
A Better x86 Memory Model: x86-TSO

Scott Owens Susmit Sarkar Peter Sewell

University of Cambridge
http://www.cl.cam.ac.uk/users/pes20/weakmemory

Abstract. Real multiprocessors do not provide the sequentially consis-
tent memory that is assumed by most work on semantics and verifica-
tion. Instead, they have relaxed memory models, typically described in
ambiguous prose, which lead to widespread confusion. These are prime
targets for mechanized formalization. In previous work we produced a rig-
orous x86-CC model, formalizing the Intel and AMD architecture spec-
ifications of the time, but those turned out to be unsound with respect
to actual hardware, as well as arguably too weak to program above.
We discuss these issues and present a new x86-TSO model that suffers
from neither problem, formalized in HOL4. We believe it is sound with
respect to real processors, reflects better the vendor’s intentions, and is
also better suited for programming. We give two equivalent definitions of
x86-TSO: an intuitive operational model based on local write buffers, and
an axiomatic total store ordering model, similar to that of the SPARCv8.
Both are adapted to handle x86-specific features. We have implemented
the axiomatic model in our memevents tool, which calculates the set of all
valid executions of test programs, and, for greater confidence, verify the
witnesses of such executions directly, with code extracted from a third,
more algorithmic, equivalent version of the definition.

1 Introduction

Most previous research on the semantics and verification of concurrent programs
assumes sequential consistency: that accesses by multiple threads to a shared
memory occur in a global-time linear order. Real multiprocessors, however, in-
corporate many performance optimisations. These are typically unobservable by
single-threaded programs, but some have observable consequences for the be-
haviour of concurrent code. For example, on standard Intel or AMD x86 proces-
sors, given two memory locations x and y (initially holding 0), if two processors
proc:0 and proc:1 respectively write 1 to x and y and then read from y and x,
as in the program below, it is possible for both to read 0 in the same execution.

iwp2.3.a/amd4 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[y] MOV EBX←[x]
Allow: 0:EAX=0 ∧ 1:EBX=0

One can view this as a visible consequence of write buffering : each processor
effectively has a FIFO buffer of pending memory writes (to avoid the need to

block while a write completes), so the reads from y and x can occur before the
writes have propagated from the buffers to main memory. Such optimisations
destroy the illusion of sequential consistency, making it impossible (at this level
of abstraction) to reason in terms of an intuitive notion of global time.

To describe what programmers can rely on, processor vendors document ar-
chitectures. These are loose specifications, claimed to cover a range of past and
future actual processors, which should reveal enough for effective programming,
but without unduly constraining future processor designs. In practice, however,
they are informal prose documents, e.g. the Intel 64 and IA-32 Architectures
SDM [2] and AMD64 Architecture Programmer’s Manual [1]. Informal prose is
a poor medium for loose specification of subtle properties, and, as we shall see
in §2, such documents are often ambiguous, are sometimes incomplete (too weak
to program above), and are sometimes unsound (with respect to the actual pro-
cessors). Moreover, one cannot test programs above such a vague specification
(one can only run programs on particular actual processors), and one cannot use
them as criteria for testing processor implementations.

Architecture specifications are, therefore, prime targets for rigorous mech-
anised formalisation. In previous work [19] we introduced a rigorous x86-CC
model, formalised in HOL4 [11], based on the informal prose causal-consistency
descriptions of the then-current Intel and AMD documentation. Unfortunately
those, and hence also x86-CC, turned out to be unsound, forbidding some be-
haviour which actual processors exhibit.

In this paper we describe a new model, x86-TSO, also formalised in HOL4.
To the best of our knowledge, x86-TSO is sound, is strong enough to program
above, and is broadly in line with the vendors’ intentions. We present two equiv-
alent definitions of the model: an abstract machine, in §3.1, and an axiomatic
version, in §3.2. We compensate for the main disadvantage of formalisation, that
it can make specifications less widely accessible, by extensively annotating the
mathematical definitions. To explore the consequences of the model, we have a
hand-coded implementation in our memevents tool, which can explore all possi-
ble executions of litmus-test examples such as that above, and for greater confi-
dence we have a verified execution checker extracted from the HOL4 axiomatic
definition, in §4. We discuss related work in §5 and conclude in §6.

2 Many Memory Models

We begin by reviewing the informal-prose specifications of recent Intel and AMD
documentation. There have been several versions, some differing radically; we
contrast them with each other, and with what we know of the behaviour of
actual processors.

2.1 pre-IWP (before Aug. 2007)

Early revisions of the Intel SDM (e.g. rev-22, Nov. 2006) gave an informal-prose
model called ‘processor ordering’, unsupported by any examples. It is hard to
give a precise interpretation of this description.

