
On Implementations and Semantics of a Concurrent Programming
Language

Peter Sewell1

Abstract

The concurrency theory literature contains many proposals for models of
process algebras. We consider an example application of the �-calculus, the pro-
gramming language Pict of Pierce and Turner, primarily in order to see how far
it is possible to argue, from facts about the application, that some model is the
most appropriate. We discuss informally the sense in which the semantics of Pict
relates to the behaviour of actual implementations. Based on this we give an op-
erational model of the interactions between a Pict implementation (considered
as the abstract behaviour of a C program) and its environment (modelling an
operating system and user). We then give a class of abstract machines and a
definition of abstract machine correctness, using an adapted notion of testing,
and prove that a sample abstract machine is indeed correct. We briefly discuss
the standard of correctness appropriate for program transformations and the in-
duced precongruence. Many of the semantic choices do indeed turn out to be
determined by facts about Pict.

1 Introduction

The concurrency theory literature contains many proposals for models of process al-

gebras, as can be seen for example from the surveys by van Glabeek [Gla90, Gla93]

of certain models that are quotients of labelled transition systems (LTS’s). This di-

versity poses a problem: for any particular application of a process algebra how can

an appropriate model be selected? In this paper the problem is addressed for an ex-

ample application of the �-calculus of Milner, Parrow and Walker [MPW92], primar-

ily in order to see how far it is possible to argue, from facts about the application,

that some model is the most appropriate. The application is the Pict programming

language, based on the �-calculus, of Pierce and Turner [PT97]. We consider mod-

els that are quotients of the terms by congruence relations defined using notions of

observation. The core of the paper is devoted to defining a notion of observation

that can be seen to be appropriate for Pict. We discuss in detail the interactions be-

tween an actual Pict implementation and a user, together with their relationship to

the structured operational semantics (SOS). This discussion is, in the absence of a

semantics for the implementation language, necessarily informal. We then incorpo-

rate a number of simple but essential facts about the interactions into a formal model,

giving precise definitions of a class of abstract machines and of a notion of observa-

tion suitable for defining abstract machine correctness. These are used to define an

appropriate observational precongruence. We prove that a sample abstract machine

is indeed correct and give some characterisation results, relating the observational

preorder and precongruence to standard notions of testing and bisimulation.

1Computer Laboratory, University of Cambridge. Email: Peter.Sewell@cl.cam.ac.uk

Some of the discussion and technical work is necessarily specific to Pict. Much,

however, should be applicable to other concurrent programming languages that do

not prescribe a particular implementation scheduling strategy, for example Facile

[TLK96], CML [Rep92], Concurrent Haskell [JGF96], and the Join calculus [FG96].

To define what is a correct abstract machine one must specify the required relation-

ship between the LTS semantics of programs, as given by a �-calculus structured

operational semantics, and their behaviour when executed. It is thus an essential

part of the language definition, together with definitions of the syntax, type system,

SOS and libraries. It must satisfy three rather pragmatic criteria. Firstly, it must be

strong enough to give programmers sufficient guarantees about the behaviour of pro-

grams. Secondly, it must be loose enough to admit any ‘reasonable’ implementation

and ‘reasonable’ compiler optimisations. Thirdly, it must be sufficiently mathemati-

cally tractable to allow correctness proofs for abstract machines and program trans-

formations to be carried out. Our approach to defining abstract machine correct-

ness is as follows. In x2 we introduce Pict and discuss informally the relationship

between the SOS and implementation behaviour. The current implementation com-

piles a Pict program to a C program which is then compiled and executed. In x3 we

give an operational model of the interaction between such a C program and the op-

erating system which forms its immediate environment. We then give an analogous

model of the interaction between the LTS semantics of programs given by the SOS

and an environment. In x4 we relate the two, defining abstract machine correctness

via an adaptation of the testing preorder of De Nicola and Hennessy [DH84] (we show

that the standard notion is inappropriate). We also give a sample abstract machine,

closely based on the current implementation, and prove it correct. Finally in x5 we

consider program transformation, defining an observational preorder, giving some

examples and proving that the induced precongruence is refined by a simple notion

of bisimulation.

There is an extensive theoretical literature discussing behavioural equivalences of

process calculi that are induced by some kind of tests or observations of processes,

e.g. [HM80, Mil81, DH84, Hoa85, Abr87, AV93, Gla90, Gla93, San93]. The argu-

ment that the testing scenario we adopt is appropriate for Pict relies on some essen-

tial differences between Pict and any process calculus considered only in the abstract.

Firstly, Pict is a programming language, with a fixed interpretation of nondetermin-

ism (as a loose specification of the required implementation behaviour). It is not a

modelling or simulation language, which would fix other interpretations, or a pure

process calculus, which would not be committed to any interpretation. Secondly,

Pict is implemented and used. There are clear intuitions for the intended use of the

language and the behaviour of ‘reasonable’ implementations that can be appealed

to. Further, there are libraries providing specific primitives by which a Pict program

can interact with its immediate environment. The behaviour of these primitives in

any reasonable implementation is well understood, giving us a solid foundation upon

which to base our formal model and argue for its accuracy.

