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Our dream

\

Highest assurance software correctness
for
machine code programs
through
machine-assisted proof

"Prove what you run”
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One tool: Cog
“

Model (sequential, 32-bit, subset of) x86 in Coq:
bits, bytes, memory, instruction decoding, execution

Generate x86 programs from Coq:

assembly syntax in Coq, with macros, run assembler
in Coq to produce machine code, even EXEs and DLLs
Specify x86 programs in Coq:

separation logic for low-level code

Prove x86 programs in Coq:

tactics and manual proof for showing that programs
meet their specifications
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x86 assembly code

Macro for local

Dro e O (* Argument in EBX *)
letproc fact :=
MOV EARX, 1;;

. MOV ECX, 1;;
Macro for while (* while ECX <= EBX *)
while (CMP ECX, EBX) CC LE true (

MUL ECX;; (* Multiply EAX by ECX *)
INC ECX

) Intel instruction
in
LOCAL format;
MOV EBX, 10;; callproc fact;:

MOV EDI, printfSlot;;

c call cdecl3 [EDI] format EBX EAX;;
Macro for calllng MOV EBX, 12;; callproc fact;:
CALEITIC OUC MOV EDI, printfSlot;;
call cdecl3 [EDI] format EBX EAX;;
RET 0O;;

format:;;
ds "Factorial of %d is %d";; db #10;; db #0.
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X86 assembly code,

Actually, “just” a

Assembler syntax is
“just” user-defined

ds
Scoped labels “just” \7

in

Definition main (printfSlot: DWORD) :=
(* Argument in EBX *)
letproc fact := “: 1))
MOV EAX, 1; Macros ar.e just
MOV ECX, 1;; parameterized Coq

(* while ECX <= EBX *) definitions

while (CMP ECX, EBX) CC LE true (
MUL ECX;; (* Multiply EAX by ECX *) l
INC ECX Definition while (ptest: program)
) (cond: Condition) (value: bool)
(pbody: program) : program :=

LOCAL BODY; LOCAL test;

LOCAL format;

MOV EBX, 10;; callproc fact;; JMP test;;
OV EDI, printfSlot;: BODY: ;; pbody;;
call cdecl3 [EDI] format EBX EAX; CeStii7
E ptest;;

MOV EBX, 12;; callproc fact;; JCC cond value BODY.

MOV EDI, printfSlot;;
call cdecl3 [EDI] format EBX EAX;;
RET 0O;;
format:;;
"Factorial of 5d";; db #10;;

%d is db #0.
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In previous work...

B

Low-level program logic for assembly;

High-Level Separation Logic for Low-Level Code proof of soundness wrt machine model
Jonas B. Jensen Nick Benton Andrew Kennedy
T ik sken) Gt com Program specifications; program logic
tactics; proofs of correctness for
Model of x86 machine: assembly programs

binary reps, memory, instruction Higher-level languages;

compilers;
compiler correctness

Assembly-code representation;

MU CE RIS, PPDP 2013

Coq: The world’s best macro assembler?

Simple macros (if, while);
U ser macros; Andrew Kennedy  Nick Benton Jonas B. Jensen Pierre-Evariste Dagand

Microsoft Research ITU Copenhagen University of Strathclyde
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Today’s talk
\’

Extend generation, specification and verification of x86
machine code to

* Generate binary link formats: EXEs and DLLs for
Windows (i.e. practice)

« Specify and verify behaviour of EXEs and DLLs

# (Future work) Specify and verify loading and dynamic
linking of EXEs and DLLs

But first, a quick overview of our x86 machine model.
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Model x86
\

* Use Coq to construct a “reference implementation”
of sequential x86 instruction decoding and execution

| CALL src =>
let! 0ldIP = getRegFromProcState EIP;
let! newIP = evalSrc src; Example fragment:
do! setRegInProcState EIP newlP; :
evalPush oldIP

| RET offset =>
let! 0ldSP = getRegFromProcState ESP;
let! IP'" = getDWORDFromProcState oldSP;

do! setRegInProcState ESP (addB (oldSP+#4) (zeroExtend 16 offset));
setRegInProcState EIP IP'



