PiP 2014

Formalizing EXE’s, DLL’s
and all that

Nick Benton, Andrew Kennedy
(Microsoft Research Cambridge)

Interns: Jonas Jensen (ITU), Valentin Robert (UCSD),
Pierre-Evariste Dagand (INRIA), Jan Hoffman (Yale)

—_——

25th January 2014

Our dream

\

Highest assurance software correctness
for
machine code programs
through
machine-assisted proof

"Prove what you run”

PiP 2014 2 25th Januar y 2014

PiP 2014

One tool: Cog
“

Model (sequential, 32-bit, subset of) x86 in Coq:
bits, bytes, memory, instruction decoding, execution

Generate x86 programs from Coq:

assembly syntax in Coq, with macros, run assembler
in Coq to produce machine code, even EXEs and DLLs
Specify x86 programs in Coq:

separation logic for low-level code

Prove x86 programs in Coq:

tactics and manual proof for showing that programs
meet their specifications

3 25th January 2014

x86 assembly code

Macro for local

Dro e O (* Argument in EBX *)
letproc fact :=
MOV EARX, 1;;

. MOV ECX, 1;;
Macro for while (* while ECX <= EBX *)
while (CMP ECX, EBX) CC LE true (

MUL ECX;; (* Multiply EAX by ECX *)
INC ECX

) Intel instruction
in
LOCAL format;
MOV EBX, 10;; callproc fact;:

MOV EDI, printfSlot;;

c call cdecl3 [EDI] format EBX EAX;;
Macro for calllng MOV EBX, 12;; callproc fact;:
CALEITIC OUC MOV EDI, printfSlot;;
call cdecl3 [EDI] format EBX EAX;;
RET 0O;;

format:;;
ds "Factorial of %d is %d";; db #10;; db #0.

25th January 2014

X86 assembly code,

Actually, “just” a

Assembler syntax is
“just” user-defined

ds
Scoped labels “just” \7

in

Definition main (printfSlot: DWORD) :=
(* Argument in EBX *)
letproc fact := “: 1))
MOV EAX, 1; Macros ar.e just
MOV ECX, 1;; parameterized Coq

(* while ECX <= EBX *) definitions

while (CMP ECX, EBX) CC LE true (
MUL ECX;; (* Multiply EAX by ECX *) l
INC ECX Definition while (ptest: program)
) (cond: Condition) (value: bool)
(pbody: program) : program :=

LOCAL BODY; LOCAL test;

LOCAL format;

MOV EBX, 10;; callproc fact;; JMP test;;
OV EDI, printfSlot;: BODY: ;; pbody;;
call cdecl3 [EDI] format EBX EAX; CeStii7
E ptest;;

MOV EBX, 12;; callproc fact;; JCC cond value BODY.

MOV EDI, printfSlot;;
call cdecl3 [EDI] format EBX EAX;;
RET 0O;;
format:;;
"Factorial of 5d";; db #10;;

%d is db #0.

5 25th January 2014

In previous work...

B

Low-level program logic for assembly;

High-Level Separation Logic for Low-Level Code proof of soundness wrt machine model
Jonas B. Jensen Nick Benton Andrew Kennedy
T ik sken) Gt com Program specifications; program logic
tactics; proofs of correctness for
Model of x86 machine: assembly programs

binary reps, memory, instruction Higher-level languages;

compilers;
compiler correctness

Assembly-code representation;

MU CE RIS, PPDP 2013

Coq: The world’s best macro assembler?

Simple macros (if, while);
U ser macros; Andrew Kennedy Nick Benton Jonas B. Jensen Pierre-Evariste Dagand

Microsoft Research ITU Copenhagen University of Strathclyde

_ S - B

PiP 2014 6 25th January 2014

PiP 2014

Today’s talk
\’

Extend generation, specification and verification of x86
machine code to

* Generate binary link formats: EXEs and DLLs for
Windows (i.e. practice)

« Specify and verify behaviour of EXEs and DLLs

(Future work) Specify and verify loading and dynamic
linking of EXEs and DLLs

But first, a quick overview of our x86 machine model.

