, per-

form a

ess 
ontrol 
he
ks, audit, attempt to dete
t intrud-

ers, and even monitor 
overt 
hannels. In [FBF99℄ Fraser,

Badger and Feldman presented a system that splits the task

of writing a wrapper into two parts. The wrapper's body

is written in a variant of C 
alled the Wrapper De�nition

Language. The dynami
 aspe
ts of 
reating wrappers and

instantiating 
on
urrently exe
uting 
omponents are spe
-

i�ed in the Wrapper Life Cy
le framework. While quite

expressive, their approa
h does not provide guarantees that

the wrappers a
tually enfor
e the desired se
urity poli
ies.

The powerful wrapper language, the fa
t that all wrappers

exe
ute in kernel mode, and the fa
t that 
omponents are


on
urrent 
ombine to make it dif�
ult to understand pre-


isely what properties a wrapper enfor
es.

Our work is exploring se
ure 
omposition using wrap-

pers, fo
ussing on the rigorous statement and proof of their

se
urity properties. To this end, we have abstra
ted the es-

sential 
hara
teristi
s of the problem in a pro
ess 
al
ulus �

powerful enough to express the 
ode of non-trivial wrappers

and to express the 
on
urrent 
omposition of 
omponents,

but small enough to be amenable to formal proof. In this

paper we study information �ow properties of wrappers. To

express 
lear statements of su
h properties we equip our


al
ulus with an annotated operational semanti
s, regarding

a wrapper and ea
h wrapped 
omponent as a different prin-


ipal and 
olouring pro
esses with the sets of prin
ipals that

have 
ausally affe
ted them. This allows a dire
t statement

of the property that one 
omponent 
annot 
ausally affe
t

another. Verifying su
h a 
ausal �ow property dire
tly 
an

be laborious, requiring a 
hara
terisation of the state spa
e

of a wrapper 
ontaining arbitrary 
omponents. We therefore

introdu
e a type system that stati
ally 
aptures 
ausal �ows.

Sin
e 
omponents are often provided as obje
t 
ode, whi
h

is impra
ti
al for the user to type
he
k, our type system

must admit programs with badly-typed sub
omponents.

Expressing wrappers requires a language for 
ompos-

ing 
on
urrently-exe
uting 
omponents, in
luding primi-

tives for en
apsulating 
omponents and 
ontrolling their in-

tera
tions. We use the box-� 
al
ulus of [SV99a℄, re
apit-



ulated in Se
tions 2 and 3. Box-� is a minimal extension

of the �-
al
ulus with en
apsulation; it is suf�
iently ex-

pressive for 
omponents and wrappers while retaining the

simpli
ity and tra
table semanti
s needed for proving prop-

erties. Moreover Pi
t [PT99℄ demonstrates how to build a

real programming language above a �-
al
ulus 
ore, a sim-

ilar approa
h 
ould be used for box-�.

Our main example, in Se
tion 4, is a unidire
tional-�ow

wrapper that en
apsulates two 
omponents, allowing mes-

sages to be sent only in one dire
tion between them and both


omponents to intera
t with the environment. The follow-

ing box-� program is a simpli�ed version of this example.

(� a; b)

�

a[P ℄ j ! 


a

x:


b

x j b[Q ℄

�

Pro
esses P and Q are arbitrary, possibly mali
ious, 
om-

ponents. They are en
apsulated in named boxes, with pri-

vate names a and b, and pla
ed in parallel with a forwarder

pro
ess on 
hannel 
 from box a to box b. The term 


b

x

is an output to 
hannel 
 in box b of value x. The term




a

x:


b

x pre�xes this with an input on 
hannel 
 from box

a; here the �rst x is a formal parameter that binds the se
-

ond. The ! operator indi
ates a repli
ated input, so the for-

warder persists after use. The boxes restri
t 
ommuni
ation

of the en
apsulated pro
esses and ensure that P andQ 
an-

not intera
t with ea
h other dire
tly; the private names en-

sure that they 
annot intera
t with their environment in any

other way. This simpli�ed forwarder sends only unordered

asyn
hronous messages; our main example provides FIFO


ommuni
ation (this is related to the NRL pump [KML96℄,

as dis
ussed in Se
tion 4).

Intuitively the system enfor
es an information �ow pol-

i
y that prevents Q from leaking se
rets to P . When one

attempts to make su
h properties pre
ise, however, there

are many 
hoi
es. A body of model-theoreti
 work on

non-interferen
e uses deli
ate extensional properties of the

tra
e sets of systems. In our programming language set-

ting a more intensional approa
h allows what we believe

to be 
learer statements. We start with a labelled transi-

tion semanti
s that spe
i�es the input/output behaviour of

programs and extend it to represent and propagate 
ausal

dependen
ies expli
itly. In terms of this, one 
an state the

desired property as `no visible a
tion of P is 
ausally de-

pendent on any a
tion of Q'. The 
ausal semanti
s and

property are de�ned in Se
tion 5.

The 
ausal type system, given in Se
tion 6, allows us to

prove information �ow properties of box-� programs. For

the example above, to stati
ally allow the �ow from a to

b but disallow the 
onverse we 
an asso
iate the 
ompo-

nents with prin
ipals p and q, then take a to be a box name

whose 
ontents may be affe
ted by p, written a :box

fpg

, b

to be a box name whose 
ontents may be affe
ted by p or

q, written b :box

fp;qg

, and 
 to be a 
hannel, 
arrying val-

ues of a top type >, whi
h 
an be affe
ted only by p, so


 : 
han

fpg

>. The fragment is then typable, whereas the


onverse forwarder 


b

x:


a

x is not. The type system also

deals with tra
king 
auses through 
omputation within a

wrapper, in
luding 
ommuni
ation of 
hannel names, and

with intera
tion between a wrapper and badly-typed 
ompo-

nents. All boxes are assumed to 
ontain untyped pro
esses;

wrapper 
ode is stati
ally typed; run-time type 
he
king is

required only when re
eiving from a 
omponent.

Further dis
ussion of related work is given in Se
tion 7;

Se
tion 8 
on
ludes with future work. Proofs 
an be found

in the te
hni
al report [SV99
℄.

2 A Boxed � Cal
ulus

The language � known as the box-� 
al
ulus � that we

use for studying en
apsulation properties must allow inter-

a
ting 
omponents to be 
omposed. The 
omponents will

typi
ally be exe
uting 
on
urrently, introdu
ing nondeter-

minism. It is therefore natural to base the language on a

pro
ess 
al
ulus. The box-� 
al
ulus lies in a large de-

sign spa
e of distributed 
al
uli that build on the �-
al
ulus

of Milner, Parrow and Walker [MPW92℄, in
luding among

others the related 
al
uli [AFG98, CG98, FGL

+

96, RH98,

Sew98, SWP99, VC98℄. A brief overview of the design

spa
e 
an be found in [Sew99℄; here we highlight the main

design 
hoi
es for box-�.