2 Pict: SOS and Implementation

Pict has a rich type system and high level syntax. This syntax is translated (in both

the semantics and the implementation) into a core syntax which is a mild extension

of an asynchronous choice-free �-calculus. For discussion of the design decisions un-

derlying Pict, and of the implementation issues, we refer the reader to [PT97] and

[Tur96]. For this paper we are largely concerned with the behaviour of whole pro-

grams. These interact with their environment only by communicating on channels

(provided by the libraries) of rather simple types. We work with an idealized Pict,

taking only these rather simple types and only the core syntax. In fact, we omit also

nested tuples, records and polymorphic packages from the core, and add an equality

test at base types (to replace library routines providing case analysis). These idealiza-

tions should not significantly affect the behaviours expressible by whole programs.

We take an infinite set X , of names, with � 62 X , and a set T , of base types pro-

vided by the libraries (including e.g. the naturals), ranged over by t. The types are

given by T ::= t j !hT

1

; : : : ; T

n

i j?hT

1

; : : : ; T

n

i j lhT

1

; : : : ; T

n

i. The latter three are

the types of names (or channels) along which a program can respectively output, in-

put, and output or input tuples of names, of types T
1

; : : : ; T

n

. We write ~T for a tuple

T

1

; : : : ; T

n

. We order types by �, which is the least preorder such that l~T � !

~

T and

l

~

T �?

~

T . This is simply a notational convenience, we will not have substantive sub-

typing. Type contexts � are partial functions fromX to types withX�dom(�) infinite.

We write �;� for the union of partial functions � and � with disjoint domains and

X � dom(�)� dom(�) infinite. Process terms are

P ::= 0

�

�

�

x

h

~z

i

�

�

�

x

(

~y

)

:P

�

�

�

! x

(

~y

)

:P

�

�

�

P jP

�

�

�

(�y :T)P

�

�

�

[x = z]P

where x; y; z 2 X and ~z;~y 2 X

�. The names ~y and y bind in the respective con-

tinuation process P . Here and below we suppose ~y contains no duplicated names.

Process terms are taken up to alpha conversion. The typing rules, defining a judge-

ment � ` P to be read as ‘P is typable with respect to �, structural congruence,

written �, and SOS are given in Figure 1. The SOS is similar to the ‘early’ defini-

tion of Sangiorgi [San93]. It differs in that it defines transitions of process terms

equipped with a type context instead of partitioning the names into a subset for

each type. This removes the need for side conditions on the free names of processes

and simplifies the definitions of operational equivalences, as processes need only be

compared with respect to the same type context. The labels, ranged over by �, are

fx

h

~z

i

j x 2 X ^~z 2 X

�

g [fx

h

~z

i

j x 2 X ^~z 2 X

�

g [f�g. The names of a label are

n(x

h

~z

i

) = fxg [~z, n(xh~zi) = fxg [~z and n(�) = fg. We define transition relations

� ` P

�

�!

�

Q

where � ` P , the type context � contains names only at channel types, dom(�) \

dom(�) = fg, and Q is a process term. Intuitively � is the type context for the

new names intruded or extruded by the transition (in the absence of subtyping �

is determined by the other data). For example, if � = x

h

z

i and � = fz : lhig the

transition above corresponds to a transition of [San93] with label (�z)xhzi, where z

would be a name in the lhi partition.

Proposition 1 (Subject reduction) If � ` P
�

�!

�

Q then �;� ` Q. Moreover, dom(�) �

n(�), if � = x

h

~z

i then �(x) � !(�;�)(~z) and if � = x

h

~z

i then �(x) � ?(�;�)(~z).

Proposition 2 (CONG-L) If P 0

� P and � ` P

�

�!

�

Q then � ` P

0

�

�!

�

Q.

The current Pict libraries provide a rich set of primitives for interacting with Unix and

the X window system. They are made available to programs by providing a pervasive

type context �
p

of certain channels along which a program can input and/or output.

This includes, for example, a channel print : !hStringi on which a program can out-

put strings. The implementation will send these to standard output. Programs are

process terms P such that �
p

` P .

We now briefly describe the behaviour of the current Pict implementation. After type

checking a Pict program is compiled to a C program which is then executed as a single

Unix process. The implementation is thus sequential — the intended use of concur-

rency in Pict is for expressiveness, not for distributed or parallel programming (work

on distribution is in progress). It maintains a state consisting of a run queue of pro-

cesses to be scheduled (round robin) together with channel queues of processes wait-

ing to communicate. It executes in steps, in each of which the process at the front of

the run queue is removed and processed. This internal behaviour of the implemen-

tation is described by Turner in [Tur96, Ch. 7] and incorporated into the abstract

machine given in x4. When an output or input on a library channel reaches the front

of the run queue some special processing takes place. For many library channels this

consists of a single call to a corresponding Unix IO routine. For example, processing

print

h“Ping”i involves an invocation of the C library call printf(: : :). There are a

number of facts that must be taken into account in order to accurately formalise a

model of implementations and relate it to the SOS. We discuss them informally here,

incorporating them into precise definitions in the following two sections.

Linear/Branching time The Pict SOS is nondeterministic. Any realistic implemen-

tation will be largely deterministic, however, as requiring that any nondeterministic

path may be taken (stochastically, or as determined by an oracle) has a prohibitive

performance cost for a programming language. Nonetheless, we do not wish to pre-

scribe a particular scheduling strategy, as that would unduly prevent compiler op-

timisations. The SOS must therefore be regarded as a loose specification of the re-

quired implementation behaviour, so any definition of implementation correctness

based on branching time, such as any notion of bisimulation, would render realistic

implementations ‘incorrect’. Moreover, the strong forms of copying required to ob-

serve branching time distinctions [Mil81, Abr87] are not applicable to executing Pict

implementations. One could, of course, examine an executing Pict implementation

with a machine-level debugger. This would reveal many implementation-dependent

details which the programmer and the language definition should abstract from, so

we regard it as outside the intended use of the language.

