Secure Composition of Insecure Components

Peter Sewell Jan Vitek
Computer Laboratory, Object Systems Group,
University of Cambridge, Université de Genéve,
England Switzerland
Pet er. Sewel | @l . cam ac. uk Jan. Vi tek@ui . uni ge. ch
Abstract program is running.

In such fluid operating environments, traditional security

Software systems are becoming heterogeneous: insteaghechanisms and policies appear almost irrelevant. While
of a small number of large programs from well-established passwords and access control mechanisms are adequate to
sources, a user's desktop may now consist of many smalleprotect the integrity of the computer system as whole, they
components that interact in intricate ways. Some compo-utterly fail to address the issue of protecting the user from
nents will be downloaded from the network from sources downloaded code being run from her account [19, 13, 27].
that are only partially trusted. A user would like to know Approaches such as the Java sandbox that promise security
that a number of security properties hold, e.g. that per$ona by isolation are not satisfactory either: components can in
data is not leaked to the net, but it is typically infeasilde t teract freely or not at all [35, 14]. What is needed is much
verify that such components are well-behaved. Insteay, the finer-grained protection mechanisms that take into account
must be executed in a secure environmenty@pper that the interconnection of software components and the specific
provides fine-grain control of the allowable interactiorssb security requirements of individual users.
tween them, and between components and other system re- e give a small motivating example (based on a true

Sources. story) involving a fictional character, Karen, performing
In this paper we study such wrappers, focusing on how some financial computation. To manage her accounts she
they can be expressed in a way that enables their securityjownloads a software package cal@dickestrom a com-
properties to be stated and proved rigorously. We introduce pany Q. Karen does not want any information about her
a model programming language, the bexealculus, that {5 pe |eaked without her consent, so she would like to run
supports composition of software components and the enQuickest in an environment that does not allow it access to
forcement of security policies. Several example wrappersthe |nternet (she has observed that it sometimes uploads in-
are expressed using the calculus; we explore the delicatefgrmation — presumably for marketing purposes — to Q). On
security properties they guarantee. the other hand she often needs stock quotes, for which she
must allow net access. At present she runs two instances of
Quickest, one on an isolated PC, with her financial records,
1 Introduction and one connected, used to obtain stock quotes. She trans-
fers data from the second to the first only on floppy disc,
Software systems are evolving. Increasingly, monolithic thereby manually ensuring that no information flows in the
applications are being replaced with assemblages of soft-converse direction.
ware components coming from different sources. Instead Karen would like to dispose of the isolated PC, using a
of a small number of large programs from well-established software solution to prevent her personal data being leaked
suppliers, nowadays a user’s desktop is made up of manyto the net. Now, Quickest is a large piece of commercial
smaller applications and software modules that interact in software that was not programmed by Karen. The source
intricate ways to carry out a variety of information process code is not available to her and its internal behaviour is
ing tasks. Moreover, whereas it used to be that a softwarecomplex and inaccessible; ensuring the desired properties
base was fairly static and often controlled by a system ad-by program analysis will not be feasible. Instead she must
ministrator, it is now easy to download code from the net- run the two copies of the package in secure software envi-
work; technologies such as Java even allow an applicationronments that allow control of the information flow between
program to be extended with new components while the them and between each package and the net.

More generally, she will wish to run many packages, is written as a unary context:
each trusted in different ways, and will want to be able to
dynamically control the interactions between them and be- Wil] def (v a)(al]
tween these packages and other resources — the net, regions | Vin'y.in'y
of the local disc, the terminal, audio and video capture de-
vices etc. In some cases she will wish to log the data sent

from one to another; in others she will wish to limit the This creates a box with a new namginstalling in parallel
allowed bandwidth (e.g. to disallow audio and video chan- yith it two forwarders — one that receives messages from the
nels). In general her notion of what data is to be consid- enyironment on channéh and sends them to the wrapped
ered “sensitive” is likely to be context dependent. In a Web program, and one that receives messages from the wrapped
browser, she may choose to consider her e-mail address as grogram on channedut and sends them to the environ-
secret that should be protected from broadcast to junk mailmjent. An arbitrary progran® (possibly malicious) can be
lists, while the same e-mail will not be treated specially in \yrapped to giveV, [P]; the design of the calculus and of
her text editor. W\ ensures that no matter hdwbehaves the wrapped pro-

While it is not feasible to analyse or modify large third- ?V:/";n;:]/z ;[fe]lgag:gly I':m_:_arr]?scimﬁz gz sz:rec\)/r;rgi?raor tkl)we

.. . . n out.

party software packagesiitpossible to intercept the com- éorbiddingall interaction betweer® and the outside V\F/)o)rlldy

munications between a package and the other parts of th rather unsatisfactory wr 1A% is alsohonestin that
system, interposing code at the boundaries of the different? Faer unsatistactory wrappe s alsohonest a

software components [20, 11, 7, 13]. It is thus possible to it faithiully foryvards messages om f"‘”d out. T.hese in-
monitor or control the operations that these components are{)oerlrgv?ll ?/\rlgpj;gejiggjs??r?eeser(r?(s:lesfnlCvﬁiz:%p\?v?;spr;;@iand 5

able to invoke, and the data that is exchanged betweenthemb haved? h ffect on its behavioulV: is atypical i
We call a code fragment that encapsulates untrusted compo—e ave as no efiect on Its behavioury, IS atypical in

nents asecurity wrappeor wrapperfor short. that it has no behaviour except the forwarding of legitimate
messages — other reasonable unary wrappers may perform

Clearly the task of writing wrappers should not be left some kind of logging, or have a control interface for the
solely to the end-user. Rather we envision wrappers aswrapper. The honesty property that should hold for any rea-
reusable software components, users should then only have€onable wrapper is therefore somewhat delicate; to state it
to pick the most appropriate wrappers, customize them with (and our other security properties) we make extensive use
some parameters and install them. All of this process shouldof a labelled transition semantics for the calculus.
be dynamic: wrappers must be no harder to add to arunning The wrappen/V; controls interaction between a single
system than new applications. A user will require a clear component and its environment. Our second main exam-
description of the security properties that a wrapper guar-ple goes further towards solving Karen’s problem, allowing
antees. Moreover, wrappers should compose with a clearcontrol of the interaction between componenid’; (de-
notion of which properties are preserved. fined in§3) is a binary wrapper that encapsulates two com-

] . . ponentsP and @ as Wh[P, @], allowing each to interact

The goal of this work is to study such secure environ- it the environmentin a limited way but also allowing in-
ments, focusing on how they can be expressed in a way thatsrmation to flow fromP to Q (but not vice versa) along a
enables their security properties to be stated and proged i girected communication channel. Making this precise is the
orously. It appears that there is a wide range of rather del'subject of§5.
i(l:gte propertie_s, m_aking hard for desi.gners to develop suf- pggih W1 andW, are chosen to be as simple as possible,
ficiently clear intuitions without such rigour. Moreoveeth iy harticular with fixed interfaces for components to intgra
wrappers, although critical, may be rather small pieces of \yiih each other and with the environment. Generalising this
software, making it feasible to prove properties about them 14 grpitrary interfaces and to wrappers taking any number of
or about mild idealisations. components should be straightforward but complicates the
frotation; other generalisations are discussed in the gencl

| !out“y.WTy)

To express and reason about wrappers we require a sma
programming language, with a well-defined semantics, that>'°":
allows the composition of software components to be ex-
pressed straightforwardly and also supports the enforce-Overview We begin in the next sectior§Z) by intro-
ment of security policies. Such a language, the baal- ducing the calculus and giving its operational semantics.
culus, is introduced i2. We begin with a simple exam- A number of wrappers are defined §3, including one
ple, a wrappebV; written in the calculus. It encapsulates a which logs traffic. The basic properties of honesty and well-
single component and controls its interactions with the en- behaviour are introduced §4. Information flows between
vironment, limiting them to two channeifs and out. W, wrapped components are studied§k then we conclude

in §6 with discussion of related and future work. This pa- labelled transition semantics) that we require to state and
per describes work in progress — Sections 4 and 5 contain grove security properties. The calculus is also untyped —
number of conjectures which are yet to be proved, but which we wish to consider the wrapping of ill-understood, proba-
we hope will stimulate discussion. bly buggy and possibly malicious programs.