7 25th January 2014

Model x86
\

* Use Coq to construct a “reference implementation”
of sequential x86 instruction decoding and execution

| CALL src =>
let! 0ldIP = getRegFromProcState EIP;
let! newIP = evalSrc src; Example fragment:
do! setRegInProcState EIP newlP; :
evalPush oldIP

| RET offset =>
let! 0ldSP = getRegFromProcState ESP;
let! IP'" = getDWORDFromProcState oldSP;

do! setRegInProcState ESP (addB (oldSP+#4) (zeroExtend 16 offset));
setRegInProcState EIP IP'

Design an assembly language

T =

+ Define datatype of programs, with sequencing, labels,
and scoping of labels

Inductive program :=

prog instr (c: Instr)
| prog skip | prog seq (pl pZ: program)
| prog declabel (body: DWORD -> program)
| prog label (L: DWORD)

« Use Coq variables for object-level ‘variables’ (labels),
a la higher-order abstract syntax

lNotation "TLOCAL'" 1 '";' p" := (prog declabel (fun 1 => p)) |

PiP 2014 9 25th January 2014

Build an assembler (1)

« First implement instruction encoder:

\\

PUSH (SrcI c) =>

1t signTruncate 24 (n:=7) c 1s Some b
then do! writeNext #x"6A"; writeNext b
else do! writeNext #x"68"; writeNext c

PUSH (SrcR r) =>
writeNext (PUSHPREF ## injReqg r)

PUSH (SrcM src) =>
do! writeNext #x"FE";
writeNext (#6, RegMemM true src)

PiP 2014

10

25th January 2014

Build an assembler (2)

T =

* Using instruction encoder, implement multi-pass
assembler that determines a consistent assignment

for scoped labels

assemble
: DWORD -> program -> option (seq BYTE)

* Prove “round-trip” lemma stating that instruction
decoding is inverse wrt instruction encoding

* Extend this to a full round-trip theorem for the
assembler

PiP 2014 1 25th January 2014

Design a logic

It’s usual to use a program logic such as Hoad
and reason about programs

{P} C{Q} Postcondition
Precondition i

* Recent invention of separation logic makes reasoning about
pointers tractable

* But still not appropriate for machine code
Machine code programs don’t “finish” (what postcondition?)

Code and data are all mixed up (“command” is just bytes in
memory), also code can be “higher-order” with code pointers

* We have devised a new separation logic that solves all these

problems, embedded it in Coq, and proved it sound with respect
to the machine model

Example:

Specitying memory allocation

.‘
[If it is safe to exit through failLabel or j...
(

safe @ (EIP ~= failLabel ** EDI?) //\\
safe @ (EIP ~=] ** Exists pb,
EDI ~= pb +# bytes **
memAny pb (pb +# bytes))

...such that (at j), EDI
points just beyond
accessible memory

——>>
safe @ (EIP ~= 1 ** EDI?) % ...then it is safe to enter at i

)
@ (ESI? ** OSZCP Any ** allocInv heapInfo)

<@ (1 -- J :-> inlineAlloc heapInfo bytes failLabel).

e

... under the assumption that memory at i..j decodes to allocator code,

ESI and flags are arbitrary, and a data invariant is maintained

Trivial implementation of allocator

‘\
Definition inlineAlloc heapInfo
(bytes:nat) (failLabel:DWORD) : program :=
mov ESI, heapInfo;;
mov EDI, [ESI];;
add EDI, bytes;;
jc failLabel;;
cmp [ESI+4], EDI;; Definition allocInv (heapInfo:DWORD) :=
jc failLabel;; Exists heapPtr:DWORD,
mov [ESI], EDI. Exists heapLimit:DWORD,
heapInfo :-> heapPtr **
heapInfo+#4 :-> heapLimit **
memAny heapPtr heapLimit.

Prove some theorems

‘\

* We have developed Coq tactics to help prove that programs
behave as specified

* Sometimes routine, sometimes careful reasoning required.
Example proof fragment:

(* add EDI, EDX *)
eapply basic seq; first eapply basic basic;
first apply ADD RR ruleAux; sbazooka.

(* shl ECX, 1 *)
eapply basic seq; first eapply basic basic;
first apply SHL RI rule; sbazooka.

(* add EDI, ECX *)
eapply basic basic;
first apply ADD RR ruleAux; rewrite /regAny; sbazooka.

PiP 2014

Put it all together

\

Use Coq to produce raw bytes, link with a small boot loader, to
produce a bootable image

Under assumptions about state of machine following boot
loading, prove that program meets spec

ot CogVM on M5RC-3617024 - Virtual Machine Connection -

R |
un- File Actiocn Media Clipboard View Help
O@O® b I |1s Y

O

Game of life, written in
assembler using Coq,
running on bare metal!