2.2 IWP/AMD64-3.14/x86-CC

In August 2007, an Intel White Paper [12] (IWP) gave a somewhat more pre-
cise model, with 8 informal-prose principles supported by 10 examples (known
as litmus tests). This was incorporated, essentially unchanged, into later revi-
sions of the Intel SDM (including rev.26–28), and AMD gave similar, though not
identical, prose and tests [1]. These are essentially causal-consistency models [4].
They allow independent readers to see independent writes (by different proces-
sors to different addresses) in different orders, as below (IRIW, see also [6]),
but require that, in some sense, causality is respected: “P5. In a multiprocessor
system, memory ordering obeys causality (memory ordering respects transitive
visibility)”.

amd6 proc:0 proc:1 proc:2 proc:3
poi:0 MOV [x]←$1 MOV [y]←$1 MOV EAX←[x] MOV ECX←[y]
poi:1 MOV EBX←[y] MOV EDX←[x]
Final: 2:EAX=1 ∧ 2:EBX=0 ∧ 3:ECX=1 ∧ 3:EDX=0
cc : Allow; tso : Forbid

These informal specifications were the basis for our x86-CC model, for which
a key issue was giving a reasonable interpretation to this “causality”. Apart
from that, the informal specifications were reasonably unambiguous — but they
turned out to have two serious flaws.

First, they are arguably rather weak for programmers. In particular, they
admit the IRIW behaviour above but, under reasonable assumptions on the
strongest x86 memory barrier, MFENCE, adding MFENCEs would not suffice
to recover sequential consistency [19, §2.12]. Here the specifications seem to be
much looser than the behaviour of implemented processors: to the best of our
knowledge, and following some testing, IRIW is not observable in practice. It
appears that some JVM implementations depend on this fact, and would not be
correct if one assumed only the IWP/AMD64-3.14/x86-CC architecture [9].

Second, more seriously, they are unsound with respect to current processors.
The following n6 example, due to Paul Loewenstein [14], shows a behaviour that
is observable (e.g. on an Intel Core 2 duo), but that is disallowed by x86-CC,
and by any interpretation we can make of IWP and AMD64-3.14.

n6 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$2
poi:1 MOV EAX←[x] MOV [x]←$2
poi:2 MOV EBX←[y]
Final: 0:EAX=1 ∧ 0:EBX=0 ∧ [x]=1
cc : Forbid; tso : Allow

To see why this may be allowed by multiprocessors with FIFO write buffers,
suppose that first the proc:1 write of [y]=2 is buffered, then proc:0 buffers its
write of [x]=1, reads [x]=1 from its own write buffer, and reads [y]=0 from main
memory, then proc:1 buffers its [x]=2 write and flushes its buffered [y]=2 and
[x]=2 writes to memory, then finally proc:0 flushes its [x]=1 write to memory.

2.3 Intel SDM rev-29 (Nov. 2008)

The most recent change in the x86 vendor specifications, was in revision 29 of the
Intel SDM (revision 30 is essentially identical, and we are told that there will be
a future revision of the AMD specification on similar lines). This is in a similar
informal-prose style to previous versions, again supported by litmus tests, but is
significantly different to IWP/AMD64-3.14/x86-CC. First, the IRIW final state
above is forbidden [Example 7-7, rev-29], and the previous coherence condition:
“P6. In a multiprocessor system, stores to the same location have a total order”
has been replaced by: “P9. Any two stores are seen in a consistent order by
processors other than those performing the stores”.

Second, the memory barrier instructions are now included, with “P11. Reads
cannot pass LFENCE and MFENCE instructions”and“P12. Writes cannot pass
SFENCE and MFENCE instructions”.

Third, same-processor writes are now explicitly ordered (we regarded this
as implicit in the IWP “P2. Stores are not reordered with other stores”): “P10.
Writes by a single processor are observed in the same order by all processors”.

This specification appears to deal with the unsoundness, admitting the n6 be-
haviour above, but, unfortunately, it is still problematic. The first issue is, again,
how to interpret “causality” as used in P5. The second issue is one of weakness:
the new P9 says nothing about observations of two stores by those two processors
themselves (or by one of those processors and one other). Programming above
a model that lacks any such guarantee would be problematic. The following
n5 and n4 examples illustrate the potential difficulties. These final states were
not allowed in x86-CC, and we would be surprised if they were allowed by any
reasonable implementation (they are not allowed in a pure write-buffer imple-
mentation). We have not observed them on actual processors; however, rev-29
appears to allow them.

n5 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [x]←$2
poi:1 MOV EAX←[x] MOV EBX←[x]
Forbid: 0:EAX=2 ∧ 1:EBX=1

n4 proc:0 proc:1
poi:0 MOV EAX←[x] MOV ECX←[x]
poi:1 MOV [x]←$1 MOV [x]←$2
poi:2 MOV EBX←[x] MOV EDX←[x]
Forbid: 0:EAX=2 ∧ 0:EBX=1∧

1:ECX=1 ∧ 1:EDX=2

Summarising the key litmus-test differences, we have:

IWP/AMD64-3.14/x86-CC rev-29 actual processors
IRIW allowed forbidden not observed
n6 forbidden allowed observed
n4/n5 forbidden allowed not observed

There are also many non-differences: tests for which the behaviours coincide in all
three cases. The test details are omitted here, but can be found in the extended
version [16] or in [19]. They include the 9 other IWP tests, illustrating that the
various load and store reorderings other than those shown in iwp2.3.a/amd4 (§1)
are not possible; the AMD MFENCE tests amd5 and amd10; and several others.