2 A Boxedr Calculus 2.1 Syntax

The language — known as tihex-r calculus— that we The syntax of the calculus is as follows:

use for studying encapsulation properties must allow in- o

teracting components to be composed. The componentdVames We take an infinite set\" of names ranged
will typically be executing concurrently, introducing non ~ OVer by lower-case roman lettensm, z,y, » etc. (except
determinism. It is therefore natural to base the language’sJ»*, 0, p,u,v). Both boxes and communication channels
on a process calculus. The baxealculus lies in a large &€ named; names also play the role of variables, as in the
design space of distributed calculi that build on the ~ 7-Calculus.

calculus of Milner, Parrow and Walker [24]. Related cal-

culi have been used by a number of authors, e.g. inValuesand Patterns Processes will interact by communi-
[2, 4, 6,09, 10, 12, 17, 16, 28, 30, 31, 33, 34, 36, 37]. A cating values which are deconstructed by pattern-matching
brief overview of the design space can be found in [32]; upon reception. Values,v can be names or tuples, with
here we highlight the main design choices for boxdefer- patterng correspondingly tuple-structured:

ring comparison with related work 6.

The calculus is based on asynchronous message pass-"" z name
ing, with components interacting only by the exchange of (V1 .. Vg tuple ¢ > 0)
unordered asynchronous messages. Bdxas an asyn- p = - wildcard
chronousr-calculus as a subcalculus — we build on a large z name pattern
body of work studying such calculi, notably [18, 8, 5]. They P1 - Pr) tuple pattern
are known to be very expressive, supporting many pro- (k > 0, no repeated names)

gramming idioms including functions and objects, and are

Turing-complete; a box- process may therefore perform Processes The main syntactic category is that pfo-

arbitrary internal computation. cessesranged over byP, (. We introduce the primitives
To m we must add primitives for constraining commu- in three groups.

nication — in standard-calculi, if one process can send a

message to another then the only way to prevent informa-Boxes A box n[P] has a name, it can contain an arbi-

tion flowing in the reverse direction is to impose a type sys- trary process”. Box names are not necessarily unique —

tem, which (as observed above) is not appropriate here. Wethe process[0] | 2[0] consists of two distinct boxes named
therefore add a boxing primitive. Boxes may be nested, giv-y,, both containing an empty process, in parallel.
ing hierarchical protection domains; communication agros

box boundaries is strictly limited. Underlying the calcu- P == n|[P] box named: containingP
lus design is the principle thaach box should be able to PP P andP’in parallel
control all interactions of its children, both with the oids 0 the nil process

world and with each othef36]. Communication is there-
fore allowed only between a box and its parent, or within
the process running in a particular box. In particular, two Communication The standard asynchronouscalculus
sibling boxes cannot interact without the assistance dof the communication primitives argv, indicating an output of
parent. To enable a box to interact with a particular child, valuev on the channel named andxp.P, a process that
boxes are named, analogouslyst@ehannel names. The se- will receive a value output on channe| binding it top in
curity properties of our wrappers depend on the ability to P. Here we refine these with a tag indicating the direction
create fresh box names. of the communication in the box hierarchy. Aaput tag:
Turning to the values that may be communicated, it is can be eithex, for input within a box;f, for input from the
convenient to allow arbitrary tuples of names (or other tu- parent box, or a name, for input from a sub-box named
ples). Note that we doot allow communication of pro- An output tago can be any of these, similarly. For technical
cess terms. Moreover, no primitives for movement of boxes reasons we must also allow an output tag td piedicating
are provided. The calculus is therefore entirely first order an outputreceived from the parent that has not yet intedacte
which is important for the tractable theory of behavioue(th with an input, om, indicating an output received from child

n that has not yet interacted. The communication primitives that{"/, } P is well-defined.
are then

nztv | Q] = T | n[Q] (Red Up)
Pou= 7 | n[Q] = n[z'v | Q] (Red Down)
T outputv on channek to o v | z'p.P — {"/,}P (Red Comm)
z'p.P input on channet from ¢ v | 'z'p. P = Va'p.P | {V),} P (Red Repl)
Yz'p.P replicated input P-Q = PIR->Q|R (Red Par)
P—-@Q = (vz)P—- v)Q (Red Res)
The replicated inputl z‘p.P behaves essentially as in- i;ﬁ% _):anE[Pé%::z[Q]]D -0 Eigg E?rﬁ)ct)

finitely many copies ot‘p. P in parallel. This gives compu-

tational power, allowing e.g. recursion to be encoded sim- The (Red Up) axiom allows an output to the parent of a box

ply, while keeping the theory simple. ktp.P and! z'p.P to cross the enclosing box boundary. Similarly, the (Red

the names occurring in the pattesiind in P. Down) axiom allows an output to a child bax to cross

the boundary ofi.. The (Red Comm) axiom then allows

synchronisation between a complementary output and input

within the same box. The (Red Repl) axiom is similar, but

preserves the replicated input in the resulting state.
Communications across box boundaries thus take two

reduction steps, for example in the following upwards and

New name creation Both box and channel names can be
created fresh, with the standardcalculus(v z) P opera-
tor. This declares any free instanceszoWwithin P to be
instances of a globally fresh name.

P o= . downwards communications.
(vax)P new name creation n@t] | z"p.P = n[0] | T | 2"p.P
= 0] [{*/p}P

In (v z) P thex binds inP. We work up to alpha conversion
of bound names throughout, writing the free name function,

N t =1 T
defined in the obvious way for values, tags and processes, = [nfz'p.P] = nfz'v | zTp.P]

asfn(_). = n[{"/p}P]
This removes the need for 3-way synchronisations between
2.2 Reduction a box, an output and an input (as in [36]), simplifying both

the semantics and the implementation model.
The simplest semantic definition of the calculus i®a

duction semanticsa one-step reduction relatidd — P’ 2.3 Labelled Transitions
indicating thatP can perform one step of internal compu-
tation to becomé®’. We first define the complemenof a The reduction semantics defines only the internal com-

tag. in the obvious way, withk = x and? = . We write putation of processes. The statements of our security prop-
{v/,} P for the result of substituting appropriate parts of the erties must involve the interactions of processes withrthei
valuewv for the names of the pattegnin P. Note that this environments, requiring more structurelabelled transi-
may be undefined, either because the value does not matckon relationcharacterising the potential inputs and outputs
the pattern or because the syntax does not allow arbitraryof a process. We give a labelled semantics for bdr-an
values in all the places where free names can occur. Weexplicitly-indexed early style, defined inductively on pro
define structural congrueneeas the least congruence rela- Cess structure by an SOS. Tlaelsare

tion such that the axioms below hold. This allows the parts

of a redex to be brought syntactically adjacent. b ou= 7 internal action

T°v outputaction
z7v input action

P|0 = P
P QI; | % f g | fQ R) where~ ranges over all output tags exceptThe labelled
Q)| P - (@] P transitions can be divided into those involved in moving
(v fv)(;; yzg = g/ y)(v 5% op messages across box boundaries and those involved in com-
wa)(P1Q) = P|(vz) z ¢ in(P) munications between outputs and inputs. The movement
(vz)n[P] = n[(vz)P] T#n labels are
The reduction relation is now the least relation over pro- Z'v (sending to the parent)
cesses satisfying the axioms and rules below. The (Red Z"v (sending to chilch)

