
Formalisation of MiniSail in the Isabelle Theorem Prover
Alasdair Armstrong Neel Krishnaswami Peter Sewell Mark Wassell

University of Cambridge {firstname.lastname}@cl.cam.ac.uk

Abstract: Sail is a language used to model instruction set architectures. It has an imperative syntax and a
dependent type system. We formalise a core calculus of the language in the Isabelle theorem prover describing
the language syntax, substitution, the type system and operational semantics. A number of classic theorems
such as preservation and progress are then proved. The purpose of this formalisation is to ensure that the full
language is built on sound foundations and to provide a platform for the generation of the implementation of
a type checker and evaluator for the language.

1 Introduction

Sail [1, 2] is a language used to model instruction set ar-
chitectures (ISAs) for CPUs such as ARM, IBM POWER,
MIPS, CHERI, RISC-V, and x86. It is an imperative lan-
guage similar to the vendor pseudocode languages; the se-
mantics of instructions is expressed as imperative code that
makes register and memory accesses. Academic ISA mod-
els are often for small fragments, but full ISAs typically
contain hundreds or thousands of instructions, so Sail mod-
els will be large and complex. In order to tame this com-
plexity, a light-weight dependent type system is used. The
type system provides integer, boolean, bit vector, register,
record and union types. Type level constraints can be spec-
ified that constrain the values for integer indexed types such
as integers or bit vectors. Function constraints can be used
to relate the return value of a functions to values of the
function’s parameters. To ensure tractablility, constraints
are limited to those that are solvable by an external SMT
solver, Z3.

It is important to ensure that the Sail language and type
system is itself sound and so formalising the language is
of benefit. MiniSail is a small subset of Sail intended to
capture key aspects of the language making it amenable to
formalisation. This paper describes the work in progress to
formalise MiniSail in Isabelle.

2 Syntax, Wellformedness and Substitution

Figure 1 shows the grammar of MiniSail. We use let normal
form so that complex expressions are unpacked into nested
let statements. This exposes the types of the subexpres-
sions of complex terms.

The nonterminal τ represents a constrained type (also
known as a refinement or liquid type [3]), z ranges over
values, b over base types and φ over constraints. For exam-
ple, the type {z : int|0 ≤ z∧z ≤ 32} is the type of integers
between 0 and 32 inclusive.

The language grammar is mapped directly into nomi-
nal datatypes in Isabelle with binding specifications for the
let and case statements, function definition and liquid
types. A context, Γ is an ordered list of (x, b, φ) tuples.
Program variables (i.e. those introduced in let and function
bindings) can be used in types. A set of inductive predicates

value, v ::= x | n | T | F | inl v | inr v
expr, e ::= v | v + v | v ≤ v | f v
stmt, s ::= let x = e in s |

if v then s else s |
case v of inl x1 → s | inr x2 → s |

fundef, fd ::= fun f (x : b[φ]) : τ = s
prog, p ::= fd1 ; .. ; fdn ; s

base, b ::= int | bool | b+ b
φ ::= T | F | e = e | e ≤ e | φ ∧ φ |

φ ∨ φ | ¬φ
τ ::= {z : b| φ }

Figure 1: MiniSail Grammar

defines wellformedness with respect to a context ensuring
that variables appear in a context before they can be used.

3 Validity, Subtyping and Typing

SMT solver logic is modelled using an inductive predicate
where we define an inductive rule for each property that we
expect the solver to have. For example, that Γ |= φ =⇒ φ
and basic facts about + and ≤ operators. The subtyping
judgement, Γ ` τ1 ≤ τ2, is key and allows a smaller
type to be used where a larger type is expected. Subtyp-
ing holds when the base types match and the constraint of
the smaller type implies the constaint of the larger; the latter
being checked by the SMT solver logic.

The type system of MiniSail is defined using bidirec-
tional typing: we have the type synthesis judgement Γ `
e ⇒ τ and the type checking judgement Γ ` s ⇐ τ .
We define a type checking nominal inductive predicate for
statements and both synthesis and checking nominal induc-
tive predicates for values and expressions. Sum types are
an interesting case: the type of a sum value cannot be in-
ferred unless there is a type annotation. For example, with
inl v we can infer the value of the left side of the sum type
from v, but we have no information that will give us the
right side of the sum type. So we need a type checking
judgement for values and expressions and provide a place
in the syntax where the programmer can include a type an-
notation. The usual solution is to include in the grammar

Γ ` v1 ⇒ {z1 : int|φ1}
Γ ` v2 ⇒ {z2 : int|φ2}

Γ ` v1 + v2 ⇒ {z3 : int|z3 = v1 + v2}

f : (z1 : b[φ1]) : τ
Γ ` v ⇒ {z2 : b|φ2}

Γ |= φ2[z1 ::= v] =⇒ φ1[z1 ::= v]

Γ ` f v ⇒ τ [z1 ::= v]

Figure 2: Typing Rules

general type annotations on values and expressions. We in-
stead introduce annotations only where it is required - in
let and case statements. We need an hereditary substi-
tution operation for the operational semantics that picks up
the type of a term and drops it into the type annotation of
the let or case statement. A small sample of the typing
rules is given in Figure 2.

