
Se
ure Composition of Untrusted Code:

Wrappers and Causality Types

Peter Sewell

Computer Laboratory

University of Cambridge

Peter.Sewell�
l.
am.a
.uk

Jan Vitek

Department of Computer S
ien
es

Purdue University

jv�
s.purdue.edu

Abstra
t

We
onsider the problem of assembling
on
urrent soft-

ware systems from untrusted or partially trusted off-the-

shelf
omponents, using wrapper programs to en
apsulate

omponents and enfor
e se
urity poli
ies. In previous work

we introdu
ed the box-� pro
ess
al
ulus with
onstrained

intera
tion to express wrappers and dis
ussed the rigorous

formulation of their se
urity properties. This paper ad-

dresses the veri�
ation of wrapper information �ow prop-

erties. We present a novel
ausal type system that stati-

ally
aptures the allowed �ows between wrapped possibly-

badly-typed
omponents; we use it to prove that an example

unidire
tional-�ow wrapper enfor
es a
ausal �ow prop-

erty.

1 Introdu
tion

A typi
al desktop software environment nowadays
on-

tains
omponents � whole programs, plug-ins, or smaller

ode fragments � obtained from different untrusted or

partially-trusted sour
es; they intera
t in intri
ate ways.

Components may be faulty or mali
ious, or designed with a

weaker se
urity poli
y that the user requires � what is legit-

imate marketing data to a vendor may be
onsidered sensi-

tive by a user. It is dif�
ult for a user to gain assuran
e that

the
omposed system is se
ure, parti
ularly be
ause many

off-the-shelf
omponents are only available as obje
t
ode.

Furthermore
urrent operating systems fail to provide sup-

port for the kind of �ne-grained poli
ies that
ould
ontrol

the exe
ution of su
h
omponents [GWTB96, FBF99℄.

Re
ent pra
ti
al work advo
ates interposing se
urity

ode at the operating system boundary to observe and mod-

ify the data passing through [WBDF97, Jon99, GRPA97,

GWTB96, FBF99℄. Interposition te
hniques effe
tively en-

apsulate untrusted
omponents in wrapper programs that

have full
ontrol over the intera
tions between en
apsulated

omponents and the OS and over the intera
tions among

omponents. The
ode of a wrapper
an, for instan
e, per-

form a

ess
ontrol
he
ks, audit, attempt to dete
t intrud-

ers, and even monitor
overt
hannels. In [FBF99℄ Fraser,

Badger and Feldman presented a system that splits the task

of writing a wrapper into two parts. The wrapper's body

is written in a variant of C
alled the Wrapper De�nition

Language. The dynami
 aspe
ts of
reating wrappers and

instantiating
on
urrently exe
uting
omponents are spe
-

i�ed in the Wrapper Life Cy
le framework. While quite

expressive, their approa
h does not provide guarantees that

the wrappers a
tually enfor
e the desired se
urity poli
ies.

The powerful wrapper language, the fa
t that all wrappers

exe
ute in kernel mode, and the fa
t that
omponents are

on
urrent
ombine to make it dif�
ult to understand pre-

isely what properties a wrapper enfor
es.

Our work is exploring se
ure
omposition using wrap-

pers, fo
ussing on the rigorous statement and proof of their

se
urity properties. To this end, we have abstra
ted the es-

sential
hara
teristi
s of the problem in a pro
ess
al
ulus �

powerful enough to express the
ode of non-trivial wrappers

and to express the
on
urrent
omposition of
omponents,

but small enough to be amenable to formal proof. In this

paper we study information �ow properties of wrappers. To

express
lear statements of su
h properties we equip our

al
ulus with an annotated operational semanti
s, regarding

a wrapper and ea
h wrapped
omponent as a different prin-

ipal and
olouring pro
esses with the sets of prin
ipals that

have
ausally affe
ted them. This allows a dire
t statement

of the property that one
omponent
annot
ausally affe
t

another. Verifying su
h a
ausal �ow property dire
tly
an

be laborious, requiring a
hara
terisation of the state spa
e

of a wrapper
ontaining arbitrary
omponents. We therefore

introdu
e a type system that stati
ally
aptures
ausal �ows.

Sin
e
omponents are often provided as obje
t
ode, whi
h

is impra
ti
al for the user to type
he
k, our type system

must admit programs with badly-typed sub
omponents.

Expressing wrappers requires a language for
ompos-

ing
on
urrently-exe
uting
omponents, in
luding primi-

tives for en
apsulating
omponents and
ontrolling their in-

tera
tions. We use the box-�
al
ulus of [SV99a℄, re
apit-

ulated in Se
tions 2 and 3. Box-� is a minimal extension

of the �-
al
ulus with en
apsulation; it is suf�
iently ex-

pressive for
omponents and wrappers while retaining the

simpli
ity and tra
table semanti
s needed for proving prop-

erties. Moreover Pi
t [PT99℄ demonstrates how to build a

real programming language above a �-
al
ulus
ore, a sim-

ilar approa
h
ould be used for box-�.

Our main example, in Se
tion 4, is a unidire
tional-�ow

wrapper that en
apsulates two
omponents, allowing mes-

sages to be sent only in one dire
tion between them and both

omponents to intera
t with the environment. The follow-

ing box-� program is a simpli�ed version of this example.

(� a; b)

�

a[P ℄ j !

a

x:

b

x j b[Q ℄

�

Pro
esses P and Q are arbitrary, possibly mali
ious,
om-

ponents. They are en
apsulated in named boxes, with pri-

vate names a and b, and pla
ed in parallel with a forwarder

pro
ess on
hannel
 from box a to box b. The term

b

x

is an output to
hannel
 in box b of value x. The term

a

x:

b

x pre�xes this with an input on
hannel
 from box

a; here the �rst x is a formal parameter that binds the se
-

ond. The ! operator indi
ates a repli
ated input, so the for-

warder persists after use. The boxes restri
t
ommuni
ation

of the en
apsulated pro
esses and ensure that P andQ
an-

not intera
t with ea
h other dire
tly; the private names en-

sure that they
annot intera
t with their environment in any

other way. This simpli�ed forwarder sends only unordered

asyn
hronous messages; our main example provides FIFO

ommuni
ation (this is related to the NRL pump [KML96℄,

as dis
ussed in Se
tion 4).

Intuitively the system enfor
es an information �ow pol-

i
y that prevents Q from leaking se
rets to P . When one

attempts to make su
h properties pre
ise, however, there

are many
hoi
es. A body of model-theoreti
 work on

non-interferen
e uses deli
ate extensional properties of the

tra
e sets of systems. In our programming language set-

ting a more intensional approa
h allows what we believe

to be
learer statements. We start with a labelled transi-

tion semanti
s that spe
i�es the input/output behaviour of

programs and extend it to represent and propagate
ausal

dependen
ies expli
itly. In terms of this, one
an state the

desired property as `no visible a
tion of P is
ausally de-

pendent on any a
tion of Q'. The
ausal semanti
s and

property are de�ned in Se
tion 5.

The
ausal type system, given in Se
tion 6, allows us to

prove information �ow properties of box-� programs. For

the example above, to stati
ally allow the �ow from a to

b but disallow the
onverse we
an asso
iate the
ompo-

nents with prin
ipals p and q, then take a to be a box name

whose
ontents may be affe
ted by p, written a :box

fpg

, b

to be a box name whose
ontents may be affe
ted by p or

q, written b :box

fp;qg

, and
 to be a
hannel,
arrying val-

ues of a top type >, whi
h
an be affe
ted only by p, so

 :
han

fpg

>. The fragment is then typable, whereas the

onverse forwarder

b

x:

a

x is not. The type system also

deals with tra
king
auses through
omputation within a

wrapper, in
luding
ommuni
ation of
hannel names, and

with intera
tion between a wrapper and badly-typed
ompo-

nents. All boxes are assumed to
ontain untyped pro
esses;

wrapper
ode is stati
ally typed; run-time type
he
king is

required only when re
eiving from a
omponent.

Further dis
ussion of related work is given in Se
tion 7;

Se
tion 8
on
ludes with future work. Proofs
an be found

in the te
hni
al report [SV99
℄.

2 A Boxed � Cal
ulus

The language � known as the box-�
al
ulus � that we

use for studying en
apsulation properties must allow inter-

a
ting
omponents to be
omposed. The
omponents will

typi
ally be exe
uting
on
urrently, introdu
ing nondeter-

minism. It is therefore natural to base the language on a

pro
ess
al
ulus. The box-�
al
ulus lies in a large de-

sign spa
e of distributed
al
uli that build on the �-
al
ulus

of Milner, Parrow and Walker [MPW92℄, in
luding among

others the related
al
uli [AFG98, CG98, FGL

+

96, RH98,

Sew98, SWP99, VC98℄. A brief overview of the design

spa
e
an be found in [Sew99℄; here we highlight the main

design
hoi
es for box-�.