Status: Paused = B%
16 25th January 2014

Executables

\’

* That’s all well and good but

* We’d like to formalize the process of loading programs,
and support dynamic linking, and

Rather than booting the machine (or a VM) it would be
nice to experiment on an existing OS e.g. Windows

* Also good to test our ideas on linking and loading using
existing formats

* So: model EXE’s, DLL’s, loading and dynamic linking

PiP 2014 17 25th January 2014

PiP 2014

What’s in an executable?

\’

Some machine code, with an entry point, preferred base address,
and...

Several sections (code, data, r/o data, thread local data, etc.)
Relocation information (if not loaded at preferred base address)
Imports, by name or number

Exports (if executableisa DLL)

A lot of metadata Microsoft Portable Executable and
Legacy cruft (e.g. MSDOS stub!) Common Object File Format

Informally documented in a ~100 page spec Specification

23 Windows

* X X X X X X

18 25th January 2014

What’s in an executable?

Let’s look inside

static void main() {

printf("hellor world. \n") B 7000 size of code

} 5EQ00 size of initialized data
0 size of uninitialized data
1244 entry point (00401244)
1000 base of code
8000 base of data
400000 image base (00400000 to OO40EFFF)
1 H 1000 section alignment
Complle & llnk 200 file alignment
6.00 operating system version
0.00 image version
6.00 subsystem version
0 Win32 version
FO00 size of image

dumpbin /a” 400 size of headers

0 checksum
00000040: Oelf bale 00b4 09cd 21b8 014c cd2l 5468 :
00000050: €973 2070 726f 6772 616d 2063 6l6e 6e6f is program canno 3 subsystem (Windows CUI)
00000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS 8140 DLL characteristics
00000070 6d6f 6465 2e0d 0d0a 2400 0000 0000 000D A
00000080: £238 02ab b659 6Cf8 b659 6cf8 b659 6efB Dynamic base
NX compatible

00000090: bE59 6df8 fh59 6cf8 daZe dSE8 b559 6cf8
000000a0: 729c a3f8 af59 6cf8 729c alfB bc59 6cf8 T inal S A
000000b0: 729c a2f8 ef59 6cf8 919f a2f8 b759 6cf8 ermina EXVEer Aware
100000 size of stack reserve
1000 size of stack commit

87654321 0011 2233 4455 €677 8899 aabb ccdd eeff 0123456789%abedef
00000000: 4d5a 9000 0300 0000 0400 0000 f££ff 0000
00000010: b80O0 0000 0000 0000 4000 0000 0000 0000
00000020: 0000 0000 0000 0000 0000 0000 0000 0000
00000030: 0000 0000 0000 0000 0000 0000 e000 0O0OO

000000c0: 919f a0f8 b759 6cf8 5269 6368 b659 6cf8
000000d0: 0000 0000 0000 0000 0000 0000 0000 0000
000000e0: 5045 0000 4c01 0400 e826 e152 0000 0000

PiP 2014 19 25th January 2014

In1porta finition winfact :=

Dyvnamic.kinkLibrar IMPORTDLL "msvcrt.dll";
y y IMPORT "printf" as printfSlot; | Declare a code section

SECT?ON CQDE Containing our
malin printfSlot. .
factorial code

LLJ LLJ 3 £~ "

anortarunned Compute makeEXE #x"00760000 winfact.exe" winfact.

function from the DLL

Generate the bytes of
the .EXE at a given
load address!

| -

. Developer Command Prompt for VS2012 -

C:\coqgx86\trunk>build x86\win\winfact.exe
"Makefile.deps' is up-to-da
cogqtop -dont-load-proofs -quic
regexp -I x868/win -I contribs -I contribs/ATBR °
Ao Compile...
tools\hexbin x86/win/winfact hex x86/win/wilntact.

C:\coqx86\trunk>x86\win\winfact
Factorial of 10 is 3628800
Factorial of 12 is 479001600

...and run!
C:\coqx86\trunk:> W

PiP 2014 20 25th January 2014

Example DLL

counter.dll

S

Export module-level
labels by name

Example counterDLL :=

GLOBAL Inc as "Inc";
GLOBAL Get as "Get": Declare a module-level

GLOBAL Counter; abel without exporting i

SECTION CODE
Inc:;; MOV ECX, Counter;; INC [ECX];; RET 0;;
Get:;; MOV ECX, Counter;; MOV EAX, [ECX];; RET O;

SECTION DATA s
Counter:;; dd #0. Read/write data section

Compute makeDLL #x"00ACO000™ "counter.dll"™ counterDLL.

