
Rockwell Collins’
Evolving FM Methodology

Konrad Slind
Trusted Systems Group

Rockwell Collins

January 25, 2014

Collaborators

• Rockwell Collins: Andrew Gacek, David Hardin, Darren
Cofer, John Backes, Luas Wagner

• U. Minnesota: Mike Whalen, Tuan-Hung Pham

Rockwell Collins

Rockwell Collins is a company (NYSE: COL) that makes stuff
that gets put into airplanes (commercial and military).
• flight deck, on-board networks
• communication
• information security
• etc.

Has had an FM group since the early 1990s.

Currently, approx. 10 full-time FM people in the group.

FM at Rockwell Collins

We work on internal projects and also compete for external
funding from places like NASA and DoD.

We apply a wide range of FM technologies: SMT,
model-checking, ITP.

Some are the usual suspects: e.g., PVS, ACL2, HOL4,
numSMV, Prover, yices, cvc4, z3, ...

Some are homebrew.

Old Stalwarts: PVS and ACL2

In the early days we used PVS and ACL2 a lot.

• Applications of PVS
• AAMP5 microcode
• JEM Java microprocessor

• Applications of ACL2
• AAMP7 EAL7 MILS Certification by NSA
• Greenhills Integrity 178B RTOS (EAL6+)

And we still use them a lot.

Old Stalwart: Gryphon

Simulink/
Stateflow Lustre Imp

Model Checking

nuSMV Prover KIND

C

Ada

Lisp

• Written in SML/NJ by Mike Whalen
• Still used a lot

Newcomer verification systems

The following tools have been recently developed by our group:

• OMS (Onboard Maintenance System)
• CAS (Crew Alerting System).
• SPEAR
• AGREE
• Resolute
• Guardol

OMS and CAS

Test case generation via model-checking.

• Test suites often needed to satisfy certification process
requirements (DO178B)

• Developing them and running them can be expensive:
need to book time on simulator, plus personnel have to be
present to check correct physical actions taken

• Basic idea: a counterexample to a negated property is
automatically translated into a test for that property

• Properties come from a database of requirements
(equations between variables and boolean combinations of
primitive tests on wire values)

• Automatically generates high-quality test-suites for free.

SPEAR

There’s a need for easier ways to write and check high level
requirements.

• Natural language is typically used, but formal requirements
are useful for analysis

• Idea: provide a set of high level specification patterns in
Temporal Logic

• Automatically check that low-level rqts meet high level rqts
• Uses Lustre as the target

AGREE

Assume-guarantee reasoning on contracts attached to AADL
models.

• Tackling the problem of reasoning about requirements
• No implementations, just contracts
• Built as an extension of the OSATE Eclipse plug-in, which

supports AADL.

AGREE at Work

AGREE Counterexample

Common Aspects

These systems can be seen as instantiations of the following
framework:

IDE AST Lustre/JKind SOLVERS

parse; edit

typecheck

• IDE generated by xtext.
• JKind is our Java implementation of a parallel k-induction

model checker for Lustre.
• Invokes SMT solvers (yices, z3, cvc4)
• Publically available:

https://github/agacek/jkind

Resolute

Analysis of architectural properties.

• Resolute is a theorem prover for structural properties of
AADL.

• The system is based on the notion of a safety case.
• We are currently applying it to security properties in then

context of the HACMS project.
• All the properties are computable, so Resolute is just a

way to conveniently write and check properties about, e.g.,
how components are connected together, etc.

• The safety case is generated in a goal-directed style and
the resulting proof tree is the assurance case.

Guardol

A guard mediates information sharing between security
domains according to a specified policy.

High Security Network
Internet /

Low Security Network
Guard

Application

Trusted Untrusted

Infiltration

Exfiltration

Literally a box on a wire, in many cases.

Guardol is a DSL for guards.

Guardol Example

Guardol Architecture

IDE HOL RADA

Ada

parse; edit

formalize
program

code generation

proof

automation

Verification

HOL4 is used as a semantical conduit to RADA

• RADA is a SMT-based system for reasoning about
catamorphisms

• HOL4 is an implementation of higher order logic.
• We use it to give a semantics to Guardol evaluation
• Decompilation into logic transforms specs about Guardol

evaluation to properties of HOL functions
• Induction schemes from the definition of the functions are

used to drive the skeleton of the inductive proof

Verification path

τ1, . . . , τj
p1, . . . ,pk
s1, . . . , s`

τ1, . . . , τj
p1, . . . ,pk
s1, . . . ,s`

f1, . . . , fk
g1, . . . ,g`

f1, . . . , fk
g11, . . . ,g1k1

g`1, . . . ,g`k`

RADA

formalize
program

decompile

induct

Things to Ponder

In the OLD days, the idea was that one worked in a particular
proof system and translated problems into it. The semantics
stared you in the face.

The NEW view is that one does an ad hoc connection of a UI
and some FM tools. So translations are important.

We have found that providing an IDE for the language under
consideration is very important. Hence auto-generation of IDEs
for the concrete syntax of the object language.

ANP3 : A New Prover Per Project

ANTLR4 grammar example

xtext uses ANTLR to generate parsers

expr: ID
| INT
| REAL
| BOOL
| ID ’(’ (expr (’,’ expr)*)? ’)’
| ’not’ expr
| ’-’ expr
| expr op=(’*’ | ’/’ | ’div’) expr
| expr op=(’+’ | ’-’) expr
| expr op=(’<’ | ’<=’ | ’>’ | ’>=’ | ’=’ | ’<>’) expr
| expr op=’and’ expr
| expr op=(’or’ | ’xor’) expr
| expr op=’=>’<assoc=right> expr
| expr op=’->’<assoc=right> expr
| ’if’ expr ’then’ expr ’else’ expr
| ’(’ expr ’)’

Things to Ponder

IDE AST IVL SOLVERS

CODE

What is the soundness story? The TCB?

Things to Ponder

IDE AST IVL SOLVERS

CODE

Translate SMT proofs

IDE AST IVL SOLVERS

CODE

This has been done, but not for all theories.

Not widely adopted at the moment

Can also consider verified solvers (but solvers are usually in C)

Verified Parsing and Translation to IVL

IDE AST IVL SOLVERS

CODE

Frontend of cakeML shows this can be done.

AST −→ IVL verified translation also done in Guardol.

Verified Code Generation

This is commonly done by translation to source in some useful
language like Ada or C. Then off-the-shelf compilers are
applied.

IDE AST IVL SOLVERS

C Ada

x86 ARM

An Ideal Setting Maybe

IDE AST IVL SOLVERS

CODE

` `
` `

`

`

A lot of work to achieve.

Would it be materially better than something with less
verification inside?

Related Systems

• Rustan Leino’s Dafny/Boogie system
• J.C. Filliâtre’s Why3
• Isabelle
• Lem

Summary

We apply a spectrum of FM methods at RC.

Things we think are good ideas:

• Providing IDEs for concrete syntax as a frontend to formal
analyses. (With xtext this is quite easy to achieve.)

• Using high-level intermediate languages with nice
semantics. (Provides a base from which to stage calls to
proof procedures and solvers.)

Challenges: verification of the translations

THE END