The
al
ulus is based on asyn
hronous message pass-

ing, with
omponents intera
ting only by the ex
hange of

unordered asyn
hronous messages. Box-� has an asyn-

hronous �-
al
ulus as a sub
al
ulus � we build on a

large body of work studying su
h
al
uli, notably [HT91,

Bou92℄. They are known to be very expressive, support-

ing many programming idioms in
luding fun
tions and ob-

je
ts, and are Turing-
omplete; a box-� pro
ess may there-

fore perform arbitrary internal
omputation. The
hoi
e of

asyn
hronous
ommuni
ation is important as it allows two

omponents to intera
t without
reating
ausal
onne
tions

in both dire
tions between them.

Box-� requires fa
ilities for
onstraining
ommuni
a-

tion � in standard �-
al
uli, if one pro
ess
an send a mes-

sage to another then the only way to prevent information

�owing in the reverse dire
tion is to impose a type system

on
omponents, whi
h (as observed above) is not appropri-

ate here. We therefore add a boxing primitive � boxes may

be nested, giving hierar
hi
al prote
tion domains;
ommu-

ni
ation a
ross box boundaries is stri
tly limited. Underly-

ing the
al
ulus design is the prin
iple that ea
h box should

be able to
ontrol all intera
tions of its
hildren, both with

the outside world and with ea
h other. Boxes
an be viewed

as prote
tion domains, akin to operating system-enfor
ed

address spa
es. Dire
t
ommuni
ation is therefore allowed

only between a box and its parent, or within the pro
ess

running in a parti
ular box. All other
ommuni
ation, in

parti
ular that between two sibling boxes, must be medi-

ated by
ode running in the parent. This
ode
an enfor
e

an arbitrary se
urity poli
y, even supporting dynami
ally-

hanging poli
ies and interfa
es (in
ontrast to stati
 restri
-

tion or blo
king operators [BHR84, VD98℄).

Turning to the values that may be
ommuni
ated, it is

onvenient to allow arbitrary tuples of names (or other tu-

ples). Note that we do not allow
ommuni
ation of pro
ess

terms. Moreover, no primitives for movement of boxes are

provided, in
ontrast to most work
ited above. The
al
u-

lus is therefore entirely �rst order, whi
h is important for

the tra
table theory of behaviour (the labelled transition se-

manti
s) that we require to state and prove se
urity prop-

erties. The
al
ulus is also untyped � we wish to
onsider

the wrapping of ill-understood, probably buggy and possi-

bly mali
ious programs.

2.1 Syntax

The syntax of the
al
ulus is as follows:

NamesWe take an in�nite set N of names, ranged over by

a; b;
 et
. (ex
ept i; j; k; o; p; u; v). Both boxes and
om-

muni
ation
hannels are named; names also play the role of

variables, as in the �-
al
ulus.

Values and Patterns Pro
esses will intera
t by
ommuni-

ating values whi
h are de
onstru
ted by pattern-mat
hing

by the re
eiver. Values u; v
an be names or tuples, with

patterns p
orrespondingly tuple-stru
tured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wild
ard

x name pattern

(

p

1

:: p

k

)

tuple pattern

(k � 0, no repeated names)

Pro
esses The main synta
ti

ategory is that of pro
esses,

ranged over by P;Q. We introdu
e the primitives in three

groups.

Boxes A box n[P ℄ has a name n, it
an
ontain an arbitrary

pro
ess P . Box names are not ne
essarily unique � the pro-

ess n[0℄ j n[0℄
onsists of two distin
t boxes named n, both

ontaining an empty pro
ess, in parallel.

P ::= n[P ℄ box named n
ontaining P

P j P

0

P and P

0

in parallel

0 the nil pro
ess

Communi
ation The standard asyn
hronous �-
al
ulus

ommuni
ation primitives are xv, indi
ating an output of

value v on the
hannel named x, and xp:P , a pro
ess that

will re
eive a value output on
hannel x, binding it to p in

P . Here we re�ne these with a tag indi
ating the dire
tion

of the
ommuni
ation in the box hierar
hy. An input tag �

an be either ?, for input within a box, ", for input from the

parent box, or a name n, for input from a sub-box named n.

An output tag o
an be any of these, similarly. For te
hni
al

reasons we must also allow an output tag to be ", indi
ating

an output re
eived from the parent that has not yet intera
ted

with an input, or n, indi
ating an output re
eived from
hild

n that has not yet intera
ted. The
ommuni
ation primitives

are then

P ::= : : :

x

o

v output v on
hannel x to o

x

�

p:P input on
hannel x from �

!x

�

p:P repli
ated input

The repli
ated input !x

�

p:P behaves essentially as in-

�nitely many
opies of x

�

p:P in parallel. This gives
ompu-

tational power, allowing e.g. re
ursion to be en
oded sim-

ply, while keeping the theory simple. In x

�

p:P and !x

�

p:P

the names o

urring in the pattern p bind in P . Empty pat-

terns and tuples will often be elided.

New name
reation Both box and
hannel names
an be

reated fresh, with the standard �-
al
ulus (� x)P opera-

tor. This de
lares any free instan
es of x within P to be

instan
es of a globally fresh name.

P ::= : : :

(� x)P new name
reation

In (� x)P the x binds in P . We work up to alpha
onversion

of bound names throughout, writing the free name fun
tion,

de�ned in the obvious way for values, tags and pro
esses,

as fn().

2.2 Semanti
s

This subse
tion de�nes the operational semanti
s of

Box-�. The reader unfamiliar with pro
ess
al
uli may

wish to skim to the start of Se
tion 3 on a �rst reading.

2.2.1 Redu
tion Semanti
s

The simplest semanti
 de�nition of the
al
ulus is a redu
-

tion semanti
s, a one-step redu
tion relation P ! P

0

indi-

ating that P
an perform one step of internal
omputation

to be
ome P

0

. We �rst de�ne the
omplement � of a tag �

in the obvious way, with ? = ? and � = �. We de�ne a par-

tial fun
tion f= g, taking a pattern and a value and giving,

where it is de�ned, a partial fun
tion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [: : : [f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise

The natural de�nition of the appli
ation of a substitution �

(from names to values) to a pro
ess term P , written �P , is

also a partial operation, as the syntax does not allow arbi-

trary values in all the pla
es where free names
an o

ur.

We write f

v

=

p

gP for the result of applying the substitution

f

v

=

p

g to P . This may be unde�ned either be
ause f

v

=

p

g is

unde�ned, or be
ause f

v

=

p

g is a substitution but the appli-

ation of that substitution to P is unde�ned. For example,

f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not in the syntax.

Note that the result f

y

=

x

gP of applying a name-for-name

substitution is always de�ned. This de�nition of substitu-

tion leads to a lightweight notion of runtime error

1

.

The de�nition of redu
tion involves an auxiliary stru
-

tural
ongruen
e �, de�ned as the least
ongruen
e rela-

tion su
h that the axioms below hold. This allows the parts

of a redex to be brought synta
ti
ally adja
ent.

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P)

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redu
tion relation is now the least relation over pro-

esses satisfying the axioms and rules below. The (Red

Comm) and (Red Repl) axioms are subje
t to the
ondition

that f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (� x)P ! (� x)Q (Red Res)

P ! Q) n[P ℄! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q) P ! Q (Red Stru
t)

The (Red Up) axiom allows an output to the parent of a box

to
ross the en
losing box boundary. Similarly, the (Red

Down) axiom allows an output to a
hild box n to
ross

the boundary of n. The (Red Comm) axiom then allows

syn
hronisation between a
omplementary output and input

1

A more
onventional notion of runtime error would give errors only

when a tuple is used as a name, e.g. for output. The substitution-based

notion is for
ed by our
hoi
e of syntax, whi
h disallows values in various

pla
es where names may appear. In general it will report errors sooner than

the
onventional notion.

within the same box. The (Red Repl) axiom is similar, but

preserves the repli
ated input in the resulting state.

Communi
ations a
ross box boundaries take two redu
-

tion steps, as in the following upwards and downwards
om-

muni
ations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way syn
hronisations between

a box, an output and an input (as in [VC98℄), simplifying

both the semanti
s and the implementation model.