Design an assembly language

T =

+ Define datatype of programs, with sequencing, labels,
and scoping of labels

Inductive program :=

prog instr (c: Instr)
| prog skip | prog seq (pl pZ: program)
| prog declabel (body: DWORD -> program)
| prog label (L: DWORD)

« Use Coq variables for object-level ‘variables’ (labels),
a la higher-order abstract syntax

lNotation "TLOCAL'" 1 '";' p" := (prog declabel (fun 1 => p)) |
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Build an assembler (1)

« First implement instruction encoder:

\\

PUSH (SrcI c) =>

1t signTruncate 24 (n:=7) c 1s Some b
then do! writeNext #x"6A"; writeNext b
else do! writeNext #x"68"; writeNext c

PUSH (SrcR r) =>
writeNext (PUSHPREF ## injReqg r)

PUSH (SrcM src) =>
do! writeNext #x"FE";
writeNext (#6, RegMemM true src)

PiP 2014
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Build an assembler (2)

T =

* Using instruction encoder, implement multi-pass
assembler that determines a consistent assignment

for scoped labels

assemble
: DWORD -> program -> option (seq BYTE)

* Prove “round-trip” lemma stating that instruction
decoding is inverse wrt instruction encoding

* Extend this to a full round-trip theorem for the
assembler
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Design a logic

It’s usual to use a program logic such as Hoad
and reason about programs

{P} C{Q} Postcondition
Precondition i

* Recent invention of separation logic makes reasoning about
pointers tractable

* But still not appropriate for machine code
# Machine code programs don’t “finish” (what postcondition?)

# Code and data are all mixed up (“command” is just bytes in
memory), also code can be “higher-order” with code pointers

* We have devised a new separation logic that solves all these

problems, embedded it in Coq, and proved it sound with respect
to the machine model




Example:

Specitying memory allocation

.‘
[ If it is safe to exit through failLabel or j...
(

safe @ (EIP ~= failLabel ** EDI?) //\\
safe @ (EIP ~= ] ** Exists pb,
EDI ~= pb +# bytes **
memAny pb (pb +# bytes))

...such that (at j), EDI
points just beyond
accessible memory

——>>
safe @ (EIP ~= 1 ** EDI?) % ...then it is safe to enter at i

)
@ (ESI? ** OSZCP Any ** allocInv heapInfo)

<@ (1 -- J :-> inlineAlloc heapInfo bytes failLabel).

e

... under the assumption that memory at i..j decodes to allocator code,

ESI and flags are arbitrary, and a data invariant is maintained




Trivial implementation of allocator

‘\
Definition inlineAlloc heapInfo
(bytes:nat) (failLabel:DWORD) : program :=
mov ESI, heapInfo;;
mov EDI, [ESI];;
add EDI, bytes;;
jc failLabel;;
cmp [ESI+4], EDI;; Definition allocInv (heapInfo:DWORD) :=
jc failLabel;; Exists heapPtr:DWORD,
mov [ESI], EDI. Exists heapLimit:DWORD,
heapInfo :-> heapPtr **
heapInfo+#4 :-> heapLimit **
memAny heapPtr heapLimit.




Prove some theorems

‘\

* We have developed Coq tactics to help prove that programs
behave as specified

* Sometimes routine, sometimes careful reasoning required.
Example proof fragment:

(* add EDI, EDX *)
eapply basic seq; first eapply basic basic;
first apply ADD RR ruleAux; sbazooka.

(* shl ECX, 1 *)
eapply basic seq; first eapply basic basic;
first apply SHL RI rule; sbazooka.

(* add EDI, ECX *)
eapply basic basic;
first apply ADD RR ruleAux; rewrite /regAny; sbazooka.
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Put it all together

\

Use Coq to produce raw bytes, link with a small boot loader, to
produce a bootable image

Under assumptions about state of machine following boot
loading, prove that program meets spec

ot CogVM on M5RC-3617024 - Virtual Machine Connection -

R |
un- File Actiocn Media Clipboard  View Help
O@O® b I |1s Y

O

Game of life, written in
assembler using Coq,
running on bare metal!

Status: Paused = B%
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Executables

\’

* That’s all well and good but

* We’d like to formalize the process of loading programs,
and support dynamic linking, and

# Rather than booting the machine (or a VM) it would be
nice to experiment on an existing OS e.g. Windows

* Also good to test our ideas on linking and loading using
existing formats

* So: model EXE’s, DLL’s, loading and dynamic linking
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What’s in an executable?