4 Substitution Lemmas and Operational Semantics

With the type system in place, we are in the process of
proving in Isabelle a set of lemmas relating the type of
term and the type of that term with a value substituted
in. A simplified example is: If Γ ` v ⇒ {z : b|φ} and
(x, b, φ)#Γ ` s⇐ τ then Γ ` s[x ::= v]⇐ τ .

Single step reduction is defined by an inductive predicate.
Next, we will prove that if a statement has a type, then the
result of reduction has the same type. This is proved using
the substitution lemmas. We will also prove the progress
lemma: a well typed statement is either a value or has a
reduction step.

5 Experience

This work has guided Sail development leading to the sim-
plification of the handling of constraints and removal of uni-
fication on numeric expressions in types.

Paper formalisations of languages have an underly-
ing convention that terms are worked with up to alpha-
equivalence and that, if necessary, renaming of bound vari-
ables can occur implicitly. Mechanical formalisations in
a theorem prover need to make this convention explicit to
the prover. Nominal Isabelle provides the framework for
making this easier than encoding the convention explic-
itly. This makes a nominal formalisation closer to a paper
formalisation than a conventional mechanical formalisation
however some supporting lemmas are needed and, when
defining functions that operate over nominal datatypes, a
number of proofs need to be provided. These proofs are
sometimes tricky to prove and result in a lot of proof code
that looks to to be the same modulo the structure of the
binding. However with an intuitive understanding of how
Nominal Isabelle works, it is relatively easy to see the ap-
proach needed and how to prove lemmas. Looking at prior

work and borrowing lemmas has been helpful and sledge-
hammer as usual is a great assistant. As equality between
nominal terms is alpha-equivalence, care is needed when
unpacking a term with a binder. For example, if we have
{z : b|φ} = {z′ : b′|φ′} then it doesn’t hold that φ = φ′ but
it is true that swapping any fresh variable with z in φ and z′

in φ′ does give equality.

6 Questions and Further Work

Alongside this work, we have developed AST datatypes and
inductive rules for typing and reduction that do not use the
Nominal package and do not include proofs. From this,
the code generation facilities of Isabelle have been used to
build an implementation of this language for a larger sub-
set of Sail. The question arises as to whether it is possible
to generate code from nominal datatypes, functions and in-
ductive relations. If this is not possible, then one approach
is to hand craft an implementation as ‘vanilla’ functions
in Isabelle and then prove this implementation matches the
nominal-formalisation.

Ott [4] provides a unified way of specifying the syntax
and semantics of a language. A specification can then be
exported to LaTex, Ocaml, Coq and Isabelle. With Isabelle,
the output is ‘vanilla’ datatypes for the AST, functions for
substitition and free-variables, and inductive predicates for
the rules. An extension to Ott would be for the export to tar-
get Nominal Isabelle where the datatypes would be nominal
ones and the substitition functions defined in the nominal
style. Furthermore, supporting lemmas could be automati-
cally generated and this will also reduce the boilerplate.
Acknowledgements This work was partially supported by
EPSRC grant EP/K008528/1 (REMS).

References

[1] Sail. http://www.cl.cam.ac.uk/˜pes20/
sail/.

[2] Kathryn E. Gray, Gabriel Kerneis, Dominic Mulligan,
Christopher Pulte, Susmit Sarkar, and Peter Sewell. An
integrated concurrency and core-ISA architectural en-
velope definition, and test oracle, for IBM POWER
multiprocessors. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, MICRO-48,
pages 635–646, New York, NY, USA, 2015. ACM.

[3] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala.
Liquid types. SIGPLAN Not., 43(6):159–169, June
2008.

[4] Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Gilles Peskine, Thomas Ridge, Susmit Sarkar, and Rok
Strniša. Ott: Effective tool support for the working se-
manticist. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming,
ICFP ’07, pages 1–12, New York, NY, USA, 2007.
ACM.