The 
al
ulus is based on asyn
hronous message pass-

ing, with 
omponents intera
ting only by the ex
hange of

unordered asyn
hronous messages. Box-� has an asyn-


hronous �-
al
ulus as a sub
al
ulus � we build on a

large body of work studying su
h 
al
uli, notably [HT91,

Bou92℄. They are known to be very expressive, support-

ing many programming idioms in
luding fun
tions and ob-

je
ts, and are Turing-
omplete; a box-� pro
ess may there-

fore perform arbitrary internal 
omputation. The 
hoi
e of

asyn
hronous 
ommuni
ation is important as it allows two


omponents to intera
t without 
reating 
ausal 
onne
tions

in both dire
tions between them.

Box-� requires fa
ilities for 
onstraining 
ommuni
a-

tion � in standard �-
al
uli, if one pro
ess 
an send a mes-

sage to another then the only way to prevent information

�owing in the reverse dire
tion is to impose a type system

on 
omponents, whi
h (as observed above) is not appropri-

ate here. We therefore add a boxing primitive � boxes may

be nested, giving hierar
hi
al prote
tion domains; 
ommu-

ni
ation a
ross box boundaries is stri
tly limited. Underly-

ing the 
al
ulus design is the prin
iple that ea
h box should

be able to 
ontrol all intera
tions of its 
hildren, both with

the outside world and with ea
h other. Boxes 
an be viewed

as prote
tion domains, akin to operating system-enfor
ed

address spa
es. Dire
t 
ommuni
ation is therefore allowed

only between a box and its parent, or within the pro
ess

running in a parti
ular box. All other 
ommuni
ation, in



parti
ular that between two sibling boxes, must be medi-

ated by 
ode running in the parent. This 
ode 
an enfor
e

an arbitrary se
urity poli
y, even supporting dynami
ally-


hanging poli
ies and interfa
es (in 
ontrast to stati
 restri
-

tion or blo
king operators [BHR84, VD98℄).

Turning to the values that may be 
ommuni
ated, it is


onvenient to allow arbitrary tuples of names (or other tu-

ples). Note that we do not allow 
ommuni
ation of pro
ess

terms. Moreover, no primitives for movement of boxes are

provided, in 
ontrast to most work 
ited above. The 
al
u-

lus is therefore entirely �rst order, whi
h is important for

the tra
table theory of behaviour (the labelled transition se-

manti
s) that we require to state and prove se
urity prop-

erties. The 
al
ulus is also untyped � we wish to 
onsider

the wrapping of ill-understood, probably buggy and possi-

bly mali
ious programs.

2.1 Syntax

The syntax of the 
al
ulus is as follows:

NamesWe take an in�nite set N of names, ranged over by

a; b; 
 et
. (ex
ept i; j; k; o; p; u; v). Both boxes and 
om-

muni
ation 
hannels are named; names also play the role of

variables, as in the �-
al
ulus.

Values and Patterns Pro
esses will intera
t by 
ommuni-


ating values whi
h are de
onstru
ted by pattern-mat
hing

by the re
eiver. Values u; v 
an be names or tuples, with

patterns p 
orrespondingly tuple-stru
tured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wild
ard

x name pattern

(

p

1

:: p

k

)

tuple pattern

(k � 0, no repeated names)

Pro
esses The main synta
ti
 
ategory is that of pro
esses,

ranged over by P;Q. We introdu
e the primitives in three

groups.

Boxes A box n[P ℄ has a name n, it 
an 
ontain an arbitrary

pro
ess P . Box names are not ne
essarily unique � the pro-


ess n[0℄ j n[0℄ 
onsists of two distin
t boxes named n, both


ontaining an empty pro
ess, in parallel.

P ::= n[P ℄ box named n 
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

Communi
ation The standard asyn
hronous �-
al
ulus


ommuni
ation primitives are xv, indi
ating an output of

value v on the 
hannel named x, and xp:P , a pro
ess that

will re
eive a value output on 
hannel x, binding it to p in

P . Here we re�ne these with a tag indi
ating the dire
tion

of the 
ommuni
ation in the box hierar
hy. An input tag �


an be either ?, for input within a box, ", for input from the

parent box, or a name n, for input from a sub-box named n.

An output tag o 
an be any of these, similarly. For te
hni
al

reasons we must also allow an output tag to be ", indi
ating

an output re
eived from the parent that has not yet intera
ted

with an input, or n, indi
ating an output re
eived from 
hild

n that has not yet intera
ted. The 
ommuni
ation primitives

are then

P ::= : : :

x

o

v output v on 
hannel x to o

x

�

p:P input on 
hannel x from �

!x

�

p:P repli
ated input

The repli
ated input !x

�

p:P behaves essentially as in-

�nitely many 
opies of x

�

p:P in parallel. This gives 
ompu-

tational power, allowing e.g. re
ursion to be en
oded sim-

ply, while keeping the theory simple. In x

�

p:P and !x

�

p:P

the names o

urring in the pattern p bind in P . Empty pat-

terns and tuples will often be elided.

New name 
reation Both box and 
hannel names 
an be


reated fresh, with the standard �-
al
ulus (� x)P opera-

tor. This de
lares any free instan
es of x within P to be

instan
es of a globally fresh name.

P ::= : : :

(� x)P new name 
reation

In (� x)P the x binds in P . We work up to alpha 
onversion

of bound names throughout, writing the free name fun
tion,

de�ned in the obvious way for values, tags and pro
esses,

as fn( ).

2.2 Semanti
s

This subse
tion de�nes the operational semanti
s of

Box-�. The reader unfamiliar with pro
ess 
al
uli may

wish to skim to the start of Se
tion 3 on a �rst reading.

2.2.1 Redu
tion Semanti
s

The simplest semanti
 de�nition of the 
al
ulus is a redu
-

tion semanti
s, a one-step redu
tion relation P ! P

0

indi-


ating that P 
an perform one step of internal 
omputation

to be
ome P

0

. We �rst de�ne the 
omplement � of a tag �

in the obvious way, with ? = ? and � = �. We de�ne a par-

tial fun
tion f= g, taking a pattern and a value and giving,



where it is de�ned, a partial fun
tion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [ : : : [ f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise

The natural de�nition of the appli
ation of a substitution �

(from names to values) to a pro
ess term P , written �P , is

also a partial operation, as the syntax does not allow arbi-

trary values in all the pla
es where free names 
an o

ur.

We write f

v

=

p

gP for the result of applying the substitution

f

v

=

p

g to P . This may be unde�ned either be
ause f

v

=

p

g is

unde�ned, or be
ause f

v

=

p

g is a substitution but the appli-


ation of that substitution to P is unde�ned. For example,

f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not in the syntax.

Note that the result f

y

=

x

gP of applying a name-for-name

substitution is always de�ned. This de�nition of substitu-

tion leads to a lightweight notion of runtime error

1

.

The de�nition of redu
tion involves an auxiliary stru
-

tural 
ongruen
e �, de�ned as the least 
ongruen
e rela-

tion su
h that the axioms below hold. This allows the parts

of a redex to be brought synta
ti
ally adja
ent.

