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Mobile computation, in which executing computations can move from one physical computing
device to another, is a recurring theme: from OS process migration, to language-level mobility,

to virtual machine migration. This paper reports on the design, implementation, and verification
of overlay networks to support reliable communication between migrating computations, in the
Nomadic Pict project. We define two levels of abstraction as calculi with precise semantics:
a low-level Nomadic π calculus with migration and location-dependent communication, and a

high-level calculus that adds location-independent communication. Implementations of location-
independent communication, as overlay networks that track migrations and forward messages,
can be expressed as translations of the high-level calculus into the low. We discuss the design
space of such overlay network algorithms and define three precisely, as such translations. Based
on the calculi, we design and implement the Nomadic Pict distributed programming language,
to let such algorithms (and simple applications above them) to be quickly prototyped. We go
on to develop the semantic theory of the Nomadic π calculi, proving correctness of one example

overlay network. This requires novel equivalences and congruence results that take migration into
account, and reasoning principles for agents that are temporarily immobile (e.g. waiting on a lock
elsewhere in the system). The whole stands as a demonstration of the use of principled semantics
to address challenging system design problems.

Categories and Subject Descriptors: C.2.2 [Network Protocols]: ; C.2.4 [Distributed Sys-

tems]: ; D.3.3 [Language Constructs and Features]: ; F.3.1 [Specifying and Verifying
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Mobile computation, in which executing computations can move (or be moved)
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from one physical computing device to another, has been a recurring focus of re-
search, spanning disparate communities. The late 1970s and the 1980s saw extensive
work on process migration, largely in the setting of operating system support for
local-area distributed computation, using migration for load-balancing, checkpoint-
ing, etc. This was followed in the late 1990s by work on programming language
support for mobility, largely in the mobile agent community, aiming at novel wide-
area distributed applications. The late 1990s also saw work on semantics, using
the tools of process calculi and operational semantics. In parallel, there has been
a great deal of interest in the related areas of mobile code, popularised by Java ap-
plets, in which executable (but not yet executing) code can be moved, and in mobile
devices, such as smartphones, PDAs, and the other devices envisaged in ubiquitous
computing, which provide applications for both mobile computation and mobile
code. Recently, the late 2000s have seen a renewed interest in mobile computation,
now driven by the rise of virtualisation systems, such as VMWare and Xen, which
support migration of client OS images. These are finally realising the prospect of
commercial commodity computation, in which management of services and appli-
cations can be decoupled from physical machines in a datacentre, and in which
flexible markets for computational resources can emerge.

Building systems with mobile computation, whether it be at the hypervisor, OS
process, or programming language level, raises challenging problems, ranging from
security concerns to interaction between changing versions of the infrastructure. In
this paper we focus on one of these problems: that of providing reliable commu-
nication between migrating computations, with messages being delivered correctly
even if the sending and receiving computation migrate. Such high-level location
independent communication may greatly simplify the development of mobile ap-
plications, allowing movement and interaction to be treated as separate concerns.
To provide reliable communication in the face of migration, above the low-level
location dependent communication primitives of the existing Internet Protocol (IP)
network, one essentially has to build an overlay network, to track migrations and
route application messages to migrating computations. This infrastructure must
address fundamental network issues such as failures, network latency, locality, and
concurrency; the algorithms involved are thus inherently rather delicate, and cannot
provide perfect location independence. Moreover, applications may be distributed
on widely different scales (from local to wide-area networks), may exhibit differ-
ent patterns of communication and migration, and may demand different levels of
performance and robustness; these varying demands will lead to a multiplicity of
infrastructures, based on a variety of algorithms. Lastly, these infrastructure algo-
rithms will be to some extent exposed, via their performance and behaviour under
failure, to the application programmer — some understanding of an algorithm will
be required for the programmer to understand its robustness properties under, for
example, failure of a site.

The need for clear understanding and easy experimentation with infrastructure
algorithms, as well as the desire to simultaneously support multiple infrastructures
on the same network, suggests a two-level architecture—a low-level consisting of
a single set of well-understood, location-dependent primitives, in terms of which
a variety of high-level, location-independent communication abstractions may be
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expressed. This two-level approach enables one to have a standardized low-level
runtime that is common to many machines, with divergent high-level facilities cho-
sen and installed at run time.

For this approach to be realistic, it is essential that the low-level primitives should
be directly implementable above standard network protocols. The IP network sup-
ports asynchronous, unordered, point-to-point, unreliable packet delivery; it ab-
stracts from routing. We choose primitives that are directly implementable using
asynchronous, unordered, point-to-point, reliable messages. This abstracts away
from a multitude of additional details—error correction, retransmission, packet
fragmentation, etc.—while still retaining a clear relationship to the well-understood
IP level. It also well suited to the process calculus presentation that we use below.
More substantially, we also include migration of running computations among the
low-level primitives. This requires substantial runtime support in individual net-
work sites, but not sophisticated distributed algorithms—only one message need be
sent per migration. By treating it as a low-level primitive we focus attention more
sharply on the distributed algorithms supporting location-independent communica-
tion. We also provide low-level primitives for creation of running computations, for
sending messages between computations at the same site, for generating globally
unique names, and for local computation.

Many forms of high-level communication can be implemented in terms of these
low-level primitives, for example synchronous and asynchronous message passing,
remote procedure calls, multicasting to agent groups, etc. For this paper we con-
sider only a single representative form: an asynchronous message-passing primitive,
similar to the low-level primitive for communication between co-located computa-
tions, but independent of their locations, and transparent to migrations.

This two-level framework can be formulated cleanly using techniques from the
theory of process calculi. We precisely define the low and high levels of abstraction
as process calculi, the Nomadic π calculi, equipped with operational semantics
and type systems. The overlay networks implementing the high level in terms of
the low can then be treated rigorously as translations between these calculi. The
semantics of the calculi provides a precise and clear understanding of the algorithms’
behaviour, aiding design, and supporting proofs of correctness. Our calculi draw on
ideas first developed in Milner, Parrow, and Walker’s π calculus [Milner et al. 1992;
Milner 1992] and extended in the Pict language of Pierce and Turner [Pierce and
Turner 2000; Turner 1996], the distributed join-calculus of Fournet et al. [1996],
and the JoCaml programming language [Conchon and Le Fessant 1999].

To facilitate experimentation, we designed and implemented a Nomadic Pict
programming language based on our calculi. The low-level language extends the
compiler and run-time system of Pict, a concurrent language based on the π cal-
culus, to support our primitives for computation creation, migration, and location-
dependent communication. High-level languages, with particular infrastructures
for location-independent communication, can then be obtained by applying user-
supplied translations into the low-level language. In both cases, the full language
available to the user remains very close to the process calculus presentation, and
can be given rigorous semantics in a similar style.

We begin in §2 by introducing the Nomadic π calculi, discussing their primitives
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and semantics, and giving examples of common programming idioms.
In §3 we present a first example overlay network, expressed as a semantics-

preserving translation of the high-level Nomadic π calculus into the low-level calcu-
lus. This is a central forwarding server, relatively simple but still requiring subtle
locking to ensure correctness.

In §4 we give a brief overview of the design space for such overlay networks,
presenting a range of basic techniques and distributed algorithms informally, and
discussing their scalability and fault tolerance properties with respect to possible
applications.

For two of these more elaborate overlay algorithms, one using forwarding-pointer
chains (broadly similar to that used in the JoCaml implementation) and one using
query servers with caching, we give detailed definitions as Nomadic π calculus
translations, in §5 and §6 (and Appendix C) respectively.

In §7 (with further details in Appendices D, E, and F) we describe the design
and implementation of the Nomadic Pict programming language, which lets us
build executable distributed prototypes of these and many other overlay algorithms,
together with simple example applications that make use of them.

We then return to semantics, to prove correctness of such overlay networks. In
§8 we flesh out the semantic definition of the Nomadic π calculi and their basic
metatheory: type preservation, safety, and correspondence between reduction and
labelled transition semantics, and in §9 we develop operational reasoning techniques
for stating and proving correctness. We:

(1) extend the standard π calculus reduction and labelled transition semantics to
deal with computation mobility, location-dependent communication, and a rich
type system;

(2) consider translocating versions of behavioural relations (bisimulation [Milner
et al. 1992] and expansion [Sangiorgi and Milner 1992] relations) that are pre-
served by certain spontaneous migrations;

(3) prove congruence properties of some of these, to allow compositional reasoning;

(4) deal with partially committed choices, and hence state the main correctness
result in terms of coupled simulation [Parrow and Sjödin 1992];

(5) identify properties of agents that are temporarily immobile, waiting on a lock
somewhere in the system; and,

(6) as we are proving correctness of an encoding, we must analyse the possible
reachable states of the encoding applied to an arbitrary high-level source pro-
gram – introducing an intermediate language for expressing the key states, and
factoring out as many ‘house-keeping’ reduction steps as possible.

We apply these to the Central Forwarding Server overlay of §3, describing a full
correctness proof in Section 10. Finally, we discuss related work in §11 and conclude
in §12.

This paper thus gives a synoptic view of the results of the Nomadic Pict project,
covering calculi, semantics, overlay network design, programming language design
and implementation, proof techniques, and overlay network verification. Elements
of this have previously appeared in conferences: the initial calculi of Sewell, Woj-
ciechowski and Pierce [Sewell et al. 1998; 1999]; the programming language imple-



Nomadic Pict · 5

mentation and example algorithms by Wojciechowski and Sewell [Wojciechowski
and Sewell 1999; Wojciechowski 2001; 2006b]; and an outline of the metatheory
and algorithm verification of Unyapoth and Sewell [2001]. Further details of the
implementation and algorithms, and of the semantics and proof, can be found in
the PhD theses of Wojciechowski and Unyapoth respectively [Wojciechowski 2000b;
Unyapoth 2001]. The implementation is available on-line [Wojciechowski 2006a].

Nomadic Pict was originally thought of in terms of computation mobility at
the programming-language level, and the terminology of the body of the paper is
chosen with that in mind (we speak of mobile agents and language threads). Later
work on the Acute programming language [Sewell et al. 2007] developed this point
of view: Acute has slightly lower-level constructs than low-level Nomadic Pict for
checkpointing running multi-threaded computations, using which we built a small
Acute library providing the low-level Nomadic Pict primitives; overlay-network
implementations of the high-level Nomadic Pict abstraction could be expressed as
ML-style modules above that. The underlying ideas may also be equally applicable
to mobility at the virtual-machine OS image level, as we argued in a position
paper [Sewell and Wojciechowski 2008] in the Joint HP-MSR Research Workshop
on The Rise and Rise of the Declarative Datacentre.

2. THE NOMADIC π CALCULI

In this section we introduce the abstractions of the low- and high-level Nomadic π
calculi.

The main entities are sites s and agents a. Sites represent physical machines
or, more accurately, instantiations of the Nomadic Pict runtime system on physical
machines; each site has a unique name.

Agents are units of running computation. Each agent has a unique name and a
body consisting of some Nomadic Pict concurrent process P ; at any moment it is
located at a particular site. An agent can migrate, at any point, to any other site
(identified by name), new agents can be created (with the system synthesising a
new unique name, bound to a lexically scoped identifier) and agents can interact
by sending messages to each other.

A key point in the design of the low-level calculus is to make it easy to un-
derstand the behaviour of the system in the presence of partial failure. To do
so, we choose interaction primitives that can be directly implemented above the
real-world network (the Sockets API and TCP or UDP), without requiring a so-
phisticated distributed infrastructure. Our guiding principle is that each reduction
step of the low-level calculus should be implementable using at most one inter-site
asynchronous communication.

To provide an expressive language for local computation within each agent body,
but keep the calculus concise, we include the constructs of a standard asynchronous
π calculus. The Nomadic Pict concurrent process of an agent body can involve
parallel composition, new channel creation, and asynchronous messaging on those
channels within the agent.

In the rest of this section we give the syntax of processes, with accompanying
definitions of values, patterns, and types, and the key points of their reduction
semantics. The full semantics is defined in Section 8 and Appendices A and B.
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2.1 Processes of the Low-Level Calculus

The syntax of the low-level calculus is as follows, grouped into the three agent
primitives, two useful communication forms that are expressible as syntactic sugar,
and the local asynchronous π calculus.

P, Q ::= createcreatecreateZ a = P ininin Q spawn agent a with body P , on local site

| migrate tomigrate tomigrate to s→P migrate current agent to site s

| iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q send c!!!v to agent a if it is co-located here,

and run P , otherwise run Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

| 〈a〉c!!!v (sugar) send c!!!v to agent a if it is co-located here

| 〈a@s〉c!!!v (sugar) send c!!!v to agent a if it is at site s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

| 000 empty process

| P |Q parallel composition of processes P and Q

| newnewnew c : ^̂̂IT ininin P declare a new channel c

| c!!!v output of v on channel c in current agent

| c???p→P input on channel c in current agent

| ***c???p→P replicated input

| ififif v thenthenthen P elseelseelse Q conditional

| letletlet p = ev ininin P local declaration

Executing the construct createcreatecreateZ b = P ininin Q spawns a new agent, with body
P , on the current site. After the creation, Q commences execution, in parallel with
the rest of of the body of the spawning agent. The new agent has a unique name
which may be referred to with b, both in its body and in the spawning agent (b is
binding in P and Q). The Z is a mobility capability, either s, requiring this agent
to be static, or m, allowing it to be mobile. We return to this when we discuss the
type system.

Agents can migrate to named sites: the execution of migrate tomigrate tomigrate to s→P as part
of an agent results in the whole agent migrating to site s. After the migration, P
commences execution in parallel with the rest of the body of the agent.

There is a single primitive for interaction between agents, allowing an atomic
delivery of an asynchronous message between two agents that are co-located on the
same site. The execution of iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q in the body of agent
b has two possible outcomes. If the agent a is on the same site as agent b then the
message c!!!v will be delivered to a (where it may later interact with an input) and
P will commence execution in parallel with the rest of the body of b; otherwise the
message will not be delivered and Q will execute as part of b. This is analogous
to test-and-set operations in shared memory systems—delivering the message and
starting P , or discarding it and starting Q, atomically. It can greatly simplify
algorithms that involve communication with agents that may migrate away at any
time, yet is still implementable locally, by the runtime systems on a single site.

Two other useful constructs can be expressed as sugar: 〈a〉c!!!v and 〈a@s〉c!!!v
attempt to deliver c!!!v (an output of v on channel c), to agent a, on the current
site and on s, respectively. They fail silently if a is not where it is expected to
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be, and so are usually used only in a context where a is predictable. The first is
implementable simply as iflocaliflocaliflocal 〈a〉c!!!v thenthenthen 000 elseelseelse 000; the second as createcreatecreatem b =
migrate tomigrate tomigrate to s→ 〈a〉c!!!v ininin 000, for a fresh name b that does not occur in s, a, c, or
v.