2.2.2 Labelled Transitions

The redu
tion semanti
s de�nes only the internal
ompu-

tation of pro
esses. The statements of our se
urity prop-

erties must involve the intera
tions of pro
esses with their

environments, requiring more stru
ture: a labelled transi-

tion relation
hara
terising the potential inputs and outputs

of a pro
ess. We give a labelled semanti
s for box-� in an

expli
itly-indexed early style, de�ned indu
tively on pro-

ess stru
ture by a stru
tured operational semanti
s. The

labels are

` ::= � internal a
tion

x

o

v output a
tion

x

v input a
tion

where
 ranges over tags ?, n, " and n. The labelled tran-

sitions
an be divided into those involved in moving mes-

sages a
ross box boundaries and those involved in
ommu-

ni
ations between outputs and inputs. The movement labels

are

x

n

v (sending to
hild n)

x

n

v (box n re
eiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The
ommuni-

ation labels are

x

?

v (lo
al output)

x

?

v (lo
al input)

x

n

v (output re
eived from
hild n)

x

n

v (input a message re
eived from
hild n)

x

"

v (output re
eived from parent)

x

"

v (input a message re
eived from parent)

Labels syn
hronise in the pairs x

v and x

v. The labelled

transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P) � A; it should

be read as `in a state where the names A may be known to

P and its environment, pro
ess P
an do ` to be
ome Q'.

The relation is de�ned as the smallest relation satisfying the

rules in Figure 3 omitting all transition subs
ripts, o

ur-

ren
es of C : and o

urren
es of C �. We write A; x for

A[fxg where x is assumed not to be in A, andA; p for the

union of A and the names o

urring in the pattern p, where

these are assumed disjoint.

The labelled semanti
s is explained further in [SV99a℄.

It is similar to a standard � semanti
s but must also deal

with boxes and with redu
tions su
h as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whi
h a new-bound name enters a box boundary.

The two semanti
s
oin
ide in the following sense.

Theorem 1 If fn(P) � A then A ` P

�

�! Q iff P ! Q.

This give
on�den
e that the labelled semanti
s
arries

enough information. The proof is somewhat deli
ate; it is

sket
hed in [SV99b℄ and given in detail in [SV99a℄.

3 A Filtering Example

To demonstrate the use of box-� we give the de�nition

of a wrapper that restri
ts the interfa
e for user programs.

In most operating systems, programs installed and run by a

user enjoy the same a

ess rights as the user, so if the user

is allowed to open a so
ket and send data out on the net-

work then so
an any
omponent. We idealize this s
enario

with the
on�guration below � an idealized single-user OS

in whi
h user Ali
e is exe
uting a program P . Here the

box around P stands for the operating system enfor
ed user

prote
tion domain.

ali
e[P ℄ j

!

!

!:::in

ali
e

x::: j OS write on Ali
e's in port

! out

ali
e

x::: j OS read from Ali
e's out port

!net

ali
e

x::: OS read from Ali
e's net port

The OS provides three
hannels in; out and net, to respe
-

tively allow the user's program to read from and write to the

terminal and to send data out on a network
onne
tion. The

program P is exe
uting within a box and so intera
ts with

the OS using the " tag � for example P = in

"

x:out

"

h

xx

i

re
eives a value from the terminal and then sends a pair of

opies of the value ba
k to the terminal.

To exe
ute some untrusted
ode fragment Q, Ali
e may

run the
ode in parallel with her other appli
ations, perhaps

as ali
e[P j Q℄. But, this grants too mu
h privilege to Q.

In parti
ular, if Q = ! in

"

x:net

"

x then any terminal input

may be redire
ted to the net. A wrapper is a box-�
ontext

whi
h
an provide �ne-grain
ontrol of the behaviour ofQ.

For example, the �ltering wrapperW

1

of [SV99a℄ prevents

Q from a

essing the network:

W

1

()

def

= (� a)

�

a[℄ j ! in

"

x:in

a

x j ! out

a

x:out

"

x

�

The system be
omes ali
e[P j W

1

(Q)℄. The untrusted

ode is pla
ed in a box with a fresh name a, so a 62 fn(Q).

In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repli
ated input re-

eiving values from the OS and sending them to a; the se
-

ond is dual. Only these two pro
esses
an intera
t with a

due to the s
ope of the restri
tion, so even when put in par-

allel with other
ode the wrapper guarantees thatQ will not

be able to send on net.

We show a small redu
tion sequen
e where P = 0 and

Q = in

"

x:net

"

x. Here B is the forwarders ! in

"

x:in

a

x j

! out

a

x:out

"

x.

in

ali
e

y j ali
e[P j W

1

(Q)℄

� in

ali
e

y j ali
e[(� a)(a[Q℄ j B)℄

! ali
e[in

"

y j (� a)(a[Q℄ j B)℄

� ali
e[(� a)(in

"

y j a[Q℄ j B)℄

! ali
e[(� a)(in

a

y j a[Q℄ j B)℄

! ali
e[(� a)(a[in

"

y j Q℄ j B)℄

! ali
e[(� a)(a[net

"

y℄ j B)℄

! ali
e[(� a)(net

a

y j a[0℄ j B)℄

At the �nal step the output fromQ is prevented from leaving

the ali
e box dire
tly as B does not
ontain a forwarder for

net. It is prevented from intera
tion with any P (although

here P was empty) by the restri
tion on a.

4 The Unidire
tional-�ow Wrapper

There is a tension between the strength of
ommuni
a-

tion primitive supported by a wrapper and the strength of

the se
urity property it
an guarantee. The examples of the

introdu
tion and [SV99a℄ provide only asyn
hronous un-

ordered
ommuni
ation between
omponents, whi
h would

be awkward to use in most real systems. At the other ex-

treme, syn
hronous
ommuni
ation introdu
es
ausal �ows

in both dire
tions (the
ausal �ow property we state in Se
-

tion 5 would not hold in a syn
hronous
al
ulus, so a more

deli
ate property would be required � perhaps stating that

there are only data-less a
ks from one
omponent to an-

other). There are two intermediate points � one
an provide

asyn
hronous ordered
ommuni
ation, as we do below, or

use some form of weak a
knowledgments, as in the NRL

pump [KML96℄. The former still guarantees an absen
e of

information �ow (albeit at the
ost of maintaining an un-

bounded buffer) while the latter limits bandwidth of
overt

F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�

(� front ; ba
k)

�

(
reate FIFO buffer) bu�

?

h

front ba
k

i

j

(
onne
t from

a

to buffer) ! from

a

(

v r

)

:(� r

0

)(front

?

h

v r

0

i

j r

0

?

:r

a

) j

(
onne
t buffer to to

b

) ! ba
k

?

(

v r

)

:(� r

0

)(to

b

h

v r

0

i

j r

0

b

:r

?

)

�

j

(buffer
ode) ! bu�

?

(

front ba
k

)

:front

?

(

v r

)

:(r

?

j (� ba
k

0

)(bu�

?

h

front ba
k

0

i

j full

?

h

ba
k

0

ba
k v

i

)) j

! full

?

(

ba
k

0

ba
k v

)

:(� r)(ba
k

?

h

v r

i

j r

?

:ba
k

0

?

(

v

0

r

0

)

:(r

0

?

j full

?

h

ba
k

0

; ba
k v

0

i

))

�

j

(I/O forwarders) ! in

1

"

x:in

1

a

x j ! out

1

a

x:out

1

"

x j

! in

2

"

x:in

2

b

x j ! out

2

b

x:out

2

b

x

�

Figure 1. FIFO Pipeline Wrapper F .

hannels. In both
ases, it is essential to be able to guar-

antee that the implementation of the
ommuni
ation prim-

itives does a
tually have the desired �ow property, this is

what we set to do here.

In Figure 1 we give a wrapper F that takes two
ompo-

nents and allows the �rst to
ommuni
ate with the se
ond

by a �rst-in, �rst-out buffer. The wrapper has been writ-

ten with
are to avoid any information leak from the se
ond

omponent to the �rst. For simpli
ity both
omponents have

simple unordered input and output ports in

i

and out

i

to the

environment; it would be routine to make these FIFO also.

The wrapper is illustrated in Figure 2.