3 The x86-TSO Model

Given these problems with the informal specifications, we cannot produce a use-
ful rigorous model by formalising the “principles” they contain (as we attempted
with x86-CC [19]). Instead, we have to build a reasonable model that is consis-
tent with the given litmus tests, with observed processor behaviour, and with
what we know of the needs of programmers and of the vendors intentions.

The fact that write buffering is observable (iwp2.3.a/amd4 and n6) but
IRIW is not, together with the other tests that prohibit many other reorder-
ings, strongly suggests that, apart from write buffering, all processors share the
same view of memory (in contrast to x86-CC, where each processor had a sep-
arate view order). This is broadly similar to the SPARC Total Store Ordering
(TSO) memory model [20, 21], which is essentially an axiomatic description of
the behaviour of write-buffer multiprocessors. Moreover, while the term “TSO”
is not used, informal discussions suggest this matches the intention behind the
rev.29 informal specification. Accordingly, we present here a rigorous x86-TSO
model, with two equivalent definitions.

The first definition, in §3.1, is an abstract machine with explicit write buffers.
The second definition, in §3.2, is an axiomatic model that defines valid executions
in terms of memory orders and reads-from maps. In both, we deal with x86
CISC instructions with multiple memory accesses, with x86 LOCK’d instructions
(CMPXCHG, LOCK;INC, etc.), with potentially non-terminating computations,
and with dependencies through registers. Together with our earlier instruction
semantics, x86-TSO thus defines a complete semantics of programs. The abstract
machine conveys the programmer-level operational intuition behind x86-TSO,
whereas the axiomatic model supports constraint-based reasoning about example
programs, e.g., by our memevents tool in §4.

The intended scope of x86-TSO, as for the x86-CC model, covers typical
user code and most kernel code: programs using coherent write-back memory,
without exceptions, misaligned or mixed-size accesses, ‘non-temporal’ operations
(e.g. MOVNTI), self-modifying code, or page-table changes.

Basic Types: Actions, Events, and Event Structures As in our earlier
work, the action of (any particular execution of) a program is abstracted into a
set of events (with additional data) called an event structure. An event represents
a read or write of a particular value to a memory address, or to a register, or
the execution of a fence. Our earlier work includes a definition of the set of
event structures generated by an assembly language program. For any such event
structure, the memory model (there x86-CC, here x86-TSO) defines what a valid
execution is.

In more detail, each machine-code instruction may have multiple events asso-
ciated with it: events are indexed by an instruction ID iiid that identifies which
processor the event occurred on and the position in the instruction stream of the
instruction it comes from (the program order index, or poi). Events also have an
event ID eiid to identify them within an instruction (to permit multiple, other-
wise identical, events). An event structure indicates when one of an instruction’s

events has a dependency on another event of the same instruction with an intra
causality relation, a partial order over the events of each instruction. An event

structure also records which events occur together in a locked instruction with
atomicity data, a set of (disjoint, non-empty) sets of events which must occur
atomically together.

Expressing this in HOL, we index processors by a type proc = num, take
types address and value to both be the 32-bit words, and take a location to be
either a memory address or a register of a particular processor:

location = Location reg of proc ′reg
| Location mem of address

The model is parameterised by a type ′reg of x86 registers, which one should
think of as an enumeration of the names of ordinary registers EAX, EBX, etc.,
the instruction pointer EIP, and the status flags. To identify an instance of an
instruction in an execution, we specify its processor and its program order index.

iiid =〈[proc : proc; poi : num]〉

An action is either a read or write of a value at some location, or a barrier:

dirn = R |W

barrier = Lfence | Sfence |Mfence

action = Access of dirn (′reg location) value | Barrier of barrier

Finally, an event has an instruction instance id, an event id (of type eiid = num,
unique per iiid), and an action:

event =〈[eiid : eiid; iiid : iiid; action : action]〉

An event structure E comprises a set of processors, a set of events, an intra-
instruction causality relation, and a partial equivalence relation (PER) capturing
sets of events which must occur atomically, all subject to some well-formedness
conditions which we omit here.

event structure =〈[procs : proc set;
events : (′reg event)set;
intra causality : (′reg event)reln;
atomicity : (′reg event)set set]〉

Example We show a very simple event structure below, for the program:

tso1 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [x]←$2
poi:1 MOV EAX←[x]

There are four events — the inner (blue in the on-line version) boxes. The event
ids are pretty-printed alphabetically, as a,b,c,d, etc. We also show the assembly

instruction that gave rise to each event, e.g. MOV [x]←$1, though that is not
formally part of the event structure.

tso1 rfmap 0 (of ess 0)

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=2

proc:0 poi:1

MOV EAX←[x]

c: W 0:EAX=2

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

po

intra causality

rf

Note that events contain concrete val-
ues: in this particular event structure,
there are two writes of x, with values
1 and 2, a read of [x] with value 2, and
a write of proc:0’s EAX register with
value 2. Later we show two valid exe-
cutions for this program, one for this
event structure and one for another
(note also that some event structures
may not have any valid executions).
In the diagram, the instructions of
each processor are clustered together,
into the outermost (magenta) boxes,
with program order (po) edges be-
tween them, and the events of each
instruction are clustered together into
the intermediate (green) boxes, with
intra-causality edges as appropriate —
here, in the MOV EAX←[x], the write
of EAX is dependent on the read of x.