Turning to the π calculus constructs, the body of an agent may be empty (000) or
a parallel composition P |Q of processes.

Execution of newnewnew c : ^̂̂IT ininin P creates a new unique channel name for carrying
values of type T ; c is binding in P . The I is a capability: as in Pierce and Sangiorgi
[1996], channels can be used for input only r, output only w, or both rw; these
induce a subtype order.

An output c!!!v (of value v on channel c) and an input c???p→P in the same agent
may synchronise, resulting in P with the appropriate parts of the value v bound
to the formal parameters in the pattern p. Note that, as in other asynchronous π
calculi, outputs do not have continuation processes. A replicated input ***c???p→P
behaves similarly except that it persists after the synchronisation, and so might
receive another value.

Finally, we have conditionals ififif v thenthenthen P elseelseelse Q, and local declarations letletlet p =
ev ininin P , assigning the result of evaluating a simple value expression ev to a pattern
p. In c???p→P , ***c???p→P and letletlet p = ev ininin P the names in pattern p are binding
in P .

For a simple example program in the low-level calculus, consider the following
applet server.

***getApplet???[a s]→
createcreatecreatem b =
migrate tomigrate tomigrate to s→

(〈a@s′〉ack!!!b | B)
ininin 000

It can receive (on the channel named getApplet) requests for an applet. This is a
replicated input (***getApplet???[a s]→ . . .) so the server persists and can repeatedly
grant requests. The requests contain a pair (bound to the tuple [a s] of a and s)
consisting of the name of the requesting agent and the name of the site for the
applet to go to. When a request is received the server creates an applet agent with
a new name bound to b. This agent immediately migrates to site s. It then sends
an acknowledgement to the requesting agent a (which here is assumed to be on site
s′) containing its name. In parallel, the body B of the applet commences execution.

2.2 Processes of the High-Level Calculus

The high-level calculus is obtained by extending the low-level language with a single
location-independent communication primitive.

P ::= . . .
| 〈a@?〉c!!!v send c!!!v to agent a whereever it is

The intended semantics is that this will reliably deliver the message c!!!v to agent a,
irrespective of the current site of a and of any migrations. The high-level calculus
includes all the low-level constructs, so those low-level communication primitives
are also available for interaction with application agents whose locations are pre-
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dictable. We write nπLD for the processes of the low-level calculus, with location-
dependent communication only, and nπLD,LI for the processes of the high-level cal-
culus, with location-dependent and location-independent communication.

2.3 Values and Patterns

Channels allow the communication of first-order values: constants t, names x (in-
cluding channel names c, agent names a, and site names s), tuples, and packages
{|T |} v of existential types, containing a witness type T and a value v. Patterns p
are of similar shapes as value, but are subject to the condition that the names x
and type variables X that they bind are all distinct.

v ::= t | x | [v1 . . . vn] | {|T |} v

p ::= | x | [p1 . . . pn] | {|X|} p

The value grammar is extended with some basic functions, including equality tests,
to give expressions, ranged over by ev.

2.4 Types

Typing infrastructure algorithms requires a moderately expressive type system. We
take types

T ::= B base type
| [T1 . . . Tn] tuple
| ^̂̂IT channel name
| {|X|}T existential
| X type variable
| Site site name
| AgentZ agent name

where B might be int, bool etc., taken from a set T of base types, and X is
taken from a set T V of type variables. Existentials are needed as an infrastructure
must be able to forward messages of any type (see the message and deliver

channels in Figure 2 later). For more precise typing, and to support the proof
techniques we develop in §9, channel and agent types are refined by annotating
them with capabilities, ranged over by I and Z respectively. Channel capabilities
were described in §2.2: channels can be used for input only r, output only w, or
both rw. In addition, agents are either static s, or mobile m [Sewell 1998; Cardelli
et al. 1999].

2.5 Outline of the Reduction Semantics

Located Processes and Located Type Contexts The basic process terms given above
only allow the source code of the body of a single agent to be expressed. During
computation, this agent may evolve into a system of many agents, distributed over
many sites. To denote such systems, we define located processes

LP, LQ ::= @aP | LP |LQ | newnewnew x : T@s ininin LP

Here the body of an agent a may be split into many parts, for example written
@aP1| . . . |@aPn. The construct newnewnew x : T@s ininin LP declares a new name x (binding
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Γ 
 @acreatecreatecreateZ b = P ininin Q −→ Γ 
 newnewnew b : AgentZ@s ininin (@bP | @aQ) if Γ ⊢ a@s

Γ 
 @amigrate tomigrate tomigrate to s → P −→ (Γ ⊕ a 7→ s) 
 @aP

Γ 
 @a (c!!!v|c???p→P ) −→ Γ 
 @amatch(p, v)P
Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aP | @bc!!!v if Γ ⊢ a@s ∧ Γ ⊢ b@s

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aQ if Γ ⊢ a@s ∧ Γ ⊢ b@s′ ∧ s 6= s′

Fig. 1. Selected Reduction Rules

in LP ); if this is an agent name, with T = AgentZ , we have an annotation @s giving
the name s of the site where the agent is currently located. Channels, on the other
hand, are not located – if T = ^̂̂IT ′ then the annotation is omitted.

Correspondingly, we add location information to type contexts. Located type
contexts Γ include data specifying the site where each declared agent is located;
the operational semantics updates this when agents move.

Γ, ∆, Φ ::= • | Γ,X | Γ, x : AgentZ@s | Γ, x : T T 6= AgentZ

For example, the located type context below declares two sites, s and s′, and a
channel c, which can be used for sending or receiving integers. It also declares a
mobile agent a, located at s, and a static agent b, located at s′.

s : Site, s′ : Site, c : ^̂̂rwInt, a : Agentm@s, b : Agents@s′

Pattern Matching When an input process receives a value v along a channel, it
needs to deconstruct v, producing a substitution to be applied to its continuation
process. As usual, this is done with an auxiliary partial function for matching,
mapping pairs of patterns and values to name substitutions, whenever they are of
the same shape. Its formal definition is given below.

match( , v)
def
= {}

match(x, v)
def
= {v/x}

match([p1 . . . pn], [v1 . . . vn])
def
= match(p1, v1) ∪ . . . ∪ match(pn, vn)

match({|X|} p, {|T |} v)
def
= {T/X} ∪ match(p, v)

match(p, v)
def
= ⊥ (undefined) otherwise

Reductions To capture our informal understanding of the calculus in as lightweight
a way as possible, we give a reduction semantics. It is defined with a structural
congruence and reduction axioms, extending that for the π calculus [Milner 1993].
Reductions are over configurations, which are pairs Γ 
 LP of a located type context
Γ and a located process LP . We use a judgement Γ ⊢ a@s, meaning that an agent
a is located at s in the located type context Γ. We shall give some examples of
reductions, illustrating the new primitives, before giving the formal definition of
reduction later, in Section 8 and Appendix B. The most interesting axioms for the
low-level calculus are given in Figure 1.

An agent a can spawn a new mobile agent b, with body P , and continues with Q.
The new agent is located at the same site as a (say s, with Γ ⊢ a@s). The agent
b is initially bound and the scope is over the process Q in a and the whole of the
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new agent.

Γ 
 @a(R | createcreatecreatem b = P ininin Q)
−→ Γ 
 @aR | newnewnew b : Agentm@s ininin (@aQ | @bP )

When an agent a migrates to a new site s, we simply update the located type
context.

Γ 
 @a(R | migrate tomigrate tomigrate to s→Q)
−→ Γ ⊕ a 7→ s 
 @a(R | Q)

A newnewnew-bound agent may also migrate; in this case, we simply update the location
annotation.

Γ 
 @aR | newnewnew b : Agentm@s′ ininin @bmigrate tomigrate tomigrate to s→Q
−→ Γ 
 @aR | newnewnew b : Agentm@s ininin @bQ

An agent a may send a location-dependent message to an agent b if they are on
the same site. The message, once delivered may then react with an input in b.
Assuming that Γ ⊢ a@s and Γ ⊢ b@s.

Γ 
 @a(iflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q) | @b(c???[]→R)
−→ Γ 
 @aP | @b(c!!![] | c???[]→R)
−→ Γ 
 @aP | @bR

If a and b are at different sites, say if Γ ⊢ a@s and Γ ⊢ b@s′ for s 6= s′, then the
message will get lost.

Γ 
 @a(iflocaliflocaliflocal 〈b〉c!!![] thenthenthen P elseelseelse Q) | @b(c???[]→R)
−→ Γ 
 @aQ | @b(c???[]→R)

Synchronisation of a local output c!!!v and an input c???x→P only occurs within an
agent, but in the execution of iflocaliflocaliflocal a new channel name can escape the agent
where it was created, to be used elsewhere for output and/or input. Consider for
example the process below, executing as the body of an agent a.

createcreatecreatem b =
c???x→ (x!!!3|x???n→000)

ininin

newnewnew d : ^̂̂rwint ininin

iflocaliflocaliflocal 〈b〉c!!!d thenthenthen 000 elseelseelse 000
| d!!!7

It has a reduction for the creation of agent b, a reduction for the iflocaliflocaliflocal that
delivers the output c!!!d to b, and then a local synchronisation of this output with
the input on c. Agent a then has body d!!!7 and agent b has body d!!!3|d???n→000. Only
the latter output on d can synchronise with b’s input d???n→000. For each channel
name there is therefore effectively a π calculus-style channel in each agent. The
channels are distinct, in that outputs and inputs can only interact if they are in the
same agent. This provides a limited form of dynamic binding, with the semantics
of a channel name (i.e., the set of partners that a communication on that channel
might synchronise with) dependent on the agent in which it is used; it proves very
useful in the infrastructure algorithms that we develop.
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The high-level calculus has one additional axiom, allowing location-independent
communication between agents.

Γ 
 @a〈b@?〉c!!!v −→ Γ 
 @bc!!!v

This delivers the message c!!!v to agent b irrespective of where b (and the sender a)
are located. For example, below an empty-tuple message on channel c is delivered
to an agent b with a waiting input on c.

Γ 
 @a(P | 〈b@?〉c!!![]) | @b(c???[]→R)
−→ Γ 
 @aP | @b(c!!![] | c???[]→R)

2.6 Discussion of Design Choices

The only inter-site communication required in an implementation of the low-level
language is for the migrate tomigrate tomigrate to reduction, in which the body of the migrating agent
a must be sent from its current site to site s. (For performance, one might also
implement the location-dependent output 〈a@s〉c!!!v directly, with a single inter-
site message, rather than via the syntax desugaring into an agent creation and
migration.)

This makes it easy to understand the behaviour of the implementation in the
presence of fail-stop site failure: if a site crashes, all agents are lost; and a migra-
tion from one site to another is guaranteed to succeed if those two sites do not fail.
Elsewhere we develop distributed infrastructure algorithms that address site failure
and/or disconnection [Wojciechowski 2000b; 2001]. They use an additional prim-
itive for timeouts, which we do not include in the semantics in this paper — our
focus here is on the failure mode of message loss for location-dependent messages
to agents that are not in the specified location.

One could also envisage extending the semantics with network topology informa-
tion, so that link failure and network partitions could be modelled. As far as the
operational semantics goes, that would be straightforward, but developing reason-
ing principles above the extended semantics would be a substantial task.

The inter-site messages that must be sent in an implementation (representations
of migrating agents, and tuple-structured location-dependent messages) should be
reliable in the face of intermittent network packet loss — our low-level semantics
does not allow messages to be spontaneously discarded. They are also of unbounded
size, and could often exceed the approx. 1500 bytes that can be sent in a UDP data-
gram over Ethernet without IP fragmentation. Hence, an implementation would
send messages via TCP, not via UDP. This raises the question of whether the low-
level calculus should guarantee that inter-site messages are received in the same
order as they are sent. In favour, it would be easy to implement ordering guaran-
tees, if all messages from one site to another are multiplexed on a single underlying
TCP connection, and such guarantees may be useful for some distributed algo-
rithms. Against this, the operational semantics would be much more complex,
with queues of messages in the network, and reasoning principles above it would
be correspondingly more complex. Moreover, if the low-level calculus guaranteed
message ordering, it would be natural for the high-level calculus to also guarantee
it. Implementing that, as agents migrate, would require more complex algorithms.
Accordingly, we choose simple unordered asynchronous messages, in both the low-
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and high-level calculus.
A similar argument applies to the question of whether inter-site messages should

be asynchronous or synchronous. If they are implemented above TCP, the imple-
mentation could conceivably acknowledge when each message is delivered to the
destination Nomadic Pict runtime. This would add a non-trivial but modest com-
munication cost (especially if messages are often relatively large, involving multiple
TCP segments). However, the added semantic complexity would be large, and
efficient implementations of synchronous messaging in the high-level calculus, be-
tween migrating agents, would be yet more complex. Accordingly, we stay with the
asynchronous choice.

Another design choice is whether one allows agents to be nested. This might be
desirable for a full-scale programming language design, but again would complicate
reasoning, and would introduce many further choices as to how inter-agent commu-
nication happens across the nesting structure. We therefore stay with the simple
choice described above, in which new agents are created as siblings, on the same
site as their creator.

3. EXAMPLE INFRASTRUCTURE: CENTRAL FORWARDING SERVER ALGO-
RITHM

In this section we present our first example distributed infrastructure, the Central
Forwarding Server (CFS) algorithm. In subsequent sections we survey the algo-
rithm design space and present two more algorithms in detail: a forwarding-pointers
algorithm and a query server algorithm. In the last part of the paper we develop
semantic techniques and prove correctness of the CFS algorithm.

The problem that these algorithms solve is to implement the high-level calculus
using the low-level primitives — specifically, to implement the high-level location-
independent semantics

Γ 
 @a〈b@?〉c!!!v −→ Γ 
 @bc!!!v

that delivers a message to agent b irrespective of any migrations of agents a and
b. To do so, they also use non-trivial implementations of the other high-level agent
primitives, e.g. adding some synchronisations around agent migrations and cre-
ations. The algorithms are expressed as translations of the high-level calculus into
the low-level calculus.