The interfa
e to the wrapper is as follows. To write to the

buffer a produ
er sends a value together with an a
knowl-

edgment
hannel to the wrapper (using a standard asyn-

hronous �-
al
ulus idiom). The wrapper inserts the value

in a queue and a
knowledges re
eption. For value v the

produ
er may
ontain

(� a
k)(from

"

h

v a
k

i

j a
k

"

:::);

sending the value and a new a
knowledgement
hannel a
k

to the wrapper and, in parallel, waiting for a reply before

pro
eeding with its
omputation. On the re
eiver side, we

may have a pro
ess that waits for a pair of a value and an

a
k
hannel:

to

"

(

z r

)

:(r

"

j :::)

The name of the re
eiving
hannel is to;
hannel r is used

to send the a
knowledgement ba
k to the wrapper. Thus a

on�guration where B stands for the body of the wrapper

ould be:

(� a; b)

�

a[(� a
k)(from

"

h

v a
k

i

j a
k

"

:0) ℄ j

b[to

"

(

z r

)

:r

"

℄ j B

�

The implementation of the wrapper is somewhat tri
ky, as

we have to be
areful not to introdu
e
overt
hannels be-

tween the
omponents. Within the wrapper there is a repli-

ated input on bu� that
reates a new empty FIFO buffer

and a repli
ated input on full that
reates a new buffer
ell

ontaining a value. The key is to ensure that the a
knowl-

edgment to the �rst
omponent not be dependent on any

a
tion performed by the se
ond
omponent. The glue pro-

ess that
onne
ts the from

a

hannel to the buffer has a

subpro
ess, r

0

?

:r

a

, to send the a
k to a. This small pro-

ess itself expe
ts an a
k from the head of the buffer saying

that the message was inserted in the queue. The buffer
ode

front

?

(

v r

)

:(r

?

: : : a
ks on r immediately, in parallel with

pla
ing the new message in a full buffer
ell at the head of

the queue. The asyn
hrony here is essential.

So far we have been vague about the statement of the

properties that we expe
t wrappers to enfor
e. For W

1

it

may be
lear from examination of the
ode and the seman-

ti
s that the wrapper is satisfa
tory, but it is un
lear exa
tly

what properties are guaranteed. ForF the situation is worse

� even this simple wrapper is
omplex enough that a rigor-

ous statement and proof of its se
urity properties is essen-

tial; the user should not be required to examine the
ode of a

wrapper in order to understand the se
urity that it provides.

We now turn to the task of formalizing these properties and

developing the tools needed to prove them.

5 Colouring and Causal Flow

The intuitive property ofF that we wish to express is that

the se
ond wrapped
omponent should not be able to affe
t

the �rst. In [SV99a℄ we expressed the intuitive property

that one wrapped
omponent does not
ausally affe
t an-

other using a simple
oloured redu
tion semanti
s for box-

�. Output pro
esses were annotatedwith sets of
olours that

re
ord their
ausal histories � essentially the sets of prin
i-

pals that have affe
ted them in the past � and the redu
tion

semanti
s propagated this
ausal history data. In this paper

in

1

out

1

in

2

out

2

(r

0

)

(r) to

a

from

FIFO buffer

b

Figure 2. The FIFO Pipeline Wrapper Illustrated

we introdu
e also a
oloured labelled transition semanti
s,

allowing more dire
t statements of se
urity properties of

wrappers that intera
t with their environment. The
oloured

al
ulus is a trade-off � it
aptures less detailed
ausality in-

formation than the non-interleaving models studied in
on-

urren
y theory [WN95, BS95, DP95℄ but is mu
h simpler;

it
aptures enough information to express interesting se
u-

rity properties.

In [SV99a℄ we also expressed a number of other desir-

able properties of wrappers � that they honestly forward

messages between
omponent and environment, and that

they mediate all
ommuni
ation between
omponents. The

latter, related to intransitive noninterferen
e [RG99℄, was

expressed using the
oloured semanti
s. Two further infor-

mation �ow properties were expressed using the un
oloured

LTS: new name dire
tionality and permutation. They illus-

trate the wide range of pre
ise properties whi
h the intuitive

statement might be thought to mean.

5.1 Colouring the Box­� Cal
ulus

We take a set
ol of
olours or prin
ipals (we use the

terms inter
hangeably) disjoint from N . Let k; p; q range

over elements of
ol and C;D;K range over subsets of
ol.

We de�ne a
oloured box-�
al
ulus by annotating all out-

puts with sets of
olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a
oloured term we write jP j for the term of the orig-

inal syntax obtained by erasing all annotations. Conversely,

for a term P of the original syntax C ÆP denotes the term

with every parti
le
oloured by C. For a
oloured P we

write C �P for the
oloured term whi
h is as P but with C

unioned to every set of
olours o

urring in it. We some-

times
onfuse p and the set fpg. Let pn(P) be the set of

olours that o

ur in P . We write CD for the union C [D.

In the
oloured output C :x

o

v think of C as re
ording the

ausal history of the output parti
le � C is the set (possibly

empty) of prin
ipals p 2 C that have affe
ted the parti
le

in the past. In an initial state all outputs might typi
ally be

oloured by singleton sets giving their a
tual prin
ipals, for

example
olouring the
ode of wrapperF and two wrapped

omponents with different
olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The
oloured redu
tion semanti
s is obtained by repla
-

ing the �rst four axioms of the un
oloured semanti
s by the

rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP) (C Red Repl)

that propagate
olour sets. The
oloured
al
ulus has es-

sentially the same redu
tion behaviour as the original
al-

ulus:

Proposition 2 For any
oloured P we have jP j ! Q iff

9P

0

: P �! P

0

^ jP

0

j = Q.

The
oloured labelled transitions have labels ` exa
tly as

before. The
oloured labelled transition relation has the

form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P) � A; it should

be read as `in a state where the names A may be known to

A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

(
) (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

(
) (Repl)

A ` P

x

v

�!

C

P

0

A ` Q

x

v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v)�A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v) �A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Stru
t)

(a) The (Res-1) rule is subje
t to x 62 fn(`). (b) The (Res-2) rule is subje
t to x 2 fn(v) � fn(y; o), if o is ?, " or n, and to

x 2 fn(y; v) � fn(o) otherwise. (
) In the (In) and (Repl) axioms there is a side
ondition that f

v

=

p

gP is well-de�ned. In all rules

with
on
lusion of the formA ` P

`

�!

C

Q there is an impli
it side
ondition fn(P) � A. Symmetri
 versions of (Par) and (Comm)

are elided.

Figure 3. Coloured Box­� Labelled Transition Semanti
s

P and its environment, pro
ess P
an do `,
oloured C, to

be
ome Q'. Again C re
ords
ausal history, giving all the

prin
ipals whi
h have dire
tly or indire
tly
ontributed to

this a
tion. The relation is de�ned as the smallest relation

satisfying the rules in Figure 3. It
oin
ides with the pre-

vious LTS and with the
oloured redu
tion semanti
s in the

following senses.

Proposition 3 For any
olouredP we haveA ` jP j

`

�! Q

iff 9C; P

0

: A ` P

`

�!

C

P

0

^ jP

0

j = Q.

Proposition 4 For
oloured P and Q, if fn(P) � A then

A ` P

�

�!

;

Q iff P ! Q.

5.2 The Causal Flow Property

The property
an now be stated. Say an instantiation of

some binary wrapperW is an un
oloured pro
essW(P;Q)

where P andQ are un
oloured pro
esses not
ontaining the

new-bound names s
oping the holes ofW . SayW is a pure

binary wrapper if for any instantiation and any transition

sequen
e

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2

f1; 2g. It is easy to see that F is pure. Purity simply means

that the wrapper has a �xed interfa
e and thus simpli�es the

statement of the
ausal �ow property.

De�nition 1 (Causal �ow property) A pure binary wrap-

perW has the
ausal �ow property if for any instantiation

W(P;Q) and any
oloured tra
e

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

su
h that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are

oloured with prin
ipal sets fpg and fqg respe
tively, we

have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any
ausal �ow from an input on in

2

to an output on out

1

.

Different variants of the �ow property, with different

hara
teristi
s,
an be stated � for example, to also pre-

vent information in the initial state of Q affe
ting outputs

on out

1

we
ould
onsider
oloured tra
es

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This se
ond de�nition still allows the Q to
ommuni
ate

with P but only on the
ondition that P does not perform

any further output dependent on the
ommuni
ated values.

ForbiddingQ affe
ting P at all (even if there are no inputs

or outputs of either
omponent)
an be done with a slightly

more intri
ate
oloured semanti
s. There is no
lear
ut

`best' solution, yet the use of
ausal semanti
s allows su
-

in
t statement of the alternatives and eases the
omparison

of these different properties.

6 Causality Types

Verifying a
ausal �ow property dire
tly
an be labo-

rious, requiring a
hara
terisation of the state spa
e of a

wrapper
ontaining arbitrary
omponents. We therefore in-

trodu
e a type system that stati
ally
aptures
ausal �ows;

a wrapper
an be shown to satisfy the
ausal �ow property

simply by
he
king that it is well-typed. This se
tion in-

trodu
es the type system, gives its soundness theorems, and

applies it to F .