Non-refusable communication All interaction between a Pict implementation and

the operating system (which forms its immediate environment) occurs via invoca-

tions of C library calls, such as printf(: : :), by the implementation. These calls can-

not be ‘refused’ by the operating system and their return cannot be ‘refused’ by the

OUT
�(x) � !h�(z

1

); : : : ;�(z

n

)i

� ` x

h

z

1

; : : : ; z

n

i

(REP-)IN

�(x) �?hT

1

; : : : ; T

n

i

�; y

1

:T

1

; : : : ; y

n

: T

n

` P

� ` x

(

y

1

; : : : ; y

n

)

:P

and � ` ! x

(

y

1

; : : : ; y

n

)

:P

PAR
� ` P � ` Q

� ` P jQ

NIL
� ` 0

RES

�; x : T ` P

T 62 T

� ` (�x : T)P

MATCH

� ` P

�(x) = �(y) 2 T

� ` [x = y]P

P j 0 � P

P jQ � Q jP

P j(Q jR) � (P jQ) jR

(�x : T)(�y :T

0

)P � (�y : T

0

)(�x : T)P x 6= y

P j(�x : T)Q � (�x : T)(P jQ) x 62 fn(P)

OUT

� ` x

h

~z

i

x

h

~z

i

�!

fg

0

(REP-)IN

�(x) � ?

~

T

(�;�)(~z) =

~

T

dom(�) �~z

� ` x

(

~y

)

:P

x

h

~z

i

�!

�

P [~z=~y]

and � ` !x

(

~y

)

:P

x

h

~z

i

�!

�

P [~z=~y] j ! x

(

~y

)

:P

PAR

� ` P

�

�!

�

P

0

� ` P jQ

�

�!

�

P

0

jQ

COM

� ` P

x

h

~z

i

�!

�

P

0

� ` Q

x

h

~z

i

�!

�

Q

0

� ` P jQ

�

�!

fg

(��)(P

0

jQ

0

)

RES

�; x : T ` P

�

�!

�

P

0

x 62 n(�)

� ` (�x :T)P

�

�!

�

(�x :T)P

0

OPEN

�; x : T ` P

w

h

~z

i

�!

�

P

0

w 6= x 2~z

� ` (�x : T)P

w

h

~z

i

�!

�;x :T

P

0

MATCH

� ` P

�

�!

�

P

0

� ` [x = x]P

�

�!

�

P

0

CONG-R
� ` P

�

�!

�

P

0

P

0

� P

00

� ` P

�

�!

�

P

00

Figure 1: Typing, structural congruence and structured operational semantics. Sym-

metrical versions of PAR and COM are omitted.

implementation.

Blocking communication A Pict implementation should satisfy the following

progress criterion: if a Pict program has at least one possible transition, i.e. a transi-

tion that is either an external input for which a value is available, an external output

or an internal communication, then the implementation should perform one of the

corresponding steps in a reasonable time. Now, some C library calls can potentially

never return, e.g. getchar() if no characters become available. Such calls should

therefore not be invoked unless either they can be guaranteed to return or the Pict

program has no possible transitions. Consider, for example, the putative program

(getchar

(

c

)

:0 j print

h“Ping”i). An implementation should guarantee that the “Ping”

is printed and so must not call getchar() first unless a character is available. (In fact

we will consider only the most interesting potentially non-returning library call, for

getting events from the X window system. Dealing with the others should not involve

significant complication.)

External nondeterminism A C program cannot simultaneously ‘offer’ two library

calls for the operating system to select between. An accurate model of implementa-

tions must therefore forbid external nondeterminism.

Termination When a Pict program terminates, i.e. when it has no more transitions

in the SOS, the implementation Unix process terminates, typically returning the user

to a Unix shell prompt. The user is therefore concerned with the termination of pro-

grams, despite the fact that there is no Pict language context that can ‘detect’ termi-

nation of an arbitrary subprogram.

Divergence Pict programs may diverge, i.e. have an infinite sequence of internal ac-

tions in the SOS. The user is concerned with the distinction between programs that

diverge and programs that do not. Moreover, we cannot simply regard divergence as

catastrophic, identifying divergent programs that are otherwise significantly differ-

ent [Hoa85, Wal88]. To do so would allow an implementation to behave arbitrarily

for any divergent program, which would be unduly confusing, particularly for pro-

grams which are unintentionally divergent. The testing scenario must therefore be

divergence-sensitive.

Compositionality Much work on process calculi has been concerned with defining

behavioural relations with good mathematical properties, e.g. congruence proper-

ties, axiomatisations, and coinductive characterisations. For this paper we take the

problem of the development of tractable proof techniques to be secondary to that of

giving a good language definition for Pict, although it must ultimately influence the

language design. Now, Pict subprograms can only be composed (by parallel composi-

tion etc.) before they are compiled and only have behaviour when they are compiled

and executing. There is therefore no reason to include congruence properties in the

definition of correct program transformation, so it will be expressed simply in terms

of a preorder over whole programs. For reasoning about particular programs one will

obviously be concerned with observational precongruence, defined to be the largest

precongruence contained in this preorder, and might ideally like a direct character-

isation of it. We expect, however, that many program transformations are correct

up to rather fine equivalences (see e.g. [PW96, NP96]) so for many purposes it will

be preferable to have congruences with simple coinductive definitions that can be

shown to be finer than observational precongruence.