The CFS algorithm translation is based on that in Sewell et al. [1998]. It involves
a central daemon that keeps track of the current sites of all agents and forwards
any location-independent messages to them. The daemon itself is implemented as
an agent which never migrates; the translation of a program then consists roughly
of the daemon agent in parallel with a compositional translation of the program.
When a new agent is created, it has to register with the daemon, telling its site.
Before an agent can migrate, it has to inform the daemon about its intent, and
wait for an acknowledgement. After the migration, the agent tells the daemon
it has finished moving and continues. Locks are used to ensure that an agent
does not migrate away while a message forwarded by the daemon is on its way;
this ensures that all messages forwarded from the daemon are delivered before the
agent migrates away.
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Daemon
def
=

***message??? {|X|} [a c v]→

lock???m→
lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin
〈a@s〉deliver!!! {|X|} [c v dack]

| dack???[]→lock!!!m

notfoundnotfoundnotfound→000

| ***register???[b s rack]→
lock???m→

letletlet[Agents Site] m′ = (m withwithwith b 7→ s) ininin
(lock!!!m′ | 〈b@s〉rack!!![])

| ***migrating???[a mack]→
lock???m→

lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
〈a@s〉mack!!![migrated]
| migrated???[s′ ack]

letletlet m′ = (m withwithwith a 7→ s′) ininin
(lock!!!m′ | 〈a@s′〉ack!!![])

notfoundnotfoundnotfound→000

Φaux
def
= D : Agents@SD,

lock : ^̂̂rwMap[Agents Site],

register : ^̂̂rw[Agents Site ^̂̂w[]],
migrating : ^̂̂rw[Agents ^̂̂w [̂^̂w[Site ^̂̂w[]]]],
message : ^̂̂rw {|X|} [Agents ^̂̂wX X],

deliver : ^̂̂rw {|X|} [̂^̂wX X ^̂̂w[]],
currentloc : ^̂̂rwSite

Fig. 2. The Central Server Daemon and the Interface Context

This is a relatively simple algorithm, rather sequential and with a centralized
server daemon, but it still requires delicate synchronization that is easy to get
wrong. Expressing it as a translation between well-defined low- and high-level
languages provides a solid basis for discussion about design choices, and enables
correctness proofs; the Nomadic Pict language implementation makes it possible to
execute and use the algorithm in practice.

The daemon is implemented as a static agent; the translation CΦ [[LP ]] of a lo-
cated process LP = newnewnew ∆ ininin @a1

P1 | . . . | @an
Pn (well-typed with respect to

a type context Φ) then consists roughly of the daemon agent in parallel with a
compositional translation [[Pi]]ai

of each source agent:

CΦ [[LP ]]
def
= newnewnew ∆,Φaux ininin

@D(. . . |Daemon)
|

∏

i∈{1...n} @ai
(. . . | [[Pi]]ai

)

(we omit various initialisation code, and will often elide type contexts Φ). For each
term Pi of the source language nπLD,LI, considered as the body of an agent named
ai, the result [[Pi]]ai

of the translation is a term of the target language nπLD. The
body of the daemon and selected clauses of the compositional translation are shown



14 · P. Sewell, P. T. Wojceichowski, and A. Unyapoth

[[〈b@?〉c!!!v]]a
def
= 〈D@SD〉message!!! {|T |} [b c v]

ˆ̂

createcreatecreateZ b = P ininin Q
˜̃

a

def
=

currentloc???s→newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
createcreatecreateZ b =

〈D@SD〉register!!![b s rack]
| rack???[]→iflocaliflocaliflocal 〈a〉pack!!![] thenthenthen

(currentloc!!!s | [[P ]]b | Deliverer)
ininin

pack???[]→(currentloc!!!s | [[Q]]a)

where Deliverer
def
= ***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

[[migrate tomigrate tomigrate to s → P ]]a
def
=

currentloc??? →newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin

〈D@SD〉migrating!!![a mack]
| mack???[migrated]→
migrate tomigrate tomigrate to s → newnewnew ack : ^̂̂rw[] ininin

(〈D@SD〉migrated!!![s ack]

| ack???[]→currentloc!!!s | [[P ]]a)

[[000]]a
def
= 000

[[P |Q]]a
def
= [[P ]]a | [[Q]]a

[[c???p→P ]]a
def
= c???p → [[P ]]a

[[***c???p→P ]]a
def
= ***c???p → [[P ]]a

[[c!!!v]]a
def
= c!!!v

[[iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q]]a
def
= iflocaliflocaliflocal 〈b〉c!!!v thenthenthen [[P ]]a thenthenthen [[Q]]a

ˆ̂

newnewnew x : ^̂̂IT ininin P
˜̃

a

def
= newnewnew x : ^̂̂IT ininin [[P ]]a

[[ififif v thenthenthen P elseelseelse Q]]a
def
= ififif v thenthenthen [[P ]]a thenthenthen [[Q]]a

[[letletlet p = ev ininin P ]]a
def
= letletlet p = ev ininin [[P ]]a

Fig. 3. The Compositional Encoding (selected clauses)

in Figures 2 and 3. They interact using channels of an interface context Φaux, also
defined in Figure 2, which in addition declares lock channels and the daemon name
D. It uses a map type constructor, which (together with the map operations) can
be translated into the core language.

The original algorithm in Sewell et al. [1998] has been modified in the following
ways to simplify the correctness proof.

—Type annotations have been added and checked with the Nomadic Pict type
checker [Wojciechowski 2000b] (although this does not check the static/mobile
subtyping).

—Fresh channels are used for transmitting acknowledgements, making such chan-
nels linear [Kobayashi et al. 1996]. This simplifies the proof of correctness, since
communication along a linear channel yields an expansion.

—We consider programs with many agents initiated separately on different sites,
rather than only programs that are initiated as single agents (this more gen-
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eral translation is needed to make our co-inductive proof techniques go through,
analogous to strengthening of an induction hypothesis).

The daemon consists of three replicated inputs, on the message, register, and
migrating channels, ready to receive messages from the encodings of agents. It is
at a fixed site SD. Part of the initialisation code places Daemon in parallel with
an output on lock which carries a reference to a site map: a finite map from agent
names to site names, recording the current site of every agent. Finite maps, with
lookup operation

lookuplookuplookup[T1 T2] a ininin m withwithwith

foundfoundfound(v)→P
notfoundnotfoundnotfound→Q

and update operation (m withwithwith a 7→ v), are expressed with a standard pi calculus
encoding [Unyapoth 2001, §6.5], so they do not need to be added as a primitive.

The single-threaded nature of the daemon is ensured by using lock to enforce
mutual exclusion between the three replicated inputs — each of them begins with
an input on lock, thereby acquiring both the lock and the site map, and does not
relinquish the lock until the daemon finishes with the request. The code preserves
the invariant that at any time there is at most one output on lock.

Turning to the compositional translation [[.]], it is defined by induction on type
derivations. Only three clauses are non-trivial — for the location-independent
output, agent creation and agent migration primitives. We discuss each one in turn,
together with their interactions with the daemon. For the rest, [[.]] is homomorphic.

Location-Independent Output A location-independent output 〈b@?〉c!!!v in an agent
a (of message c!!!v to agent b) is implemented simply by requesting the central server
daemon to deliver it; the request is sent to the daemon D, at its site SD, on its
channel message, using a location-dependent output:

[[〈b@?〉c!!!v]]a
def
= 〈D@SD〉message!!! {|T |} [b c v]

The corresponding replicated input on channel message in the daemon

***message??? {|X|} [a c v]→
lock???m→
lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin
〈a@s〉deliver!!! {|X|} [c v dack]
| dack???[]→lock!!!m

notfoundnotfoundnotfound→000

first acquires the lock and current site map m, then looks up the target agent’s site
in the map and sends a location-dependent message to the deliver channel of that
agent; the message also carries the name of a freshly created channel dack. It then
waits to receive an acknowledgment (on the dack channel) from the agent before
relinquishing the lock (with lock!!!m). This prevents the agent from migrating be-
fore the deliver message arrives, as the migration translation (below) also requires
the lock. Note that the notfoundnotfoundnotfound branch of the lookup will never be taken, as the
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algorithm ensures that all agents register before messages can be sent to them. In
each agent the deliver message is handled by a Deliverer process (see Figure 3),
which reacts to deliver messages by emitting a local c!!!v message in parallel with
sending the dack message to the daemon. The inter-agent communications involved
in delivery of a single location-independent output are illustrated below.

a D b

X
X

X
X

X
X

X
XXz

message!!![b c v]

X
X

X
X

X
X

X
XXz

deliver!!![c v dack]

�
�

�
�

�
�

�
��9

dack!!![]

Creation In order for the daemon’s site map to be kept up to date, agents must
register with the daemon, telling it their site, both when they are created and
when they migrate. Each agent records its current site internally as an output on
its currentloc channel. This channel is also used as a lock, to enforce mutual
exclusion between the encodings of all agent creation and migration commands
within the body of the agent. The encoding of an agent creation in an agent a (in
Figure 3)

[[

createcreatecreateZ b = P ininin Q
]]

a

def
=

currentloc???s→newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
createcreatecreateZ b =

〈D@SD〉register!!![b s rack]
| rack???[]→iflocaliflocaliflocal 〈a〉pack!!![] thenthenthen

(currentloc!!!s | [[P ]]b | Deliverer)
ininin

pack???[]→(currentloc!!!s | [[Q]]a)

where Deliverer
def
= ***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

first acquires the local lock and current site s and then creates the new agent b, as
well as channels pack and rack. The body of b sends a register message to the
daemon, supplying rack; the daemon uses rack to acknowledge that it has updated
its site map. After the acknowledgement is received from the daemon, b sends an
acknowledgement to a using pack, initialises the local lock of b with s, installs a
Deliverer, and allows the encoding of the body P of b to proceed. Meanwhile, the
local lock of a and the encoding of the continuation process Q are blocked until the
acknowledgement via pack is received.

The body of b is put in parallel with the replicated input

***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

which will receive forwarded messages for channels in b from the daemon, send an



Nomadic Pict · 17

acknowledgment back, and deliver the value locally to the appropriate channel.
The replicated input on register in the daemon

| ***register???[b s rack]→
lock???m→
letletlet[Agents Site] m′ = (m withwithwith b 7→ s) ininin

(lock!!!m′ | 〈b@s〉rack!!![])

first acquires the lock and current site map, replaces the site map with an updated
map, thereby relinquishing the lock, and sends an acknowledgment to the registering
agent; the updated map records that a new agent b is located at site s. The inter-
agent communications involved in a single agent creation are illustrated below.

a b D

createcreatecreateZ
b = ...

s
X

X
X

X
X

X
X

XXz

register!!![b s rack]
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�

�
��9

rack!!![]

�

pack!!![]

Migration The encoding of a migrate tomigrate tomigrate to in agent a

[[migrate tomigrate tomigrate to s → P ]]a
def
=

currentloc??? →newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin
〈D@SD〉migrating!!![a mack]
| mack???[migrated]→
migrate tomigrate tomigrate to s → newnewnew ack : ^̂̂rw[] ininin

(〈D@SD〉migrated!!![s ack]
| ack???[]→currentloc!!!s | [[P ]]a)

first acquires the output on currentloc at a (discarding the current site data). It
then creates a fresh channel mack, sends a migrating message to the daemon with
a tuple [a mack], and waits for an acknowledgement on mack.

Reacting to the message on migrating message, the daemon

| ***migrating???[a mack]→
lock???m→
lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
〈a@s〉mack!!![migrated]
| migrated???[s′ ack]
letletlet m′ = (m withwithwith a 7→ s′) ininin

(lock!!!m′ | 〈a@s′〉ack!!![])
notfoundnotfoundnotfound→000

acquires its lock, looks up the current site of a in the acquired map m, creates a
fresh channel migrated, and sends it (using an LD primitive) to a along channel
mack. The daemon then waits to receive a message from migrated.
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Once the waiting agent a receives a message from mack, it migrates to the new
site s, then creates a fresh channel ack and sends a tuple [s ack] to the daemon
via channel migrated (using an LD primitive). Meanwhile, the local lock and the
encoding of the continuation process P is kept until the acknowledgement via ack

is received from the daemon.
When the blocked daemon receives a message on migrated, it updates the site

map, then relinquishes the lock and then sends an acknowledgement to a at its new
site. The inter-agent communications involved in the migration of a single agent
are illustrated below.
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4. ALGORITHM DESIGN SPACE

Prospective applications may use some form of mobility for many different pur-
poses, for example: to improve locality of computation; to support disconnected
operation on mobile devices; to avoid transferring large volumes of data; to facil-
itate fault-tolerance by moving computation from partially faulty machines; or to
adapt to changes in the network characteristics and in the user environment. The
different applications may have very different patterns of agent migration and com-
munication, and require different performance and robustness properties. Agent
migration would often be limited, e.g. to cases where agents migrate only once or
twice, where migration is within a local-area network or between a few sites which
are known in advance, where agents can only migrate to or from a central site, and
between a mobile computer and the network, and so on.

In this section, we characterise some basic techniques and algorithms that can
be useful for building such application-specific infrastructures, and assess their use-
fulness. We do not attempt to specify all the algorithms formally, so we use natu-
ral language descriptions. However, almost all algorithms have been implemented
in Nomadic Pict, and the code is available with the language distribution [Woj-
ciechowski 2006a]. We also discuss informally the scalability and fault-tolerance
properties of the algorithms. We do not attempt to give quantitative theoretical
or empirical characterisations of the algorithms, because it would be too hard to
take under consideration all the factors which exist in real systems — the range of
possible migration and communication patterns is too great.

In the following sections, we describe two algorithms in more detail, present-
ing complete executable descriptions of the infrastructure in Nomadic Pict. They
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eliminate some of the drawbacks of the CFS algorithm in Section 3.

4.1 Background

We first discuss the space of all (deterministic) algorithms for location-independent
message delivery to migrating entities. Awerbuch and Peleg [1995] (see also Mul-
lender and Vitányi [1988]) stated the analogous problem of keeping track of mobile
users in a distributed network. They consider two operations: “move”, for a move
of a user to a new destination, and “find”, enabling one to contact a specified
user at its current address. The problems of minimizing the communication over-
head of these two operations appear to be in conflict. They examined two extreme
strategies: full information and no information.

The full-information strategy requires every site in the network to maintain com-
plete up-to-date information on the whereabouts of every user. This makes the
“find” operation cheap. On the other hand, “move” operations are very expen-
sive, since it is necessary to update information at every site. In contrast, the
no-information approach does not assume any updates while migrating, thus the
“move” operation has got a null cost. On the other hand, the “find” operation is
very expensive because it requires global searching over the whole network. How-
ever, if a network is small and migrations frequent, the strategy can be useful.
In contrary, the full-information strategy is appropriate for a near-static setting,
where agents migrate relatively rarely, but frequently communicate with each other.
Between these two extreme cases, there is space for designing intermediate strate-
gies, that will perform well for any or some specific communication to migration
pattern, making the costs of both “find” and “move” operations relatively cheap.

Awerbuch and Peleg [1995] describe a distributed directory infrastructure for
online tracking of mobile users. They introduced the graph-theoretic concept of
regional matching, and demonstrated how finding a regional matching with cer-
tain parameters enables efficient tracking of mobile users in a distributed network.
The communication overhead of maintaining the distributed directory is within a
polylogarithmic factor of the lower bound. This result is important in the case
of mobile telephony and infrastructures which support mobile devices, where the
infrastructure should perform well, considering all mobile users and their potential
communication to migration patterns. These patterns can vary, depending on peo-
ple, and can only be estimated probabilistically. The infrastructure should therefore
support all migration and communication scenarios, and optimise those scenarios
which are likely to happen more often (preferably it should adapt to any changes
in behaviour of mobile users dynamically). In mobile agent applications, however,
the communication to migration pattern of mobile agents usually can be predicted
precisely [Wojciechowski 2000b]. Therefore we can design algorithms which are
optimal for these special cases and simpler than the directory server mentioned
above.