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P )

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redu
tion relation is now the least relation over pro-


esses satisfying the axioms and rules below. The (Red

Comm) and (Red Repl) axioms are subje
t to the 
ondition

that f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q ) P j R! Q j R (Red Par)

P ! Q ) (� x)P ! (� x)Q (Red Res)

P ! Q ) n[P ℄! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q ) P ! Q (Red Stru
t)

The (Red Up) axiom allows an output to the parent of a box

to 
ross the en
losing box boundary. Similarly, the (Red

Down) axiom allows an output to a 
hild box n to 
ross

the boundary of n. The (Red Comm) axiom then allows

syn
hronisation between a 
omplementary output and input

1

A more 
onventional notion of runtime error would give errors only

when a tuple is used as a name, e.g. for output. The substitution-based

notion is for
ed by our 
hoi
e of syntax, whi
h disallows values in various

pla
es where names may appear. In general it will report errors sooner than

the 
onventional notion.

within the same box. The (Red Repl) axiom is similar, but

preserves the repli
ated input in the resulting state.

Communi
ations a
ross box boundaries take two redu
-

tion steps, as in the following upwards and downwards 
om-

muni
ations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way syn
hronisations between

a box, an output and an input (as in [VC98℄), simplifying

both the semanti
s and the implementation model.

2.2.2 Labelled Transitions

The redu
tion semanti
s de�nes only the internal 
ompu-

tation of pro
esses. The statements of our se
urity prop-

erties must involve the intera
tions of pro
esses with their

environments, requiring more stru
ture: a labelled transi-

tion relation 
hara
terising the potential inputs and outputs

of a pro
ess. We give a labelled semanti
s for box-� in an

expli
itly-indexed early style, de�ned indu
tively on pro-


ess stru
ture by a stru
tured operational semanti
s. The

labels are

` ::= � internal a
tion

x

o

v output a
tion

x




v input a
tion

where 
 ranges over tags ?, n, " and n. The labelled tran-

sitions 
an be divided into those involved in moving mes-

sages a
ross box boundaries and those involved in 
ommu-

ni
ations between outputs and inputs. The movement labels

are

x

n

v (sending to 
hild n)

x

n

v (box n re
eiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The 
ommuni-


ation labels are

x

?

v (lo
al output)

x

?

v (lo
al input)

x

n

v (output re
eived from 
hild n)

x

n

v (input a message re
eived from 
hild n)

x

"

v (output re
eived from parent)

x

"

v (input a message re
eived from parent)

Labels syn
hronise in the pairs x




v and x




v. The labelled

transition relation has the form

A ` P

`

�! Q



where A is a �nite set of names and fn(P ) � A; it should

be read as `in a state where the names A may be known to

P and its environment, pro
ess P 
an do ` to be
ome Q'.

The relation is de�ned as the smallest relation satisfying the

rules in Figure 3 omitting all transition subs
ripts, o

ur-

ren
es of C : and o

urren
es of C �. We write A; x for

A[fxg where x is assumed not to be in A, andA; p for the

union of A and the names o

urring in the pattern p, where

these are assumed disjoint.

The labelled semanti
s is explained further in [SV99a℄.

It is similar to a standard � semanti
s but must also deal

with boxes and with redu
tions su
h as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whi
h a new-bound name enters a box boundary.

The two semanti
s 
oin
ide in the following sense.

Theorem 1 If fn(P ) � A then A ` P

�

�! Q iff P ! Q.

This give 
on�den
e that the labelled semanti
s 
arries

enough information. The proof is somewhat deli
ate; it is

sket
hed in [SV99b℄ and given in detail in [SV99a℄.

3 A Filtering Example

To demonstrate the use of box-� we give the de�nition

of a wrapper that restri
ts the interfa
e for user programs.

In most operating systems, programs installed and run by a

user enjoy the same a

ess rights as the user, so if the user

is allowed to open a so
ket and send data out on the net-

work then so 
an any 
omponent. We idealize this s
enario

with the 
on�guration below � an idealized single-user OS

in whi
h user Ali
e is exe
uting a program P . Here the

box around P stands for the operating system enfor
ed user

prote
tion domain.

ali
e[ P ℄ j

!

!

!:::in

ali
e

x::: j OS write on Ali
e's in port

! out

ali
e

x::: j OS read from Ali
e's out port

!net

ali
e

x::: OS read from Ali
e's net port

The OS provides three 
hannels in; out and net, to respe
-

tively allow the user's program to read from and write to the

terminal and to send data out on a network 
onne
tion. The

program P is exe
uting within a box and so intera
ts with

the OS using the " tag � for example P = in

"

x:out

"

h

xx

i

re
eives a value from the terminal and then sends a pair of


opies of the value ba
k to the terminal.

To exe
ute some untrusted 
ode fragment Q, Ali
e may

run the 
ode in parallel with her other appli
ations, perhaps

as ali
e[P j Q℄. But, this grants too mu
h privilege to Q.

In parti
ular, if Q = ! in

"

x:net

"

x then any terminal input

may be redire
ted to the net. A wrapper is a box-� 
ontext

whi
h 
an provide �ne-grain 
ontrol of the behaviour ofQ.

For example, the �ltering wrapperW

1

of [SV99a℄ prevents

Q from a

essing the network:

W

1

( )

def

= (� a)

�

a[ ℄ j ! in

"

x:in

a

x j ! out

a

x:out

"

x

�

The system be
omes ali
e[P j W

1

(Q)℄. The untrusted


ode is pla
ed in a box with a fresh name a, so a 62 fn(Q).

In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repli
ated input re-


eiving values from the OS and sending them to a; the se
-

ond is dual. Only these two pro
esses 
an intera
t with a

due to the s
ope of the restri
tion, so even when put in par-

allel with other 
ode the wrapper guarantees thatQ will not

be able to send on net.

We show a small redu
tion sequen
e where P = 0 and

Q = in

"

x:net

"

x. Here B is the forwarders ! in

"

x:in

a

x j

! out

a

x:out

"

x.

in

ali
e

y j ali
e[P j W

1

(Q)℄

� in

ali
e

y j ali
e[(� a)( a[Q℄ j B )℄

! ali
e[in

"

y j (� a)(a[Q℄ j B)℄

� ali
e[(� a)(in

"

y j a[Q℄ j B)℄

! ali
e[(� a)(in

a

y j a[Q℄ j B)℄

! ali
e[(� a)(a[in

"

y j Q℄ j B)℄

! ali
e[(� a)(a[net

"

y℄ j B)℄

! ali
e[(� a)(net

a

y j a[0℄ j B)℄

At the �nal step the output fromQ is prevented from leaving

the ali
e box dire
tly as B does not 
ontain a forwarder for

net. It is prevented from intera
tion with any P (although

here P was empty) by the restri
tion on a.