X events Communication from the X window system to a C program, e.g. notification

of mouse clicks, takes place via X events. These are generated and buffered within

X. Two C library routines are provided; XPending returns the number of events in

the buffer and XNextEvent returns the first available event. The latter may block, so

access to it should not be provided directly to Pict programs (otherwise the progress

criterion above will not be satisfiable). We therefore assume that access to X events

is provided to Pict programs via a library channel getXEvent. Inputs on this channel

should not block the implementation unless there are no possible transitions.

Asynchrony Pict is based on an asynchronous �-calculus, in which outputs do

not have continuation processes. This means that explicit acknowledgement sig-

nals must be used to control the sequencing of external IO. For example, instead

of the program print

h“Hello”i j printh“World”i, which could output “HelloWorld” or

“WorldHello”, one can write (�a : lhi)

�

pr

h“Hello”; ai j a():printh“World”i
�

. Here pr is

a channel of type !hString; lhii provided by the libraries. An implementation execut-

ing the subprogram pr

h“Hello”; ai must invoke the appropriate C library call and also

add an acknowledgement ahi to the program.

Fairness This paper leaves fairness properties for future work. Substantial effort has

gone into ensuring that the current implementation is reasonably fair, as this is nec-

essary for some natural programs. A good definition of implementation correctness

should, therefore, require that the implementation is fair in some precise sense. One

could also give a more accurate model of the interaction of a user and an implemen-

tation by taking the composition jj , defined in x3, to be a fair composition. In the

distributed case the appropriate fairness properties will be more subtle, as will the

issues of compositionality and external nondeterminism.

3 Implementation Model and Test Harnesses

In this section we give an abstract operational semantics of C programs, their en-

vironments, and the interactions between them. We define a class of models of the

behaviour of C programs, ranged over byC, a test harness H
am

() for these models, a

class of models of the environments of C programs, ranged over by E, and a compo-

sition jj of an environment and a C behaviour in the test harness. The behaviour of

a composition E jjH

am

(C) thus models the behaviour of an actual implementation.

We then define a test harnessH
sos

() for Pict programs with the SOS semantics so that

any H

sos

(P) and H

am

(C) are comparable. The definitions are given explicitly, rather

than by encoding into some calculus, so that the facts from x2 can be incorporated

directly.

We suppose that a C program and its environment can only interact in two ways.

Firstly, the program can invoke an operating system (OS) routine, e.g. by executing

a statement y = f(a) for an OS routine f that takes an argument a and returns a

result to be stored in y. Arguments and results may be values of some C structured

types. We will assume that arguments and results are elements of the Pict base types,

and so associate a pair of base types to each OS routine. This is obviously a major

idealization for arbitrary C programs — we are not dealing with communication via

shared memory or callback functions. For Pict implementations, however, it does not

appear to be too serious. Secondly, the program can terminate by executing a state-

ment return. A C program is single-threaded, so while an OS routine is executing

the rest of the program is blocked. We can therefore model the program by a labelled

transition system in which a single transition models a complete invocation of an OS

routine.

We suppose, for each base type t 2 T , a non-empty set jtj of its values. We assume

that fUnit;Nat;XEventg � T , jUnitj = f�g and jNatj = N. For technical simplicity

we treat return as an OS routine of type hUnit;Uniti. We use an ‘early’ LTS and do

not distinguish input and output labels. We take a C interface type context � to be

a finite partial function from X to pairs of base types. The labels over a C interface

type context � are L(�) = fx

h

a; r

i

j �(x) = hA;Ri ^ a 2 jAj ^ r 2 jRj g [f�g.

We take a labelled transition system S over a C interface type context � (a �-LTS) to

consist of a set of states S, an initial state root(S) 2 S, and transitions
l

�! � S � S

for l 2 L(�).

We will treat most OS routines uniformly, taking an arbitrary

C interface type context �

u

(strictly, with dom(�

u

) not inter-

secting freturn;XPending;XNextEvent;XInsertEventg). X events

and return must be treated specially, however. Letting �

c

be

�

u

; return :hUnit;Uniti;XPending :hUnit;Nati;XNextEvent :hUnit;XEventi, a C

program behaviour will be modelled by a �

c

-LTS. For f :hA;Ri 2 �

c

, a 2 jAj and

r 2 jRj a transition c

f

h

a;r

i

�! c

0 will model an invocation by the program in state c, of

OS routine f, with argument a, returning result r, and with c

0 being the program

state in which r has been returned.

Definition A C-behaviour C is a �

c

-LTS satisfying conditions

1. If f :hA;Ri 2 �

c

and c

f

h

a;r

i

�! c

1

then 8r0 2 jRj : 9c0 : c
f

h

a;r

0

i

�! c

0.

2. If root(C)

L(�

c

�return)

�!

�

return

h

�;�

i

�! c

0 then c

0

6�!.

3. If root(C)

L(�

c

�return)

�!

�

c then c�!.

4. If c
l

1

�!c

1

and c

l

2

�!c

2

6= c

1

then either l
1

= l

2

= � or 9f; a; r
1

; r

2

: l

1

= f

h

a; r

1

i

^

l

2

= f

h

a; r

2

i

^ r

1

6= r

2

.