4.2 Central Server Algorithms

Central Forwarding Server Algorithm The server records the current site of every
agent. Before migration an agent A informs the server and waits for ACK (con-
taining the number of messages sent from the server to A). It then waits for all the
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messages due to arrive. After migration it tells the server it has finished moving. If
B wants to send a message to A, B sends the message to the server, which forwards
it. During migrations (after sending the ACK) the server suspends forwarding. A
variant of this algorithm was described in Section 3.

Central Query Server Algorithm The server records the current site of every agent.
If B wants to send a message to A, B sends a query (containing the message ID)
to the server asking for the current site of A, gets the current site s of A and sends
the message to s. The name s can be used again for direct communication with
A. If a message arrives at a site that does not have the recipient then a message
is returned saying ‘you have to ask the name server again’. Migration support is
similar as above.

Home Server Algorithm Each site s has a server (one of the above) that records the
current site of some agents — usually the agents which were created on s. Agent
names contain an address of the server which maintains their locations. On every
migration agent A synchronises with the server whose name is part of A’s name.
If B wants to send a message to A, B resolves A’s name and contacts A’s server.
Other details are as above.

Discussion If migrations are rare, and also in the case of stream communication
or large messages, the Query Server seems the better choice. However, the Central
Forwarding and Query Server algorithms do not scale well. If the number of agents
is growing and communication and migration are frequent, the server can be a
bottleneck. Home Servers can improve the situation. The infrastructure can work
fine for small-to-medium systems, where the number of agents is small.

These algorithms do not support locality of agent migration and communication,
i.e. migration and communication involve the cost of contacting the server, which
might be far away. If agents are close to the server, the cost of migration, search,
and update is relatively low.

In all three, the server is a single point of failure. In this and other algorithms, we
can use some of the classical techniques of fault-tolerance, e.g. based on state check-
pointing, message logging and recovery. We can also replicate the server on different
sites to enhance system availability and fault-tolerance. Group communication can
provide adequate multicast primitives for implementing either primary-backup or
active replication [Guerraoui and Schiper 1996]. These algorithms clearly explore
only a part of the design space — one can envisage e.g. splitting the servers into
many parts (e.g. one dealing with agents created for each user). An exhaustive
discussion is beyond the scope of this paper.

Mechanisms similar to Home Servers have been used in many systems which
support process migration, such as Sprite [Douglis and Ousterhout 1991]. Caching
has been used, e.g. in LOCUS [Popek and Walker 1985], and V [Cheriton 1988],
allowing operations to be sent directly to a remote process without passing through
another site. If the cached address is wrong a home site of the process is contacted
(LOCUS) or multicasting is performed (V). A variant of the Central Query Server
algorithm, combined with Central Forwarding Server and data caching, will be
described in detail in Section 6 and Appendix C; it also appeared in Wojciechowski
and Sewell [2000].
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4.3 Forwarding Pointers

Algorithm There is a forwarding daemon on each site. The daemon on site s
maintains a current guess about the site of agents which migrated from s. Every
agent knows the initial home site of every agent (the address is part of an agent’s
name). If A wants to migrate from s1 to s2 it leaves a forwarding pointer at the
local daemon. Communications follow all the forwarding pointers. If there is no
pointer to agent A, A’s home site is contacted. Forwarding pointers are preserved
forever. This algorithm will be described in detail in Section 5.

Discussion There is no synchronisation between migration and communication as
there was in centralised algorithms. A message may follow an agent which fre-
quently migrates, leading to a race condition. The Forwarding Pointers algorithm
is not practical if agents perform a large number of migrations to distinct sites (the
chain of pointers grows, increasing the cost of search). Some “compaction” meth-
ods can be used to collapse the chain, e.g. movement-based and search-based. In
the former case, an agent would send backward a location update after performing
a number of migrations; in the latter case, after receiving a number of messages
(i.e. after a fixed number of “find” operations occurred).

Some heuristics can be further used such as search-update. A plausible algorithm
can be as follows. On each site there is a daemon which maintains forwarding ad-
dresses (additionally to forwarding pointers) for all agents which ever visited this
site. A forwarding address is a tuple (timestamp, site) in which the site is the last
known location of the agent and timestamp specifies the age of the forwarding ad-
dress. Every message sent from agent B to A along the chain of forwarding pointers
contains the latest available forwarding address of A. The receiving site may then
update its forwarding address (and/or forwarding pointer) for the referenced agent,
if required. Given conflicting guesses for the same agent, it is simple to determine
which one is most recent using timestamps. When the message is eventually deliv-
ered to the current site of the agent, the daemon on this site will send an ACK to
the daemon on the sender site, containing the current forwarding address. The ad-
dress received replaces any older forwarding address but not the forwarding pointer
(to allow updating the chain of pointers during any subsequent communication).
A similar algorithm has been used in Emerald [Jul et al. 1988], where the new
forwarding address is piggybacked onto the reply message in the object invocation.
It is sufficient to maintain the timestamp as a counter, incremented every time the
object moves.

A single site fail-stop in a chain of forwarding pointers breaks the chain. A so-
lution is to replicate the location information in the chain on k consecutive sites,
so that the algorithm is tolerant of a failure of up to k − 1 adjoint sites. Stale
pointers should be eventually removed, either after waiting a sufficiently long time,
or purged as a result of a distributed garbage collection. Distributed garbage col-
lection would require detecting global termination of all agents that might ever use
the pointer, therefore the technique may not always be practically useful. Alterna-
tively, some weaker assumptions could be made and the agents decide arbitrarily
about termination, purging the pointers beforehand.
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4.4 Broadcast Algorithms

Data Broadcast Algorithm Sites know about the agents that are currently present.
An agent notifies a site on leaving and a forwarding pointer is left over until agent
migration is finished. If agent B wants to send a message to A, B sends the message
to all sites in a network. A site s discards or forwards the message if A is not at s
(we omit details).

Query Broadcast Algorithm As above but if agent B wants to send a message to
A, B sends a query to all sites in a network asking for the current location of A. If
site s receives the query and A is present at site s, then s suspends any migration
of A until A receives the message from B. A site s discards or forwards the query
if A is not at s.

Notification Broadcast Algorithm Every site in a network maintains a current guess
about agent locations. After migration an agent distributes in the network informa-
tion about its new location. Location information is time-stamped. Messages with
stale location information are discarded. If site s receives a message whose recipient
is not at s (because it has already migrated or the initial guess was wrong), it waits
for information about the agent’s new location. Then s forwards the message.

Discussion The cost of communication in Query and Data Broadcasts is high
(packets are broadcast in the network) but the cost of migration is low. Query
Broadcast saves bandwidth if messages are large or in the case of stream communi-
cation. Notification Broadcast has a high cost of migration (the location message
is broadcast to all sites) but the communication cost is low and similar to forward-
ing pointers with pointer chain compaction. In Data and Notification Broadcasts,
migration can be fast because there is no synchronisation involved (in Query Broad-
cast migration is synchronised with communication); the drawback is a potential
for race conditions if migrations are frequent. Site failures do not disturb the algo-
rithms. The simplest fault-tolerant algorithm could involve Data Broadcast with
buffering of broadcast messages at target sites; however, two conditions should hold:
buffers need to be infinite, and the broadcasting server cannot fail during broadcast
(reliable broadcast required).

Although we usually assume that the number of sites is too large to broadcast
anything, we may allow occasional broadcasts within, e.g. a local Internet domain,
or local Ethernet. Broadcasts can be accomplished efficiently in bus-based multi-
processor systems. They are also used in radio networks. A realistic variant is to
broadcast within a group of sites which belong to the itinerary of mobile agents
that is known in advance. Broadcast has also been used in Emerald to find an
object, if a node specified by a forwarding pointer is unreachable or has stale data.
To reduce message traffic, only a site which has the specified object responds to
the broadcast. If the searching daemon receives no response within a time limit, it
sends a second broadcast requesting a positive or negative reply from all other sites.
All sites not responding within a short time are sent a reliable, point-to-point mes-
sage with the request. The Jini lookup and connection infrastructure [Arnold et al.
1999] uses multicast in the discovery protocol. A client wishing to find a Lookup
Service sends out a known packet via multicast. Any Lookup Service receiving this
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packet will reply (to an address contained in the packet) with an implementation
of the interface to the Lookup Service itself.

4.5 Agent-based Broadcast

Algorithm Agents are grouped, with the agents forming a group maintaining a
current record about the site of every agent in the group. Agent names form a
totally ordered set. We assume communication which takes place within a group
only.

Before migration an agent A informs the other agents in the group about its
intention and waits for ACKs (containing the number of messages sent to A). It
then waits for all the messages due to arrive and migrates. After migration it
tells the agents it has finished moving. Multicast messages to each agent within
a group are delivered in the order sent (using a first-in-first-out multicast). If B
wants to send a message to A, B sends the message to site s which is A’s current
location. During A’s migrations (i.e. after sending the ACK to A) B suspends
sending any messages to A. If two (or more) agents want to migrate at the same
time there is a conflict which can be resolved as follows. Suppose A and C want
to migrate. If B receives migration requests from A and C, it sends ACKs to both
of them and suspends sending any messages to agents A and C (in particular any
migration requests). If A receives a migration request from C after it has sent
its own migration request it can either grant ACK to C (and C can migrate) or
postpone the ACK until it has finished moving to a new site. The choice is made
possible by ordering agent names.

Discussion The advantage of this algorithm is that sites can be stateless (the loca-
tion data are part of agent’s state). The algorithm is suitable for frequent messages
(or stream communication) between mobile agents and when migrations are rare.

However, the implementation of this algorithm in a system with process crashes
and unpredictable communication delay is a difficult task. The difficulty can be
formally explained by theoretical impossibility results, such as the impossibility of
solving consensus in an asynchronous system when processes can crash [Fischer
et al. 1985]. These impossibility results can be overcome by strengthening the
system model slightly [Chandra and Toueg 1995].

In the dynamic group communication model, defined for non-movable groups,
agents are organised into dynamic groups [Mena et al. 2003]. The membership of
a group can change over time, as agents join or leave the group, or as crashed (or
suspected as crashed) agents are collectively removed from the group. The current
set of agents that are members of a group is called the group view. Agents are
added to and deleted from the group view via view changes, handled by a member-
ship service. Different research groups distinguish between the primary partition
membership and partitionable membership. Communication to the members of
a group is done by various broadcast primitives. The basic “reliable” broadcast
primitive in the context of a view is called view synchronous broadcast, or simply
view synchrony. The semantics of view synchronous broadcast can be enhanced by
requiring messages to be delivered in the same order by all processes in the view.
This primitive is called atomic broadcast.

Mobile agents forming a group can dynamically change sites. This creates a
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problem how to implement the join operation so that the agents joining a group
(or rejoining it under a new name) will be able to localize the group. One solution
is that migrating group agents could leave forwarding pointers that would be fol-
lowed by agents joining the group to “catch up” with at least one group member.
Another solution is to have one agent within a group—a group coordinator, which
never migrates and can be used to contact the group. The inter-group communi-
cation algorithm could use either the pointers or coordination agents for delivering
messages that cross group boundaries.

Other variants are also possible. For example, if agent migration would be limited
to a fixed set of target sites that are known in advance, then the algorithms could
broadcast only to such sites; the names of these sites could be encoded as part
agent’s name.

4.6 Hierarchical Location Directory

Algorithm A tree-like hierarchy of servers forms a location directory (similar to
DNS). Each server in the directory maintains a current guess about the site of
some agents. Sites belong to regions, each region corresponds to a sub-tree in the
directory (in the extreme cases the sub-tree is simply a leaf-server for the smallest
region, or the whole tree for the entire network). The algorithm maintains an
invariant that for each agent there is a unique path of forwarding pointers which
forms a single branch in the directory; the branch starts from the root and finishes
at the server which knows the actual site of the agent (we call this server the
“nearest”). Before migration an agent A informs the “nearest” server X1 and waits
for ACK. After migration it registers at a new “nearest” server X2, tells X1 it has
finished moving and waits for ACK. When it gets the ACK there is already a new
path installed in the tree (this may require installing new and purging old pointers
within the smallest sub-tree which contains X1 and X2). Messages to agents are
forwarded along the tree branches. If B wants to send a message to A, B sends the
message to the B’s “nearest” server, which forwards it in the directory. If there is
no pointer the server will send the message to its parent.

Discussion Certain optimisations are plausible, e.g. if an agent migrates very often
within some sub-tree, only the root of the sub-tree would contain the current loca-
tion of the agent (the cost of a “move” operation would be cheaper). Moreau [2002]
describes an algorithm for routing messages to migrating agents which is also based
on distributed directory service. A proposal of Globe uses a hierarchical location
service for worldwide distributed objects [van Steen et al. 1998]. The Hierarchi-
cal Location Directory scales better than Forwarding Pointers and Central Servers.
Also, some kinds of fault can be handled more easily (see Awerbuch and Peleg
[1995], and there is also a lightweight crash recovery in the Globe system [Ballintijn
et al. 1999]).

4.7 Arrow Directory

Some algorithms can be devised for a particular communication pattern. For exam-
ple, if agents do not require instant messaging, a simple mail-box infrastructure can
be used, where senders send messages to static mailboxes and all agents periodically
check mailboxes for incoming messages.
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Demmer and Herlihy [1998] describe the Arrow Distributed Directory protocol
for distributed shared object systems. The algorithm is devised for a particular
object migration pattern; it assumes that the whole object is always sent to the
object requester. The arrow directory imposes an optimal distributed queue of
object requests, with no point of bottleneck.

The protocol was motivated by emerging active network technology, in which
programmable network switches are used to implement customized protocols, such
as application-specific packet routing.

Algorithm The arrow directory is given by a minimum spanning tree for a network,
where the network is modelled as a connected graph. Each vertex models a node
(site), and each edge a reliable communication link. A node can send messages
directly to its neighbours, and indirectly to non-neighbours along a path. The
directory tree is initialised so that following arrows (pointers) from any node leads
to the node where the object resides.

When a node wants to acquire exclusive access to the object, it sends a message
find which is forwarded via arrows and sets its own arrow to itself. When the other
node receives the message, it immediately “flips” the arrow to point back to the
immediate neighbour who forwarded the message. If the node does not hold the
object, it forwards the message. Otherwise, it buffers the message find until it is
ready to release the object to the object requester. The node releases the object by
sending it directly to the requester, without further interaction with the directory.

If two find messages are issued at about the same time, one will eventually cross
the other’s path and be “diverted” away from the object, following arrows towards
the node (say v) where the other find message was issued. Then, the message will
be blocked at v until the object reaches v, is accessed and eventually released.