Comm) and (Red Repl) axioms are subject to the condition 2™ (boxn receiving from its parent)

AFn[P] 5 (vin(z,v) — A)(Z™ | n[P'])

Azt p LS pr
AF (wz)P L8 pr

Az-P -5 P
AF (vz)P N (vz)P'

(Res-1)

——— (Ou) : () ' (Rep)
v 25 0 z'p.P =5 {Y/,}P atp.P == 1a'p.P | {*/p} P
) , zVy ’ ¢ /
AFP|Q -5 (vin(z,v) — A (P | Q) PlQ—P|Q
Tty a
AFpPZ8 pr (Box-1) (Box-2) P— P (gox3)

n[P] 2% n[ztv | P

¢ —
(Resz) P—> P P'=P"

The (Res-1) rule is subject to ¢ fn(¢), the (Res-2) rule is subject to€ fn(v) — fn(y, o) if -mv(o) and toz € fn(y,v) — fn(o)
otherwise. The indexingl has beeen elided in rules where it is not involved in any @stng way. In all rules with conclusion
of the formA - P -5 Q there is an implicit side conditiofu(P
condition that{"/, } P is well-defined. Symmetric versions of (Par) and (Comm) &ded.

n[P] s n[P']

7 (Struct Right)
pP— P

D

) C A. Inthe (In) and (Repl) axioms there is an implicit sid

Figure 1. Box- = Labelled Transitions

Saymv(o) is true ifo is of the formn or 1. The communi-
cation labels are

7*v (local output)

z*v (local input)

Z"v (output received from child)

x™v (input a message received from chil}l
Z'v (output received from parent)

z'v (input a message received from parent)

Labels will synchronise in the pairs given:

T T*v
™ v
ARy 2T
T "

The labelled transition relation has the form
AFP-50Q

whereA is a finite set of names arfd(P) C A; it should

be read as ‘in a state where the namesnay be known

to P and its environment, proceg3 can dof to become
@’. The relation is defined as the smallest relation satis-
fying the rules in Figure 1. We writel, = for A U {z}
wherez is assumed not to be i, and A, p for the union of

A and the names occurring in the patternwhere these
are assumed disjoint.
binding the labelled transition rules are straightforward

For the subcalculus without new-

of (Box-1), (Out), and (Par); instances of (Red Down) cor-
respond to uses of (Comm), (Out), and (Box-2); instances
of (Red Comm) correspond to uses of (Comm), (Out), and
(In). The addition of new-binding introduces several sub-
tleties, some inherited from thecalculus and some related
to scope extrusion and intrusion across box boundaries. We
discuss the latter briefly.

The (Red Down) rule involves synchronisation on the
box namen but not on the channel name — there are
reductions such as

(vz)z"2) | n[0] — (va)n[z'z]

in which a new-bound name enters a box boundary. To cor-
rectly match this with ar-transition the side-condition for
(Res-2) for labels with output tagrequires the bound name
to occur either in channel or value position, and the (Comm)
rule reintroduces the binder on the right hand side.

Similarly, the (Red Up) rule allows new-bound names in
channel position to exit a box boundary, for example in

n[(ve)t'z] = (vz)(@ 2| n[0])

The (Res-2) condition for output tagyagain requires the
bound name to occur either in channel or value position,
here the (Box-1) rule reintroduces théinder on the right
hand side.

Reductions generated by (Red Comm) involve synchro-
nisation both on the tags and on the channel name. The

instances of the reduction rule (Red Up) correspond to usegRes-2) condition for output tagg 1 and is analogous

to the standara-calculus (Open) rule; requiring the bound

all such communications. The third wrapper encapsulates

name to occur in the value but not in the tag or channel. Thetwo components, allowing each to interact with the outside
(Comm) rule for these output tags is analogous to the stan-world in a limited way but also allowing information to flow

dardr rule — in particular, here it is guaranteed that A
(see Lemma 10).

Some auxiliary notation is useful. For a sequence of la-
belst; ... ¢, we write

AFP % 5 P

to meandPs,..., Py . Vi € 1.k . A; - P -5 Py,
whered; = AU U, (). If £ # 7 we write A
P=5 Pfordr P55 5" Prif ¢ = 7then
AF P =% Plisdefinedasi - P 5" P,

The two semantics coincide in the following sense.

Theorem 1 If fn(P) C AthenAF P 5 Qiff P — Q.

This give confidence that the labelled semantics carries

enough information. The proof is somewhat delicate — it
is sketched in Appendix A; full details can be found in the
forthcoming technical report.

2.4 Bisimulation

The statements of some relationships between the be

haviour of a wrapped and an unwrapped program require

an operational equivalence relation. As lboxXs asyn-
chronous, an appropriate notion can be based omveeak
asynchronous bisimulatioof [5]. Consider a familyS of
relations indexed by finite sets of names such that &ach
is a symmetric relation ovef P | fn(P) C A}. SaySisa
weak asynchronous bisimulatidn

e PSy,Q AFP 4, P’ and/is an output orr

transition imply3Q' . A F Q == Q' A P’ SAUfn(e)
Q', and

e PSyQ, AP =y pr imply either3Q’ . A
Q g QI A Pl SAUfn(x“fv) Ql OrHQI AR Q —
QI A P! SAUfn(z‘Yv) (QI | EVU)-
We write = for the union of all weak asynchronous bisimu-

lations. (This definition has not been thoroughly tested — in
particular, it has not been proved to be a congruence.)

3 Security Wrappers

This section gives three example wrappers. The first en-
capsulates a single component, restricting its interastio
with the outside world to communications obeying a cer-
tain protocol. The second is similar, but also writes a log of

from the first to the second (but not vice versa).

A wrapper design must be in the context of some fixed
protocol which components should use for communication
with their environment and with each other. For the first two
wrappers we fix two channel nameés,andout, for compo-
nents to receive and send messages respectively. Moreover,
we assume that components will always be executed within
some box and should be communicating with the parent
box. A trivial component that receives valuesand then
copies pairgv v) to the output would be written as

! inTy.ﬁTQJ)

A malicious component might also write data to another il-
licit output channel available in the environment, e.g.

Vinly. (@Ty | ﬁT(y)

or eavesdrop on communications between other parts of the
system, e.g.

!c*y.(@Tc | ¢*y)

We can express whether a component obeys the protocol in
terms of the labelled transition semantics — gays well-

behavedor a unary wrapper iff whenevet + P Ly Q
then thel; are of the formn'v, out v, or 7.