4 The Unidire
tional-�ow Wrapper

There is a tension between the strength of 
ommuni
a-

tion primitive supported by a wrapper and the strength of

the se
urity property it 
an guarantee. The examples of the

introdu
tion and [SV99a℄ provide only asyn
hronous un-

ordered 
ommuni
ation between 
omponents, whi
h would

be awkward to use in most real systems. At the other ex-

treme, syn
hronous 
ommuni
ation introdu
es 
ausal �ows

in both dire
tions (the 
ausal �ow property we state in Se
-

tion 5 would not hold in a syn
hronous 
al
ulus, so a more

deli
ate property would be required � perhaps stating that

there are only data-less a
ks from one 
omponent to an-

other). There are two intermediate points � one 
an provide

asyn
hronous ordered 
ommuni
ation, as we do below, or

use some form of weak a
knowledgments, as in the NRL

pump [KML96℄. The former still guarantees an absen
e of

information �ow (albeit at the 
ost of maintaining an un-

bounded buffer) while the latter limits bandwidth of 
overt



F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�
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�
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(
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Figure 1. FIFO Pipeline Wrapper F .


hannels. In both 
ases, it is essential to be able to guar-

antee that the implementation of the 
ommuni
ation prim-

itives does a
tually have the desired �ow property, this is

what we set to do here.

In Figure 1 we give a wrapper F that takes two 
ompo-

nents and allows the �rst to 
ommuni
ate with the se
ond

by a �rst-in, �rst-out buffer. The wrapper has been writ-

ten with 
are to avoid any information leak from the se
ond


omponent to the �rst. For simpli
ity both 
omponents have

simple unordered input and output ports in

i

and out

i

to the

environment; it would be routine to make these FIFO also.

The wrapper is illustrated in Figure 2.

The interfa
e to the wrapper is as follows. To write to the

buffer a produ
er sends a value together with an a
knowl-

edgment 
hannel to the wrapper (using a standard asyn-


hronous �-
al
ulus idiom). The wrapper inserts the value

in a queue and a
knowledges re
eption. For value v the

produ
er may 
ontain

(� a
k)(from

"

h

v a
k

i

j a
k

"

:::);

sending the value and a new a
knowledgement 
hannel a
k

to the wrapper and, in parallel, waiting for a reply before

pro
eeding with its 
omputation. On the re
eiver side, we

may have a pro
ess that waits for a pair of a value and an

a
k 
hannel:

to

"

(

z r

)

:( r

"

j :::)

The name of the re
eiving 
hannel is to; 
hannel r is used

to send the a
knowledgement ba
k to the wrapper. Thus a


on�guration where B stands for the body of the wrapper


ould be:

(� a; b)

�

a[ (� a
k)(from

"

h

v a
k

i

j a
k

"

:0) ℄ j

b[ to

"

(

z r

)

:r

"

℄ j B

�

The implementation of the wrapper is somewhat tri
ky, as

we have to be 
areful not to introdu
e 
overt 
hannels be-

tween the 
omponents. Within the wrapper there is a repli-


ated input on bu� that 
reates a new empty FIFO buffer

and a repli
ated input on full that 
reates a new buffer 
ell


ontaining a value. The key is to ensure that the a
knowl-

edgment to the �rst 
omponent not be dependent on any

a
tion performed by the se
ond 
omponent. The glue pro-


ess that 
onne
ts the from

a


hannel to the buffer has a

subpro
ess, r

0

?

:r

a

, to send the a
k to a. This small pro-


ess itself expe
ts an a
k from the head of the buffer saying

that the message was inserted in the queue. The buffer 
ode

front

?

(

v r

)

:(r

?

: : : a
ks on r immediately, in parallel with

pla
ing the new message in a full buffer 
ell at the head of

the queue. The asyn
hrony here is essential.

So far we have been vague about the statement of the

properties that we expe
t wrappers to enfor
e. For W

1

it

may be 
lear from examination of the 
ode and the seman-

ti
s that the wrapper is satisfa
tory, but it is un
lear exa
tly

what properties are guaranteed. ForF the situation is worse

� even this simple wrapper is 
omplex enough that a rigor-

ous statement and proof of its se
urity properties is essen-

tial; the user should not be required to examine the 
ode of a

wrapper in order to understand the se
urity that it provides.

We now turn to the task of formalizing these properties and

developing the tools needed to prove them.

5 Colouring and Causal Flow

The intuitive property ofF that we wish to express is that

the se
ond wrapped 
omponent should not be able to affe
t

the �rst. In [SV99a℄ we expressed the intuitive property

that one wrapped 
omponent does not 
ausally affe
t an-

other using a simple 
oloured redu
tion semanti
s for box-

�. Output pro
esses were annotatedwith sets of 
olours that

re
ord their 
ausal histories � essentially the sets of prin
i-

pals that have affe
ted them in the past � and the redu
tion

semanti
s propagated this 
ausal history data. In this paper
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Figure 2. The FIFO Pipeline Wrapper Illustrated

we introdu
e also a 
oloured labelled transition semanti
s,

allowing more dire
t statements of se
urity properties of

wrappers that intera
t with their environment. The 
oloured


al
ulus is a trade-off � it 
aptures less detailed 
ausality in-

formation than the non-interleaving models studied in 
on-


urren
y theory [WN95, BS95, DP95℄ but is mu
h simpler;

it 
aptures enough information to express interesting se
u-

rity properties.

In [SV99a℄ we also expressed a number of other desir-

able properties of wrappers � that they honestly forward

messages between 
omponent and environment, and that

they mediate all 
ommuni
ation between 
omponents. The

latter, related to intransitive noninterferen
e [RG99℄, was

expressed using the 
oloured semanti
s. Two further infor-

mation �ow properties were expressed using the un
oloured

LTS: new name dire
tionality and permutation. They illus-

trate the wide range of pre
ise properties whi
h the intuitive

statement might be thought to mean.

5.1 Colouring the Box­� Cal
ulus

We take a set 
ol of 
olours or prin
ipals (we use the

terms inter
hangeably) disjoint from N . Let k; p; q range

over elements of 
ol and C;D;K range over subsets of 
ol.

We de�ne a 
oloured box-� 
al
ulus by annotating all out-

puts with sets of 
olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a 
oloured term we write jP j for the term of the orig-

inal syntax obtained by erasing all annotations. Conversely,

for a term P of the original syntax C ÆP denotes the term

with every parti
le 
oloured by C. For a 
oloured P we

write C �P for the 
oloured term whi
h is as P but with C

unioned to every set of 
olours o

urring in it. We some-

times 
onfuse p and the set fpg. Let pn(P ) be the set of


olours that o

ur in P . We write CD for the union C [ D.

In the 
oloured output C :x

o

v think of C as re
ording the


ausal history of the output parti
le � C is the set (possibly

empty) of prin
ipals p 2 C that have affe
ted the parti
le

in the past. In an initial state all outputs might typi
ally be


oloured by singleton sets giving their a
tual prin
ipals, for

example 
olouring the 
ode of wrapperF and two wrapped


omponents with different 
olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The 
oloured redu
tion semanti
s is obtained by repla
-

ing the �rst four axioms of the un
oloured semanti
s by the

rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP ) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP ) (C Red Repl)

that propagate 
olour sets. The 
oloured 
al
ulus has es-

sentially the same redu
tion behaviour as the original 
al-


ulus:

Proposition 2 For any 
oloured P we have jP j ! Q iff

9P

0

: P �! P

0

^ jP

0

j = Q.