The conditions reflect the facts that a C program cannot ‘refuse’ a particular result

value; that after an execution of return a C program has no behaviour; that a C

program cannot ‘halt’ and that a C program cannot simultaneously ‘offer’ two OS

routine calls for the OS to select between. It is arguable that one should also forbid

internal nondeterminism (up to strong bisimilarity).

In order to compare a C-behaviour and the Pict SOS some semantic mismatches be-

tween them, involving X events, asynchrony and termination, must be addressed.

Simply relating transitions labelled XNextEvent

h

�; ev

i of C-behaviours to transitions

labelled getXEvent

h

ev

i of the Pict SOS would have two undesirable consequences.

Firstly, it would allow an implementation to be ‘correct’ even though it could invoke

XNextEvent with no events available and with other steps possible (hence not satis-

fying the progress criterion). Secondly, it would render some reasonable implemen-

tations, that get and internally buffer X events before the executing Pict program

can input them, ‘incorrect’. Instead, therefore, we will compare C-behaviours and

the SOS in test harnesses that include explicit models of the X event buffer, allowing

the OS to insert events at any time and a C-behaviour or SOS to remove events using

their respective internal interfaces to the buffer. The test harness for C-behaviours is

as follows, in which �

e

is �
u

; return :hUnit;Uniti;XInsertEvent :hXEvent;Uniti, we

write jevsj for the length of the list evs and write ev :: evs and evs :: ev for the

concatenation of the list evs with the singleton list ev.

Definition For a C-behaviour C we define H

am

(C) to be the �

e

-LTS with states f�g[

f evs; c j evs 2 jXEventj

�

^ c 2 C g, root hnil; root(C)i and transitions

c

x

h

a;r

i

�! c

0

x 2 dom(�

u

)

evs; c

x

h

a;r

i

�! evs; c

0

c

�

�!c

0

evs; c

�

�!evs; c

0

c

return

h

�;�

i

�! c

0

evs; c

return

h

�;�

i

�! �

evs; c

XInsertEvent

h

ev;�

i

�! (evs :: ev); c

c

XPending

h

�;jevsj

i

�! c

0

evs; c

�

�!evs; c

0

c

XNextEvent

h

�;ev

i

�! c

0

(ev :: evs); c

�

�!evs; c

0

The environment of a C program, comprising Unix, the X window system (without

its event buffer), a terminal etc., will also be modelled by an �

e

-LTS. Its transitions

model invocations by the program of non-X-event library routines, the program’s fi-

nal return and the insertion of events into the buffer by X.

Definition An environment E is a �

e

-LTS satisfying

1. If root(E)

L(�

e

�return)

�!

�

e then 8x :hA;Ri 2 (�

e

�XInsertEvent) : 8a 2 jAj : 9r 2

jRj ; e

0

: e

x

h

a;r

i

�! e

0.

2. If root(E)

L(�

e

�return)

�!

�

return

h

�;�

i

�! e then e 6�!.

Condition 1 reflects the fact that Unix cannot ‘refuse’ a particular argument value of

an OS routine call, or a return. Condition 2 reflects the fact that after an execution of

return the environment has no further interaction with the program. The model of

interactions between C programs and their environments is completed by a parallel

composition operator:

Definition For an environment E and a �

e

-LTS H we define E jjH to be the fg-LTS

with states pairs e; h of states of E and H, root hroot(E); root(H)i and transitions

e

x

h

a;r

i

�! e

0

h

x

h

a;r

i

�! h

0

e; h

�

�!e

0

; h

0

e

�

�!e

0

e; h

�

�!e

0

; h

h

�

�!h

0

e; h

�

�!e; h

0

Turning to the SOS, the pervasive Pict type context �
p

will be taken to have a name

x : !hA; lhRii for each x :hA;Ri in �

u

, together with getXEvent : ?hXEventi and a

name x : t for each base type t 2 T and x 2 jtj. In example programs the types

!hA; lhUnitii and !hA; lhii will be confused. The test harness for the SOS must in-

clude a model of the X event buffer, must detect termination and must generate ac-

knowledgements for asynchronous external IO.

Definition For a program P we define H

sos

(P) to be the �

e

-LTS with states f�g [

f evs; P

0

j evs 2 jXEventj

� and P

0 is a �-class of programsg, root hnil; P i and tran-

sitions

�

p

` P

1

x

h

a;y

i

�!

y : lhRi

Q r 2 jRj

evs; P

1

x

h

a;r

i

�! evs; (�y : lhRi)(y

h

r

i

jQ)

�

p

` P

1

�

�!

fg

P

2

evs; P

1

�

�!evs; P

2

�

p

` P

1

6�!

evs; P

1

return

h

�;�

i

�! �

evs; P

1

XInsertEvent

h

ev;�

i

�! (evs :: ev); P

1

�

p

` P

1

getXEvent

h

ev

i

�!

fg

P

2

(ev :: evs); P

1

�

�!evs; P

2

4 Testing

We would like to describe, to programmers and implementers, the behaviour of cor-

rect Pict implementations in terms of the SOS. The desired intuition is:

An implementation is correct if, for all programs P , a user interacting with the imple-

mentation running P cannot tell that he/she is not interacting with the LTS semantics

of P given by the SOS.