A Filtering Wrapper A filter is a wrapper that simply
restricts the communication abilities of a process. We con-
sider a static filter that allows interaction on two channels
in andoutonly.

def

Wil

W o]
| VinTy.in"y
| !outay.@Ty)

W, executes its component within a freshly-named box, in-
stalling forwarders to move legitimate messages across the
boundary. Note that this and further wrappers are non-
binding contexts — equivalently, we assume wherever we
applyW; to a proces$’ that the new-bound does not oc-

cur free inP (in an implementation this could be ensured
either probabilistically or with a linear-time scan Bj. Ir-
respective of the behaviour &f, W, [P] does obey the pro-
tocol —this can be stated clearly using the labelled traomsit
semantics:

Proposition 2 For any programP with a ¢ fn(P), if A +

Wi [P] "% Q then thel; are of the formin'v, out v, or
T.

The proof is via an explicit characterisation of the states whereR is the parallel composition of forwarders. The out-

reachable by labelled transitions ¥, [P]. A sketch of
this, and of the other properties ®¥,, can be found in
Appendix B; full details can be found in the forthcoming

technical report. We say a unary wrapper with this property

is pure

The Logging Wrapper The filter can be extended to

put mid v in the final state cannot interact further — not
with the environment, a8, is restricted, and not with the
forwarder! mid® y.mid "y, asa, # as.

These wrappers all assume a rather simple fixed proto-
col. It would be straightforward to generalise to arbitrary
sets of channels instead of, out andmid. It would also
be straightforward to allow-ary wrappers, encapsulating

maintain a log of all communications of a process, sending many components and allowing information to flow only

copies on a channéilg to the environment:

wa)(al]

| Vin'y.(Tog'y | n"y)

def

L[]

| tout®y.(log 'y | out'y))

A wrapped progrant[P] again can interact only in limited
ways.

Proposition 3 For any programP with a ¢ fn(P), if A

£]P] "= (then the; are of the formin'v, out v, log v,
orr.

A Pipeline Wrapper A pipeline wrapper allows a con-
trolled flow of information between two components. We
give a binary wrappeWV, that takes two processes. In an
execution oM [Q1, Q2] the two wrapped processgs can
interact with the environment as before, on chanielsind
out;. In addition,); can send messages@ on a channel
mid. The pipeline implemented here is unordered.

def

Wala, 2]

(vay,az)(a1]a] | as]s]

| VingTy.ing"'y

| Vinay.ina""y

| !outl‘“y.thTy

| !oth“Zy.thTy

| 'mid™y.mid "y)
As beforeW, is a non-binding context — we assume, wher-
ever we apply it to two processdy, P, that{a,,a>} N
fn(Py, P,) = (). Say a binary wrappet is pure iff for any
programsP;, P», (satisfying the appropriate free name con-
dition — for W, that with {al,a2} N fn(Pl, Pz) = w), if
A F C[Py, Py] "% @ then thel; are of the formin; v,
Wtﬁv, orr.

Proposition 4 W is pure.

For an example of a blocked attempt by the second process

to send a value to the first, suppd3e= mid v. We have

Wal Py, mid v] = (vai, a5) (a1 [P1] | az[mid v] | R)

- (vay,as)(a1[P1] | a2[0] | mid v | R)

on a given preorder between them. Other generalisations
are discussed in the conclusion.

4 Honesty and Composition

The properties of wrappers stated in the previous section
are very weak. For example, the unary wrapper

def

g o

is also pure, but is useless. In this section we identify the
class ofhonestwrappers that are guaranteed to forward le-
gitimate messages. This gives the authors of components a
clear statement of (some of) the properties of the environ-
ment that can be relied upon.

An initial attempt might be to tak®/; as a specification,
defining a unary wrappét to be honest iff for any program
P the processeS[P] andW;[P] are operationally equiva-
lent. This is unsatisfactory — it rules out wrappers such,as
and it does not give a very clear statement of the properties
that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wragper
is honest iff for any well-behavel the processe$[P] and
P are operationally equivalent. This would be unsatisfac-
tory in two ways. Firstly, some intuitively sound wrappers
have additional interactions with the environment — e.g. th
logging outputs ofZ — and so would not be considered hon-
est by this definition. Secondly, this definition would not
constrain the behaviour of wrappers for non-well-behaved
P at all — if a componenf’ attempted, in error, a single
illicit communication therC[P] might behave arbitrarily.

To address these points we give explicit definitions of
honesty, first for unary wrappers and then for binary, in the
style of weak asynchronous bisimulation. Consider a family
R indexed by finite sets of names such that e&chis a
relation ove P | fn(P) C A }. SayRis anh-bisimulation
if, wheneverC R4 @ then:

LifAFC -5 ¢ fort = outlv,r thend F Q =%
Q" A C" Ry Q'

2 A F C ™ O then eitherd + Q Z¥ ¢
and C' RAUfn(in,v) QI or A + Q 54 QI and

o RAUfn(imv) Ql | %TU

3 ifAFC -5 O for any other label the?” R 4.g(¢) require an operational equivalence relativised to sucti-we
Q behaved’ environments.
A simpler property would be that multiple wrappings

together with symmetric versions of clauses 1 and 2. Say ahave no effect. We conjecture thaf; is idempotent, i.e.
unary wrappect is honestf for any programp (satisfying thatW [W; [P]] andW; [P] have the same behaviour (up to
the appropriate free name condition) and an® fn(C[P]) weak asynchronous bisimulation):
there is an h-bisimulatioR with C[P] R4 P.
sure hatlegimate communications and ntermal recnaio.CCriectare 7 Forany programb witha ¢ fa(P) andA 2
must be weakly matched. Clause 3 ensures that if the wrap—fn(Wl [P]) we havei [P} x4 Wi [P
per performs some additional communication then this does

not affect the state as seen by the wrapped process. Honesty for Binary Wrappers must take into account

the mid communication. Consider a familg indexed by
finite sets of names such that eaBh is a relation be-
tween terms and pairs of terms, all with free hames con-
tained inA. SayR is abinary h-bisimulatiorf, whenever

C R4 (Q1,Q2) the clauses below hold. The key difference
with the unary definition is clause 7; the other clauses are
routine, albeit notationally complex.

Proposition 5 The unary wrapper$V; and £ are honest.

We give some examples of dishonest wrappers. Take

out'v

This is not honest — a transitiodA - P — P’ can-
not be matched b¢[P], violating the symmetric version
of clause 1. Now consider

. =T
LifAF C %5 ¢ thend F Q; “M5Y @ A+
Q37i Sl Q,37i andC’ RAUfn(v) (Qll, le)

LA R C MY O thend F Qi = @,_, and

This wrapper is also dishonest@gsP] can perform actions
not in the protocol that essentially affect the staté’ofor

example, takeP = a*y.out (). Suppose&’[P] R4 P for
an h-bisimulation?. We haved F C[P] =4 out' () so by
clause %To R4 P, but then clause 1 cannot hold — the

left hand side can perform WTQ transition that cannot
be matched be the right hand side.

Composition of Wrappers The protocol for communica-

tion between a component and a unary wrapper is designed
so that wrappers may be nested. We conjecture that the -

composition of any honest unary wrappers is honest.

Conjecture 6 If C; and(C, are honest unary wrappers then
C1 0 Cs is honest.