5. EXAMPLE INFRASTRUCTURE: FORWARDING-POINTERS ALGORITHM

In this section we give a forwarding-pointers algorithm, in which daemons on each
site maintain chains of forwarding pointers for agents that have migrated from
their site. It removes the single bottleneck of the centralised-server solution in
Section 3; it is thus a step closer to algorithms that may be of wide practical use.
The algorithm is more delicate, so expressing it as a translation provides a more
rigorous test of the framework.

The daemons are implemented as static agents; the translation FPΦ [[LP ]] of a
located process LP = newnewnew ∆ ininin @a1

P1 | . . . | @an
Pn, (well-typed with respect to

Φ) then consists roughly of the daemon agent (one on each site sj , named DS j) in
parallel with a compositional translation [[Pi]]ai

of each source agent:

FPΦ [[LP ]]
def
= newnewnew ∆,Φaux ininin

@DS1(Daemons1
| lock!!!m) | . . . | @DSm

(Daemonsm
| lock!!!m)

| @a1
[[P1]]a1

| . . . | @an
[[Pn]]an

where m is a map such that m(a) = [sj DS j ] if Φ,∆ ⊢ a@sj . For each term
Pi of the source language nπLD,LI, considered as the body of an agent named ai,
the result [[Pi]]ai

of the translation is a term of the target language nπLD. As
before, the translation consists of a compositional encoding of the bodies of agents,
given in Figure 5, and daemons, defined in Figure 4. Note that in terms of the
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Daemons

def
= letletlet [S DS ] = s ininin

***register???[B rack]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[ ]→

Bstate!!![S DS ] | lock!!!m | 〈B〉rack!!![]
notfoundnotfoundnotfound→

newnewnew Bstate : ^̂̂rw[Site Agents] ininin

Bstate!!![S DS ] | 〈B〉rack!!![]
| letletlet[Agents [Site Agents]] m′ = (m withwithwith B 7→ Bstate) ininin

lock!!!m′

| ***migrating???[B mack]→lock???m→

lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
Bstate???[ ]→(lock!!!m | 〈B〉mack!!![])

notfoundnotfoundnotfound→000

| ***migrated???[B [U DU ] ack]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→

lock!!!m | 〈B@U〉ack!!![] | Bstate!!![U DU ]
notfoundnotfoundnotfound→000

| ***message??? {|X|} [[B U DU ] c v]→lock???m→
lookuplookuplookup[Agents [Site Agents]] B ininin m withwithwith

foundfoundfound(Bstate)→
lock!!!m

| Bstate???[R DR]→

iflocaliflocaliflocal 〈B〉c!!!v thenthenthen Bstate!!![R DR]
elseelseelse 〈DR@R〉message!!! {|X|} [[B U DU ] c v]

| Bstate!!![R DR]
notfoundnotfoundnotfound→lock!!!m

| 〈DU@U〉message!!! {|X|} [[B U DU ] c v]

Φaux
def
= DS1 : Agents@s1, . . . ,DSm : Agents@sm,

lock : ^̂̂rwMap[Agents ^̂̂rw[Site Agents]]
register : ^̂̂rw[Agents ^̂̂w[]],
migrating : ^̂̂rw[Agents ^̂̂w[]],

migrated : ^̂̂rw[Agents [Site Agents] ^̂̂w[]],
message : ^̂̂rw {|X|} [[Agents Site Agents] ^̂̂wX X],
currentloc : ^̂̂rw[Site Agents]

Fig. 4. A Forwarding-Pointers Translation: the Daemon

target language, each site name si is re-bound to the pair [si DS i] of the site name
together with the respective daemon name; the agent name ai is re-bound to the
triple [Ai si DS i] of the low-level agent name Ai together with the initial site and
daemon names. The low-level agent Ai is defined by the agent encoding; it contains
the body Pi of agent ai. Agents and daemons interact using channels of an interface
context Φaux, also defined in Figure 4, which in addition declares lock channels and
the daemon names DS1...DSm. It uses a map type constructor, which (together
with the map operations) can be translated into the core language.

Daemons are created, one on each site. These will each maintain a collection
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[[〈b@?〉c!!!v]]A
def
= currentloc???[S DS ]→

iflocaliflocaliflocal 〈DS〉message!!! {|T |} [b c v]
thenthenthen currentloc!!![S DS ]
elseelseelse currentloc!!![S DS ]

ˆ̂

createcreatecreateZ b = P ininin Q
˜̃

A
def
= currentloc???[S DS ]→

newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin
createcreatecreateZ B =
letletlet b = [B S DS ] ininin

〈DS〉register!!![B rack]
| rack???[]→iflocaliflocaliflocal 〈A〉pack!!![] thenthenthen

currentloc!!![S DS ] | [[P ]]B
ininin

letletlet b = [B S DS ] ininin
pack???[]→(currentloc!!![S DS ] | [[Q]]A)

[[migrate tomigrate tomigrate to s → P ]]A
def
= currentloc???[S DS ]→

letletlet [U DU ] = s ininin

ififif [S DS ] = [U DU ] thenthenthen

currentloc!!![U DU ] | [[P ]]A
elseelseelse

newnewnew mack : ^̂̂rw[] ininin
〈DS〉migrating!!![A mack]
| mack???[]→migrate tomigrate tomigrate to U →

newnewnew rack : ^̂̂rw[] ininin
〈DU 〉register!!![A rack]
| rack???[]→newnewnew ack : ^̂̂rw[] ininin

〈DS@S〉migrated!!![A [U DU ] ack]

| ack???[]→(currentloc!!!s | [[P ]]A)

[[iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q]]A
def
= letletlet [B ] = b ininin

iflocaliflocaliflocal 〈B〉c!!!v thenthenthen [[P ]]A elseelseelse [[Q]]A

Fig. 5. A Forwarding-Pointers Translation: the Compositional Encoding (selected clauses)

of forwarding pointers for all agents that have migrated away from their site. To
keep the pointers current, agents synchronize with their local daemons on creation
and migration. Location independent communications are implemented via the
daemons, using the forwarding pointers where possible. If a daemon has no pointer
for the destination agent of a message then it will forward the message to the
daemon on the site where the destination agent was created; to make this possible
an agent name is encoded by a triple of an agent name and the site and daemon
of its creation. Similarly, a site name is encoded by a pair of a site name and the
daemon name for that site. There is a translation of types with clauses

[[

AgentZ
]] def

= [AgentZ Site AgentZ ]
[[

Site
]] def

= [Site AgentZ ]
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We generally use lower case letters for site and agent names occurring in the source
program and upper case letters for sites and agents introduced by its encoding.

Looking first at the compositional encoding, in Figure 5, each agent uses a
currentloc channel as a lock, as before. It is now also used to store both the site
where the agent is and the name of the daemon on that site. The three interesting
clauses of the encoding, for location-independent output, creation, and migration,
each begin with an input on currentloc. They are broadly similar to those of the
simple Central-Forwarding-Server translation in Section 3.

Turning to the body of a daemon, defined in Figure 4, it is parametric in a
pair s of the name of the site S where it is and the daemon’s own name DS . It
has four replicated inputs, on its register, migrating, migrated, and message

channels. Some partial mutual exclusion between the bodies of these inputs is
enforced by using the lock channel. The data stored on the lock channel now
maps the name of each agent that has ever been on this site to a lock channel
(e.g. Bstate) for that agent. These agent locks prevent the daemon from attempting
to forward messages to agents that may be migrating. Each stores the site and
daemon (of that site) where the agent was last seen by this daemon — i.e. either
this site/daemon, or the site/daemon to which it migrated from here. The use of
agent locks makes this algorithm rather more concurrent than the previous one —
rather than simply sequentialising the entire daemon, it allows daemons to process
inputs while agents are migrating, so many agents can be migrating away from
the same site, concurrently with each other and with delivery of messages to other
agents at the site.

Location-independent output A location-independent output 〈b@?〉c!!!v in agent A
is implemented by requesting the local daemon to deliver it. (Note that A cannot
migrate away before the request is sent to the daemon and a lock on currentloc

is released.)

The message replicated input of the daemon gets the map m, from agent names
to agent lock channels. If the destination agent B is not found, the message is
forwarded to the daemon DU on the site U where B was created. Otherwise, if B
is found, the agent lock Bstate is grabbed, obtaining the forwarding pointer [R DR]
for B. Using iflocaliflocaliflocal, the message is then either delivered to B, if it is here, or to
the daemon DR, otherwise. Note that the lock is released before the agent lock is
requested, so the daemon can process other inputs even if B is currently migrating;
it also prevents deadlock. In particular, in order to complete any migration of B
the daemon should be able to process message migrated that requires to acquire
lock.

A single location-independent output, forwarded once between daemons (if the
target agent is not at the local site), involves inter-agent messages as below. (Com-
munications that are guaranteed to be between agents on the same site are drawn
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with thin arrows.)

A DS DS
′

B

-

message!!![b c v]
X

X
X

X
X

X
X

XXz

message!!![b c v]

-

c!!!v

Creation The compositional encoding for createcreatecreateZ is similar to that of the en-
coding in Section 3. It differs in two main ways. Firstly the source language name
b of the new agent must be replaced by the actual agent name B tupled with the
names S of this site and DS of the daemon on this site. Secondly, the internal
forwarder, receiving on deliver, is no longer required — the final delivery of mes-
sages from daemons to agents is now always local to a site, and so can be done
using iflocaliflocaliflocal. An explicit acknowledgement (on dack in the simple translation)
is likewise unnecessary.

A single creation involves inter-agent messages as on the left below.

A B DS

createcreatecreateZ B ...
s
X

X
X

X
X

X
X

XXz

register!!![B rack]

�
�

�
�

�
�

�
��9

rack!!![]

�

pack!!![]

DS A DU

�
�

�
�

�
�

�
��9

migrating!!![A mack]

X
X

X
X

X
X

X
XXz

mack!!![]

migrate tomigrate tomigrate to U
X

X
X

X
X

X
X

XXz

register!!![A rack]

�
�

�
�

�
�

�
��9

rack!!![]

�
�

�
�

�
�

�
��9

migrated!!![A [U DU ] ack]

X
X

X
X

X
X

X
XXz

ack!!![]

Migration Degenerate migrations, of an agent to the site it is currently on, must
now be identified and treated specially; otherwise, the Daemon can deadlock. An
agent A executing a non-degenerate migration now synchronises with the daemon
DS on its starting site S, then migrates, registers with the daemon DU on its
destination site U , then synchronises again with DS . In between the first and last
synchronisations the agent lock for A in daemon DS is held, preventing DS from
attempting to deliver messages to A.

A single migration involves inter-agent messages as on the right above.

Local communication The translation of iflocaliflocaliflocal must now extract the real agent
name B from the triple b, but is otherwise trivial.
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6. EXAMPLE INFRASTRUCTURE: QUERY SERVER WITH CACHING ALGO-
RITHM

In this final example we take a further step towards a realistic algorithm, demon-
strating that nontrivial optimisations can be cleanly expressed within the Nomadic
Pict framework.

The central forwarding server described in Section 3 is a bottleneck for all agent
communication; further, all application messages must make two hops (and these
messages are presumably the main source of network load). The forwarding pointers
algorithm described in Section 5 removes the bottleneck, but there application
messages may have to make many hops, even in the common case. Adapting the
central forwarding server so as to reduce the number of application-message hops
required, we have the central query server algorithm, first described in Section 4. It
has a server that records the current site of every agent; agents synchronise with it
on migrations. In addition, each site has a daemon. An application message is sent
to the local daemon, which then queries the server to discover the site of the target
agent; the message is then sent to the daemon on the target site. If the agent has
migrated away, a notification is returned to the original daemon to try again. In the
common case application messages will here take only one hop. The obvious defect
is the large number of control messages between daemons and the server; to reduce
these each site’s daemon can maintain a cache of location data. The Query Server
with Caching (QSC) [Wojciechowski and Sewell 2000] does this. When a daemon
receives a mis-delivered message, for an agent that has left its site, the message is
forwarded to the server. The server both forwards the message on to the agent’s
current site and sends a cache-update message to the originating daemon. In the
common case application messages are therefore delivered in only one hop.

The QSC encoding in Appendix C makes the algorithm precise, reusing the
main design patterns from the encodings of Sections 4 and 3. Each class of agents
maintains some explicit state as an output on a lock channel. The query server
maintains a map from each agent name to the site (and daemon) where the agent is
currently located. This is kept accurate when agents are created or migrate. Each
daemon maintains a map from some agent names to the site (and daemon) that
they guess the agent is located at. This is updated only when a message delivery
fails. The encoding of each high-level agent records its current site (and daemon).

The algorithm is very asynchronous and should have good performance, with
most application-level messages delivered in a single hop and none taking more
than three hops (though 5 messages). The query server is involved only between a
migration and the time at which all relevant daemons receive a cache update; this
should be a short interval. Some additional optimisations are feasible, e.g. updating
the daemon’s cache more frequently.

The algorithm does, however, depend on reliable machines. The query server has
critical state; the daemons do not, and so in principle could be re-installed after a
site crash, but it is only possible to reboot a machine when no other daemons have
pointers (that they will use) to it. In a refined version of the protocol the daemons
and the query server would use a store-and-forward protocol to deliver all messages
reliably in spite of failures, and the query server would be replicated. In order to
extend collaboration between clusters of domains (e.g. over a wide-area network), a
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federated architecture of interconnected servers must be adopted. In order to avoid
long hops, the agents should register and unregister with the local query server
on changing domains (see Wojciechowski [2006b] for an example algorithm: the
Federated Query Server with Caching).

7. NOMADIC PICT: THE PROGRAMMING LANGUAGE AND ITS IMPLEMENTA-
TION

Nomadic Pict is a prototype distributed programming language, based on the No-
madic π calculus of Section 2 and on the Pict language of Pierce and Turner [2000].
Pict is a concurrent, though not distributed, language based on the asynchronous π
calculus [Milner et al. 1992]. It supports fine-grain concurrency and the communi-
cation of asynchronous messages, extending the π calculus with a rich type system,
a range of convenient forms for programming (such as function declarations) that
can be compiled down to π calculus, and various libraries.

Low-level Nomadic Pict adds the Nomadic π calculus primitives for programming
mobile computations from Section 2: agent creation, migration of agents between
sites, and communication of location-dependent asynchronous messages between
agents. In addition to these, Nomadic Pict adds timeouts, a facility for initiating
communication between separate programs with a trader for type dynamic values,
and labelled variant types. High-level Nomadic Pict adds location-independent
communication; we can express an arbitrary infrastructure for implementing this
as a user-defined translation into the low-level language. The rest of the language
is taken directly from Pict, with the front-end of the Nomadic Pict compiler based
on the Pict compiler.

The language inherits a rich type system from Pict, including simple record types,
higher-order polymorphism, simple recursive types and subtyping. It has a partial
type inference algorithm, and many type annotations can in practice be inferred by
the compiler.