3.1 The x86-TSO Abstract Machine Memory Model

To understand our x86-TSO machine model, consider an idealised x86 multipro-
cessor system partitioned into two components: its memory and register state (of
all its processors combined), and the rest of the system (the other parts of all the
processor cores). Our abstract machine is a labelled transition system: a set of

states, ranged over by s, and a transition relation s
l
−→ s ′. An abstract machine

state s models the state of the first component: the memory and register state of
a multiprocessor system. The machine interacts with the rest of the system by
synchronising on labels l (the interface of the abstract machine), which include
register and memory reads and writes. In Fig. 1, the states s correspond to the
parts of the machine shown inside of the dotted line, and the labels l correspond
to the communications that traverse the dotted line boundary.

One should think of the machine as operating in parallel with the proces-
sor cores (absent their register/memory subsystems), executing their instruction
streams in program order; the latter data is provided by an event structure. This
partitioning does not correspond directly to the microarchitecture of any realis-
tic x86 implementation, in which memory and registers would be implemented
by separate and intricate mechanisms, including various caches. However, it is
useful and sufficient for describing the programming model, which is the proper
business of an architecture description. It also supports a precise correspondence
with our axiomatic memory model. In more detail, the labels l are the values of

Lock RAM

(b
y
p
a
ss)

R r=v

Computation

R [a]=v

(b
y
p
a
ss)

R r=v

Computation

R [a]=v

Registers Registers

W
rite

B
u
ff
e
r

W
rite

B
u
ff
e
r

W r=v

W [a]=v

W r=v

W [a]=v
Lock/
Unlock

Fig. 1. The abstract machine

the HOL type:

label = Tau | Evt of proc (′reg action) | Lock of proc | Unlock of proc

– Tau, for an internal action by the machine;
– Evt p a, where a is an action, as defined above (a memory or register read

or write, with its value, or a barrier), by processor p;
– Lock p, indicating the start of a LOCK’d instruction by processor p; or
– Unlock p, for the end of a LOCK’d instruction by p.

(Note that there is nothing specific to any particular memory model in this
interface.) The states of the x86-TSO machine are records, with fields R, giving
a value for each register on each processor; M , giving a value for each shared
memory location; B , modelling a write buffer for each processor, as a list of
address/value pairs; and L, which is a global lock, either Some p, if p holds the
lock, or None. The HOL type is below.

machine state =〈[R : proc→ ′reg → value option; (* per-processor registers *)

M : address→ value option; (* main memory *)

B : proc→ (address#value)list; (* per-processor write buffers *)

L : proc option(* which processor holds the lock *)]〉

The behaviour of the x86-TSO machine, the transition relation s
l
−→ s ′, is

defined by the rules in Fig. 2. The rules use two auxiliary definitions: processor
p is not blocked in machine state s if either it holds the lock or no processor
does; and there are no pending writes in a buffer b for address a if there are no
(a, v) pairs in b. Restating the rules informally:

1. p can read v from memory at address a if p is not blocked, has no buffered
writes to a, and the memory does contain v at a;

Read from memory

not blocked s p ∧ (s.M a = Some v) ∧ no pending (s.B p)a

s
Evt p (Access R (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Read from write buffer

not blocked s p ∧ (∃b1 b2.(s.B p = b1 ++[(a, v)] ++b2) ∧ no pending b1 a)

s
Evt p (Access R (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Read from register

(s.R p r = Some v)

s
Evt p (Access R (Location reg p r)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s

Write to write buffer

T

s
Evt p (Access W (Location mem a)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s ⊕ 〈[B := s.B ⊕ (p 7→ [(a, v)] ++(s.B p))]〉

Write from write buffer to memory

not blocked s p ∧ (s.B p = b ++[(a, v)])

s
Tau
−−−→ s ⊕ 〈[M := s.M ⊕ (a 7→ Some v);B := s.B ⊕ (p 7→ b)]〉

Write to register

T

s
Evt p (Access W (Location reg p r)v)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

s ⊕ 〈[R := s.R ⊕ (p 7→ ((s.R p)⊕ (r 7→ Some v)))]〉

Barrier

(b = Mfence) =⇒ (s.B p = [])

s
Evt p (Barrier b)
−−−−−−−−−−−−−−−→ s

Lock

(s.L = None) ∧ (s.B p = [])

s
Lock p
−−−−−−→ s ⊕ 〈[L :=Some p]〉

Unlock

(s.L = Some p) ∧ (s.B p = [])

s
Unlock p
−−−−−−−−→ s ⊕ 〈[L :=None]〉

Fig. 2. The x86-TSO Machine Behaviour

2. p can read v from its write buffer for address a if p is not blocked and has
v as the newest write to a in its buffer;

3. p can read the stored value v from its register r at any time;
4. p can write v to its write buffer for address a at any time;
5. if p is not blocked, it can silently dequeue the oldest write from its write

buffer to memory;
6. p can write value v to one of its registers r at any time;
7. if p’s write buffer is empty, it can execute an MFENCE (so an MFENCE

cannot proceed until all writes have been dequeued, modelling buffer flush-
ing); LFENCE and SFENCE can occur at any time, making them no-ops;

8. if the lock is not held, and p’s write buffer is empty, it can begin a LOCK’d
instruction; and

9. if p holds the lock, and its write buffer is empty, it can end a LOCK’d
instruction.