To formalise ‘user interacting with ... cannot tell ...’ we consider the environments of

x3 to be modelling the user of a Pict system, together with a terminal, Unix, and all of

X except its event buffer. As the user is also the pertinent observer of the combined

system, we can take observations based on changes of environment state. Letting

H range over �

e

-LTS’s of the forms H

am

(C) and H

sos

(P), for C-behaviours C and

programs P , and he; hi range over states of E jjH, we define:

he; hi* he

0

; h

0

i

def
, e = e

0

^ he; hi

�

�!he

0

; h

0

i

he; hi+ he

0

; h

0

i

def
, e 6= e

0

^ he; hi

�

�!he

0

; h

0

i

he; hi

+

+he

0

; h

0

i

def
, he; hi*

�

+*

�

he

0

; h

0

i

As discussed in x2 the definitions of correctness should be linear time and sensitive to

termination and divergence. We therefore take tests o to be hE;~e;pari, hE;~e; termi,

hE;~e;divi and hE; ~ei, where E is an environment,~e 2 E

� and ~e 2 E

!. We define a

may-testing preorder v as follows.

H may hE;~e;pari

def
, 9

~

h : hroot(E); root(H)i

+

+he

1

; h

1

i : : :

+

+he

n

; h

n

i

H may hE;~e; termi

def
, 9

~

h : hroot(E); root(H)i

+

+: : :

+

+he

n

; h

n

i*

�

6�!

H may hE;~e;divi

def
, 9

~

h : hroot(E); root(H)i

+

+: : :

+

+he

n

; h

n

i*

!

H may hE; ~ei

def
, 9

~

h : hroot(E); root(H)i

+

+he

1

; h

1

i

+

+he

2

; h

2

i : : :

H v H

0

def
, 8o : H may o) H

0

may o

Finally we can give our central definition:

Definition An abstract machine M is a function from programs to C-behaviours. It

is correct if for all programs P we have H

am

(M(P)) v H

sos

(P).

We now briefly discuss v and some conceivable alternatives. It is perhaps the finest

appropriate notion. There are two obvious ways in which its definition could be

weakened, by amalgamating the termination and divergence tests and by omitting

the infinite tests. We have chosen not to do either, as we expect that any reasonable

abstract machine will be correct up to the stronger notion given (this is supported

by Theorem 1 below). We therefore might as well provide programmers with the

stronger guarantees about behaviour. The preorder is not affected by the omission

of the tests hE;~e;pari. It can be given a direct characterization as an annotated trace

inclusion. For k 2 L(�
e

)� f�g we take
k

=)

def
=

�

�!

�

k

�!

�

�!

�

as usual.

tr

dead

(H)

def
= f k

1

: : : k

n

j 9h : root(H)

k

1

=) : : :

k

n

=)

�

�!

�

h

^ :9l 2 L(�

e

�XInsertEvent) : h

l

�!g

tr

div

(H)

def
= f k

1

: : : k

n

j root(H)

k

1

=) : : :

k

n

=)

�

�!

!

g

tr

inf

(H)

def
= f k

1

k

2

: : : j root(H)

k

1

=)

k

2

=) : : : g

Proposition 3 H v H

0 iff 8� 2 fdead;div; infg : tr
�

(H) � tr

�

(H

0

).

The proof of this uses standard techniques, involving discriminating environments

constructed from traces over L(�
e

)� f�g. The preorder v is intuitively closely re-

lated to the annotated trace inclusions of Hoare [Hoa85] and the testing of De Nicola

and Hennessy [DH84]. We give an exact comparison with the latter. Instantiating

their definitions, say a DH-test d is a pair hE;
p

i of an environment E and set of ‘suc-

cessful’ states
p

� E. Letting e

0

= root(E):

H may hE;

p

i

def
, 9e 2

p

; h : he

0

; root(H)i�!

�

he; hi

H must hE;

p

i

def
, he

0

; root(H)i

�

�! : : :

�

�!he

n

; h

n

i 6�!) 9i 2 0::n : e

i

p

^ he

0

; root(H)i

�

�!he

1

; h

1

i

�

�! : : :) 9i � 0 : e

i

p

H v

DH�may

H

0

def
, 8d : H may d) H

0

may d

H v

DH�must

H

0

def
, 8d : H must d) H

0

must d

It is straightforward to check that v ((v

DH�may

\ v

�1

DH�must

). For forwards must-

testing, however, one has v6�v
DH�must

. Moreover, including forwards must-testing

would render reasonable abstract machines ‘incorrect’, e.g. abstract machines that,

given the program (�x : lhi)(x

hi

jx

()

:0 j x

()

:(�y : lhi)(y

hi

j ! y

()

:y

hi

)), always return.

One could imagine taking tests based on Pict contexts (following e.g. [Hen91,

BD95]) rather than on our test harnesses and jj. It is hard to see how the facts about

Pict could be introduced, particularly given that termination detection is required.

More generally, there is no reason to suppose that the interactions between a Pict im-

plementation and its environment are of the same kind as the interactions between

two Pict subprograms. Several authors have considered restricting to observations

that are in some sense effective. A user may indeed only be concerned with effec-

tive real time properties of implementations, however we do not wish to incorporate

these properties into the language definition. We must therefore either allow ‘in-

finite’ observations or neglect divergence despite the fact that users are concerned

with it.