Names play a key rôle in the Nomadic Pict language, as in Nomadic π. New names
of agents and channels can be created dynamically. These names are pure, in the
sense of Needham [1989]; no information about their creation is visible within the
language (in our current implementation they do contain site IDs, but could equally
well be implemented by choosing large random numbers). Site names contain an
IP address and TCP port number of the runtime system which they represent.
Channel, agent, and site names are first-class values and they can be freely sent to
processes which are located at other agents. As in the π calculus, names can be
scope-extruded.

Programs in high-level Nomadic Pict are compiled in the same way as they are
formally specified, by translating the high-level program into the low-level language.
That in turn is compiled to a core language executed by the runtime. The core lan-
guage is architecture-independent; its constructs correspond approximately to those
of the low-level Nomadic π calculus, extended with value types and system function
calls. The runtime system executes in steps, in each of which the closure of the
agent at the front of the agent queue is executed for a fixed number of interactions.
An agent closure consists of a run queue, of Nomadic π process/environment pairs
waiting to be scheduled (round-robin), channel queues of terms that are blocked on
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internal or inter-agent communication, and an environment that records bindings
of variables to channels and basic values. The process at the front of the run queue
is evaluated according to the abstract machine designed for Pict [Turner 1996]. It
ensures fair execution of the fine-grain parallelism in the language. The compiler
and runtime are written in OCaml [Leroy 1995].

In Appendix D we give a more detailed overview of the language. To make
the paper self-contained, we include both the Nomadic-Pict-specific features and
some aspects of Pict. We also describe some useful syntactic sugar and distributed
programming programming idioms, such as remote procedure calls (RPC) and dis-
tributed objects. The language implementation is described in Appendix E. For
concreteness, the full syntax of the language is included as Appendix F. The im-
plementation is available on-line, together with a tutorial, library documentation,
and examples [Wojciechowski 2000a].

8. CORRECTNESS: NOMADIC π CALCULUS SEMANTIC DEFINITION

We now return to the calculus of Section 2. This section defines its semantics
—the type system and operational semantics— and gives the basic metatheoretic
results. The following Section 9 develops proof techniques over the semantics, which
are then used in Section 10 to prove correctness of the Central Forwarding Server
algorithm we gave in Section 3. Throughout we give outline proofs, highlighting
the main points, and refer the reader to the PhD thesis of Unyapoth [2001] for full
details.

8.1 Type System

The type system is based on a standard simply typed π calculus, with channels
carrying (possibly tuple-structured) first-order values. This is extended with in-
put/output subtyping, as in Pierce and Sangiorgi [1996]: channel types have capa-
bilities r (only input is allowed), w (output only), or rw (both), with r covariant
and w contravariant. Additionally, the type of agent names has a capability m or
s, with Agents ≤ Agentm; only the latter supports migration. There is a standard
subsumption rule

Γ ⊢ e ∈ S Γ ⊢ S ≤ T

Γ ⊢ e ∈ T

The main judgements are Γ ⊢a P , for well-formedness of a basic process as part
of agent a, and Γ ⊢ LP , for well-formedness of located processes. There is also
a judgement Γ ⊢ x@z, taking the location z of x from a located type context Γ.
Sometimes we use unlocated type contexts, also written Γ, and there are standard
rules for pattern and expression formation. The typing rules are given in full in
Appendix A; a few of the most interesting rules are below.

Γ ⊢ a ∈ Agentm

Γ ⊢ s ∈ Site

Γ ⊢a P
Γ ⊢a migrate tomigrate tomigrate to s→P

a 6= b
Γ, b : AgentZ ⊢b P
Γ, b : AgentZ ⊢a Q

Γ ⊢a createcreatecreateZ b = P ininin Q
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Γ 
a c!!!v
c!!!v
−−→ @a000

Γ ⊢ c ∈ ^̂̂rT Γ, ∆ ⊢ v ∈ T dom(∆) ⊆ fv(v)
∆ extensible

Γ 
a c???p→P
c???v
−−→
∆

@amatch(p, v)P

Γ 
a P
c!!!v
−−→
∆

LP Γ 
a Q
c???v
−−→
∆

LQ

Γ 
a P | Q
τ
−→ newnewnew ∆ ininin LP | LQ

(Γ, x : T ) 
a P
c!!!v
−−→
∆

LP x ∈ fv(v) x 6= c

Γ 
a newnewnew x : T ininin P
c!!!v

−−−−→
∆,x:T

LP

Γ 
a migrate tomigrate tomigrate to s → P
migrate to s
−−−−−−−→ @aP

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ, a : Agentm@s 
 LP
@amigrate to s′

−−−−−−−−−−→ LQ

Γ 
 newnewnew a : Agentm@s ininin LP
τ
−→ newnewnew a : Agentm@s′ ininin LQ

Fig. 6. Selected LTS Rules

Γ ⊢ a, b ∈ Agents

Γ ⊢ s ∈ Site

Γ ⊢ c ∈ ^̂̂wT
Γ ⊢ v ∈ T
Γ ⊢a 〈b@s〉c!!!v

Γ ⊢a P
Γ ⊢ @aP

The system also includes type variables and existential packages, deconstructed by
pattern matching.

A type context is extensible if all term variables are of agent or channel types,
and therefore may be new-bound.

8.2 Reduction Semantics

The reduction semantics was introduced informally in Section 2.5. Its formal def-
inition involves structural congruence relations P ≡ Q and LP ≡ LQ, defined in
Appendix B.1, and a reduction relation Γ 
 LP −→ Γ′


 LP ′ over pairs of located
type contexts and located processes, defined in Appendix B.2.

8.3 Labelled Transition Semantics

The reduction semantics describes only the internal behaviour of complete systems
of located processes — for compositional reasoning we need also a typed labelled
transition semantics, expressing how processes can interact with their environment.
This lifts the development of corresponding reduction and labelled transition se-
mantics in the π calculus [Milner 1992] to Nomadic π. Transitions are defined
inductively on process structure, without the structural congruence. The transi-
tion relations have the following forms, for basic and located process:

Γ 
a P
α
−→
∆

LP Γ 
 LP
β
−→
∆

LQ
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Here the unlocated labels α are of the following forms:

τ internal computation
migrate to s migrate to the site s
c!!!v send value v along channel c
c???v receive value v from channel c

The located labels β are of the form τ or @aα for α 6= τ . Private names (together
with their types, which may be annotated with an agent’s current site) may be
exchanged in communication and are made explicit in the transition relation by
the extruded context ∆. Selected rules are given in Figure 6, and the full definition
in Appendix B.3.

Adding migrate to s to the standard input/output and τ labels is an important
design choice, made for the following reasons.

—Consider a located process LP in some program context. If an agent a in LP
migrates, the location context is consequently updated with a associated to its
new site. This change of location context has an effect on both LP and its
environment, since it can alter their execution paths (especially those involving
location-dependent communication with a). Migration of an agent must therefore
be thought of as a form of interaction with the environment.

—We observe, in the reduction rules, that the location context in the configuration
after the transition can only be modified by migration of an agent. Including
this migrating action allows the location context on the right hand side to be
omitted.

Execution of other agent primitives (i.e. createcreatecreate and iflocaliflocaliflocal) is regarded as inter-
nal computation, since it does not have an immediate effect on program contexts.
In the case of createcreatecreate, the newly created agent remains unknown to the environment
unless its name is extruded by an output action.

8.4 Basic Metatheory

In a typed semantics, the type system should prevent a mismatch between the
value received and the shape expected in communication. However, matching a
value and a pattern of the same type does not always yield a substitution. For
example, taking Γ to be x : [[] []], a pattern [y z] may have type [[] []] w.r.t. Γ, but
match([y z], x) is undefined. A similar situation occurs when matching a name x
of an existential type to an existential pattern {|X|} p. To prevent this, we define
ground and closed type contexts as follows.

Definition 8.1 (Ground Type Context)
A type context Γ is ground if, for all x ∈ dom(Γ), Γ ⊢ x ∈ T implies T 6= [T1 . . . Tn]
and T 6= {|X|}S, for any T1, . . . , Tn,X, S.

Definition 8.2 (Closed Type Context)
A type context Γ is closed if it is ground and fv(Γ)∩T V = ∅ and, for all x ∈ dom(Γ),
Γ ⊢ x ∈ T implies T 6∈ T .

It is easy to show that each name declared in a closed type context is either a
site, an agent, or a channel.
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We may now state the type preservation result.

Theorem 8.1 (Type Preservation)
For any well-formed closed located type context Γ, if Γ 
 LP

β
−→
∆

LQ then Γ,∆ ⊢

LQ.

Proof Sketch An induction on the derivations of Γ 
a P
α
−→
∆

LP and Γ 
 LP
β
−→
∆

LQ. Γ needs to be closed so that, matching a pattern with a value of the same
type always yields a type-preserving substitution, whenever the transition involving
matching occurs. �

Theorem 8.2 (Reduction/LTS Correspondence)
For any well-formed located type context Γ and located process LP such that
Γ ⊢ LP , we have: Γ 
 LP −→ Γ′


 LQ if and only if either

—Γ 
 LP
τ
−→ LQ with Γ′ = Γ, or

—Γ 
 LP
@amigrate to s
−−−−−−−−−→ LQ with Γ′ = Γ ⊕ a 7→ s.

Proof Sketch We need to show this in two parts: that a reduction implies
a silent transition or a migrate action, and vice versa. Each of the two parts is
shown by an induction on reduction/transition derivations. The case where the
silent transition of LP is derived by the communication rule needs the following
lemma, which can easily be proved by an induction on transition derivations.

Lemma 8.3
—If Γ 
 LP

@ac!!!v
−−−−→

Ξ
LQ then LP ≡ newnewnew ∆,Ξ ininin (@ac!!!v | LP ′) for some

∆ and LP ′. Moreover, LQ ≡ newnewnew ∆ ininin LP ′.

—If Γ 
 LP
@ac???v
−−−−→

Ξ
LQ then, for some ∆, p and LP ′, Q, with dom(∆)∩

dom(Ξ) = ∅, either:
—LP ≡ newnewnew ∆ ininin (@ac???p→Q | LP ′) and

LQ ≡ newnewnew ∆ ininin (@a(match(p, v)Q) | LP ′); or
—LP ≡ newnewnew ∆ ininin (@a***c???p→Q | LP ′) and

LQ ≡ newnewnew ∆ ininin (@a(match(p, v)Q) | @a***c???p→Q | LP ′).

—If Γ 
 LP
@amigrate to s
−−−−−−−−−→ LQ then

LP ≡ newnewnew ∆ ininin (@amigrate tomigrate tomigrate to s→P | LP ′)

for some ∆ and LP ′, P . Moreover, LQ ≡ newnewnew ∆ ininin (@aP | LP ′).

As in Theorem 8.1, Γ needs to be closed so that, matching a pattern with a value of
the same type always yields a type-preserving substitution, whenever the transition
involving matching occurs. �

The next two lemmas ensure the absence of two kinds of runtime errors: mis-
matching of values exchanged in channel communication, and non-evaluable ex-
pressions.

Lemma 8.4 (Runtime safety: Channels)
Given that Γ is a closed type context, and (Γ,∆)(c) = ^̂̂IT , we have:

(1) if Γ ⊢ newnewnew ∆ ininin (@ac!!!v | LP ) then I ≤ w;
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(2) if Γ ⊢ newnewnew ∆ ininin (@ac???p→P | LP ) then I ≤ r;

(3) if Γ ⊢ newnewnew ∆ ininin (@a***c???p→P | LP ) then I ≤ r;

(4) if Γ ⊢ newnewnew ∆ ininin (@a(c!!!v|c???p→P ) | LP ) then match(p, v) is defined; and

(5) if Γ ⊢ newnewnew ∆ ininin (@a(c!!!v|***c???p→P ) | LP ) then match(p, v) is defined.

Lemma 8.5 (Runtime safety: Expressions)
Given that Γ is a closed type context, we have:

(1) if Γ ⊢ newnewnew ∆ ininin (@a(ififif v thenthenthen P elseelseelse Q) | LP ) then v ∈ {truetruetrue,falsefalsefalse};

(2) if Γ ⊢ newnewnew ∆ ininin (@a(letletlet p = ev thenthenthen P ) | LP ) then eval(ev) and
match(p, eval(ev)) are defined.

9. CORRECTNESS: NOMADIC π CALCULUS SEMANTIC TECHNIQUES

In this section we describe the Nomadic π techniques used for stating and proving
correctness. This is not specific to the particular CFS algorithm, although exam-
ples are taken from it. The next section describes the large-scale structure of the
correctness proof, using these techniques.

Correctness Statement We are expressing distributed infrastructure algorithms as
encodings from a high-level language to its low-level fragment, so the behaviour of
a source program and its encoding can be compared directly with some notion of
operational equivalence — our main theorem will be roughly of the form

∀P . P ≃ C [[P ]] (†)

where P ranges over well-typed programs of the high-level language (P may use
location-independent communication whereas C [[P ]] will not). Now, what equiva-
lence ≃ should we take? The stronger it is, the more confidence we gain that the
encoding is correct. At first glance, one might take some form of weak bisimulation
since (modulo divergence) it is finer than most notions of testing [de Nicola and
Hennessy 1984] and is easier to work with; see also the discussion of Sewell [1997]
on the choice of an appropriate equivalence for a Pict-like language. However, as in
Nestmann’s work on choice encodings [Nestmann and Pierce 1996], (†) would not
hold, as the encodings C [[P ]] tend to involve partial commitment of some nondeter-
ministic choices. In particular, migration steps and acquisitions of the daemon or
agent locks involve nondeterministic internal choices, and lead to partially commit-
ted states — target level terms which are not bisimilar to any source level term.
We therefore take ≃ to be an adaptation of coupled simulation [Parrow and Sjödin
1992] to our language. This is a slightly coarser relation, but it is expected to be
finer than any reasonable notion of observational equivalence for Nomadic π (again
modulo questions of divergence and fairness). This is discussed further below in
Section 9.1.

Dealing with House-keeping steps Our example infrastructure introduces many τ
steps, each of which induces an intermediate state — a target level term which is
not a literal translation of any source level term. Some of these steps are the par-
tial commitment steps mentioned above. Many, however, are deterministic house-
keeping steps; they can be reduced to certain normal forms, and related to them by
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expansions (defined in Section 9.3). For example, consider the following fragment
of code from the C-encoding (after some reduction steps).

newnewnew Φaux,m : Map[Agents Site],∆ ininin

@D(Daemon
| lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin
〈a@s〉deliver!!! {|X|} [c v dack] | dack???[]→lock!!!m

notfoundnotfoundnotfound→000)

| @a([[P ]]a | Deliverer | . . .)

| @b1([[Q1]]b1 | . . .) | . . . | @bn
([[Qn]]bn

| . . .)

where Deliverer
def
= ***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

This is a state of the encoded whole system in which an agent has sent a message
forwarding request (to agent a) to the daemon, and the daemon’s request code
has acquired the daemon lock, which contains the site map m. The subsequent
steps performed by the daemon D, and by the Deliverer process in the agent
a, are house-keeping steps. They include the map lookup operation, sending the
message to the Deliverer process in a (with a location-dependent message to
channel deliver there), and communication along the dack channel.