Consider execution paths through the machine s0
l1−→ s1

l2−→ s2 · · · consisting
of finite or infinite sequences of states and labels. We define okMpath to hold for
paths through the machine that start in a valid initial state (with empty write
buffers, etc.) and satisfy the following progress condition: for each memory write
in the path, the corresponding Tau transition appears later on. This ensures
that no write can stay in the buffer forever. (We actually formalize okMpath for
the event-annotated machine described below.)

We emphasise that this is an abstract machine: we are concerned with its
extensional behaviour: the (completed, finite or infinite) traces of labelled tran-
sitions it can perform (which should include the behaviour of real implementa-
tions), not with its internal states and the transition rules. The machine should
provide a good model for programmers, but may bear little resemblance to the
internal structure of implementations. Indeed, a realistic design would certainly
not implement LOCK’d instructions with a global lock, and would have many
other optimisations — the force of the x86-TSO model is that none of those
have programmer-visible effects, except perhaps via performance observations.
There are several variants of the machine with different degrees of locking which
we conjecture are observationally equivalent. For example, one could prohibit all
activity by other processors when one holds the lock, or not require write buffers
to be flushed at the start of a LOCK’d instruction.

We relate the machine to event structures in two steps, which we summarise
here (the HOL details can be found on-line [16]). First, we define a more in-
tensional event-machine: we annotate each memory and register location with
an event option, recording the most recent write event (if any) to that location,
refine write buffers to record lists of events rather than of plain location/value
pairs, and annotate labels with the relevant events. Second, we relate paths of
annotated labels and event structures with a predicate okEpath that holds when
the path is a suitable linearization of the event structure: there is a 1:1 corre-
spondence between non-Tau/Lock/Unlock labels of path and the events of E ,
the order of labels in path is consistent with program order and intra-causality,
and atomic sets are properly bracketed by Lock/Unlock pairs. Thus, okMpath

describes paths that are valid according to the memory model, and okEpath de-
scribes those that are valid according to an event structure (that encapsulates
the other aspects of processor semantics).

Theorem 1. The annotation-erasure of the event-machine is exactly the ma-
chine presented above. [HOL proof]

3.2 The x86-TSO Axiomatic Memory Model

Our x86-TSO axiomatic memory model is based on the SPARCv8 memory model
specification [20, 21], but adapted to x86 and in the same terms as our ear-
lier x86-CC model. (Readers unfamiliar with the SPARCv8 memory model can
safely ignore the SPARC-specific comments in this section.) Compared with the
SPARCv8 TSO specification, we omit instruction fetches (IF), instruction loads
(IL), flushes (F), and stbars (—S). The first three deal exclusively with instruction
memory, which we do not model, and the last is useful only under the SPARC
PSO memory model. To adapt it to x86 programs, we add register and fence
events, generalize to support instructions that give rise to many events (par-
tially ordered by an intra-instruction causality relation), and generalize atomic
load/store pairs to locked instructions.

An execution is permitted by our memory model if there exists an execution
witness X for its event structure E that is a valid execution. An execution witness
contains a memory order, an rfmap, and an initial state; the rest of this section
defines when these are valid.

execution witness =
〈[memory order : (′reg event)reln;

rfmap : (′reg event)reln;
initial state : (′reg location→ value option)]〉

The memory order is a partial order that records the global ordering of
memory events. It must be a total order on memory writes, and corresponds to
the ≤ relation in SPARCv8, as constrained by the SPARCv8 Order condition
(in figures, we use the label mo non-po write write for the otherwise-unforced
part of this order).

partial order (<X .memory order)(mem accesses E)

linear order ((<X .memory order)|(mem writes E))(mem writes E)

The initial state is a partial function from locations to values. Each read
event’s value must come either from the initial state or from a write event:
the rfmap (‘reads-from map’) records which, containing (ew , er) pairs where
the read er reads from the write ew . The reads from map candidates predicate
below ensures that the rfmap only relates such pairs with the same address and
value. (Strictly speaking, the rfmap is unnecessary; the constraints involving it
can be stated directly in terms of memory order, as SPARCv8 does. However,
we find it intuitive and useful. The SPARCv8 model has no initial states.)

reads from map candidates E rfmap =
∀(ew , er) ∈ rfmap.(er ∈ reads E) ∧ (ew ∈ writes E) ∧