The 
oloured labelled transitions have labels ` exa
tly as

before. The 
oloured labelled transition relation has the

form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P ) � A; it should

be read as `in a state where the names A may be known to



A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

(
) (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

(
) (Repl)

A ` P

x




v

�!

C

P

0

A ` Q

x




v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v)�A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v) �A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2 fn(v) � fn(y; o), if o is ?, " or n, and to

x 2 fn(y; v) � fn(o) otherwise. (
) In the (In) and (Repl) axioms there is a side 
ondition that f

v

=

p

gP is well-de�ned. In all rules

with 
on
lusion of the formA ` P

`

�!

C

Q there is an impli
it side 
ondition fn(P ) � A. Symmetri
 versions of (Par) and (Comm)

are elided.

Figure 3. Coloured Box­� Labelled Transition Semanti
s



P and its environment, pro
ess P 
an do `, 
oloured C, to

be
ome Q'. Again C re
ords 
ausal history, giving all the

prin
ipals whi
h have dire
tly or indire
tly 
ontributed to

this a
tion. The relation is de�ned as the smallest relation

satisfying the rules in Figure 3. It 
oin
ides with the pre-

vious LTS and with the 
oloured redu
tion semanti
s in the

following senses.

Proposition 3 For any 
olouredP we haveA ` jP j

`

�! Q

iff 9C; P

0

: A ` P

`

�!

C

P

0

^ jP

0

j = Q.

Proposition 4 For 
oloured P and Q, if fn(P ) � A then

A ` P

�

�!

;

Q iff P ! Q.

5.2 The Causal Flow Property

The property 
an now be stated. Say an instantiation of

some binary wrapperW is an un
oloured pro
essW(P;Q)

where P andQ are un
oloured pro
esses not 
ontaining the

new-bound names s
oping the holes ofW . SayW is a pure

binary wrapper if for any instantiation and any transition

sequen
e

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2

f1; 2g. It is easy to see that F is pure. Purity simply means

that the wrapper has a �xed interfa
e and thus simpli�es the

statement of the 
ausal �ow property.

De�nition 1 (Causal �ow property) A pure binary wrap-

perW has the 
ausal �ow property if for any instantiation

W(P;Q) and any 
oloured tra
e

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

su
h that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are


oloured with prin
ipal sets fpg and fqg respe
tively, we

have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any 
ausal �ow from an input on in

2

to an output on out

1

.

Different variants of the �ow property, with different


hara
teristi
s, 
an be stated � for example, to also pre-

vent information in the initial state of Q affe
ting outputs

on out

1

we 
ould 
onsider 
oloured tra
es

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This se
ond de�nition still allows the Q to 
ommuni
ate

with P but only on the 
ondition that P does not perform

any further output dependent on the 
ommuni
ated values.

ForbiddingQ affe
ting P at all (even if there are no inputs

or outputs of either 
omponent) 
an be done with a slightly

more intri
ate 
oloured semanti
s. There is no 
lear 
ut

`best' solution, yet the use of 
ausal semanti
s allows su
-


in
t statement of the alternatives and eases the 
omparison

of these different properties.

6 Causality Types

Verifying a 
ausal �ow property dire
tly 
an be labo-

rious, requiring a 
hara
terisation of the state spa
e of a

wrapper 
ontaining arbitrary 
omponents. We therefore in-

trodu
e a type system that stati
ally 
aptures 
ausal �ows;

a wrapper 
an be shown to satisfy the 
ausal �ow property

simply by 
he
king that it is well-typed. This se
tion in-

trodu
es the type system, gives its soundness theorems, and

applies it to F .

A simple type system for Box-� would have types

T ::= 
han T

�

�

box

�

�

hT :: T i

for the types of 
hannel names 
arrying T , box names, and

tuples. We annotate the �rst two by sets K of prin
ipals and

add a type name, of arbitrary names, and >, of arbitrary

values, giving the value types

T ::= 
han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x : 
han

K

T then x is the name of a 
hannel 
arrying T ;

moreover, in an output pro
ess C :x

?

v on x the typing rules

will require C � K � intuitively, su
h an output may have

been 
ausally affe
ted only by the prin
ipals k 2 K. In

an input x

�

p:P on x the 
ontinuation P must therefore be

allowed to be affe
ted by any k 2 K, so any output within

P must be on a 
hannel of type 
han

K

0

T with K � K

0

.

We are 
on
erned with the en
apsulation of possibly

badly-typed 
omponents, so must allow a box a[P ℄ in a

well-typed term to 
ontain an untyped pro
ess P . The type

system 
annot be sensitive to the 
ausal �ows within su
h a

box; it 
an only enfor
e an upper bound on the set of prin-


ipals that 
an affe
t any part of the 
ontents. If a :box

K

then a is a box name; the 
ontents may have been 
ausally

affe
ted only by k 2 K.

We take type environments � to be �nite partial fun
tions

from names to value types. The type system has two main

judgments, � ` v :T for values and � ` P :pro


K

for pro-


esses. The typing for pro
esses re
ords just enough infor-

mation to determine when pre�xing a pro
ess with an input

is legitimate � if P :pro


K

then P 
an be pre�xed by an

input on a 
hannel x : 
han

K

0

hi, to give x

?

:P , iff K

0

� K.

Note, however, that a P :pro


K

may have been affe
ted by

(and so synta
ti
ally 
ontain) k 62 K.

To type intera
tions between well-typed wrapper 
ode

and a badly-typed boxed 
omponent some simple subtyping

is useful. We take the subtype order T � T

0

as below, and



write

V

fT

i

j i 2 1::k g for the greatest lower bound of

T

1

; ::; T

k

, where this exists.

>

name

hT

1

:: T

k

i

box

K


han

K

T

The 
omplete type system is given in Figure 4; we now

explain the key aspe
ts by giving some admissible typing

rules.

Basi
 Flow Typing Consider the type environment

x : 
han

K

hi; y : 
han

L

hi and the redu
tion

C :x

?

j x

?

:D :y

?

! (C [ D) :y

?

During the redu
tion the output y

?

on y is 
ausally affe
ted

by the output on x � the right-handpro
ess term (C [ D) :y

?

re
ords that the output on y has been (indire
tly) affe
ted

by all the prin
ipals that had affe
ted the output on x. For

the left pro
ess to be well-typed we must 
learly require

C � K and D � L; for the right pro
ess to be well-typed we

need also C � K, to guarantee this the typing rules require

K � L. The relevant admissible rules are below.

� ` x : 
han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro


K

� ` x : 
han

K

T

�; y :T ` P :pro


K

00

K � K

00

� ` x

?

y:P :pro


K

Now 
onsider also y : 
han

L

0

hi and the pro
ess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be affe
table

by C, so the typing rule for parallel must take the interse
-

tion of allowed-
ause sets:

� ` P :pro


K

� ` Q :pro


K

0

� ` P j Q :pro


K\K

0

The examples above involve only 
ommuni
ation within a

wrapper, with tag ?. Communi
ation between a wrapper

and its parent, with tag ", has the same typing rules, as the

parent is presumed well-typed.