We give an example abstract machineM
1

, closely based on the actual Pict implemen-

tation, in Figure 2. It has states h� ; rq ; cqsi consisting of a type context �, a run

queue rq and a collection of channel queues cqs. The rules for internal transitions

follow those of Turner [Tur96, Ch. 7], although without certain optimisations. For

external communication X is polled periodically for new X events (whenever the to-

kenX reaches the front of the run queue). The rules ensure that no potentially block-

ing XNextEvent call is performed except when all processes are waiting for an event,

in which case a blocking call is made (to avoid busy-waiting). Other non-blocking

IO occurs immediately, and the machine returns when there are no processes left in

the run queue or left waiting for X events.

Theorem 1 M

1

is a correct abstract machine.

The proof of this uses a decompilation function from states of H
am

(M

1

(P)) to states

of H
sos

(P), using which one can prove that H
am

(M

1

(P)) simulates (in a specialised

sense that refines v) H

sos

(P). The treatment of events and divergence is delicate;

the rest is reasonably straightforward (as one would hope, as M
1

is not optimised).

5 The Observational Precongruence

The same testing scenario can be used to define an observational preorder over pro-

grams that is appropriate as a standard of correctness for program transformations,

such as those considered by Jones [Jon96], Philippou and Walker [PW96], and Nest-

mann and Pierce [NP96]. The desired intuition is:

A program P can be transformed to a program P

0 if, for all correct abstract machines

M , a user interacting with H

am

(M(P

0

)) cannot tell that he/she is not interacting with

H

sos

(P).

This is formalised by the observational preorder _

& over programs, where P

_

&P

0

iff for all correct abstract machines M we have H

am

(M(P

0

)) v H

sos

(P). (Tran-

sitivity requires a brief argument.) The observational preorder reflects the real-

ities of Pict implementations, with for example (�x : lhi)pr

h“Ping”; xi (

_

& \

_

&

�1

)

(�x : lhi)(pr

h“Ping”; xi jx():x():P), (�x : lhi)(x

hi

jx

()

:0 j x

()

:pr

h“Ping”; xi) _

& 0 and

(�x : lhi)pr

h“Ping”; xi _6&0. These confirm that _

& differs from standard �-calculus no-

tions. As correctness does not fix a particular scheduling strategy, a correct abstract

machine may have completely different behaviour when executing structurally con-

gruent programs, let alone those related by _

&. Further, different correct abstract ma-

chines may behave completely differently when executing the same program. A pro-

grammer should therefore only write programs for which any execution path (from

STATES: h� ; rq ; cqsi where

– � is a finite type context with names only at channel types such that

dom(�

p

) \ dom(�) = fg

– �

0

p

= (�

p

� getXEvent); getXEvent : lhXEventi

– outs(x;�) = fx

h

~z

i

j �

0

p

;� ` x

h

~z

i

g

+

– ins(x;�) = (fx

(

~y

)

:P j �

0

p

;� ` x

(

~y

)

:P g [f ! x

(

~y

)

:P j �

0

p

;� ` ! x

(

~y

)

:P g)

+

– rq 2 (fX;X

0

g [fP j �

0

p

;� ` P g)

�

– cqs 2 �x 2 dom(�) [fgetXEventg : fnilg [outs(x;�) [ins(x;�)

INITIAL STATE: root(M

1

(P

0

))

def
= hfg ; P

0

:: X :: nil ; fgetXEvent 7! nilgi.

TRANSITIONS:

h� ; 0 :: rq ; cqsi

�

�! h� ; rq ; cqsi

h� ; x

h

~z

i

:: rq ; cqs; x 7! x

(

~y

)

:P :: cqi

�

�! h� ; rq :: P [~z=~y] ; cqs; x 7! cqi

h� ; x

h

~z

i

:: rq ; cqs; x 7! !x

(

~y

)

:P :: cqi

�

�! h� ; rq :: P [~z=~y] :: !x

(

~y

)

:P ; cqs; x 7! cqi

h� ; x

h

~z

i

:: rq ; cqs; x 7! cqi

�

�! h� ; rq ; cqs; x 7! cq :: x

h

~z

i

i 1

h� ; x

(

~y

)

:P :: rq ; cqs; x 7! x

h

~z

i

:P :: cqi

�

�! h� ; rq :: P [~z=~y] ; cqs; x 7! cqi

h� ; x

(

~y

)

:P :: rq ; cqs; x 7! cqi

�

�! h� ; rq ; cqs; x 7! cq :: x

(

~y

)

:P i 2

h� ; !x

(

~y

)

:P :: rq ; cqs; x 7! x

h

~z

i

:P :: cqi

�

�! h� ; rq :: P [~z=~y] :: !x

(

~y

)

:P ; cqs; x 7! cqi

h� ; !x

(

~y

)

:P :: rq ; cqs; x 7! cqi

�

�! h� ; rq ; cqs; x 7! cq :: !x

(

~y

)

