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Abstract ¢ All too often, loose specification has been achieved by vague

Multiprocessors are now ubiquitous. They provide an abstraction ~ SPecification, using informal prose. When it comes to subtle
of shared memory, accessible by concurrently executing threads, ~concurrent properties this is almost inevitably ambiguous; it
which supports a wide range of software. However, exactly what iSO makesitimpossible (éven in principle) to test conformance
this key abstraction is —what the hardware designers impiement, ~P€tWeen a processor implementation and such a specification,
and what programmers can depend on— is surprisingly elusive. In let alone to verify such a correspondence or to reason about
1979, when articulating the notion of sequential consistency (SC), ~ concurrent programs.

Lamport wrote “For some applications, achieving sequential con- Categoriesand Subject Descriptors  C.1.2 Multiple Data Stream
sistency may not be worth the price of slowing down the proces- Architectures (Multiprocessors)]: Parallel processors; D.1.8pn-
sors.” [7], and indeed most major multiprocessor families, includ- current Programming]: Parallel programming; F.3.15pecifying
ing Alpha, ARM, Itanium, Power, Sparc, and x86, do not provide and Verifying and Reasoning about Programs

the abstraction of SC memory. Internally, they incorporate a range ) o o

of sophisticated optimisations which have various programmer- General Terms Documentation, Reliability, Standardization,
visible effects. For some (such as Sparc) these effects are cap-Theory, Verification

tured in a well-defined relaxed memory model, making it possible
(if challenging) to reason with confidence about the behaviour of
concurrent programs. For others, however, it has been veigamc ~ Acknowledgements This is based on joint work with colleagues
what a reasonable model is, despite extensive research over the lash Cambridge and INRIA Rocquencourt. | acknowledge funding
three decades. In this talk, | will reflect on the experience of my from EPSRC grants EP/F036345 and EP/H005633.

colleagues and | in trying to establish usable models for x86 mul-

tiprocessors, where it appears that our x86-TSO model suffices fo Refer ences

common-case code [1-4], and for Power and ARM multiproces-
sors, where we have models that capture some but not all aspect
of their behaviour [5, 6]. The underlying causes of these difficulties
are complex, including:
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Multiprocessor implementation details are typically confiden-
tial and may change radically from one implementation to an-
other.
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