Channel Passing Channel passing involves no additional


ompli
ation. Consider the type environment � =

z : 
han

K

00

hi, x : 
han

K


han

K

00

hi, and the redu
tion

C :x

?

z j x

?

y:D :y

?

! (C [ D) :z

?

The left-hand pro
ess is typable using the rules above

if C � K for the x output, D � K

00

for the y output,

and K � K

00

for the input, using �; y : 
han

K

00

hi ` D :

y

?

:pro


K

00

. Together these imply (C [ D) � K

00

, so the

right-hand pro
ess is well-typed.

Intera
ting with a box (at >) As dis
ussed above, the


ontents of a box may be badly-typed, yet a wrapper must

still be able to intera
t with them. The simplest 
ase is that

in whi
h a wrapper sends and re
eives values that it 
on-

siders to be of type >; we 
onsider more general 
ommu-

ni
ation in the next paragraph. The typing rule for boxes

requires only that the prin
ipals pn(P ) synta
ti
ally o

ur-

ring within the 
ontents P of a box are 
ontained in the

permitted set and that P 's free names are all de
lared in the

type environment.

� ` a :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` a[P ℄ :pro


K

Consider sending to and re
eiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q

For the output to be well-typed we must insist only that

C � K; for the input to be well-typed Q must be allowed

to be affe
ted by any prin
ipal that might have affe
ted the


ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro


K

� ` a :box

K

� ` x : 
han

K

0

>

�; y :> ` P :pro


K

00

K � K

0

� K

00

� ` x

a

p:P :pro


K

0

Intera
ting with a box (at any transmissible S) More

generally, a wrapper may re
eive from a box tuples 
on-

taining names whi
h are to be used for 
ommuni
ating with

the box as 
hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

re
eives a value v and name r from box a and uses r to send

an a
k ba
k into a. This ne
essarily involves some run-time

type
he
king, as the boxmay send a tuple instead of a name

for r. There is a design 
hoi
e here: how strong should this

type
he
king be? Requiring an implementation to main-

tain a run-time re
ord of the types of all names would be


ostly, so we 
he
k only the stru
ture of values re
eived

from boxes. We suppose the run-time representations of

values allow names (bit-patterns of some �xed length) and

tuples to be distinguished, and the number of items in a tu-

ple to be determined, but no more (so e.g. x : 
han

K

T and

y :box

L

will both be represented as bit patterns of the same



Patterns:

` :T B ; ` x :T B x : T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi


�; x :T ` x :name

Pro
esses:

o 2 f?; "; "g

� ` x : 
han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro


K

(Out-?; "; ")

� 2 f?; "g

� ` x : 
han

K

T

` p :T B �

�;� ` P :pro


K

� ` x

�

p:P :pro


K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro


K

(Out-a; a)

� ` a :box

K

0

� ` x : 
han

K

S

` p :S B �

�;� ` P :pro


K

K

0

� K

� 
at

P tests all names of type name in �

p 
ontains no wild
ards

� ` x

a

p:P :pro


K

(In-a)

� ` P :pro


K

� ` Q :pro


K

0

� ` P j Q :pro


K\K

0

(Par)

� ` n :box

K

pn(P ) � K

fn(P ) � dom(�)

� ` n[P ℄ :pro


K

(Box)

� ` 0 :pro


K

(Nil)

�; x :T ` P :pro


K

T atomi


� ` (� x)P :pro


K

(Res)

� ` P :pro


K

0

K � K

0

� ` P :pro


K

(Spe
)

The repli
ated input rules are similar to the input rules. The predi
ate `P tests all names of type name in�' is de�ned

to be true iff for all y :name in �, y o

urs free in 
hannel or box position within P .

Figure 4. Coloured Box­� Typing



length). We introdu
e the supertype name of 
han

K

T and

box

L

, and allow a wrapper to re
eive only values of the

transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is ne
essary only for

x to be of type name.

The operational semanti
s expresses this run-time type-


he
king by means of the 
ondition that f

v

=

p

gP is well-

de�ned in the redu
tion 
ommuni
ation rule and the

labelled-transition input rules � for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the syntax does not allow a tuple to

o

ur in 
hannel-name position of an output. We would like

to ensure that run-time type
he
king is only required when

re
eiving values from a box, i.e. that for 
ommuni
ation

within a wrapper or between a wrapper and its parent su
h

a substitution is always well-de�ned. This is guaranteed by

requiring a box input pre�x to immediately test all parts of

a re
eived value that are assumed of type name � in typ-

ing an input x

a

p:P the type environment � derived from

the pattern p must 
ontain no tuples, and all x :name in�

must be used within P as a 
hannel or box. For example, if

a :box

K

and x : 
han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)


ompletely de
omposes

values of type hnamenamei and both y and z are used as


hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may re
eive (for example) a triple from the

box, leading to a later run-time error within the wrap-

per. The type system is 
onservative in also ex
luding

x

a

(

y z

)

:

�

K : y

a

�

. Say a type is atomi
 if it is of the form

name, 
han

K

T or box

K

and �at if it is of the form >,

name, 
han

K

T , or box

K

. Say � is atomi
 or �at if all

types in ran(�) are. The atomi
 types are those whi
h


an be dynami
ally extended using restri
tion. We 
onsider

dynami
s (redu
tions and labelled transitions) only for pro-


esses with respe
t to atomi
 typing 
ontexts; the de�ni-

tions ensure that an extruded name 
an always be taken to

be of an atomi
 type. The 
al
ulus has no basi
 data types,

e.g. a type of integers, that are not dynami
ally extensible.

This makes the type system a little degenerate.

The rest The typing rules for nil and restri
tion are straight-

forward; there is also a spe
ialisation rule allowing some

permitted affe
tees of a pro
ess to be forgotten.

� ` 0 :pro


K

�; x :T ` P :pro


K

T atomi


� ` (� x)P :pro


K

� ` P :pro


K

0

K � K

0

� ` P :pro


K

6.1 Soundness

We wish to infer properties of the 
oloured input/output

behaviour of wrappers from the soundness of the type sys-

tem, and therefore need a subje
t redu
tion result whi
h

refers not only to redu
tions (equivalently, � transitions) but

also to input/output transitions. De�ne typed labelled tran-

sitions by

� `

K

P

`

�!

C

Q iff

�

� atomi
 ^

� ` P :pro


K

^ dom(�) ` P

`

�!

