
Litmus: Running Tests Against Hardware

Jade Alglave1,3 Luc Maranget1 Susmit Sarkar2 Peter Sewell2

1 INRIA
2 University of Cambridge

3 Oxford University

Abstract. Shared memory multiprocessors typically expose subtle,
poorly understood and poorly specified relaxed-memory semantics to
programmers. To understand them, and to develop formal models to use
in program verification, we find it essential to take an empirical approach,
testing what results parallel programs can actually produce when exe-
cuted on the hardware. We describe a key ingredient of our approach, our
litmus tool, which takes small ‘litmus test’ programs and runs them for
many iterations to find interesting behaviour. It embodies various tech-
niques for making such interesting behaviour appear more frequently.

1 Introduction

Modern shared memory multiprocessors do not actually provide the sequentially
consistent (SC) memory semantics [Lam79] typically assumed in concurrent pro-
gram verification. Instead, they provide a relaxed memory model, arising from
optimisations in multiprocessor hardware, such as store buffering and instruc-
tion reordering (relaxed-memory behaviour can also arise from compiler opti-
misations). For example, in hardware with store buffers, the program below (in
pseudo-code on the left and x86 assembly on the right) can end with 0 in both
r0 and r1 on x86, a result not possible under SC:

Shared: x, y, initially zero
Thread-local: r0, r1
Proc 0 Proc 1
y ← 1 x ← 1
r0 ← x r1 ← y

Finally: is r0 = 0 and r1 = 0 possible?

X86 SB (* Store Buffer test *)

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

The actual relaxed memory model exposed to the programmer by a particu-
lar multiprocessor is often unclear. Many models are described only in informal
prose documentation [int09,pow09], which is often ambiguous, usually incom-
plete [SSS+10,AMSS10], and sometimes unsound (forbidding behaviour that is
observable in reality) [SSS+10]. Meanwhile, researchers have specified various
formal models for relaxed memory, but whether they accurately capture the
subtleties of actual processor implementations is usually left unexamined. In

We acknowledge funding from EPSRC grants EP/F036345, EP/H005633, and
EP/H027351, from ANR project parsec (ANR-06-SETIN-010), and from INRIA
associated team MM.

contrast, we take a firmly empirical approach: testing what current implementa-
tions actually provide, and use the test results to inform the building of models.
This is in the spirit of Collier’s early work on ARCHTEST [Col92], which ex-
plores various violations of SC, but which does not deal with many complexities
of modern processors, and also does not easily support testing new tests.

Much interesting memory model behaviour already shows up in small, but
carefully crafted, concurrent programs operating on shared memory locations,
“litmus tests”. Given a specified initial state, the question for each test is what
final values of registers and memory locations are permitted by actual hardware.
Our litmus tool takes as input a litmus file, as on the right above, and runs
the program within a test harness many times. On one such run of a million
executions, it produced the result below, indicating that the result of interest
occurred 34 times.

Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

The observable behaviour of a typical multiprocessor arises from an extremely
complex (and commercially confidential) internal structure, and is highly non-
deterministic, dependent on details of timing and the processors’ internal state.
Black-box testing cannot be guaranteed to produce all permitted results in such
a setting, but with careful design the tool does generate interesting results with
reasonable frequency.

2 High level overview

file.litmus
- litmus -

file.c
gcc -pthread -

file.exe?

utils.c

Our litmus tool takes as input small concurrent programs in x86 or Power
assembly code (file.litmus). It accepts symbolic locations (such as x and y

in our example), and symbolic registers. The tool then translates the program
file.litmus into a C source file, encapsulating the program as inline assembly in
a test harness. The C file is then compiled by gcc into executables which can be
run on the machine to perform checks. The translation process performs some
simple liveness analysis (to properly identify registers read and trashed by inline
assembly), and some macro expansions (macros for lock acquire and release are
translated to packaged assembly code).

The test harness initialises the shared locations, and then spawns threads
(using the POSIX pthread library) to run the various threads within a loop. Each
thread does some mild synchronization to ensure the programs run roughly at
the same time, but with some variability so that interesting behaviour can show
up. In the next section we describe various ways in which the harness can be
adjusted, so that results of interest show up more often.

The entire program consists of about 10,000 lines of Objective Caml, plus
about 1,000 lines of C. The two phases can be separated, allowing translated
C files to be transferred to many machines. It is publicly distributed as a

part of the diy tool suite, available at http://diy.inria.fr, with compan-
ion user documentation. litmus has been run successfully on Linux, Mac OS and
AIX [AMSS10].