Analogous results for non-unary wrappers would require
wrappers with more complex interfaces so that the input,

output and mid channels could be connected correctly.
A desirable property of a pure wrapper is that it should

either A - Qi 59 Q1 A C' Raaqwy (@}, @Q5) or
AF Q = Q;’ A C' RAUfn(v) (Qll,Qé)' where

Q. =Q"|inv.
3.ifAFC T O thend F Q) = Q), Ak Qs =
Q5 andC’ Ra (Q1, Q%)

4. if A+ C -5 ¢ for any other label thel” R (s
(Qla Q2)

it AF Q; - Q) for £ = out; v, 7 thenA + C ==
C', andC’ Ry (Q1, @), whereQs ; = Q3.

6. if A - Qi ™Y Q! then eitherd F C 2 ¢ 4
C" Rasm(n) (Q1,Q5) 0r A C = C' A C" |
v Raven() (Q4,Q5), whereQ}_; = Q5.

mid v

7.FAF Q1 — ithend F C = (" »

C" Raum(v) (@1, Q2 | mid v).

not affect the behaviour of any well-behaved component
— one might expect for any pure and honésand well-

behavedP thatC[P] ~4 P (whered 2 fn(C[P])). Un- ing the appropriate free name condition) and ahyD

fortunately this does not hold, even fo¥,, as the wrapper . . -) g
can make input transitions that cannot be matched. Onefn(c[PhPﬂ) there exists a binary h-bisimulatiaid with

can checkV;[0] #.4 0, yet0 is well-behaved. In practice ClP1, Po] Ra (P1, Py).
one would expect the environment of a wrapper to not be _ .
able to detect these inputs, but to make this precise wouldConjecture 8 W, is honest.

A binary wrapperC is honest if for all P, P, (satisfy-

5 Constrained Interaction Between Compo- before starting®, that would not be acceptable to the desk-

nents top user. Many programs are essentially non-terminatfng; i
they are executing concurrently then the user cannot be pre-

In our motivating example Karen required fine-grain vented from reading the output qf one and copying .it to the

control over the information flows between components — other. In many circumstances this should be ex_pI|C|tIy sup-
in the binary case, allowing unidirectional flow. By exam- p_orted by the desktop cut-and-paste, perhaps with a warning

ining the code foVs it is intuitively clear that it achieves signal.

this, preventing information flowing fronp to P within

Ws[P, Q]. When one comes to make this intuition precise, Permutation Our second property formalises the intu-
however, it becomes far from clear exactly what behavioural ition that if no observable behaviour due B depends on
propertiesV, guarantees that make it a satisfactory wrap- the behaviour o, then in any trace it should be possible
per from the user’s point of view (who should not have to to move the actions associated with before all actions
examine the wrapper code). Honesty is one, but it does notassociated withP. SayC has thepermutation propertyf
prohibit bad flows. In this section we give a number of can- whenever

didate properties, stating four precisely and the others in 0 0

formally. We conjecture that all are satisfied Wy but that ARClP Pl =...=P

none are equivalent. None are entirely satisfactory; wehop . . .

to provoke discussion of exactly what guarantees should beWlth ¢ # 7 there exists a permutationof {1, ..., k} such
desired by users and by component designers. For simplic-that
ity, only pure binary wrappei& are considered — recall that
for a pure binary the labelled transitions @f[Py, P»] will

only be of the formsn; v, out; v andr.

Or Ok
AFCIPL, P = ... 2P

and noiny or out; transition occurs after anins or outs
transition inl(y) ... (). For an example wrapper with-
New-name directionality As we are using a calculus out this property, consider

with creation of new names, we can test a wrapper by sup-

plying a new name to the second componentjen and Cla, 2] def (vai,a2)(ai[] | as[-2]
observing whether it can ever be output by the first compo- | !in2Ty_(%“2y | !inﬁy.ﬁ‘“y)
nent onout,. SayC is directional for new namet when- | !outlf“y.thTy

ever -
| ! outs “Zy.out2Ty

ArCp, Py Lyl Gy Gyl p | tmid®y.mid"*y)
Here thein; messages are not forwarded until at least one
ing input is received from the environment. Nonetheless,
in some sense there is still no information flow from the
second component to the first.
z ¢ U fn(v) The new-name directionality and permutation properties
i€l kAL=ina Ty are expressed purely in terms of the externally observable
behaviour o’ [P, @] (in fact, they are properties of its trace
set, a very extensional semantics). Note, however, that the
intuitive statement that information does not flow fronto
P depends on an understanding of the internal computation
of P and() that is not present in the reduction or labelled
Umid®2y.if y € {0,1)} then mid"'y transition relatiops (given only thé'qP, Q) —>.* _R '_[here is
no way to associate subterms®fwith an ‘origin’in C, P
could still satisfy it. (Hered and1 are free names, which ~ OF). Our next two properties involve a more intensional
must therefore be i) semantics in which output and input processes are tagged
Note that a binary wrappet is intended only to limit yv|th set_s of colours. The sema_ntlcs propagates c_olours in
information flowwithin C[Py, P»]. We do not wish to place mtergctmn steps, thereby tracking the dependencies-of re
any constraint on the environment of the wrapper, for ex- ductions.
ample forbidding the environment to copy values received
from out, to iny. Such a restriction could only be imposed Coloured Reductions Take a setol of colours (disjoint
by draconian measures, e.g. by waiting fgrto terminate ~ from A/), and letc andd range over subsets abl. We

with z € fn(u), butz is new, i.ex ¢ AUfn(¢; ...¢;), and
z is not subsequently input to the first component, i.e.

thenz is not output by the first component, i.e.¢ fn(u').
This property does not prevent all information flow, how-
ever — a variant ofV, containing a reverse-forwarder that
only forwards particular values, such as

define a coloured box-calculus by annotating all outputs
and inputs with sets of colours:

P

c:Z% | c:a'p.P | c:la'p.P |
n[P] | 0| P|P | (va)P

If P is a coloured term we writg?| for the term of the orig-
inal syntax obtained by erasing all annotations. Conversel
for a term P of the original syntax o P denotes the term
with every particle coloured by. For a colouredP we
write c e P for the coloured term which is aB but with c
unioned to every set of colours occurring in it. We write
cd for the unionc U d. The reduction relation now takes the
form P —. @Q, whereP and() are coloured terms ands a
set of colours indicating what this reduction depends upon.
It is defined as follows, in which structural congruence is
defined by the same axioms as before.

(C Red Up)
(C Red Down)
(C Red Comm)

nle:z'v | Q] =c ¢:T™ | n[Q]
c:2™ | n[Q] —¢ nlc:zTv | Q)
c:7v | d:x'p.P —cq cd o({%/,} P)
c:Tv | d:1z'p.P —y

d:'2'p.P | cde({",}P) (C Red Repl)
P—-.QQ = PIR—-.Q|R (C Red Par)
P—-.Q = (wz)P—-.(rz)Q (CRedRes)
P—=.Q = n[P]—.n[Q] (C Red Box)

P=P —-.Q'=Q = P—.(@Q (CRedStruct)

For an example wrapper that we conjecture has the per-
mutation property but not the colour directionality prayer
consider a version ofV, that has an extra parallel compo-
nentoutgwy.(thTy | outl‘“y.thTy). This establishes
an additional one-shot forwarder font, after forwarding
a message onuts.