(loc ew = loc er) ∧ (value of ew = value of er)

We lift program order from instructions to a relation po iico E over events,
taking the union of program order of instructions and intra-instruction causal-
ity. This corresponds roughly to the ; in SPARCv8. However, intra causality
might not relate some pairs of events in an instruction, so our po iico E will not
generally be a total order for the events of a processor.

po strict E =
{(e1, e2) | (e1.iiid .proc = e2.iiid .proc) ∧ e1.iiid .poi < e2.iiid .poi ∧

e1 ∈ E .events ∧ e2 ∈ E .events}

<(po iico E) = po strict E ∪ E .intra causality

The check rfmap written below ensures that the rfmap relates a read to
the most recent preceding write. For a register read, this is the most recent
write in program order. For a memory read, this is the most recent write in
memory order among those that precede the read in either memory order or
program order (intuitively, the first case is a read of a committed write and
the second is a read from the local write buffer). The check rfmap written and
reads from map candidates predicates implement the SPARCv8 Value axiom
above the rfmap witness data. The check rfmap initial predicate extends this to
handle initial state, ensuring that any read not in the rfmap takes its value from
the initial state, and that that read is not preceded by a write in memory order
or program order.

previous writes E er <order =
{ew ′ | ew ′ ∈ writes E ∧ ew ′ <order er ∧ (loc ew ′ = loc er)}

check rfmap written E X =
∀(ew , er) ∈ (X .rfmap).

if ew ∈ mem accesses E then
ew ∈ maximal elements (previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)))
(<X .memory order)

else (* ew IN reg accesses E *)

ew ∈ maximal elements (previous writes E er (<(po iico E)))(<(po iico E))

check rfmap initial E X =
∀er ∈ (reads E \ range X .rfmap).

(∃l .(loc er = Some l) ∧ (value of er = X .initial state l)) ∧
(previous writes E er (<X .memory order) ∪

previous writes E er (<(po iico E)) = {})

We now further constrain the memory order, to ensure that it respects the
relevant parts of program order, and that the memory accesses of a LOCK’d
instruction do occur atomically.

– Program order is included in memory order, for a memory read before a mem-
ory access (labelled mo po read access in figures) (SPARCv8’s LoadOp):

∀er ∈ (mem reads E).∀e ∈ (mem accesses E).
er <(po iico E) e =⇒ er <X .memory order e

– Program order is included in memory order, for a memory write before a
memory write (mo po write write) (the SPARCv8 StoreStore):

∀ew1 ew2 ∈ (mem writes E).
ew1 <(po iico E) ew2 =⇒ ew1 <X .memory order ew2

– Program order is included in memory order, for a memory write before a
memory read, if there is an MFENCE between (mo po mfence). (There is
no need to include fence events themselves in the memory ordering.)

∀ew ∈ (mem writes E).∀er ∈ (mem reads E).∀ef ∈ (mfences E).
(ew <(po iico E) ef ∧ ef <(po iico E) er) =⇒ ew <X .memory order er

– Program order is included in memory order, for any two memory accesses
where at least one is from a LOCK’d instruction (mo po access/lock):

∀e1 e2 ∈ (mem accesses E).∀es ∈ (E .atomicity).
((e1 ∈ es ∨ e2 ∈ es) ∧ e1 <(po iico E) e2) =⇒ e1 <X .memory order e2

– The memory accesses of a LOCK’d instruction occur atomically in memory
order (mo atomicity), i.e., there must be no intervening memory events.
Further, all program order relationships between the locked memory accesses
and other memory accesses are included in the memory order (this is a
generalization of the SPARCv8 Atomicity axiom):

∀es ∈ (E .atomicity).∀e ∈ (mem accesses E \ es).
(∀e ′ ∈ (es ∩ mem accesses E).e <X .memory order e ′) ∨
(∀e ′ ∈ (es ∩ mem accesses E).e ′ <X .memory order e)

To deal properly with infinite executions, we also require that the prefixes
of the memory order are all finite, ensuring that there are no limit points, and,
to ensure that each write eventually takes effect globally, there must not be an
infinite set of reads unrelated to any particular write, all on the same memory
location (this formalizes the SPARCv8 Termination axiom).

finite prefixes (<X .memory order)(mem accesses E)

∀ew ∈ (mem writes E).
finite{er | er ∈ E .events ∧ (loc er = loc ew) ∧

er 6<X .memory order ew ∧ ew 6<X .memory order er}

A final state of a valid execution takes the last write in memory order for
each memory location, together with a maximal write in program order for each
register (or the initial state, if there is no such write). This is uniquely defined
assuming that no instruction has multiple unrelated writes to the same register
— a reasonable property for x86 instructions.

The definition of valid execution E X comprising the above conditions is
equivalent to one in which <X .memory order is required to be a linear order, not
just a partial order (again, the full details are on-line):

Theorem 2.
1. If linear valid execution E X then valid execution E X .