C

Q

�

The subje
t redu
tion theorem for ` an output x

o

v should

state that x, o, v and Q have suitable types; the theorem

for ` an input should state that if ` 
an be typed then Q


an. The result is 
ompli
ated by the fa
t that box-� is a


al
ulus with new name generation, so new names 
an be

extruded and intruded. Type environments for these names

are 
al
ulated as follows. For a type environment �, with

� atomi
, and a value v extruded at type T de�ne the type

environment t
(�; v; T ) for new names in v as follows.

t
(�; x; T ) = x : T if x 62 dom(�)

and T atomi


t
(�; x;>) = x :name if x 62 dom(�)

t
(�; x; T ) = ; if � ` x :T

t
(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t
(�; v

i

;>)

t
(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t
(�; v

i

; T

i

)

t
(�; v; T ) unde�ned elsewhere

Here

V

i21::k

�

i

is the type environment that maps ea
h x

in some dom(�

i

) to

V

fT j 9i : x :T 2 �

i

g, where

all of these are de�ned.

V

i21::k

�

i

is unde�ned other-

wise. Note that in the > 
ase the t
(�; v

i

;>) will ne
-

essarily all be well-de�ned and will be 
onsistent. To see

the need for

V

, 
onsider � = 
 : 
han

K

hbox

K

namei and

P = (� x)


?

h

xx

i

. P has an extrusion transition with value

h

xx

i

; the type 
ontext t
(�;

h

xx

i

; hbox

K

namei) should

be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so

t
(�; v; T ) 
an only be used as a bound on the ex-

truded/intruded type environments. Say � � �

0

iff

dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

We 
an now state the subje
t redu
tion result. For output

tags f?; "g and " the name x is guaranteed to have a 
hannel

type and v the type 
arried; for a and a they are only guar-

anteed to be a name and a value of type >. f?; "g and a

are 
ommuni
ation tags, so x 
annot be extruded, whereas

" and a are movement tags, so x may be extruded. By 
on-

vention we elide a 
onjun
t that t
(:::) is de�ned wherever

it is mentioned.



Theorem 5 (Subje
t Redu
tion) If � `

K

P

x

o

v

�!

C

Q then


ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � `

x : 
han

K

0

T , and there exists � � t
(�; v; T ) su
h

that �;� ` Q :pro


K

.


ase o =": for some K

0

; T we have C � K

0

and there ex-

ists � � t
(�;

h

x v

i

; h
han

K

0

T T i) su
h that �;� `

Q :pro


K

.


ase o = a: for some K

0

we have C � K

0

, � `

a :box

K

0

, and there exists a type environment � �

t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro


K

.


ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

,

� ` x :name, and there exists � � t
(�; v;>) su
h

that �;� ` Q :pro


K

.

If � `

K

P

x




v

�!

C

Q then


ase 
 2 f?; "g: for some K

0

, T we have � ` x : 
han

K

0

T .

If moreover C � K

0

and � � t
(�; v; T ) then �;� `

Q :pro


K

.


ase 
 = a: for some K

0

� K

00

, and S we have � `

a :box

K

0

, � ` x : 
han

K

00

S, t
(�; v; S) well-de�ned,

and ran(t
(�; v; S)) � fnameg. If moreover C � K

00

and� � t
(�; v; S) then �;� ` Q :pro


K

.


ase 
 = a: for some K

0

we have � ` a :box

K

0

. If more-

over C � K

0

and we have� � t
(�;

h

x v

i

; hname>i)

then �;� ` Q :pro


K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro


K

.

A run-time error for box-� is a pro
ess in whi
h a poten-

tial 
ommuni
ation fails be
ause the asso
iated substitution

is not de�ned. More pre
isely, P 
ontains a run-time error

if it 
ontains subterms x




v and x




p:P in parallel (and not

under an input pre�x) and f

v

=

p

gP is not de�ned. In a well-

typed pro
ess run-time errors 
an only o

ur within boxes

(whose 
ontents are untyped) or at 
ommuni
ations from a

box to the wrapper. Internal transitions of the wrapper and


ommuni
ations between the wrapper and its parent there-

fore do not require dynami
 type
he
king.

Theorem 6 (Limited Runtime Errors)

If � ` P :pro


K

, P � (� x

1

:: x

n

)

�

x




v j x




p:P

0

j Q

�

,

� atomi
, P

0

does not 
ontain a box and 
 2 f?; "g then

f

v

=

p

gP is well-de�ned. Similarly for repli
ated input.

6.2 Typing the Unidire
tional­�ow Wrapper

Finally, we 
an show that instantiations of F are well-

typed and use the subje
t redu
tion theorem to 
on
lude that

F has the 
ausal �ow property.

Theorem 7 (F typing) If

� = in

1

: 
han

fpg

>; out

1

: 
han

fpg

>;

in

2

: 
han

fqg

>; out

2

: 
han

fp;qg

>;

from : 
han

fpg

h>namei;

to : 
han

fp;qg

h> 
han

fp;qg

hii;

�

1

and also fn(P;Q) � dom(�)� fa; bg

then � ` ; ÆF(P;Q) :pro


p

.

The proof of this involves type assumptions for the new-

bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :
han

fpg

h 
han

fpg

h> 
han

fpg

hi

i


han

fp;qg

h> 
han

fp;qg

hi

ii

full :
han

fp;qg

h
han

fp;qg

h> 
han

fp;qg

hi

i


han

fp;qg

h> 
han

fp;qg

hi

i

>i

A straightforward indu
tion on tra
e lengths using the Sub-

je
t Redu
tion theorem then proves the desired 
ausal �ow

result:

Theorem 8 Wrapper F has the 
ausal �ow property.

7 Dis
ussion

Poli
y enfor
ement me
hanisms: Wrappers impose se
u-

rity poli
ies on 
omponents for whi
h it is impra
ti
al to

analyze the internal stru
ture, e.g. where only untyped ob-

je
t 
ode is available.

Several alternative approa
hes are possible, differing in

the level of trust required, the �exibility of the se
urity

poli
y enfor
ed, and their 
osts to 
omponent produ
ers

and users. Code signing and Java-style sandboxing have

low 
ost but 
annot enfor
e �exible poli
ies � signed 
om-

ponents may behave in arbitrary ways whereas sandboxed


omponents should not be able to intera
t with ea
h other

at all. Code signing requires the user to have total trust in

the 
omponent produ
ers � not just in their intent, but also

in their ability to produ
e bug-free 
omponents. Sandbox-

ing requires no trust, but the la
k of any intera
tion is often

too restri
tive. More deli
ate poli
ies 
an be enfor
ed by

shipping 
ode together with data allowing the user to type-


he
k it in a se
urity-sensitive type system [VSI96, HR98℄,

or to 
he
k a proof of a se
urity-relevant behavioural prop-

erty [NL98℄. In the long term these seem likely to be the

best approa
hes, but they require 
omponent produ
ers to

invest effort and to 
onform to a 
ommon standard for types

or proofs � in the short term this is prohibitive. Shifting the

burden of proof to the user, by performing type inferen
e or

stati
 analysis of downloaded 
ode, seems impra
ti
al given



only the obje
t 
ode, whi
h may not have been written with

se
urity in mind and so not 
onform to any reasonable type

system. In 
ontrast, wrappers have been shown to have low-


ost � none to the produ
er and only a small run-time 
ost

to the user [FBF99℄. They allow more �exible intera
tion

than sandboxing, albeit 
oarser-grain poli
ies than proof-


arrying 
omponents or se
urity-type-
he
ked 
omponents.