A simple type system for Box-� would have types

T ::=
han T

�

�

box

�

�

hT :: T i

for the types of
hannel names
arrying T , box names, and

tuples. We annotate the �rst two by sets K of prin
ipals and

add a type name, of arbitrary names, and >, of arbitrary

values, giving the value types

T ::=
han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x :
han

K

T then x is the name of a
hannel
arrying T ;

moreover, in an output pro
ess C :x

?

v on x the typing rules

will require C � K � intuitively, su
h an output may have

been
ausally affe
ted only by the prin
ipals k 2 K. In

an input x

�

p:P on x the
ontinuation P must therefore be

allowed to be affe
ted by any k 2 K, so any output within

P must be on a
hannel of type
han

K

0

T with K � K

0

.

We are
on
erned with the en
apsulation of possibly

badly-typed
omponents, so must allow a box a[P ℄ in a

well-typed term to
ontain an untyped pro
ess P . The type

system
annot be sensitive to the
ausal �ows within su
h a

box; it
an only enfor
e an upper bound on the set of prin-

ipals that
an affe
t any part of the
ontents. If a :box

K

then a is a box name; the
ontents may have been
ausally

affe
ted only by k 2 K.

We take type environments � to be �nite partial fun
tions

from names to value types. The type system has two main

judgments, � ` v :T for values and � ` P :pro

K

for pro-

esses. The typing for pro
esses re
ords just enough infor-

mation to determine when pre�xing a pro
ess with an input

is legitimate � if P :pro

K

then P
an be pre�xed by an

input on a
hannel x :
han

K

0

hi, to give x

?

:P , iff K

0

� K.

Note, however, that a P :pro

K

may have been affe
ted by

(and so synta
ti
ally
ontain) k 62 K.

To type intera
tions between well-typed wrapper
ode

and a badly-typed boxed
omponent some simple subtyping

is useful. We take the subtype order T � T

0

as below, and

write

V

fT

i

j i 2 1::k g for the greatest lower bound of

T

1

; ::; T

k

, where this exists.

>

name

hT

1

:: T

k

i

box

K

han

K

T

The
omplete type system is given in Figure 4; we now

explain the key aspe
ts by giving some admissible typing

rules.

Basi
 Flow Typing Consider the type environment

x :
han

K

hi; y :
han

L

hi and the redu
tion

C :x

?

j x

?

:D :y

?

! (C [D) :y

?

During the redu
tion the output y

?

on y is
ausally affe
ted

by the output on x � the right-handpro
ess term (C [D) :y

?

re
ords that the output on y has been (indire
tly) affe
ted

by all the prin
ipals that had affe
ted the output on x. For

the left pro
ess to be well-typed we must
learly require

C � K and D � L; for the right pro
ess to be well-typed we

need also C � K, to guarantee this the typing rules require

K � L. The relevant admissible rules are below.

� ` x :
han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro

K

� ` x :
han

K

T

�; y :T ` P :pro

K

00

K � K

00

� ` x

?

y:P :pro

K

Now
onsider also y :
han

L

0

hi and the pro
ess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be affe
table

by C, so the typing rule for parallel must take the interse
-

tion of allowed-
ause sets:

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

The examples above involve only
ommuni
ation within a

wrapper, with tag ?. Communi
ation between a wrapper

and its parent, with tag ", has the same typing rules, as the

parent is presumed well-typed.

Channel Passing Channel passing involves no additional

ompli
ation. Consider the type environment � =

z :
han

K

00

hi, x :
han

K

han

K

00

hi, and the redu
tion

C :x

?

z j x

?

y:D :y

?

! (C [D) :z

?

The left-hand pro
ess is typable using the rules above

if C � K for the x output, D � K

00

for the y output,

and K � K

00

for the input, using �; y :
han

K

00

hi ` D :

y

?

:pro

K

00

. Together these imply (C [D) � K

00

, so the

right-hand pro
ess is well-typed.

Intera
ting with a box (at >) As dis
ussed above, the

ontents of a box may be badly-typed, yet a wrapper must

still be able to intera
t with them. The simplest
ase is that

in whi
h a wrapper sends and re
eives values that it
on-

siders to be of type >; we
onsider more general
ommu-

ni
ation in the next paragraph. The typing rule for boxes

requires only that the prin
ipals pn(P) synta
ti
ally o

ur-

ring within the
ontents P of a box are
ontained in the

permitted set and that P 's free names are all de
lared in the

type environment.

� ` a :box

K

pn(P) � K

fn(P) � dom(�)

� ` a[P ℄ :pro

K

Consider sending to and re
eiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q

For the output to be well-typed we must insist only that

C � K; for the input to be well-typed Q must be allowed

to be affe
ted by any prin
ipal that might have affe
ted the

ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro

K

� ` a :box

K

� ` x :
han

K

0

>

�; y :> ` P :pro

K

00

K � K

0

� K

00

� ` x

a

p:P :pro

K

0

Intera
ting with a box (at any transmissible S) More

generally, a wrapper may re
eive from a box tuples
on-

taining names whi
h are to be used for
ommuni
ating with

the box as
hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

re
eives a value v and name r from box a and uses r to send

an a
k ba
k into a. This ne
essarily involves some run-time

type
he
king, as the boxmay send a tuple instead of a name

for r. There is a design
hoi
e here: how strong should this

type
he
king be? Requiring an implementation to main-

tain a run-time re
ord of the types of all names would be

ostly, so we
he
k only the stru
ture of values re
eived

from boxes. We suppose the run-time representations of

values allow names (bit-patterns of some �xed length) and

tuples to be distinguished, and the number of items in a tu-

ple to be determined, but no more (so e.g. x :
han

K

T and

y :box

L

will both be represented as bit patterns of the same

Patterns:

` :T B ; ` x :T B x : T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi

�; x :T ` x :name

Pro
esses:

o 2 f?; "; "g

� ` x :
han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro

K

(Out-?; "; ")

� 2 f?; "g

� ` x :
han

K

T

` p :T B �

�;� ` P :pro

K

� ` x

�

p:P :pro

K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro

K

(Out-a; a)

� ` a :box

K

0

� ` x :
han

K

S

` p :S B �

�;� ` P :pro

K

K

0

� K

�
at

P tests all names of type name in �

p
ontains no wild
ards

� ` x

a

p:P :pro

K

(In-a)

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

(Par)

� ` n :box

K

pn(P) � K

fn(P) � dom(�)

� ` n[P ℄ :pro

K

(Box)

� ` 0 :pro

K

(Nil)

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

(Res)

� ` P :pro

K

0

K � K

0

� ` P :pro

K

(Spe
)

The repli
ated input rules are similar to the input rules. The predi
ate `P tests all names of type name in�' is de�ned

to be true iff for all y :name in �, y o

urs free in
hannel or box position within P .

Figure 4. Coloured Box­� Typing

length). We introdu
e the supertype name of
han

K

T and

box

L

, and allow a wrapper to re
eive only values of the

transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is ne
essary only for

x to be of type name.

The operational semanti
s expresses this run-time type-

he
king by means of the
ondition that f

v

=

p

gP is well-

de�ned in the redu
tion
ommuni
ation rule and the

labelled-transition input rules � for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the syntax does not allow a tuple to

o

ur in
hannel-name position of an output. We would like

to ensure that run-time type
he
king is only required when

re
eiving values from a box, i.e. that for
ommuni
ation

within a wrapper or between a wrapper and its parent su
h

a substitution is always well-de�ned. This is guaranteed by

requiring a box input pre�x to immediately test all parts of

a re
eived value that are assumed of type name � in typ-

ing an input x

a

p:P the type environment � derived from

the pattern p must
ontain no tuples, and all x :name in�

must be used within P as a
hannel or box. For example, if

a :box

K

and x :
han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)

ompletely de
omposes

values of type hnamenamei and both y and z are used as

hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may re
eive (for example) a triple from the

box, leading to a later run-time error within the wrap-

per. The type system is
onservative in also ex
luding

x

a

(

y z

)

:

�

K : y

a

�

. Say a type is atomi
 if it is of the form

name,
han

K

T or box

K

and �at if it is of the form >,

name,
han

K

T , or box

K

. Say � is atomi
 or �at if all

types in ran(�) are. The atomi
 types are those whi
h

an be dynami
ally extended using restri
tion. We
onsider

dynami
s (redu
tions and labelled transitions) only for pro-

esses with respe
t to atomi
 typing
ontexts; the de�ni-

tions ensure that an extruded name
an always be taken to

be of an atomi
 type. The
al
ulus has no basi
 data types,

e.g. a type of integers, that are not dynami
ally extensible.