2. If valid execution E X then there exists an X̂ with a linearisation of X ’s
memory order such that linear valid execution E X̂ . [HOL proof]

Interpreting “not reordered with” Perhaps surprisingly, the above defini-
tion does not require that program order is included in memory order for a mem-
ory write followed by a read from the same address. The definition does imply
that any such read cannot be speculated before the write (by check rfmap written,
as that takes both <(po iico E) and <X .memory order into account). However, if
one included a memory order edge, perhaps following a naive interpretation of
the rev-29 “P4. Reads may be reordered with older writes to different locations
but not with older writes to the same location”, then the model would be strictly
stronger: the n7 example below would become forbidden, whereas it is allowed
on x86-TSO. We conjecture that this would correspond to the (rather strange)
machine with the Fig. 2 rules but without the read-from-write-buffer rule, in
which any processor would have to flush its write buffer up to (and including) a
local write before it can read from it.

n7 proc:0 proc:1 proc:2
poi:0 MOV [x]←$1 MOV [y]←$1 MOV ECX←[y]
poi:1 MOV EAX←[x] MOV EDX←[x]
poi:2 MOV EBX←[y]
Allow: 0:EAX=1 ∧ 0:EBX=0 ∧ 2:ECX=1 ∧ 2:EDX=0

Examples We show two valid executions of the previous example program in
Fig. 3. In both executions, the proc:0 W x=1 event is before the proc:1 W x=2
event in memory order (the bold mo non-po write write edge). In the first ex-
ecution, on the left, the proc:0 read of x reads from the most recent write in
memory order (the combination of the bold mo non-po write write edge and
the mo rf edge), which is the proc:1 W x=2. In the second execution, on the
right, the proc:0 read of x reads from the most recent write in program order,
which is the proc:0 W x=1. This example also illustrates some register events:
the MOV EAX←[x] instruction gives rise to a memory read of x, followed by (in
the intra-instruction causality relation) a register write of EAX.

3.3 The Machine and Axiomatic x86-TSO Models are Equivalent

To prove that the abstract machine admits only valid executions, we define a
function path to X from event-annotated paths that builds a linear execution
witness by using the events from Tau and memory read labels in order. Thus,
the memory ordering in the execution witness corresponds to the order in which
events were read from and written to memory in the abstract machine.

Theorem 3. For any well-formed event structure E and event-machine path
path, if (okEpath E path) and (okMpath path), then (path to X path) is a
valid execution for E. [HOL proof]

tso1 vos 0 (of productive ess 0) showing Require

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=2

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

c: W 0:EAX=2

proc:0 poi:1

MOV EAX←[x]

po

mo non-po write write

intra causality

rf mo rf

tso1 vos 0 (of productive ess 2) showing Require

a: W [x]=1

proc:0 poi:0

MOV [x]←$1

b: R [x]=1

proc:0 poi:1

MOV EAX←[x]

d: W [x]=2

proc:1 poi:0

MOV [x]←$2

c: W 0:EAX=1

proc:0 poi:1

MOV EAX←[x]

po rf mo non-po write write

intra causality

Fig. 3. Example valid execution witnesses (for two different event structures)

To prove that the abstract machine admits every valid execution, we first
prove (in HOL) a lemma showing that any valid execution can be a turned into
a stream-like linear order over labels that satisfies several conditions (label order
in the HOL sources) describing labels in an okMpath. We then have:

Theorem 4. For any well-formed event structure E, and valid execution X
for E, there exists some event-machine path, such that okEpath E path and
okMpath path, in which the memory reads and write-buffer flushes both respect
<X .memory order . [hand proof, relying on the preceding lemma]

4 Verified Checker and Results

To explore the consequences of x86-TSO, we implemented the axiomatic model in
our memevents tool, which exhaustively explores candidate execution witnesses.
For greater confidence, we added to this a verified witness checker: we defined
variants of event structures and execution witnesses, using lists instead of sets,
wrote algorithmic versions of well formed event structure and valid execution,
proved these equivalent (in the finite case) to our other definitions, extracted
OCaml code from the HOL, and integrated that into memevents. (Obviously,
this only provides assurance for positive tests, those with allowed final states.)

The memevents results coincide with our observations on real processors and
the vendor specifications, for the 10 IWP tests, the (negated) IRIW test, the two
MFENCE tests amd5 and amd10, our n2–n6, and rwc-fenced. The remaining
tests (amd3, n1, n7, n8, and rwc-unfenced) are “allow” tests for which we have
not observed the specified final state in practice.

5 Related Work

There is an extensive literature on relaxed memory models, but most of it does
not address x86, and we are not aware of any previous model that addresses the
concerns of §2. We touch here on some of the most closely related work.