To prove these give rise to expansions requires a variety of techniques, some novel
and some straightforward adaptations of earlier work.

—Maps. We use a π calculus encoding of finite maps, similar to the encoding of
lists with persistent values [Milner 1993]. We prove that the encoding is correct,
and that map lookup and update operations yield expansions.

—The location-dependent deliver message, sent to agent a, is guaranteed to arrive
because a cannot migrate until the daemon lock is released by lock!!!m, which
does not occur until agent a returns a dack to the daemon. To capture this, we
introduce a notion of temporarily immobile located process — one in which no
migration can take place until an input on a lock channel. This is discussed in
Section 9.5.
Certain reductions, such as the location-dependent message delivery step, are
deterministic, as defined in Section 9.4. The key property of a temporarily im-
mobile process is that such deterministic reductions still give rise to expansions
when in parallel with temporarily immobile processes.
Proving that processes are temporarily immobile involves a coinductive charac-
terisation and preservation results (under parallel and new-binders).

—The reaction of the deliver message and the Deliverer process, in agent a,
is essentially functional. We adapt the notion of uniform receptiveness [San-
giorgi 1999], showing that the reaction induces an expansion by showing that the
deliver channel is uniformly receptive — it always has a single replicated input
in each agent, and no other input. The details are omitted here.

—The location-dependent dack message, from agent a to the daemon, is guaranteed
to arrive for the simple reason that the daemon cannot migrate — it has the static
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Fig. 7. An example of partial committed state

type Agents. The reduction step is therefore deterministic, and hence induces an
expansion.

—The dack acknowledgement channel is fresh for each request, so the daemon
contains exactly one input and at most one output. It is straightforward to show
that the communication is deterministic and hence gives an expansion.

—In all of the above, we make essential use of congruence results for expansion
to pull out the interesting part of the process, allowing the bi agents and parts
of the daemon to be neglected. The presence of agent mobility and location-
dependent communication means these results must take account of the possible
migrations of agents; in Section 9.2 we define translocating bisimulations that do
so; translocating expansions are similar.

9.1 Partial Commitment and Coupled Simulation

As an example, consider the encoding C [[LP ]] of an agent a which sends message
c!!!v to agent b at the current site of a, and in parallel visits the sites s1 and s2 (in
any order).

LP
def
= @a

(

〈b〉c!!!v | migrate tomigrate tomigrate to s1 | migrate tomigrate tomigrate to s2

)

Assuming a and b are initially at the same site, parts of the reduction graphs of
LP and C [[LP ]] can be represented as in Figure 7. If the migrate tomigrate tomigrate to s1 process in
C [[LP ]] successfully acquires the local lock (a partial commitment step) the resulting
process (LQ1p in Figure 7) does not correspond exactly to any state of LP . LQ1p

cannot correspond to LP1 since executing 〈b〉c!!!v at this point means that c!!!v will
reach b (which is not the case for node LP1); it cannot correspond to LP either,
since we know that a will eventually end up in s2.

To address this phenomenon, coupled simulation [Parrow and Sjödin 1992] re-
laxes the bisimulation clauses somewhat. A pair (S1,S2) of type-context-indexed
relations is a coupled simulation if:

—S1 and (S2)
−1 are weak simulations (the standard coinductive notion of simula-
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tion, indexed by located type contexts).

—if (LP,LQ) ∈ (S1)Γ then there exists LQ′ such that Γ 
 LQ
τ

=⇒ LQ′ and

(LP,LQ′) ∈ (S2)Γ.

—if (LP,LQ) ∈ (S2)Γ then there exists LP ′ such that Γ 
 LP
τ

=⇒ LP ′ and

(LP ′, LQ) ∈ (S1)Γ.

Two processes LP,LQ are coupled similar wrt Γ, written LP ⇌Γ LQ, if they are
related by both components of some coupled simulation.

Intuitively “LQ coupled simulates LP” means that “LQ is at most as committed
as LP” with respect to internal choices and that LQ may internally evolve to a
state LQ′ where it is at least as committed as LP , i.e., where LP coupled simulates
LQ′.

In this paper, coupled simulation will be used for relating whole systems, which
cannot be placed in any program context. For this reason, we do not need to
incorporate translocation into the definition above.

9.2 Translocating Equivalences and Congruence Result

To prove our main result (†) we need compositional techniques, allowing separate
parts of the protocols to be treated separately. In particular, we need operational
congruences (both equivalences and preorders) that are preserved by program con-
texts involving parallel composition and new-binding. In Nomadic π the behaviour
of location-dependent communications depends on the relative location of agents:
if a and b are at the same site then the location-dependent message @b〈a@s〉c!!!v
reduces to (and in fact is weakly equivalent to) the local output @ac!!!v, whereas if
they are at different sites then the location-dependent message is weakly equivalent
to 000. A parallel context, for example [.]|@amigrate tomigrate tomigrate to s, can migrate the agent
a, so to obtain a congruence we need refined equivalences, taking into account the
possibility of such changes of agent location caused by the environment.

Relocators, ranged over by δ, can be applied to located type contexts in order to
relocate agents in such contexts. A valid relocator for (Γ,M) is a type-respecting
partial function from M to site names of Γ, formally defined below.

Definition 9.1 (Valid relocators)
A relocator δ is said to be valid for (Γ,M) if dom(δ) ⊆ M and, for all x ∈ M ,
Γ ⊢ x ∈ Agentm and Γ ⊢ δ(x) ∈ Site.

We write Γδ for the result of applying δ to Γ and Γδβ for (Γδ)β.
Allowing arbitrary relocations would give too strong a notion, though. We in-

troduce translocating relations that are parameterised by a set of agents that the
environment may move.

Definition 9.2 (Translocating Indexed Relation)
A translocating indexed relation is a binary relation between nπLD,LI processes, in-
dexed by closed well-formed located type contexts Γ and sets M ⊆ mov(Γ), where
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mov(Γ) is the set of names of type Agentm in Γ:

mov(•)
def
= ∅

mov(Γ, X)
def
= mov(Γ)

mov(Γ, x : T@z)
def
=

{

mov(Γ) ∪ {x} T = Agentm

mov(Γ) otherwise

Channel communication introduces further problems since it allows extrusion of
new agent names to and from the environment. Consider an output of a new-bound
agent name a to the environment. Other components in the environment may
then send messages to a, but cannot migrate it, so when checking a translocating
equivalence we do not need to consider relocation of a. On the other hand, a new
agent name received from the environment by an input process is the name of an
agent created in the environment, so (if created with the mobile capability) it may
be migrated at any time.

Therefore the translocating index of the bisimulation only needs to be updated
when an input action occurs. For this we define the set M1 ⊎β M2 to be M1 ∪ M2

whenever β is an input, and to be M1 otherwise.

M1 ⊎β M2
def
=

{

M1 ∪ M2 ∃a, c, v, β = @ac???v

M1 otherwise

The notion of translocating bisimulation can therefore be formalised as follows.

Definition 9.3 (Translocating Simulations)
(1) A translocating indexed relation S on nπLD,LI is a translocating strong simulation

if (LP,LQ) ∈ SM
Γ implies the following:

—Γ ⊢ LP and Γ ⊢ LQ;
—M ⊆ mov(Γ); and

—For any relocator δ valid for (Γ,M), if Γδ 
 LP
β
−→
∆

LP ′ then there exists

LQ′ such that Γδ 
 LQ
β
−→
∆

LQ′ and (LP ′, LQ′) ∈ S
M⊎βmov(∆)
Γδβ,∆ .

S is called a translocating strong bisimulation if all of its indexed relations
are symmetric. Two located processes LP and LQ are translocating strongly
bisimilar w.r.t. Γ,M , written LP ∼̇M

Γ LQ, if there exists a translocating strong
bisimulation which when indexed by Γ and M , contains the pair (LP,LQ).

(2) Replacing Γδ 
 LQ
β
−→
∆

LQ′ in the final item of this definition with

Γδ 
 LQ
β̂

=⇒
∆

LQ′ yields the weak version of translocating simulation. A

located process LQ weak translocating bisimulates LP w.r.t. Γ,M , denoted
LP ≈̇M

Γ LQ, if there exists a weak translocating bisimulation which when in-
dexed by Γ,M , contains the pair (LP,LQ).

Some simple examples of translocating bisimulations are the following.

@aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q ∼̇M1

Γ @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q′

@a〈b@s〉c!!!v ≈̇M2

Γ @bc!!!v
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where M1 ⊆ mov(Γ)/{a, b} and M2 ⊆ mov(Γ)/{b}; we assume that the processes
above are well-typed w.r.t. Γ, and that Γ ⊢ a@s and Γ ⊢ b@s.

We prove congruence results for both strong and weak translocating bisimulation,
stating the result here only for the strong version. It uses a further auxiliary
definition: the set mayMove(LP ) is the set of agents in LP syntactically containing
migrate tomigrate tomigrate to.

Theorem 9.1 (Translocating Congruence)
Given a closed located type context Γ,Θ with Θ extensible, if

—LP ∼̇MP

Γ,Θ LP ′ and LQ ∼̇
MQ

Γ,Θ LQ′,

—mayMove(LQ,LQ′) ⊆ MP ,

—mayMove(LP,LP ′) ⊆ MQ, and

—M
def
= MP ∩ MQ ∩ agents(Γ)

then

newnewnew Θ ininin (LP | LQ) ∼̇M
Γ newnewnew Θ ininin (LP ′ | LQ′) .

Proof Sketch The proof deals with derivatives of newnewnew Θ ininin LP | LQ w.r.t.
Γ, which have the general form of

LRk = newnewnew Θ,Θcomm ininin (LPk | LQk)

well-typed w.r.t. Γ,Θin,Θout. Here we classify new names bound in the derivative,
and those extruded to or from the environment as follows.

—Θcomm consists of names exchanged by communication between LP and LQ.
This can be classified further as ΘLP

comm, the private names of LP extruded by
output actions to LQ, and vice versa for ΘLQ

comm.

—Θout consists of names extruded by output actions to the environment. Again,
this can be classified further as ΘLP

out, for the names extruded by LP , and vice

versa for ΘLQ
out.

—Θin consists of names received from the environment.

Using this classification of names, the set mov(Θin) anticipates the movements
of agents received from the environment (i.e. the context of LRk), and the set

MP ∪ mov(ΘLQ
comm,ΘLQ

out) anticipates the movements of free agents in LQk. Since
the environment of LPk comprises LQk and the context of LRk as a whole, the
translocating index of the bisimulation relations between LPk and LP ′

k must include
the set below.

MPk
= MP ∪ mov(ΘLQ

comm,ΘLQ
out,Θin)

The premises of Theorem 9.1 can therefore be generalised in the coinduction as
follows.

—LPk∼̇
MPk

Γ,Θin,Θout,Θcomm,ΘLP ′
k, and LQk∼̇

MQk

Γ,Θin,Θout,Θcomm,ΘLQ′
k, where MQk

is de-
fined in the similar way as MPk

;

—mayMove(LPk, LP ′
k) ⊆ MQ ∪ mov(ΘLP

comm,ΘLP
out); and

—mayMove(LQk, LQ′
k) ⊆ MP ∪ mov(ΘLQ

comm,ΘLQ
out).
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The proof of this theorem relies on the invariance under labelled transitions of the
above premises. �

By using the techniques outlined in the beginning of Section 9, we may prove
that

newnewnew Φaux,m : Map[Agents Site] ininin
@D(Daemon

| lookuplookuplookup[Agents Site] a ininin m withwithwith

foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin
〈a@s〉deliver!!! {|X|} [c v dack] | dack???[]→lock!!!m

notfoundnotfoundnotfound→000)
| @a([[P ]]a | Deliverer | . . .)

≈̇
{b1,...,bn}
Γ,∆

newnewnew Φaux,m : Map[Agents Site] ininin
@D(Daemon | lock!!!m)
| @a([[P ]]a | Deliverer | . . .)

where the processes above are well-typed with respect to Γ,∆. Applying the con-
gruence result, the fragment of code from the C-encoding given in the beginning of
this section can be proved to translocating weak bisimulate the following process.

newnewnew Φaux,m : Map[Agents Site],∆ ininin

@D(Daemon | lock!!!m)
| @a([[P ]]a | Deliverer | . . .)
| @b1([[Q1]]b1 | . . .) | . . . | @bn

([[Qn]]bn
| . . .)

9.3 Expansion

To construct the coupled simulation, we use an expansion relation �̇ [Nestmann
and Pierce 1996] and the “up to” technique of Sangiorgi and Milner [1992],
adapted with translocation, to allow elimination of target processes that are in
intermediate/house-keeping stages.

A definition of expansion uses two refinements of weak simulation: progressing
and strict simulation. We adapt the definitions from Nestmann [1996], adding type
contexts and translocation.

Definition 9.4 (Progressing and Strict Simulation)
A weak translocating simulation S is called

—strict if, for all (LP,LQ) ∈ SM
Γ and valid δ for (Γ,M), Γδ 
 LP

β
−→
∆

LP ′ implies

there exists LQ′ such that Γδ 
 LQ
β̂
−→
∆

LQ′ with (LP ′, LQ′) ∈ S
M⊎βmov(∆)
Γδβ,∆ .

—progressing if, for all (LP,LQ) ∈ SM
Γ and valid δ for (Γ,M), Γδ 
 LP

β
−→
∆

LP ′ im-

plies there exists LQ′ such that Γδ 
 LQ
β

=⇒
∆

LQ′ with (LP ′, LQ′) ∈ S
M⊎βmov(∆)
Γδβ,∆ ;

and

LQ is said to progressing simulate (or strictly simulate) LP w.r.t. Γ,M if there
exists a progressing simulation S (or a strict simulation) such that (LP,LQ) ∈ SM

Γ .



Nomadic Pict · 43

Γ 
 LP

SM
Γ

β

∆
// Γβ,∆ 
 LP1

S
M⊎βmov(∆)

Γβ,∆

Γ 
 LQ
β̂

∆
// Γβ,∆ 
 LQ1

Γ 
 LP

SM
Γ

β

∆
// Γβ,∆ 
 LP1

S
M⊎βmov(∆)

Γβ,∆

Γ 
 LQ
β

∆
+3______ ______ Γβ,∆ 
 LQ1

(a) strict simulation (b) progressing simulation

The above diagrams show progressing and strict simulations. Informally, LQ
strictly simulates LP means that LQ weakly simulates LP , but LQ never introduces
more internal steps and may ignore the silent transitions of LP . On the other
hand, LQ progressing simulates LP means that LQ weakly simulates LP , but LQ
introduces more internal steps and never ignores a silent action, hence the absence
of ˆ in the weak transition of LQ in the definition. The definition of expansion
simply makes use of these two refinements.