PiP 2014 21 25th January 2014

Example client

usecounter.exe

Example useCounterCode :=
IMPORTDLL "msvcrt.dll"™;
IMPORT "printf" as printfSlot;
IMPORTDLL "counter.dll";
IMPORT "Inc" as incSlot; IMPORT "Get" as getSlot;
SECTION CODE
LOCAL formatString;
MOV EDI, incSlot;; CALL [EDI];; CALL [EDI];;
MOV EDI, getSlot;; CALL [EDI];;
PUSH EAX;;
MOV EBX, formatString;; PUSH EBX;;
MOV EDI, printfSlot;; CALL [EDI];;
ADD ESP, 8;;
RET 0;;
formatString:;;
ds "Got %d";; db #10;; db #O.

Import Get from

Call indirect through

113 b2

Compute makeEXE #x"12E30000™ "usecounter.exe" useCounterCode.

PiP 2014 22 25th January 2014

* Our assembly datatype and assembler give us aII‘tP

The messy details

mechanisms we need to generate the structures found in EXE’s
and DLL’s

%k

* % % ¥

%k

Byte, word, string representations

RVAs (Relative Virtual Address)

Padding

Alignment constraints

Bitfields

Multi-pass fixed-point iteration to deal with forward references

* One small annoyance: file image not identical to in-memory
image (e.g. alignment of sections); RVAs wrt in-memory image

*

PiP 2014

Hack: add “skip” primitive in our writer monad to advance the
assembler’s “cursor” without producing any bytes

23 25th January 2014

Exports and imports

‘\

Exports
Logically: a list of (name,address) pairs

Imports

Logically: for each imported DLL,

* lts name

Alist of imported symbols (by name or ordinal)

* Alist of slots, one for each imported symbol: the Import Address
Table or IAT

In binary format, this is all somewhat messier!

PiP 2014 24 25th January 2014

PiP 2014

Relocateable code

o

* Some x86 code is position independent e.g. makes
use of PC-relative offsets (jumps)

* But much is not: especially on 32-bit, it’s hard to refer
to global data in position independent way

 So: executables have a “preferred base address”

* |f not loaded at this address, absolute addresses
embedded in code and data must be rebased i.e.
patched at load-time

* The executable lists these in a special “.reloc” section

25 25th January 2014

What does the OS loader do?

Before: in-file

el

\ Base = 0x3000 Base = 0x9000
Code Code for |
. X\\I rne Code for main Code
section Code for Get section
I
MOV EDX, [0x9570]
I
Export “|nc” 0X100 SlOt at RVA OX57O
table
“Inc” mport
table

counter.dll

usecounter.exe

PiP 2014 26 25th January 2014

What does the OS loader do?

After loading: in-memory

Starting at address
0X3000

Starting at address

0X9000
Base = 0x3000 Base = 0x9000
Code Code for Inc
. Code for main Code
section Code for Get section

MOV EDX, [0x9570]

Export “Inc” 0X100

table [1Get? | oaso.

AT 0X3100 |mport

(G ogme table

counter.dll

usecounter.exe

PiP 2014 27 25th January 2014

Patching of instructions

‘\

+ We want to relocate addresses (“rebasing’’) and perhaps
link modules (in some non-Windows loader) by in-place
update of instructions

* Encodings matter. Prove lemmas such as

Lemma PUSH decoding (p addr: DWORD) g :
P —— a :—> PUSH addr -|-
p —— g :—> (#x"68", addr) \\//
(Exists b:BYTE, signTruncate _ (n:=7) addr = Some b
/\\ p —— g :—> (#x"6A", b)).

PiP 2014 28 25th January 2014

(Towards)

Specitying calling conventions

‘\

« ‘“fastcall” calling convention for function of one argument
(passed in ECX) and one result (in EAX)

Definition fastcall nonvoidl spec (f: DWORD) (FS: FunSpec (mkFunSig 1 true)) : spec :=
Forall arg:DWORD,
Forall sp:DWORD,
Forall iret:DWORD,
(

safe @ (EIP ~= iret ** EAX ~= fst (post FS arg) ** ECX? **

ESP ~= sp ** sp-#4 :-> ?2:DWORD ** snd (post FS arg)) -->>
safe @ (EIP ~= £ ** EAX? *%* ECX ~= arg **

ESP ~= sp-#4 ** sp-#4 :-> iret ** pre FS arqg)

)
@ (EDX? ** OSZCP_Any).

PiP 2014 29 25th January 2014

PiP 2014

What’s to do?
\‘

Separately specify different modules; prove
correctness of combination, already loaded and with
imports resolved

Model the loading process itself

Implement a small loader, in machine code using Coq,
with export/import resolution

Prove its correctness

30 25th January 2014