There are several surveys of weak memory models, including those by Adve
and Gharachorloo [3], and by Higham et al. [13]; the latter formalises a range of
models, including a TSO model, in both operational and axiomatic styles, and
proves equivalence results. Their axiomatic TSO model is rather closer to the
operational style than ours is, and both are idealised rather than x86-specific.
Burckhardt and Musuvathi [8, Appendix A] also give operational and axiomatic
definitions of a TSO model and prove equivalence, but only for finite executions.
Their models treat memory reads and writes and barrier events, but lack regis-
ter events and locked instructions with multiple events that happen atomically.
Hangel et al. [10] describe the Sun TSOtool, checking the observed behaviour
of pseudo-randomly generated programs against a TSO model. Roy et al. [17]
describe an efficient algorithm for checking whether an execution lies within an
approximation to a TSO model, used in Intel’s Random Instruction Test (RIT)
generator. Boudol and Petri [7] give an operational model with hierarchical write
buffers (thereby permitting IRIW behaviours), and prove sequential consistency
for data-race-free (DRF) programs. Loewenstein et al. [15] describe a “golden
memory model” for SPARC TSO, somewhat closer to a particular implementa-
tion microarchitecture than the abstract machine we give in §3.1, that they use
for testing implementations. They argue that the additional intensional detail
increases the effectiveness of simulation-based verification. Saraswat et al. [18]
also define memory models in terms of local reordering, and prove a DRF the-
orem, but focus on high-level languages. Several groups have used proof tools
to tame the intricacies of these models, including Yang et al. [22], using Pro-
log and SAT solvers to explore an axiomatic Itanium model, and Aspinall and
Ševč́ık [5], who formalised and identified problems with the Java Memory Model
using Isabelle/HOL.

6 Conclusion

We have described x86-TSO, a memory model for x86 processors that does not
suffer from the ambiguities, weaknesses, or unsoundnesses of earlier models. Its
abstract-machine definition should be intuitive for programmers, and its equiva-
lent axiomatic definition supports the memevents exhaustive search and permits
an easy comparison with related models; the similarity with SPARCv8 suggests
x86-TSO is strong enough to program above. Mechanisation in HOL4 revealed a
number of subtle points of detail, including some of the well-formed event struc-
ture conditions that we depend on (e.g. that instructions have no internal data
races). We hope that this will clarify the semantics of x86 architectures.

Acknowledgements We thank Luc Maranget for his work on memevents, and David

Christie, Dave Dice, Doug Lea, Paul Loewenstein, Gil Neiger, and Francesco Zappa

Nardelli for helpful remarks. We acknowledge funding from EPSRC grant EP/F036345.

References

1. AMD64 Architecture Programmer’s Manual (3 vols). Advanced Micro Devices,
Sept. 2007. rev. 3.14.

2. Intel 64 and IA-32 Architectures Software Developer’s Manual (5 vols). Intel Cor-
poration, Nov. 2008. rev. 29.

3. S. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, Dec 1996.

4. M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: Def-
initions, implementation, and programming. Distributed Computing, 9(1):37–49,
1995.

5. D. Aspinall and J. Ševč́ık. Formalising Java’s data race free guarantee. In
Proc. TPHOLs, LNCS, 2007.

6. H.-J. Boehm and S. Adve. Foundations of the C++ concurrency memory model.
In Proc. PLDI, 2008.

7. G. Boudol and G. Petri. Relaxed memory models: an operational approach. In
Proc. POPL, pages 392–403, 2009.

8. S. Burckhardt and M. Musuvathi. Effective program verification for relaxed mem-
ory models. Technical Report MSR-TR-2008-12, Microsoft Research, 2008. Con-
ference version in Proc. CAV 2008, LNCS 5123.

9. D. Dice. Java memory model concerns on Intel and AMD systems. http://blogs.
sun.com/dave/entry/java_memory_model_concerns_on, Jan. 2008.

10. S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and S. Narayanan. TSOtool: A
program for verifying memory systems using the memory consistency model. In
Proc. ISCA, pages 114–123, 2004.

11. The HOL 4 system. http://hol.sourceforge.net/.
12. Intel. Intel 64 architecture memory ordering white paper, 2007. SKU 318147-001.
13. L.Higham, J.Kawash, and N. Verwaal. Defining and comparing memory consis-

tency models. In PDCS, 1997. Full version as TR #98/612/03, U. Calgary.
14. P. Loewenstein. Personal communication, Nov. 2008.
15. P. N. Loewenstein, S. Chaudhry, R. Cypher, and C. Manovit. Multiprocessor

memory model verification. In Proc. AFM (Automated Formal Methods), Aug.
2006. FLoC workshop. http://fm.csl.sri.com/AFM06/.

16. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO (ex-
tended version). Technical Report UCAM-CL-TR-745, Univ. of Cambridge, 2009.
Supporting material at www.cl.cam.ac.uk/users/pes20/weakmemory/.

17. A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C. Huang. Fast and generalized
polynomial time memory consistency verification. In CAV, pages 503–516, 2006.

18. V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of memory
models. In Proc. PPoPP, 2007.

19. S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant,
M. Myreen, and J. Alglave. The semantics of x86-CC multiprocessor machine
code. In Proc. POPL 2009, Jan. 2009.

20. P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal specification of memory
models. In Scalable Shared Memory Multiprocessors, pages 25–42. Kluwer, 1991.

21. SPARC International, Inc. The SPARC architecture manual, v. 8. Revision
SAV080SI9308. http://www.sparc.org/standards/V8.pdf, 1992.

22. Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In IPDPS,
2004.