\’

Some machine code, with an entry point, preferred base address,
and...

Several sections (code, data, r/o data, thread local data, etc.)
Relocation information (if not loaded at preferred base address)
Imports, by name or number

Exports (if executableisa DLL)

A lot of metadata Microsoft Portable Executable and
Legacy cruft (e.g. MSDOS stub!) Common Object File Format

Informally documented in a ~100 page spec Specification

23 Windows

* X X X X X X
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What’s in an executable?

Let’s look inside

static void main() {

printf("hellor world. \n") B 7000 size of code

} 5EQ00 size of initialized data
0 size of uninitialized data
1244 entry point (00401244)
1000 base of code
8000 base of data
400000 image base (00400000 to OO40EFFF)
1 H 1000 section alignment
Complle & llnk 200 file alignment
6.00 operating system version
0.00 image version
6.00 subsystem version
0 Win32 version
FO00 size of image

dumpbin /a” 400 size of headers

0 checksum
00000040: Oelf bale 00b4 09cd 21b8 014c cd2l 5468 :
00000050: €973 2070 726f 6772 616d 2063 6l6e 6e6f is program canno 3 subsystem (Windows CUI)
00000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS 8140 DLL characteristics
00000070 6d6f 6465 2e0d 0d0a 2400 0000 0000 000D A
00000080: £238 02ab b659 6Cf8 b659 6cf8 b659 6efB Dynamic base
NX compatible

00000090: bE59 6df8 fh59 6cf8 daZe dSE8 b559 6cf8
000000a0: 729c a3f8 af59 6cf8 729c alfB bc59 6cf8 T inal S A
000000b0: 729c a2f8 ef59 6cf8 919f a2f8 b759 6cf8 ermina EXVEer Aware
100000 size of stack reserve
1000 size of stack commit

87654321 0011 2233 4455 €677 8899 aabb ccdd eeff 0123456789%abedef
00000000: 4d5a 9000 0300 0000 0400 0000 f££ff 0000
00000010: b80O0 0000 0000 0000 4000 0000 0000 0000
00000020: 0000 0000 0000 0000 0000 0000 0000 0000
00000030: 0000 0000 0000 0000 0000 0000 e000 0O0OO

000000c0: 919f a0f8 b759 6cf8 5269 6368 b659 6cf8
000000d0: 0000 0000 0000 0000 0000 0000 0000 0000
000000e0: 5045 0000 4c01 0400 e826 e152 0000 0000
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In1porta finition winfact :=

Dyvnamic.kinkLibrar IMPORTDLL "msvcrt.dll";
y y IMPORT "printf" as printfSlot; | Declare a code section

SECT?ON CQDE Containing our
malin printfSlot. .
factorial code

LLJ LLJ 3 £~ "

anortarunned Compute makeEXE #x"00760000 winfact.exe" winfact.

function from the DLL

Generate the bytes of
the .EXE at a given
load address!

| -

. Developer Command Prompt for VS2012 -

C:\coqgx86\trunk>build x86\win\winfact.exe
"Makefile.deps' is up-to-da
cogqtop -dont-load-proofs -quic
regexp -I x868/win -I contribs -I contribs/ATBR °
Ao Compile...
tools\hexbin x86/win/winfact hex x86/win/wilntact.

C:\coqx86\trunk>x86\win\winfact
Factorial of 10 is 3628800
Factorial of 12 is 479001600

...and run!
C:\coqx86\trunk:> W
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Example DLL

counter.dll

S

Export module-level
labels by name

Example counterDLL :=

GLOBAL Inc as "Inc";
GLOBAL Get as "Get": Declare a module-level

GLOBAL Counter; abel without exporting i

SECTION CODE
Inc:;; MOV ECX, Counter;; INC [ECX];; RET 0;;
Get:;; MOV ECX, Counter;; MOV EAX, [ECX];; RET O;

SECTION DATA s
Counter:;; dd #0. Read/write data section

Compute makeDLL #x"00ACO000™ "counter.dll"™ counterDLL.
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Example client

usecounter.exe

Example useCounterCode :=
IMPORTDLL "msvcrt.dll"™;
IMPORT "printf" as printfSlot;
IMPORTDLL "counter.dll";
IMPORT "Inc" as incSlot; IMPORT "Get" as getSlot;
SECTION CODE
LOCAL formatString;
MOV EDI, incSlot;; CALL [EDI];; CALL [EDI];;
MOV EDI, getSlot;; CALL [EDI];;
PUSH EAX;;
MOV EBX, formatString;; PUSH EBX;;
MOV EDI, printfSlot;; CALL [EDI];;
ADD ESP, 8;;
RET 0;;
formatString:;;
ds "Got %d";; db #10;; db #O.