These statements of mediation and coloured directional-
ity share a defect: the use of a reduction semantics makes it
awkward to consider inputs of values containing new names
that have previously been output by the wrapped compo-
nents. To address this one would need a coloured labelled
transition semantics, allowing e.g. a refined colour direc-
tionality property to be stated as follows. Whenever

AF (groC)[blo Py, rdo Ps] Ly s

if the inputs are properly coloured (i.e. for eacle 1..k
we havel; = inIv — ¢; = blue and/; = m;v ==
c; = red), then for eachi € 1..k the out; outputs should be

properly coloured, i.e.

b = outlTv — red & ¢;

Causality A very strong directionality property that one
might ask for — perhaps the strongest — would be that in an
execution ofC[P;, P»] no output onout; can becausally
dependenbn any action of». Casual semantics for pro-
cess calculi have been much studied, often under the name

The coloured calculus has the same essential behaviour agrue concurrency semantics’ — see [40] for an overview. It

the original calculus:

Proposition 9 For any colouredP we have|P| — @ iff
3, P'. P = P A|P|=Q.

Mediation We can now capture the intuition that all in-

would be interesting to give a causal semantics to the box
m calculus. There is a trade-off here, however — such a se-
mantics would be rather complex; it would have to be un-
derstood in order to understand any property stated using it
The coloured reduction semantics can be considered as an
more tractable approximation to real causality.

teraction between wrapped components should be mediated Another point is that a causal property is sometimes too
by the wrapper. We consider coloured reduction sequence$trong —a usable wrapper may have to allow low-bandwidth

of a wrappelC and two component®;, P, from an initial
state in which each is coloured differently. lget bl andrd
be distinct singleton subsefgreen}, {blue}, {red} of col.
Suppose

(grOC)[blopl, rd0P2] |bloly |rdoly —¢, ... =, @

where eacH; is a parallel composition of messagesian,

i.e. of terms of the forrin; 'v. SayC is mediatingff when-
everred € c; andblue € ¢; thengreen € c;.

Colour flow The coloured semantics can also be used
to express the property that no output est; should de-
pend on the second wrapped component. &ayas the
colour directionalityproperty if whenever there is a reduc-
tion sequence as above a@d= (v A)(C:MTU | Q") then

red € c.

communication in the reverse direction, perhaps not carry-
ing any data values, to permit acknowledgement messages.
A causal property would then not hold, while a modified
colour flow property would.

6 Conclusion

The code base of modern systems is becoming increas-
ingly diverse. Whereas previously a typical system would
involve a small number of monolithic applications, obtaine
from trusted organisations, now users routinely download
components from partially trusted or untrusted sources.
Downloaded or mobile code fragments are commonly run
under the user’s authority to grant access to system re-
sources and permit interaction with other software compo-
nents. This presents obvious security risks for the secrecy
and integrity of the user’s data.

In this paper we have developed a theory of security for the purpose. Common to all is the use of a reduction
wrappers. These are small programs that can regulate ther labelled-transition operational semantics, providilegr
interactions between untrusted software components, enfigorous semantics to the rather high-level constructs in-
forcing dynamic and flexible security policies. We have volved. One distinguishing feature of the present work is
presented a minimal concurrent programming language forthat we do not consider any mobility primitives, allowing
studying the problem, the box-calculus, and proved a ba- us to use a tractable early labelled transition system. This
sic metatheoretic result: that a reduction and labellenltra appears to be important for the statement of the delicate se-
sition semantics coincide. We have expressed a number oturity properties of wrappers.
security wrappers in the calculus and begun an investigatio

of the security properties that wrappers should provide. 6.2 FEuture Directions

6.1 Related Work
This paper opens up a number of directions that we

would like to pursue. Most immediately, it gives several
erties of various kinds. Much of it is in the context of multi- COMJectures that ShOUId.be proved or refu_ted, an_d we would
like a better understanding of the properties of binary wrap

level security, in which one has a fixed lattice of security Th h tonsi for tving. to richer int
levels and is concerned with properties which state that gPers. There are tnen extensions 1or yping, to richer inter-
?aces, and with mobility primitives.

component (expressed purely semantically, e.g. as a set o
traces) respects the levels. The theory could be applied dur
ing the design of the components of a large multi-user sys-
tem (with a relatively static security policy) by provingth
the components obey particular properties. A concise-intro
duction can be found in the survey of McLean [23]. The
problem of designing and understanding wrappers appear
to be rather different — we have focussed on the protection
required by a single user executing a variety of partially-
trusted components obtained from third parties. This re- T == box | (Th..Th) | 1T
quires flexible protection mechanisms — a static assignment
of security levels would be inadequate — and cannot de-Wherel T is the type of channel names that can be used to
pend on static analysis of the components. Related workcommunicate values of tydg, together with the obvious
on dynamic enforcement of policies has been presented byinference rules. I is well-typed with respect to a typing
Schneider [29]. contextin : 1 S, out: T for typesS andT containing no
Other recent work has studied type systems that en-instances of then one would exped? to be well-behaved
sure security properties, e.g. the type systems of Volpano for unary wrappers.
Irvine and Smith [38, 39], the SLam calculus of Heintze
and Riecke [15], the systems allowing declassification of
Myers and Liskov [26, 25], the type Systems of R|e|y and Richer interfaces The wrappers 0§3 allowed the encap-
Hennessy [17, 16, 28], and work on proof-carrying code sulated components to interact only on very simple inter-
[27]. If the producers of components that one uses all adoptfaces. Ultimately, we would like to understand wrappers
such systems then they may become very effective. Unt||W|th more realistic interfaces. For example, in a mild ex-
then, however, and until type systems can provide the flex-tension of boxx one can express a wrapper that encapsu-
ible policies required, partially trusted code will in ptee ~ latesk components, allows internal flow along an arbitrary
either be run dangerously or be wrapped. preorder, and permits each component to open and close
In this paper we have made extensive use of techniquegvindows for character I0. Suppog, ..., py, is a list of
from process calculi and operational semantics. These ardliStinct names, anc is a preorder over them giving the
beginning to provide fruitful ways of studying problems in allowable information flow. Define &-ary wrapper as fol-
security and distributed systems, including the analysis o 1OWS.
security protocols, for example in [3, 1, 22], and more gen-

There is an extensive literature on information flow prop-

Typing We are primarily interested in components for
which it is infeasible to statically determine whether they
are well-behaved. Nonetheless, for simple components one
gould conservatively ensure well-behaviour with a staddar
type system, most simply taking types

eral secure language design, including work on the Ambi- Clay . oy-k] =

ent calculus [9, 10], the Secure Join calculus [2], the mo- (vpi,-.. ,pk)(

bile agent calculi in [17, 16, 28, 30, 31, 33, 34], and the pi[a] |- | pel-k]

Seal calculus of [36, 37]. These works have studied sev- | fwd™ (n zy).if m > n then 2"y else 0

eral different problems, using a variety of calculi designe | BWINDOW)

where Appendix

BWiNDOW = 1 openwindow ™ (s z). A Coincidence of the Two Semantics
openwindowT(s)
| 2t (getc putc close). This appendix sketches the proof of equivalence of the
T (getc putc close) labelled transition semantics and the reduction semantics
| !getcmy.(MTy | ytey™e) Itis divided into three parts, the first giving basic propest

of the labelled transition system, the second showing that
any reduction can be matched by-#ransition and the third
showing the converse.

| !putcm(cy).(putcT(c v |yt g™)
| !closemy.(closeTy | ytg™)

This uses an additional input tag — a proce&8p.P will
input from any child box, binding the name of the boxito

in P. The BWINDOW part ofC receives requests for a new
window from the encapsulated components and forwards ¢
them to the OS. It then receives the interface for the new -€Mma 10 1f A =P — @ then

window from t_he OS, forwarding it down_to the component 1 fn(P) C A andfn(Q) C fu(P,0).

and also setting up forwarders for the interface channels.