This makes the type system a little degenerate.

The rest The typing rules for nil and restri
tion are straight-

forward; there is also a spe
ialisation rule allowing some

permitted affe
tees of a pro
ess to be forgotten.

� ` 0 :pro

K

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

� ` P :pro

K

0

K � K

0

� ` P :pro

K

6.1 Soundness

We wish to infer properties of the
oloured input/output

behaviour of wrappers from the soundness of the type sys-

tem, and therefore need a subje
t redu
tion result whi
h

refers not only to redu
tions (equivalently, � transitions) but

also to input/output transitions. De�ne typed labelled tran-

sitions by

� `

K

P

`

�!

C

Q iff

�

� atomi
 ^

� ` P :pro

K

^ dom(�) ` P

`

�!

C

Q

�

The subje
t redu
tion theorem for ` an output x

o

v should

state that x, o, v and Q have suitable types; the theorem

for ` an input should state that if `
an be typed then Q

an. The result is
ompli
ated by the fa
t that box-� is a

al
ulus with new name generation, so new names
an be

extruded and intruded. Type environments for these names

are
al
ulated as follows. For a type environment �, with

� atomi
, and a value v extruded at type T de�ne the type

environment t
(�; v; T) for new names in v as follows.

t
(�; x; T) = x : T if x 62 dom(�)

and T atomi

t
(�; x;>) = x :name if x 62 dom(�)

t
(�; x; T) = ; if � ` x :T

t
(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t
(�; v

i

;>)

t
(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t
(�; v

i

; T

i

)

t
(�; v; T) unde�ned elsewhere

Here

V

i21::k

�

i

is the type environment that maps ea
h x

in some dom(�

i

) to

V

fT j 9i : x :T 2 �

i

g, where

all of these are de�ned.

V

i21::k

�

i

is unde�ned other-

wise. Note that in the >
ase the t
(�; v

i

;>) will ne
-

essarily all be well-de�ned and will be
onsistent. To see

the need for

V

,
onsider � =
 :
han

K

hbox

K

namei and

P = (� x)

?

h

xx

i

. P has an extrusion transition with value

h

xx

i

; the type
ontext t
(�;

h

xx

i

; hbox

K

namei) should

be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so

t
(�; v; T)
an only be used as a bound on the ex-

truded/intruded type environments. Say � � �

0

iff

dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

We
an now state the subje
t redu
tion result. For output

tags f?; "g and " the name x is guaranteed to have a
hannel

type and v the type
arried; for a and a they are only guar-

anteed to be a name and a value of type >. f?; "g and a

are
ommuni
ation tags, so x
annot be extruded, whereas

" and a are movement tags, so x may be extruded. By
on-

vention we elide a
onjun
t that t
(:::) is de�ned wherever

it is mentioned.

Theorem 5 (Subje
t Redu
tion) If � `

K

P

x

o

v

�!

C

Q then

ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � `

x :
han

K

0

T , and there exists � � t
(�; v; T) su
h

that �;� ` Q :pro

K

.

ase o =": for some K

0

; T we have C � K

0

and there ex-

ists � � t
(�;

h

x v

i

; h
han

K

0

T T i) su
h that �;� `

Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � `

a :box

K

0

, and there exists a type environment � �

t
(�;

h

x v

i

; hname; >i) su
h that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

,

� ` x :name, and there exists � � t
(�; v;>) su
h

that �;� ` Q :pro

K

.

If � `

K

P

x

v

�!

C

Q then

ase
 2 f?; "g: for some K

0

, T we have � ` x :
han

K

0

T .

If moreover C � K

0

and � � t
(�; v; T) then �;� `

Q :pro

K

.

ase
 = a: for some K

0

� K

00

, and S we have � `

a :box

K

0

, � ` x :
han

K

00

S, t
(�; v; S) well-de�ned,

and ran(t
(�; v; S)) � fnameg. If moreover C � K

00

and� � t
(�; v; S) then �;� ` Q :pro

K

.

ase
 = a: for some K

0

we have � ` a :box

K

0

. If more-

over C � K

0

and we have� � t
(�;

h

x v

i

; hname>i)

then �;� ` Q :pro

K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

A run-time error for box-� is a pro
ess in whi
h a poten-

tial
ommuni
ation fails be
ause the asso
iated substitution

is not de�ned. More pre
isely, P
ontains a run-time error

if it
ontains subterms x

v and x

p:P in parallel (and not

under an input pre�x) and f

v

=

p

gP is not de�ned. In a well-

typed pro
ess run-time errors
an only o

ur within boxes

(whose
ontents are untyped) or at
ommuni
ations from a

box to the wrapper. Internal transitions of the wrapper and

ommuni
ations between the wrapper and its parent there-

fore do not require dynami
 type
he
king.

Theorem 6 (Limited Runtime Errors)

If � ` P :pro

K

, P � (� x

1

:: x

n

)

�

x

v j x

p:P

0

j Q

�

,

� atomi
, P

0

does not
ontain a box and
 2 f?; "g then

f

v

=

p

gP is well-de�ned. Similarly for repli
ated input.

6.2 Typing the Unidire
tional­�ow Wrapper

Finally, we
an show that instantiations of F are well-

typed and use the subje
t redu
tion theorem to
on
lude that

F has the
ausal �ow property.

Theorem 7 (F typing) If

� = in

1

:
han

fpg

>; out

1

:
han

fpg

>;

in

2

:
han

fqg

>; out

2

:
han

fp;qg

>;

from :
han

fpg

h>namei;

to :
han

fp;qg

h>
han

fp;qg

hii;

�

1

and also fn(P;Q) � dom(�)� fa; bg

then � ` ; ÆF(P;Q) :pro

p

.

The proof of this involves type assumptions for the new-

bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :
han

fpg

h
han

fpg

h>
han

fpg

hi

i

han

fp;qg

h>
han

fp;qg

hi

ii

full :
han

fp;qg

h
han

fp;qg

h>
han

fp;qg

hi

i

han

fp;qg

h>
han

fp;qg

hi

i

>i

A straightforward indu
tion on tra
e lengths using the Sub-

je
t Redu
tion theorem then proves the desired
ausal �ow

result:

Theorem 8 Wrapper F has the
ausal �ow property.

7 Dis
ussion

Poli
y enfor
ement me
hanisms: Wrappers impose se
u-

rity poli
ies on
omponents for whi
h it is impra
ti
al to

analyze the internal stru
ture, e.g. where only untyped ob-

je
t
ode is available.

Several alternative approa
hes are possible, differing in

the level of trust required, the �exibility of the se
urity

poli
y enfor
ed, and their
osts to
omponent produ
ers

and users. Code signing and Java-style sandboxing have

low
ost but
annot enfor
e �exible poli
ies � signed
om-

ponents may behave in arbitrary ways whereas sandboxed

omponents should not be able to intera
t with ea
h other

at all. Code signing requires the user to have total trust in

the
omponent produ
ers � not just in their intent, but also

in their ability to produ
e bug-free
omponents. Sandbox-

ing requires no trust, but the la
k of any intera
tion is often

too restri
tive. More deli
ate poli
ies
an be enfor
ed by

shipping
ode together with data allowing the user to type-

he
k it in a se
urity-sensitive type system [VSI96, HR98℄,

or to
he
k a proof of a se
urity-relevant behavioural prop-

erty [NL98℄. In the long term these seem likely to be the

best approa
hes, but they require
omponent produ
ers to

invest effort and to
onform to a
ommon standard for types

or proofs � in the short term this is prohibitive. Shifting the

burden of proof to the user, by performing type inferen
e or

stati
 analysis of downloaded
ode, seems impra
ti
al given

only the obje
t
ode, whi
h may not have been written with

se
urity in mind and so not
onform to any reasonable type

system. In
ontrast, wrappers have been shown to have low-

ost � none to the produ
er and only a small run-time
ost

to the user [FBF99℄. They allow more �exible intera
tion

than sandboxing, albeit
oarser-grain poli
ies than proof-

arrying
omponents or se
urity-type-
he
ked
omponents.