Information �ow properties: The 
ausal �ow property is

related to the property, studied in many 
ontexts, that there

is no information �ow from a high to a low se
urity level

(though most work addresses 
omponents, whi
h may have

the property, rather than wrappers, whi
h may enfor
e it

on sub
omponents). The literature 
ontains a range of def-

initions that aim to 
apture this intuition in some parti
u-

lar setting; the formalisations vary widely. A basi
 
hoi
e

is whether the property is stated purely extensionally, in

terms of a semanti
s that des
ribes only the input/output

behaviour of a system, or using a more intensional seman-

ti
s. A line of work on Non-Interferen
e, summarised in

[M
L94℄, takes an extensional approa
h, stating properties

in terms of the tra
es of input and output events of a system.

Related de�nitions, adapted to a programming language set-

ting, are used in [VSI96, HR98℄. In the presen
e of nonde-

terminism, however, non-interferen
e be
omes problemati


� as dis
ussed in [VS98℄, the property may only be mean-

ingful given probabilisti
 s
heduling, whi
h has a high run-

time 
ost.

We believe that the basi
 dif�
ultly is that the intuitive

property is an intensional one � the notion of one 
om-

ponent affe
ting another depends on some understanding

of how 
omponents intera
t; a pre
ise statement requires

a semanti
s that 
aptures some aspe
ts of internal exe
u-

tion, not just input/output behaviours. This might be deno-

tational or operational. Intensional denotational semanti
s

have been used in the proofs (and, in the last, statements)

of non-interferen
e properties in [HR98, ABHR99, SS99℄,

whi
h use a logi
al relations proof and PER-based models.

[VS98℄ and [SS99℄ go on to 
onsider probabilisti
 proper-

ties.

For wrappers, it is important that the end-user be able to

understand the se
urity that they provide as 
learly as pos-

sible. We therefore wish to use as lightweight a semanti
s

as possible, as this must be understood before any se
urity

property stated using it, and so adopt an annotated opera-

tional semanti
s (developing a satisfa
tory denotational se-

manti
s of box-�, dealing with name 
reation, boxes, and

untyped 
omponents, would be a 
hallenging resear
h prob-

lem in its own right). In a sequential setting annotated op-

erational semanti
s have been used by [ZGM99℄; see also

[LR98℄. The de�nition of the 
oloured semanti
s for box-�

seems unproblemati
, but in general one might validate an

annotated semanti
s by relating it to a lower-level exe
ution

model (as mentioned below).

Negle
ting boxing andwrappers for the moment, 
onsid-

ering simply �-pro
esses, we believe that intensional prop-

erties stated in terms of 
ausal �ow will generally imply

properties stated purely in terms of tra
e-sets. As a start-

ing point, we show that our type system implies a non-

interferen
e property (similar to the permutation property of

[SV99b℄, but for pro
esses rather than wrappers) in a par-

ti
ular 
ase. We prove that an output on a `low' 
hannel 
an

always be permuted before an input on a `higher' 
hannel

(with respe
t to the latti
e of sets of 
olours).

Proposition 9 If L ( H and fh : 
han

H

U; l : 
han

L

V g `

P :pro


;

then

fh; lg ` P

h

?

u

�!

l

?

v

�! Q implies fh; lg ` P

l

?

v

�!

h

?

u

�! Q:

Proof (Sket
h) One 
an �rst show that ; ÆP has 
oloured

transitions with the input 
olouredH and the output by some

C. By subje
t redu
tion C � L. Analysing the form of P

with Lemmas 21,20 from [SV99a℄, and using L ( H, shows

that the output term in P is not pre�xed by the input, so the

transitions 
an be permuted. 2

Information �ow type systems: The type system differs

from previous work [VSI96, VS98, PØ97℄ primarily in han-

dling badly typed 
omponents. Ne
essarily, it does not pro-

vide �ne-grain tra
king of information �ow through these


omponents. It also handles nondeterminism, new name


reation and 
hannel passing. Pre
ise 
omparisons with re-

lated type systems are dif�
ult as the languages involved

differ widely. One 
an, however, embed fragments of these

languages into box-� (noting that this only exploits the

fully-typed part of our 
al
ulus). For example, in the work

of Smith and Volpano [SV98℄ an assignment to a low se
u-

rity variable 
an follow an assignment to a high variable �

the program h:=3;l:=1 is well-typed. The natural trans-

lation of this program in box-� would be

h

?

0 j l

?

0 j h

?

y:(h

?

3 j l

?

y:l

?

1)

with an initial store assigning 0 to h and l. This would

not be well-typed in the system of this paper, taking

h : 
han

fH;Lg

Int, l : 
han

fLg

Int and a new base type Int.

Here the low assignment is 
ausally dependent on the high,

even though no high information 
an leak. On the other

hand a box-� en
oding of bran
hes would not forbid high

variable guards.

Causal �ow is a robust and straightforward property; it


an be enfor
ed by a remarkably simple type system. But,

as the example above shows, it is sometimes over
onstrain-

ing. We envisage that in a large system the bulk of the 
ode

will be typeable in a se
ure type system, a small portionwill



be in 
learly-identi�ed unsafe modules that are subje
t only

to 
onventional type
he
king, and a small portion (any un-

trusted 
ode) will be en
apsulated in wrappers. Automati


type inferen
e would be required to relieve the burden of

adding se
urity annotations to all de
larations.

8 Con
lusion

The issue of se
urely 
omposing untrusted or partially

trusted 
omponents has great pra
ti
al relevan
e. In this

paper we have studied te
hniques for formally proving that

software wrappers � the glue between 
omponents � a
tu-

ally enfor
e user-spe
i�ed information �ow 
onstraints. We

have de�ned a 
oloured operational semanti
s for a 
on
ur-

rent wrapper language. By keeping tra
k of all the prin
i-

pals that have affe
ted a pro
ess in the semanti
s it be
omes

easy to formulate 
lear statements of information �ow prop-

erties. To prove that parti
ular wrappers are se
ure, we de-

�ned a 
ausal type system and so only need show that the

wrappers are well typed.

Throughout the paper we fo
ussed on wrapper properties

� the 
al
ulus, statement of se
urity properties and type sys-

tem are all designed spe
i�
ally for wrappers � but we be-

lieve similar te
hniques are appli
able to other situations in

whi
h intera
tion must be 
ontrolled but not 
ompletely ex-


luded, for example in isolating a se
urity-
riti
al kernel of

a single appli
ation, or in 
ontrolling intera
tions between

pa
kets in an a
tive network. Allowing untyped 
ode frag-

ments in otherwise typed programs gives a way to loosen

se
urity restri
tions when ne
essary.

In future work we intend to integrate the 
ausal type sys-

tem with a lower-level semanti
s for obje
t 
ode, su
h as

the typed assembly language of [GM99℄. We also intend

to address the issue of type inferen
e of se
urity levels and

the statements of properties involving dynami
 
hanges in

information �ow poli
y.
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