Making the security properties of precise is at presenta 2. if £ = 7% thenfn(/) N A C fn(P), fn(o) C fn(P),
challenging problem. One would like to exteddurther and moreover if-mv (o) thenz € fn(P).

by adding an interface allowing the user to dynamically add
and remove pairs frormx.

Basic Properties of the LTS The first lemmas are all
proved by induction on derivations of transitions.

3. if £ = z7v thenfn(y) C fn(P). Moreover, ify # .
thenz € fn(P).

Covert channels It should be noted that none of the se- Lemma 11 (Strengthening) If A, B+ P -5 P’ andB
mantic models that we use for the bacalculus make any fn(P,¢) = f thenA - P 4 pr
commitment to the precise details of scheduling processes.

The properties expressed using these semantics thereforgamma 12 (Injective Substitution) If A + P ty pr

cannot address timing-based covert channels such as thosgndf - A= Bandg:(fa(¢) — A) — (N — B) are injective
mentioned by Lampson [21]. Certain other covert chan- '

(f+g)¢
nels, in particular those involving system 10 and disc ac- thénB = fP —" (f +g)P".
cess, could be addressed by expressing models of the 10 and .
disc systems in the calculus, further enriching the wrapper-€mma 13 (Shifting)

interfaces. ly . 2
1. (AFP— P rxefn(v)—A)iff(4,2+ P —

P’ nz € fn(v) —In(P)) .

Mobility The original motivation for this work involved T ,)
downloadable or mobile code and mobile agents. To ex- 2 4 F P 7 P' Az € fu(zv) — 4) iff
plicity model the dynamic configuration of wrappers and (A,z - P 23 P' rz € fn(z,v) — fn(P))
applications the calculus must be extended with mobility
primitives, while keeping both a tractable semantics aed th
principle that each box controls the interactions and move-
ments of its contents [36].

As we are working up to alpha conversion some care is
required when analysing transitions. We need the follow-
ing lemma for transitions of an input or restricted process,
together with analogous but less interesting results fer th

Acknowledgements Sewell was supported by EPSRC Other process constructors.
grant GR/L 6229Calculi for Interactive Systems: Theory

and Experiment The authors would like to thank Ciaran Leémma 14

Bryce for his comments. 1. A+ z'p.P LN Q iff there existsv such that
fn(z'p.P) C A, £ = z'v, {V/,}P is defined and
Q={"p}P.

2. AF (va)P -5 Qiff either

(a) there exists: ¢ A U fn(¢) U (fn(P) — z) and Proof Induction on derivations oft - P - (@, using

Q such thatd,z + {%/,}P 4 QandQ = the preceding three lemmas for the (Trans Box-1) and
(v 2)Q. (Trans Comm) rules 0
(b) there existy, o, v, @ and& ¢ A U fn(y, 0) U The proof of Theorem 1, i.e. that fh(P) C A then

(fn(P) L x)A such thatf = g%, 4,2 A'_ A+ P -5 Qiff P— Q,is nowimmediate from Lemmas
{*/:}P = Q, & € fo(v), -mv(0) andQ =Q. 16 and 20.
(c) there existsy, o, v, Q and# ¢ A U fn(o) U
(fn(P) - z) such that! = y°, A,z F B Properties of W,
{7, yP L5 Q, & € fu(y,v), mv(0) andQ = Q.

Explicit Characterisation The simple security proper-
ties of W, are proved using an explicit characterisation of
the states and labelled transitionsWf [P]. If N is a finite
set of names; is a name and{ and@ are processes define

Reductions Imply Transitions This direction of the
equivalence has two main parts: we must show that tran-
sitions are invariant under structural congruence and con-

structr-transitions for each reduction axiom. def

[N; 4Q1 = (wNUu{ah)(A
Proposition 15 If P’ = P thenA + P’ -4 Qiff Ak |?[,Ql —a
Pt 0 | tinly.iny

|! out“y.@Ty)

Proof A lengthy induction on the size of derivation of
gty Say the 4-tuple, N, A, @ isgoodif N, {a}, and{in, out}

P'=P. O
are pairwise disjoint4 is a parallel composition of outputs
of the forms

Lemma 16 If fn(P) C AandP — Q thenA - P - Q. out®v, out'v, v, T wherer ¢ {out, a}

Proof Induction on derivations of — @, constructing \yith o ¢ fn(v) in each case, an@ is a process witlu ¢
derivations ofr-transitions for the reduction axioms (Red fn(Q). Say a proces® is good if P = [a; N; A; Q] for

Up), (Red Down), (Red Comm) and (Red Repl), and using ¢gme good, N, A, Q.
Proposition 15 for the (Red Struct) case. T

Lemma 21 If a ¢ fn(P) thenW,[P] = [a; 0; 0; P], hence
W\ [P] is good.
Transitions Imply Reductions For the converse direc-
tion we first show that if a process has an output or input We define a transition relatiod - P N @ as the least
transition then it contains a corresponding output, input o satisfying the rules in Figure 2.
box subterm.

Lemma 22 For all good P we haveA + P L priff

L(;r(nma|17l)lf AF P =5 PthenP = (vin(z0) - AF P P Moreover, ifA - P % P’ thenP’ is good.
A)Zv | P

. Purity Proposition 2 can now be proved by induction on
Lemma 18 If A F Q =5 Q' then there exisB, p, Q; and k using Lemma 22.
Q- such thatB N (A U fn(2'v)) = {} and eitherQ =
(v B)(x'pQ1 | @2) and Q" = (v B)({"/p}@1 | Q) or
Q = wB)(a'p.Q1 | @) and Q" = (v B)({"}Q1 |

Honesty Proposition 5, that the unary wrappék is hon-
est, can be proved by giving an explicit h-bisimulation. De-

Q| Qa). fine

Lemma 19 If A - Q 28 Q' then there exisB, Q; andQ (N 4Q) £ wN) (@ B

such thatBN(AUfn(z"v)) = {},Q = (v B)(n[Q1] | Q2) [out v | out’v € A |}
andQ' = (v B)(n[(@'v | Q1)] | Q2). | {| out'v | out'v € A [}

[{l T [7% € Anx # out |}
Lemma 20 If A+ P -5 Q thenP — Q. | {inv|in"veAl])

AF[GN;A4Q] ™ [as N A |5 Ql fa(v) N (N U {a}) = 0
AF [N AW vQl & [aN;A:Q | in' o]
. L
AN,k Q™ Q' AR N;AQ1 & [a;N,fn(v) — (4, N, a); A | ouf v; Q']
zTy T T
A,N,akQ — Q' Ao N;A4Q1 = [a;N,fn(z,v) — (4,N,a); A [2"0;Q']
AF[a;N; Aloutv; Q] = [[a;N;A|@Tv;Q]]
. — "
At Ja;N; A outTU; Q] out, v [a; N —fn(v); A4; Q]
ANakQ 5@ AF[aN;AQD = o N A4Q1]
ArpP A p=pr ArpP L pr
For all rules we have a sidecondition that the 4-tuple in &feHand side of the conclusion is good and that the free naintse
process on the left hand side of the conclusion are contamedd For the fourth rule we have a side condition thag out.