3 Test infrastructure and parameters

Users can control various parameters of the tool, which impact efficiency and
outcome variability, sometimes dramatically.

Test repetition To benefit from parallelism and stress the memory subsystem,
given a test consisting of t threads P0,. . . , Pt−1, we run n = max(1, a/t) identical
test instances concurrently on a machine with a cores. Each of these tests consists
in repeating r times the sequence of creating t threads, collectively running the
litmus test s times, then summing the produced outcomes in an histogram.

Thread assignment We first fork t POSIX threads T0, . . . Tt−1 for executing
P0,. . . , Pt−1. We can control which thread executes which code with the launch
mode: if fixed then Tk executes Pk; if changing (the default) the association
between POSIX and test threads is random. In our experience, the launch mode
has a marginal impact, except when affinity is enabled—see Affinity below.

Accessing memory cells Each thread executes a loop of size s. Loop iteration
number i executes the code of one test thread and saves the final contents of its
observed registers in arrays indexed by i; a memory location x in the .litmus

source corresponds to an array cell. The access to this array cell depends on the
memory mode. In direct mode the array cell is accessed directly as x[i]; hence
cells are accessed sequentially and false sharing effects are likely. In indirect mode
(the default) the array cell is accessed by a shuffled array of pointers, giving a
much greater variability of outcomes. If the (default) preload mode is enabled,
a preliminary loop of size s reads a random subset of the memory locations
accessed by Pk, also leading to a greater outcome variability.

Thread synchronisation The iterations performed by the different threads Tk

may be unsynchronised, synchronised by a pthread-based barrier, or synchro-
nised by busy-wait loops. Absence of synchronisation is of marginal interest
when t exceeds a or when t = 2. Pthread-based barriers are slow and in fact of-
fer poor synchronisation for short code sequences. Busy-waiting synchronisation
is thus the preferred technique and the default.

Affinity Affinity is a scheduler property binding software (POSIX) threads to
given hardware logical processor. The latter may be single cores or, on machines
with hyper-threading (x86) or simultaneous multi threading (SMT, Power) each
core may host several logical processors.

We allocate logical processors test instance by test instance (parameter n)
and then POSIX thread by POSIX thread, scanning the logical processors se-
quence left-to-right by steps of the specified affinity increment. Suppose a logical
processors sequence P = 0, 1, . . . , A− 1 (the default on a machine with A log-
ical processors available) and an increment i: we allocate (modulo A) first the

processor 0, then i, then 2i, etc. If we reach 0 again, we allocate the processor
1 and then increment again. Thereby, all the processors in the sequence will
get allocated to different threads naturally, provided of course that less than A
threads are scheduled to run.

4 The impact of test parameters

Test parameters can have a large impact on the frequency of interesting results.
Our tests are non-deterministic and parallel, and the behaviours of interest arise
from specific microarchitectural actions at specific times. Thus the observed
frequency is quite sensitive to the machine in question and to its operating
system, in addition to the specific test itself.

Let us run the SB test from the introduction with various combinations
of parameters on a lightly loaded Intel Core 2 Duo. There is one interesting
outcome here, and we graph the frequency of that outcome arising per second
below against the logarithm of the iteration size s. Note that only the orders of
magnitude are significant, not the precise numbers, for a test of this nature.

0

2

4

6

8

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: direct memory mode

Non-SC
outcomes/sec affinity disabled

�

� � � �

�

�
affinity sete

e
e e e

ee

0

5000

10000

15000

20000

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: indirect memory mode

Non-SC
outcomes/sec affinity disabled

� � � � � �

�
affinity set

e e
e

e

e e

e

We obtain the best results with indirect memory mode and affinity control,
and 104 iterations per thread creation. These settings depend on the character-
istics of the machine and scheduler, and we generally find such combinations of
parameters remain good on the same testbed, even for different tests.

References

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory
Models. In CAV, 2010.

[Col92] W. W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, 1992.
[int09] Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3A,

rev. 30, March 2009.
[Lam79] L. Lamport. How to Make a Correct Multiprocess Program Execute Cor-

rectly on a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.
[pow09] Power ISA Version 2.06. 2009.
[SSS+10] P. Sewell, S.Sarkar, S.Owens, F. Zappa Nardelli, and M. O. Myreen. x86-

TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, July 2010. (Research Highlights).

