Memory, an Elusive Abstraction

Peter Sewell

University of Cambridge
http://www.cl.cam.ac.uk/users/pes20/weakmemory

Abstract ¢ All too often, loose specification has been achieved by vague

Multiprocessors are now ubiquitous. They provide an abstraction ~ SPecification, using informal prose. When it comes to subtle
of shared memory, accessible by concurrently executing threads, ~concurrent properties this is almost inevitably ambiguous; it
which supports a wide range of software. However, exactly what iSO makesitimpossible (éven in principle) to test conformance
this key abstraction is —what the hardware designers impiement, ~P€tWeen a processor implementation and such a specification,
and what programmers can depend on— is surprisingly elusive. In let alone to verify such a correspondence or to reason about
1979, when articulating the notion of sequential consistency (SC), ~ concurrent programs.

Lamport wrote “For some applications, achieving sequential con- Categoriesand Subject Descriptors C.1.2 Multiple Data Stream
sistency may not be worth the price of slowing down the proces- Architectures (Multiprocessors)]: Parallel processors; D.1.8pn-
sors.” [7], and indeed most major multiprocessor families, includ- current Programming]: Parallel programming; F.3.15pecifying
ing Alpha, ARM, Itanium, Power, Sparc, and x86, do not provide and Verifying and Reasoning about Programs

the abstraction of SC memory. Internally, they incorporate a range) o o

of sophisticated optimisations which have various programmer- General Terms Documentation, Reliability, Standardization,
visible effects. For some (such as Sparc) these effects are cap-Theory, Verification

tured in a well-defined relaxed memory model, making it possible
(if challenging) to reason with confidence about the behaviour of
concurrent programs. For others, however, it has been veigamc ~ Acknowledgements This is based on joint work with colleagues
what a reasonable model is, despite extensive research over the lash Cambridge and INRIA Rocquencourt. | acknowledge funding
three decades. In this talk, | will reflect on the experience of my from EPSRC grants EP/F036345 and EP/H005633.

colleagues and | in trying to establish usable models for x86 mul-

tiprocessors, where it appears that our x86-TSO model suffices fo Refer ences

common-case code [1-4], and for Power and ARM multiproces-
sors, where we have models that capture some but not all aspect
of their behaviour [5, 6]. The underlying causes of these difficulties
are complex, including:

Keywords Relaxed Memory Models, Semantics

él] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. RidgBraibant,
M. Myreen, and J. Alglave. The semantics of x86-CC multipreoes
machine code. IiProc. POPL 2009, January 2009.
[2] Scott Owens, Susmit Sarkar, and Peter Sewell. A betterm&ory
e The programmer-observable relaxed-memory behaviour of a model: x86-TSO. IfProc. TPHOLS, LNCS5674, pages 391-407, 2009.
multiprocessor is a whole-system property that arises from the 3] scott Owens. Reasoning about the implementation of coenay
interaction between many complex aspects of the processor ~ abstractions on x86-TSO. Rroc. ECOOP, 2010. To appear.
implementation: speculative execution, store buffering, cache [4) peter Sewell, Susmit Sarkar, Scott Owens, Francescoabiapdell,
protocol, and so forth. and Magnus Myreen. x86-TSO: A rigorous and usable progransmer’
Programs are executed (and tested) on specific multiprocessor model for x86 multiprocessor€ommunications of the ACM, 2010. To
implementations, but processor vendors attempt to document 2PP€ar

loose specifications to cover a range of possible (past and fu-[5] J. Alglave, A. Fox, S. Ishtiag, M. Myreen, S. Sarkar, Pw8H, and
ture) implementations. F. Zappa Nardelli. The semantics of Power and ARM multipromess

machine code. lProc. DAMP 2009, January 2009.
[6] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Befvences
in weak memory models. IRroceedings of CAV, 2010. To appear.
[7] L. Lamport. How to make a multiprocessor computer that cdiyec
Vendor specifications suffer from the tension between the need executes multiprocess program&EE Trans. Comput., C-28(9):690—
for loose specification, to preserve freedom for such changes, 691, 1979.
and the need for tight specification, to give strong properties to
properties.

Multiprocessor implementation details are typically confiden-
tial and may change radically from one implementation to an-
other.

Copyright is held by the author/owner(s).

ISMM’10, June 5-6, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0054-4/10/06.