Figure 2. Explicit Characterisation of the Transitions of

Now take the family of relations below.

Ra

== o{[a; N; 4; Q], (a; N; 4; Q) |
a; N; A; Q good andn([a; N; A; Q) C Ao =

One can check that for any with a ¢ fn(P) and A D
fn(OW1[P]) we havewW,[P] R4 P and thatR is an h-
bisimulation.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

M. Abadi. Secrecy by typing in security protocols. TACS
'97 (open lecture), LNCS 128pages 611-638, Sept. 1997.

(9]

[10]

[11]

M. Abadi, C. Fournet, and G. Gonthier. Secure implemen- [12]

tation of channel abstractions. IHCS 98 (Indiana) pages
105-116. IEEE, Computer Society Press, July 1998.

M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. IRroceedings of the Fourth
ACM Conference on Computer and Communications Secu-
rity, Zurich, pages 36-47. ACM Press, Apr. 1997.

R. M. Amadio. An asynchronous model of locality, failyre
and process mobility. IProc. COORDINATION 97, LNCS
1282 1997.

R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisim-
ulations for the asynchronous-calculus. In U. Montanari
and V. Sassone, editoiSONCUR '96 volume 1119 of ec-
ture Notes in Computer Sciengeages 147-162. Springer-
Verlag, 1996.

R. M. Amadio and S. Prasad. Localities and failures. I8.P.
Thiagarajan, editoProceedings of4** FST and TCS Con-
ference, FST-TCS'94. LNCS 88fages 205-216. Springer-
Verlag, 1994.

G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lep-
reau. Java operating systems: Design and implementation.
Technical Report UUCS-98-015, University of Utah, De-
partment of Computer Science, Aug. 6, 1998.

G. Boudol. Asynchrony and the-calculus (note). Rapport
de Recherche 1702, INRIA Sofia-Antipolis, May 1992.

[13]

[14]

[1

5]

[16]

1

7]

[18]

Wi [P]

L. Cardelli and A. D. Gordon. Mobile ambients. Rroc.

of Foundations of Software Science and Computation Struc-
tures (FoSSaCS), ETAPS'98, LNCS 13@&8ges 140-155,
Mar. 1998.

L. Cardelli and A. D. Gordon. Types for mobile ambients.
In Proceedings of the 26th ACM Symposium on Principles
of Programming Language4999.

B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In USENIX, editor,2nd Symposium on Operating Systems
Design and Implementation (OSDI '96), October 28-31,
1996. Seattle, Whages 137-151, Berkeley, CA, USA, Oct.
1996. USENIX.

C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and
D. Rémy. A calculus of mobile agents. Proceedings

of CONCUR '96. LNCS 1119ages 406—421. Springer-
Verlag, Aug. 1996.

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In
Sixth USENIX Security Symposiu®an Jose, California,
July 1996.

L. Gong. Java security architecture (JDK 1.2). Techhic
report, JavaSoft, July 1997. Revision 0.5.

N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. IRroceedings of the 25th
POPL, Jan. 1998.

M. Hennessy and J. Riely. Resource access control in sys
tems of mobile agents. M/orkshop on High-Level Concur-
rent Languages1998. Full version as University of Sussex
technical report CSTR 98/02.

M. Hennessy and J. Riely. Type-safe execution of mobile
agents in anonymous networks.Workshop on Mobile Ob-
ject Systems, (satellite of ECOOP '98P98. Full version

as University of Sussex technical report CSTR 98/03.

K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. In P. America, editBrpceed-
ings of ECOOP '91, LNCS 51pages 133-147, July 1991.

[19] N. Islam, R. Anand, T. Jaeger, and J. R. Rao. A flexible [37] J. Vitek and G. Castagna. Mobile Agents and Hostile

security system for using Internet contehEEE Software Hosts. InJournées Francophones des Langaages Applicatifs
14(5):52-59, Sept./Oct. 1997. (JFLA99) Morizine, France, Feb 1999.

[20] M. B. Jones. Interposition agents: Transparentlyrjmising [38] D. Volpano, C. Irvine, and G. Smith. A sound type sys-
user code at the system interface. In J. Vitek and C. Jensen, tem for secure flow analysidournal of Computer Security
editors, Secure Internet Programing: Security Issues for 4:167-187, May 1996.

Mobile and Distributed ObjectsSpringer Verlag, 1999. [39] D. Wolpano and G. Smith. Confinement properties for pro-

[21] B. W. Lampson. A note on the confinement problebam- gramming languages.SIGACT News29(3):33-42, Sept.
munications of the ACML6(10):613-615, 1973. 1998.

[22] G. Lowe and B. Roscoe. Using CSP to detect Errors in the [40] G. Winskel and M. Nielsen. Models for concurrency. In
TMN Protocol. IEEE Transactions on Software Engineer- Abramsky, Gabbay, and Maibaum, editotsandbook of
ing, 23(10):659—669, 1997. Logic in Computer Sciencevolume 1V, pages 1-148. Ox-

[23] J. McLean. Security models. In J. Marciniak, ediéncy- ford University Press, 1995.

clopedia of Software Engineerin@viley & Sons, 1994.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes, Parts | + linformation and Computatign
100(1):1-77, 1992.

[25] A.C.Myers. Jflow: Practical static information flow dool.

In Proceedings of the 26th ACM Symposium on Principles of
Programming Languages (POPL 99)999.

[26] A.C.Myers and B. Liskov. Complete, safe informatiorlo
with decentralized labels. IRroceedings of the 1998 IEEE
Symposium on Security and Privacy, Oakland, Califarnia
pages 186-197, 1998.

[27] G. C. Necula and P. Lee. Safe, untrusted agents usiraf-pro
carrying code. In G. Vigna, editoklobile Agents and Secu-
rity, volume 1419 oL NCS pages 61-91. SV, 1998.

[28] J. Riely and M. Hennessy. A typed language for distedut
mobile processes. IRroceedings of the 25th POPRUan.
1998.

[29] F. B. Schneider. Enforceable security policies. Teéchin
Report TR 98-1664, Computer Science Department, Cornell
University, Ithaca, New York, Jan. 1998.

[30] P. Sewell. Global/local subtyping for a dis-
tributed -calculus. Technical Report 435, Uni-
versity of Cambridge, Aug. 1997. Available from
http://ww. cl.cam ac. uk/ users/ pes20/.

[31] P. Sewell. Global/local subtyping and capability irdfiece
for a distributedr-calculus. InProceedings of ICALP 98,
LNCS 1443pages 695-706, 1998.

[32] P. Sewell. A brief introduction to applied, Jan. 1999.
Lecture notes for the Mathfit Instructional Meeting on
Recent Advances in Semantics and Types for Concur-
rency: Theory and Practice, July 1998. Available from
http://wwmv. cl.cam ac. uk/ users/ pes20/.

[33] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Looati
independence for mobile agents. \IWorkshop on Internet
Programming Languages, Chicagday 1998.

[34] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Lomadi
independent communication for mobile agents: a two-level
architecture. Submitted for publication. Draft availafstem
http://wwmv. cl.cam ac. uk/ users/ pes20/,

1998.

[35] J. Vitek and C. Bryce. Secure mobile code: the javaseal
experiment. Manuscript, 1999.

[36] J. Vitek and G. Castagna. Towards a calculus of mobile
computations. I'Workshop on Internet Programming Lan-
guages, Chicagaviay 1998.