:P i 2

h� ; (P jQ) :: rq ; cqsi

�

�! h� ; rq :: P :: Q ; cqsi

h� ; (�x :T)P :: rq ; cqsi

�

�! h(�; x : T) ; rq :: P ; cqs; x 7! nili 3

h� ; [x = x]P :: rq ; cqsi

�

�! h� ; rq :: P ; cqsi

h� ; [x = y]P :: rq ; cqsi

�

�! h� ; rq ; cqsi 4

h� ; x

h

a; y

i

:: rq ; cqsi

x

h

a;r

i

�! h� ; rq :: y

h

r

i

; cqsi 5

h� ; X :: P :: rq ; cqsi

XPending

h

�;0

i

�! h� ; P :: rq :: X ; cqsi

h� ; X :: P :: rq ; cqsi

XPending

h

�;n+1

i

�! h� ; X

0

:: P :: rq ; cqsi

h� ; X

0

:: P :: rq ; cqsi

XNextEvent

h

�;ev

i

�! h� ; getXEvent

h

ev

i

:: P :: rq :: X ; cqsi

h� ; X :: nil ; cqsi

XNextEvent

h

�;ev

i

�! h� ; getXEvent

h

ev

i

:: X :: nil ; cqsi 6

h� ; X :: nil ; cqsi

return

h

�;�

i

�! h� ; nil ; cqsi 7

Side conditions 1: cq 62 ins(x;�), 2: cq 62 outs(x;�), 3: x 62 dom(�

p

;�), 4: x 6= y,
5: �

p

(x) = !hA; lhRii ^ r 2 jRj, 6: cqs(getXEvent) 2 ins(getXEvent;�),
7: cqs(getXEvent) 62 ins(getXEvent;�).

Figure 2: The abstract machine M
1

executing a program P

0

those given by the SOS) would be acceptable. This is obviously problematic, accen-

tuating the need for formal development techniques and the identification of well

behaved (especially, confluent) idioms.

The observational preorder induces an observational precongruence & and hence a

term model for Pict. Say a typed precongruence > is a family of relations, indexed by

type contexts, such that each >

�

is an preorder over fP j � ` P g and > satisfies

the evident congruence rules. & is defined to be the largest typed precongruence

such that &
�

p

�

_

&. We conclude by giving a typed congruence with a tractable def-

inition that refines & and may suffice for many program transformations. Further

work should take into account the asynchronous nature of Pict and a larger frag-

ment of its type system, building on [ACS96, PS96]. Say weak divergence bisimula-

tion, written _

�, is the largest type context indexed family of relations such that each
_

�

�

is a symmetric relation over fP j � ` P g and, for all P _

�

�

Q: if � ` P

�

�!

�

P

0

then 9Q

0

: � ` Q

�̂

=)

�

Q

0

^ P

0

_

�

�;�

Q

0 and if � ` P

�

�!

fg

!

then � ` Q

�

�!

fg

!

, where

�̂

=)

�

def
=

�

�!

fg

�

�

�!

�

�

�!

fg

�

, for � 6= � , and
�̂

=)

fg

def
=

�

�!

fg

�

. We define � by P �

�

Q iff for all

substitutions [~z=~y], such that 8i : �(z
i

) = �(y

i

), we have P [~z=~y] _

�

�

Q[~z=~y].

Proposition 4 � is a typed congruence.

Theorem 2 ��&.

Acknowledgements I would like to thank Benjamin Pierce for many interesting dis-

cussions on this work and the EPSRC for support via grant GR/K 38403.

References

[Abr87] Samson Abramsky. Observation equivalence as a testing equivalence. Theoretical

Computer Science, 53:225–241, 1987.

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for
the asynchronous �-calculus. In Montanari and Sassone [MS96], pages 147–162.

[AV93] S. Abramsky and S. J. Vickers. Quantales, observational logic and process seman-
tics. Mathematical Structures in Computer Science, 3:161–227, 1993.

[BD95] Michele Boreale and Rocco De Nicola. Testing equivalences for mobile processes.
Information and Computation, 120:279–303, 1995.

[DH84] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoret-

ical Computer Science, 34:83–133, 1984.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus.
In POPL’96 [POP96], pages 372–385.

[Gla90] R. J. van Glabeek. The linear time — branching time spectrum. In Proceedings
CONCUR ’90, LNCS 458, pages 278–297, 1990.

[Gla93] R. J. van Glabbeek. The linear time — branching time spectrum II (the semantics
of sequential systems with silent moves). In Proceedings of CONCUR ’93, LNCS

715, pages 66–81, 1993.

[Hen91] M. Hennessy. A model for the �-calculus. Technical Report 91:08, University of
Sussex, 1991.

[HM80] Matthew Hennessy and Robin Milner. On observing nondeterminism and concur-
rency. In Proceedings 7th ICALP, LNCS 85, pages 299–309, 1980.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, 1985.

[JGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In POPL’96 [POP96], pages 295–308.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105–122, March
1996.

[Mil81] Robin Milner. A modal characterisation of observable machine-behaviour. In Pro-

ceedings CAAP ’81, LNCS 112, pages 25–34, 1981.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I + II.
Information and Computation, 100(1):1–77, 1992.

[MS96] Ugo Montanari and Vladimiro Sassone, editors. Proceedings CONCUR 96, Pisa,
Italy, volume 1119 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[NP96] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. In Montanari
and Sassone [MS96], pages 179–194.

[POP96] Conference Record of the 23

rd ACM Symposium on Principles of Programming Lan-
guages, 1996.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5), 1996.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on
the pi-calculus. Technical report, Computer Science Department, Indiana Univer-
sity, 1997. To appear in Milner festschrift, MIT Press.

[PW96] Anna Philippou and David Walker. On transformations of concurrent object pro-
grams. In Montanari and Sassone [MS96], pages 131–146.

[Rep92] John Hamilton Reppy. Higher-Order Concurrency. PhD thesis, Cornell University,
June 1992. Technical Report TR 92-1285.

[San93] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In Montanari
and Sassone [MS96], pages 278–298.

[Tur96] David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1996.

[Wal88] D. J. Walker. Bisimulations and divergence. In Proc. 3rd IEEE Symposium on Logic
in Computer Science, pages 186–192, 1988.