Information �ow properties: The
ausal �ow property is

related to the property, studied in many
ontexts, that there

is no information �ow from a high to a low se
urity level

(though most work addresses
omponents, whi
h may have

the property, rather than wrappers, whi
h may enfor
e it

on sub
omponents). The literature
ontains a range of def-

initions that aim to
apture this intuition in some parti
u-

lar setting; the formalisations vary widely. A basi

hoi
e

is whether the property is stated purely extensionally, in

terms of a semanti
s that des
ribes only the input/output

behaviour of a system, or using a more intensional seman-

ti
s. A line of work on Non-Interferen
e, summarised in

[M
L94℄, takes an extensional approa
h, stating properties

in terms of the tra
es of input and output events of a system.

Related de�nitions, adapted to a programming language set-

ting, are used in [VSI96, HR98℄. In the presen
e of nonde-

terminism, however, non-interferen
e be
omes problemati

� as dis
ussed in [VS98℄, the property may only be mean-

ingful given probabilisti
 s
heduling, whi
h has a high run-

time
ost.

We believe that the basi
 dif�
ultly is that the intuitive

property is an intensional one � the notion of one
om-

ponent affe
ting another depends on some understanding

of how
omponents intera
t; a pre
ise statement requires

a semanti
s that
aptures some aspe
ts of internal exe
u-

tion, not just input/output behaviours. This might be deno-

tational or operational. Intensional denotational semanti
s

have been used in the proofs (and, in the last, statements)

of non-interferen
e properties in [HR98, ABHR99, SS99℄,

whi
h use a logi
al relations proof and PER-based models.

[VS98℄ and [SS99℄ go on to
onsider probabilisti
 proper-

ties.

For wrappers, it is important that the end-user be able to

understand the se
urity that they provide as
learly as pos-

sible. We therefore wish to use as lightweight a semanti
s

as possible, as this must be understood before any se
urity

property stated using it, and so adopt an annotated opera-

tional semanti
s (developing a satisfa
tory denotational se-

manti
s of box-�, dealing with name
reation, boxes, and

untyped
omponents, would be a
hallenging resear
h prob-

lem in its own right). In a sequential setting annotated op-

erational semanti
s have been used by [ZGM99℄; see also

[LR98℄. The de�nition of the
oloured semanti
s for box-�

seems unproblemati
, but in general one might validate an

annotated semanti
s by relating it to a lower-level exe
ution

model (as mentioned below).

Negle
ting boxing andwrappers for the moment,
onsid-

ering simply �-pro
esses, we believe that intensional prop-

erties stated in terms of
ausal �ow will generally imply

properties stated purely in terms of tra
e-sets. As a start-

ing point, we show that our type system implies a non-

interferen
e property (similar to the permutation property of

[SV99b℄, but for pro
esses rather than wrappers) in a par-

ti
ular
ase. We prove that an output on a `low'
hannel
an

always be permuted before an input on a `higher'
hannel

(with respe
t to the latti
e of sets of
olours).

Proposition 9 If L (H and fh :
han

H

U; l :
han

L

V g `

P :pro

;

then

fh; lg ` P

h

?

u

�!

l

?

v

�! Q implies fh; lg ` P

l

?

v

�!

h

?

u

�! Q:

Proof (Sket
h) One
an �rst show that ; ÆP has
oloured

transitions with the input
olouredH and the output by some

C. By subje
t redu
tion C � L. Analysing the form of P

with Lemmas 21,20 from [SV99a℄, and using L (H, shows

that the output term in P is not pre�xed by the input, so the

transitions
an be permuted. 2

Information �ow type systems: The type system differs

from previous work [VSI96, VS98, PØ97℄ primarily in han-

dling badly typed
omponents. Ne
essarily, it does not pro-

vide �ne-grain tra
king of information �ow through these

omponents. It also handles nondeterminism, new name

reation and
hannel passing. Pre
ise
omparisons with re-

lated type systems are dif�
ult as the languages involved

differ widely. One
an, however, embed fragments of these

languages into box-� (noting that this only exploits the

fully-typed part of our
al
ulus). For example, in the work

of Smith and Volpano [SV98℄ an assignment to a low se
u-

rity variable
an follow an assignment to a high variable �

the program h:=3;l:=1 is well-typed. The natural trans-

lation of this program in box-� would be

h

?

0 j l

?

0 j h

?

y:(h

?

3 j l

?

y:l

?

1)

with an initial store assigning 0 to h and l. This would

not be well-typed in the system of this paper, taking

h :
han

fH;Lg

Int, l :
han

fLg

Int and a new base type Int.

Here the low assignment is
ausally dependent on the high,

even though no high information
an leak. On the other

hand a box-� en
oding of bran
hes would not forbid high

variable guards.

Causal �ow is a robust and straightforward property; it

an be enfor
ed by a remarkably simple type system. But,

as the example above shows, it is sometimes over
onstrain-

ing. We envisage that in a large system the bulk of the
ode

will be typeable in a se
ure type system, a small portionwill

be in
learly-identi�ed unsafe modules that are subje
t only

to
onventional type
he
king, and a small portion (any un-

trusted
ode) will be en
apsulated in wrappers. Automati

type inferen
e would be required to relieve the burden of

adding se
urity annotations to all de
larations.

8 Con
lusion

The issue of se
urely
omposing untrusted or partially

trusted
omponents has great pra
ti
al relevan
e. In this

paper we have studied te
hniques for formally proving that

software wrappers � the glue between
omponents � a
tu-

ally enfor
e user-spe
i�ed information �ow
onstraints. We

have de�ned a
oloured operational semanti
s for a
on
ur-

rent wrapper language. By keeping tra
k of all the prin
i-

pals that have affe
ted a pro
ess in the semanti
s it be
omes

easy to formulate
lear statements of information �ow prop-

erties. To prove that parti
ular wrappers are se
ure, we de-

�ned a
ausal type system and so only need show that the

wrappers are well typed.

Throughout the paper we fo
ussed on wrapper properties

� the
al
ulus, statement of se
urity properties and type sys-

tem are all designed spe
i�
ally for wrappers � but we be-

lieve similar te
hniques are appli
able to other situations in

whi
h intera
tion must be
ontrolled but not
ompletely ex-

luded, for example in isolating a se
urity-
riti
al kernel of

a single appli
ation, or in
ontrolling intera
tions between

pa
kets in an a
tive network. Allowing untyped
ode frag-

ments in otherwise typed programs gives a way to loosen

se
urity restri
tions when ne
essary.

In future work we intend to integrate the
ausal type sys-

tem with a lower-level semanti
s for obje
t
ode, su
h as

the typed assembly language of [GM99℄. We also intend

to address the issue of type inferen
e of se
urity levels and

the statements of properties involving dynami

hanges in

information �ow poli
y.

A
knowledgements We would like to thank J. Leifer and

J. Palsberg for
omments. The �rst author was supported

by a Royal So
iety University Resear
h Fellowship and by

EPSRC grant GR/L 62290 Cal
uli for Intera
tive Systems:

Theory and Experiment. The se
ond author did part of

this work in the Obje
t System Group at the University of

Geneva.

Referen
es

[ABHR99℄ Mart�́n Abadi, Anindya Banerjee, Nevin Heintze, and

Jon G. Rie
ke. A
ore
al
ulus of dependen
y. In

ACM, editor, POPL '99. Pro
eedings of the 26th

ACM SIGPLAN-SIGACT on Prin
iples of program-

ming languages, January 20�22, 1999, San Anto-

nio, TX, pages 147�160, New York, NY, USA, 1999.

ACM Press.

[AFG98℄ Mart�́n Abadi, Cédri
 Fournet, and Georges Gonthier.

Se
ure implementation of
hannel abstra
tions. In

LICS 98 (Indiana), pages 105�116. IEEE, Computer

So
iety Press, July 1998.

[BHR84℄ S.D. Brookes, C.A.R. Hoare, and A.W. Ros
oe. A

theory of
ommuni
ating sequential pro
esses. Jour-

nal of the ACM, 31(3):560�599, 1984.

[Bou92℄ Gérard Boudol. Asyn
hrony and the �-
al
ulus

(note). Rapport de Re
her
he 1702, INRIA So�a-

Antipolis, May 1992.

[BS95℄ Mi
hele Boreale and Davide Sangiorgi. A fully ab-

stra
t semanti
s for
ausality in the pi-
al
ulus. In

E. W. Mayr and C. Pue
h, editors, Pro
eedings of

STACS'95, volume 900 of Le
ture Notes in Computer

S
ien
e, pages 243�254. Springer-Verlag, 1995.

[CG98℄ Lu
a Cardelli and Andrew D. Gordon. Mobile am-

bients. In Pro
. of Foundations of Software S
ien
e

and Computation Stru
tures (FoSSaCS), ETAPS'98,

LNCS 1378, pages 140�155, Mar
h 1998.