Import Get from

Call indirect through

113 b2

Compute makeEXE #x"12E30000™ "usecounter.exe" useCounterCode.
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* Our assembly datatype and assembler give us aII‘tP

The messy details

mechanisms we need to generate the structures found in EXE’s
and DLL’s

%k

* % % ¥

%k

Byte, word, string representations

RVAs (Relative Virtual Address)

Padding

Alignment constraints

Bitfields

Multi-pass fixed-point iteration to deal with forward references

* One small annoyance: file image not identical to in-memory
image (e.g. alignment of sections); RVAs wrt in-memory image

*

PiP 2014

Hack: add “skip” primitive in our writer monad to advance the
assembler’s “cursor” without producing any bytes
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Exports and imports

‘\

Exports
Logically: a list of (name,address) pairs

Imports

Logically: for each imported DLL,

* lts name

# Alist of imported symbols (by name or ordinal)

* Alist of slots, one for each imported symbol: the Import Address
Table or IAT

In binary format, this is all somewhat messier!
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Relocateable code

o

* Some x86 code is position independent e.g. makes
use of PC-relative offsets (jumps)

* But much is not: especially on 32-bit, it’s hard to refer
to global data in position independent way

 So: executables have a “preferred base address”

* |f not loaded at this address, absolute addresses
embedded in code and data must be rebased i.e.
patched at load-time

* The executable lists these in a special “.reloc” section
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What does the OS loader do?

Before: in-file

el

\ Base = 0x3000 Base = 0x9000
Code Code for |
. X\\I rne Code for main Code
section Code for Get section
I
MOV EDX, [0x9570]
I
Export “|nc” 0X100 SlOt at RVA OX57O
table
“Inc” mport
table

counter.dll

usecounter.exe
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What does the OS loader do?

After loading: in-memory

Starting at address
0X3000

Starting at address

0X9000
Base = 0x3000 Base = 0x9000
Code Code for Inc
. Code for main Code
section Code for Get section

MOV EDX, [0x9570]

Export “Inc” 0X100

table [1Get? | oaso.

AT 0X3100  |mport

(G ogme  table

counter.dll

usecounter.exe
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Patching of instructions

‘\

+ We want to relocate addresses (“rebasing’’) and perhaps
link modules (in some non-Windows loader) by in-place
update of instructions

* Encodings matter. Prove lemmas such as

Lemma PUSH decoding (p addr: DWORD) g :
P —— a :—> PUSH addr -|-
p —— g :—> (#x"68", addr) \\//
(Exists b:BYTE, signTruncate _ (n:=7) addr = Some b
/\\ p —— g :—> (#x"6A", b)).
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(Towards)

Specitying calling conventions

‘\

« ‘“fastcall” calling convention for function of one argument
(passed in ECX) and one result (in EAX)

Definition fastcall nonvoidl spec (f: DWORD) (FS: FunSpec (mkFunSig 1 true)) : spec :=
Forall arg:DWORD,
Forall sp:DWORD,
Forall iret:DWORD,
(

safe @ (EIP ~= iret ** EAX ~= fst (post FS arg) ** ECX? **

ESP ~= sp ** sp-#4 :-> ?2:DWORD ** snd (post FS arg)) -->>
safe @ (EIP ~= £ ** EAX? *%* ECX ~= arg **

ESP ~= sp-#4 ** sp-#4 :-> iret ** pre FS arqg)

)
@ (EDX? ** OSZCP_Any).
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What’s to do?
\‘

Separately specify different modules; prove
correctness of combination, already loaded and with
imports resolved

Model the loading process itself

Implement a small loader, in machine code using Coq,
with export/import resolution

Prove its correctness
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