[DP95℄ Pierpaolo Degano and Corrado Priami. Causality

for mobile pro
esses. In Zoltán Fülöp and Feren

Gé
seg, editors, Pro
eedings of ICALP '95, volume

944 of Le
ture Notes in Computer S
ien
e, pages

660�671. Springer-Verlag, 1995.

[FBF99℄ Timothy Fraser, Lee Badger, and Mark Feldman.

Hardening COTS software with generi
 software

wrappers. In IEEE Symposium on Se
urity and Pri-

va
y, Berkeley, California, May 1999.

[FGL

+

96℄ Cédri
 Fournet, Georges Gonthier, Jean-Ja
ques

Lévy, Lu
 Maranget, and Didier Rémy. A
al
ulus

of mobile agents. In Pro
eedings of CONCUR '96.

LNCS 1119, pages 406�421. Springer-Verlag, August

1996.

[GM99℄ Neal Glew and Greg Morrisett. Type-safe linking

and modular assembly language. In ACM, editor,

POPL '99. Pro
eedings of the 26th ACM SIGPLAN-

SIGACT on Prin
iples of programming languages,

January 20�22, 1999, San Antonio, TX, pages 250�

261, New York, NY, USA, 1999. ACM Press.

[GRPA97℄ Douglas P. Ghormley, Steven H. Rodrigues, David

Petrou, and Thomas E. Anderson. Interposition as

an operating system extension me
hanism. Te
hni
al

Report CSD-96-920, University of California, Berke-

ley, April 9, 1997.

[GWTB96℄ Ian Goldberg, David Wagner, Randi Thomas, and

Eri
 A. Brewer. A se
ure environment for untrusted

helper appli
ations. In Sixth USENIX Se
urity Sym-

posium, San Jose, California, July 1996.

[HR98℄ Nevin Heintze and Jon G. Rie
ke. The SLam
al-

ulus: Programming with se
re
y and integrity. In

Pro
eedings of the 25th POPL, January 1998.

[HT91℄ Kohei Honda and Mario Tokoro. An obje
t
al
ulus

for asyn
hronous
ommuni
ation. In Pierre Ameri
a,

editor, Pro
eedings of ECOOP '91, LNCS 512, pages

133�147, July 1991.

[Jon99℄ Mi
hael B. Jones. Interposition agents: Transpar-

ently interposing user
ode at the system interfa
e.

In Jan Vitek and Christian Jensen, editors, Se
ure In-

ternet Programing: Se
urity Issues for Mobile and

Distributed Obje
ts. Springer Verlag, 1999.

[KML96℄ Myong H. Kang, Ira S. Moskowitz, and Daniel C.

Lee. A network pump. IEEE Transa
tions on Soft-

ware Engineering, 22(5):329�338, May 1996.

[LR98℄ Xavier Leroy and Fran
̧ois Rouaix. Se
urity prop-

erties of typed applets. In Conferen
e Re
ord of

POPL '98: The 25th ACM SIGPLAN-SIGACT Sym-

posium on Prin
iples of Programming Languages,

pages 391�403, San Diego, California, 19�21 Jan-

uary 1998.

[M
L94℄ J. M
Lean. Se
urity models. In J. Mar
iniak, edi-

tor, En
y
lopedia of Software Engineering. Wiley &

Sons, 1994.

[MPW92℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of

mobile pro
esses, Parts I + II. Information and Com-

putation, 100(1):1�77, 1992.

[NL98℄ G. C. Ne
ula and P. Lee. Safe, untrusted agents us-

ing proof-
arrying
ode. In G. Vigna, editor, Mobile

Agents and Se
urity, volume 1419 of LNCS, pages

61�91. SV, 1998.

[PØ97℄ Jens Palsberg and Peter Ørbæk. Trust in the

lambda-
al
ulus. Journal of Fun
tional Program-

ming, 7(6):557�591, November 1997.

[PT99℄ Benjamin C. Pier
e and David N. Turner. Pi
t: A pro-

gramming language based on the pi-
al
ulus. In Gor-

don Plotkin, Colin Stirling, and Mads Tofte, editors,

Proof, Language and Intera
tion: Essays in Honour

of Robin Milner. MIT Press, 1999.

[RG99℄ A.W. Ros
oe and M.H. Goldsmith. What is in-

transitive noninterferen
e? In Pro
eedings of the

12th IEEE Computer Se
urity Foundations Workshop

(CSFW-12), Mordano, Italy, June 1999.

[RH98℄ James Riely and Matthew Hennessy. A typed lan-

guage for distributed mobile pro
esses. In Pro
eed-

ings of the 25th POPL, January 1998.

[Sew98℄ Peter Sewell. Global/lo
al subtyping and
apability

inferen
e for a distributed �-
al
ulus. In Pro
eedings

of ICALP '98, LNCS 1443, pages 695�706, 1998.

[Sew99℄ Peter Sewell. A brief introdu
tion to applied

�, January 1999. Le
ture notes for the Math-

�t Instru
tional Meeting on Re
ent Advan
es

in Semanti
s and Types for Con
urren
y: The-

ory and Pra
ti
e, July 1998. Available from

http://www.
l.
am.a
.uk/users/pes20/.

[SS99℄ Andrei Sabelfeld and David Sands. A PER model

of se
ure information �ow in sequential programs.

In Pro
eedings of European Symposium on Program-

ming, Amsterdam, Netherlands, Mar
h 1999.

[SV98℄ Geoffrey Smith and Dennis Volpano. Se
ure infor-

mation �ow in a multi-threaded imperative language.

In Conferen
e Re
ord of POPL '98: The 25th ACM

SIGPLAN-SIGACT Symposium on Prin
iples of Pro-

gramming Languages, pages 355�364, San Diego,

California, 19�21 January 1998.

[SV99a℄ Peter Sewell and Jan Vitek. Se
ure
omposition of in-

se
ure
omponents. In Pro
eedings of the 12th IEEE

Computer Se
urity Foundations Workshop (CSFW-

12), Mordano, Italy, June 1999.

[SV99b℄ Peter Sewell and Jan Vitek. Se
ure
omposition of

inse
ure
omponents. Trusted obje
ts, Centre Uni-

versitaire d'Informatique, University of Geneva, July

1999. Also available as University of Cambridge TR

463.

[SV99
℄ Peter Sewell and Jan Vitek. Se
ure
omposition of

untrusted
ode: Wrappers and
ausality types. Te
h-

ni
al Report 478, Computer Laboratory, University

of Cambridge, November 1999.

[SWP99℄ Peter Sewell, Pawe� T. Woj
ie
howski, and Ben-

jamin C. Pier
e. Lo
ation-independent
ommuni-

ation for mobile agents: a two-level ar
hite
ture.

In Internet Programming Languages, LNCS 1686.

Springer-Verlag, O
tober 1999.

[VC98℄ Jan Vitek and Guiseppe Castagna. Towards a
al
u-

lus of mobile
omputations. In Workshop on Internet

Programming Languages, Chi
ago, May 1998.

[VD98℄ Jose-Luis Vivas and Mads Dam. From higher-order

pi-
al
ulus to pi-
al
ulus in the presen
e of stati
 op-

erators. In Davide Sangiorgi and Robert de Simone,

editors, CONCUR '98: Con
urren
y Theory (9th In-

ternational Conferen
e, Ni
e, Fran
e), volume 1466

of ln
s, pages 115�130. sv, September 1998.

[VS98℄ Dennis Volpano and Geoffrey Smith. Con�nement

properties for programming languages. SIGACT

News, 29(3):33�42, September 1998.

[VSI96℄ D. Volpano, G. Smith, and C. Irvine. A sound type

system for se
ure �ow analysis. Journal of Computer

Se
urity, 4(3):1�21, 1996.

[WBDF97℄ Dan S. Walla
h, Dirk Balfanz, Drew Dean, and Ed-

ward W. Felten. Extensible se
urity ar
hite
tures for

Java. In Pro
eedings of the 16th Symposium on Op-

erating System Prin
iples, 1997.

[WN95℄ G. Winskel and M. Nielsen. Models for
on
urren
y.

In Abramsky, Gabbay, and Maibaum, editors, Hand-

book of Logi
 in Computer S
ien
e, volume IV, pages

1�148. Oxford University Press, 1995.

[ZGM99℄ Steve Zdan
ewi
, Dan Grossman, and Greg Mor-

risett. Prin
ipals in programming languages: A syn-

ta
ti
 proof te
hnique. In International Conferen
e

on Fun
tional Programming, Paris, Fran
e, Septem-

ber 1999.