Definition 9.5 (Expansion)
An indexed binary relation S is a translocating expansion if S is a strict simulation
and S−1 is a progressing simulation.

LP translocating expands LQ w.r.t. Γ under M , written LP �̇
M

Γ LQ, if there

exists an expansion S with (LP,LQ) ∈ SM
Γ . Moreover, if LP �̇

mov(Γ)
Γ LQ then LP

and LQ are said to be related by expansion congruence, written LP �Γ LQ.

We depend on a congruence result, analogous to that above, for expansion. The
proof of this result is similar to that for translocating bisimulations.

9.4 Deterministic Reduction

A component in a system of concurrent processes may be deterministic, in the
sense that its next computational step can be determined. An example of this
is a location-dependent message 〈b@s〉c!!!v, executed in an agent a; if the agent b
is static, and is located at s, then all the subsequent transitions are determined,
eventually moving the output c!!!v to b. We define deterministic reduction as follows.

Definition 9.6 (Deterministic reduction)
Given a closed located type context Γ and M ⊆ mov(Γ), a located processes LP

is said to deterministically reduce to LQ w.r.t. (Γ,M), written Γ 
 LP
det
−−→
M

LQ, if,

for any valid δ for (Γ,M), the following hold:

—Γδ 
 LP
τ
−→ LQ; and

—Γδ 
 LP
β
−→
∆

LQ′ implies β = τ , ∆ = • and LQ′∼̇M
ΓδLQ.

We also define the relation
det
=⇒
M

to be the transitive closure of
det
−−→
M

; that is

Γ 
 LP
det
=⇒
M

LQ implies there exists LP1, . . . , LPn such that, letting LP = LP0
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and LQ = LPn+1, we have

Γ 
 LPi
det
−−→
M

LPi+1 0 ≤ i ≤ n

A process LP is said to be τ -deterministic w.r.t. Γ,M if there exists LQ such that

Γ 
 LP
det
=⇒
M

LQ.

The lemma below states the key property of τ -determinacy: that a deterministic
reduction induces an expansion.

Lemma 9.2 (Deterministic reduction induces expansion)
If Γ 
 LP

det
−−→
M

LQ then LP �̇
M

Γ LQ.

From the example fragment of code from C-encoding, when the agent a received
the message forwarded from the daemon, it sends an acknowledgement back to
the daemon using 〈D@SD〉dack!!![]. Since the location-dependent sugar output is
τ -deterministic, we have:

@a〈D@SD〉dack!!![] �̇
M

Γ @Ddack!!![]

for any M ⊆ mov(Γ) such that D 6∈ M . However, since the daemon D is static,
@a〈D@SD〉dack!!![] is related by expansion congruence to @Ddack!!![]; and hence
placing the location-dependent output in any program context yields an expansion.

9.5 Temporary Immobility

At many points in the execution of an encoded program, it is intuitively clear
that an agent cannot migrate — while waiting for an acknowledgement from the
daemon, or for either currentloc or lock to be released in the agent or daemon.
To capture such an intuition, we consider derivatives of a process LP — if an input
action on a lock channel l always precedes any (observable) migration action then
LP can be said to be temporarily immobile, blocked by l. Care must be taken,
however, to ensure that the lock l is not released by the environment. This can be
made precise by the following definitions.

As in the case of translocating equivalences, we need to consider the possibility
of agents being moved by the environment.

Definition 9.7 (Translocating Path)
A translocating path of LP0 wrt (Γ,M) is a sequence

β1
−−→
∆1

. . .
βn
−−→
∆n

for which there exist LP1, . . . , LPn and δ0, . . . , δn−1 such that for each i ∈ 0 . . . n−1:

—δi is a valid relocator for (Γ̂, M̂), where

Γ̂
def
= Γ,∆1, . . . ,∆i

M̂
def
= M ⊎β1

mov(∆1) . . . ⊎βi
mov(∆i), and

—((Γδ0,∆1)δ1β1,∆2 . . . βi,∆i)δi 
 LPi
βi+1
−−−→
∆i+1

LPi+1.
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Definition 9.8 (Temporary Immobility)
Given a closed located type context Γ, a located process LP with Γ ⊢ LP , and a
translocating index M ⊆ agents(Γ), LP is temporarily immobile under lock l wrt
(Γ,M) if, for all translocating paths

β1
−−→
∆1

. . .
βn
−−→
∆n

of LP wrt (Γ,M) which do not contain an input action βi = @ac???v with l ∈ fv(c, v),
the following hold for all i ≤ n, b, c, v and s:

—βi = @bc!!!v implies l 6∈ fv(βi); and

—βi 6= @bmigrate to s.

Consider for example the process below.

LQ
def
= newnewnew Ωaux ininin

@DDaemon
| @a([[P ]]a |currentloc!!!s|Deliverer)

Here agent a cannot migrate until the daemon lock lock is successfully acquired,
so LQ is temporarily immobile under lock with respect to any type-correct (Γ,M)
that does not admit environmental relocation of a, i.e. with a 6∈ M . Assume further
that a is at s and that the daemon is forwarding an LI message to a, i.e. the above
is in parallel with

LP
def
= @D〈a@s〉deliver!!![c v ack]

This parallel composition, with a surrounding new-binder for lock, expands to

newnewnew lock : ^̂̂rwMap[Agents Site] ininin
LQ | @adeliver!!![c v ack]

The proof of this expansion relies on the fact that the reductions of LP cannot
release lock, so a cannot migrate, and hence the reductions of LP are deterministic,
successfully delivering the message to a at s. It uses the following lemma.

Lemma 9.3
Given that LQ is temporarily immobile under l with respect to Γ,∆ and M , with

∆ extensible and l ∈ dom(∆), if Γ,∆ 
 LP1
det
−−→
M

LP2 then

newnewnew ∆ ininin LP1 | LQ �̇
M∩dom(Γ)
Γ newnewnew ∆ ininin LP2 | LQ

Proofs of temporary immobility can be hard, since they involve quantification
over derivatives. We formulate a coinductive definition of temporary immobility
(which is equivalent to the one given here). A process is temporarily immobile if it
belongs to a blocking set: a set which is closed under transitions that are not inputs
on the lock channel, and in which no migration can occur. This alternative definition
allows temporary immobility to be proved by analysing single step transitions.
Moreover, since temporary immobility is preserved by weak bisimulation, we may
apply “up to” techniques [Sangiorgi and Milner 1992], so that we may work with
sets which are a blocking set when closed up under weak bisimulation. Proving
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that the process LQ given above is temporarily immobile, for example, involves
analysing its transitions, which can be classified into two groups:

—local computation: execution of the process P in a, which does not involve the
daemon. The result of this type of transition is in the same form as LQ.

—daemon computation: execution of the process P in a, which involves the daemon.
The result of this type of transition expands a process which is of the same form
as LQ. (Sending location-dependent message to the static daemon, for example,
induces expansion.)

Temporary immobility is preserved by parallel composition and newnewnew binding. This
can be used for proving that the process below is temporarily immobile.

LR = newnewnew Ωaux ininin

@DDaemon
| @b1([[P1]]b1 |currentloc!!!s1|Deliverer) | . . .
| @bn

([[Pn]]bn
|currentloc!!!sn|Deliverer)

Since LR is strongly bisimilar to LQ1 | . . . | LQn, where LQi is obtained from LQ
by replacing the name of the agent a by bi and the process P by Pi. The proof of
the strong bisimulation uses a result similar to a proposal of Milner [1993, p.29].

10. CORRECTNESS: PROOF FOR THE CENTRAL FORWARDING SERVER

This section outlines the strategies taken in order to prove the correctness of the
example CFS encoding C [[·]], defined in Section 3, using the techniques from Section
9.

10.1 Factoring the Proof

We simplify the construction of the main coupled simulation (between an arbitrary
source program, in nπLD,LI, and its encoding, in nπLD) by factoring the encoding
through an intermediate language IL, with states ranged over by Sys, that is specific
to this encoding. The infrastructure encoding C [[·]] is factored into the composi-
tion of a loading encoding L, mapping source terms to corresponding systems in
the intermediate language, and an unloading encoding F , mapping systems in the
intermediate language to their corresponding target terms.

nπLD,LI

C[[·]]
$$JJJJJJJJJ

L[[·]]
// IL

F [[·]]

��
nπLD

In proving correctness of the loading encoding, we essentially deal with all the house-
keeping steps, relating terms introduced by such steps to some normal forms. Such
normal forms allow house-keeping steps to be abstracted away, so that in proving
correctness of the unloading encoding, we can concentrate on relating partially
committed terms to target-level terms. This helps us manage the complexity of the
state-space of the encoding, by:
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(1) reducing the size of the coupled simulation relations, omitting states which
reduce by house-keeping steps to certain normal forms (which have no house-
keeping steps);

(2) dealing with states in which many agents may be partially committed simulta-
neously; and

(3) capturing some invariants, e.g. that the daemon’s site-map is correct, in a type
system for IL.

The cost is that the typing and labelled transition rules for IL must be defined. For
lack of space we only outline the essential points here, referring the reader again to
Unyapoth [2001] for the full development.

We use two functions mapping intermediate language states back into the source
language. The undo and commit decoding functions, D♭ and D♯ respectively, undo
and complete partially committed migrations.

nπLD,LI IL
D♯[[·]]

oo
D♭[[·]]
oo

It suffices to have both functions commit creations and LI messages, as these are
somewhat confluent.

We shall not define the loading, unloading and decoding functions here. Instead
we illustrate the correspondence between steps in the source, intermediate and the
target languages in the creation, migration and location-independent messaging
cases in Figure 8. In the figure, some τ communication steps are annotated with
the command or the name of the channel involved. The figure also shows how
partially committed states are mapped to terms in the source language by the
decoding functions.

10.2 Intermediate Language

Each term of the intermediate language represents a normal form of target-level
derivatives, possibly in a partially committed state. It describes the state of the
daemon as well as that of the encoded agent. The syntax is:

Sys ::= eProg(∆;D;A)

Each term eProg(∆;D;A) is parameterised by ∆, a located type context corre-
sponding to all names dynamically created during the execution of the program, and
D and A, the state of the daemon and of the agents. ∆ is binding in eProg(∆;D;A)
and is therefore subject to alpha-conversion. The latter two parameters are de-
scribed in more detail below:

—The state D of the daemon is described by the following syntax:

D ::= [map mesgQ]
mesgQ ::=

∏

i∈I mesgReq({|Ti|} [ai ci vi])

Each daemon state [map mesgQ] consists of a site map map, expressed as a list of
pairs, and an unordered queue of message forwarding requests mesgQ. A message
forwarding request mesgReq({|T |} [a c v]) requires the daemon to forward c!!!v to
the agent a, where T is the type of v.
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—The state A of the agents is a partial function mapping agent names to agent
states. Each agent state, represented as [P E], consists of a main body P and a
pending state E. The syntax of E is given below:

E ::= FreeA(s) | RegA(b Z s P Q)

| MtingA(s P ) | MrdyA(s P )

If an agent a has pending state FreeA(s), the local lock of a is free and is ready
to initiate a createcreatecreate or migrate tomigrate tomigrate to process from its main body. Otherwise, a is
in a partially committed state, with a pending execution of createcreatecreateZ b = P ininin Q
(when its state is RegA(b Z s P Q)) or migrate tomigrate tomigrate to s → P (when its state is
MtingA(s P ) or MrdyA(s P )). In FreeA(s) and RegA(b Z s P Q), s denotes the
current site of a, internally recorded and maintained by the agent itself.
In RegA(b Z s P Q), the name b is bound in P and Q and is subject to alpha-
conversion.

Informally, each transition of a system originates either from an agent or the dae-
mon. A process from the main body of an agent may be executed immediately
if it is either an iflocaliflocaliflocal, ififif, letletlet or a pair of an output and a (replicated) in-
put on the same channel. The result of such an execution (governed by nπLD,LI

LTS rules) is placed in parallel with other processes in the main body, except for
execution of an LI output 〈b〉c!!!v, which results in the message forwarding request
mesgReq({|T |} [b c v]) being added to the message queue of the daemon (T is the type
of v). These steps correspond exactly to those taken by source- and target-level
terms. A process createcreatecreateZ b = P ininin Q or migrate tomigrate tomigrate to s→P from the main body
of a may proceed (in fact initiate) if the local lock is free, i.e. the pending state is
FreeA(s′). The result of such initiation turns the pending state to RegA(b Z s′ P Q)
or MtingA(s P ) respectively. Translating into target-level terms, an agent in such
a state has successfully acquired its local lock and sent a registration or migrating
request to the daemon.

A system with registration request RegA(b Z s P Q) is executed in a single reduc-
tion step, corresponding in the target-level to acquiring the daemon lock, updating
the site map and sending the acknowledgement to b. After completion, the decla-
ration b : AgentZ@s is placed at the top level and, at the same time, the site map
is extended with the new entry (b, s). The new agent b with state [P FreeA(s)] now
commences its execution, and so does its parent. The top third of Figure 8 gives the
correspondences between steps in the source, intermediate and the target languages
in the creation case. In the figure, some τ communication steps are annotated with
the command or the name of the channel involved.

Likewise, a system with a message forwarding request mesgReq({|T |} [b c v]) is
executed in a single reduction step, corresponding in the target-level to acquiring
the daemon lock, looking up the site of b, delivering the message, and receiving an
acknowledgement from b. After completion, the message c!!!v is added to the main
body of b.

Serving a migrating request MtingA(s P ) from an agent a, however, involves two
steps. The first step acquires the daemon lock, initialising the request and turning
the pending state of a to MrdyA(s P ). In the second step, the agent a migrates to
s (hence changes the top-level declaration) and the site map updates a with the
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entry (a, s). The first step corresponds in the target-level to acquiring the daemon
lock, looking up the site of a in the site map, and sending an acknowledgement,
permitting a to migrate. The second step corresponds to a migrating to s and
sending an acknowledgement back to the daemon, which updates its site map and
then sends the final acknowledgement to a, allowing it to proceed.

10.3 Proof Outline

Note that our encoding is not uniform [Palamidessi 1997], as it introduces a cen-
tralised daemon at top level. This means that our reasoning must largely be about
the whole system, dealing with interactions between encoded agents and the dae-
mon. We cannot use simple induction on source program syntax.

We prove the coupled simulation over programs which are well-typed with respect
to a valid system context : a type context in which all agents are declared as static
(in order to use the standard definition of coupled simulation) and channels are not
used for sending or receiving agent names (in order to make sure the daemon has
a record of all agents in the system). Dynamically created new-bound agents may
be mobile, of course.

The main lemmas can now be stated.

Lemma 10.1 (Syntactic Factorisation)
For any LP well-typed with respect to a valid system context Φ

—CΦ [[LP ]] ≡ F [[LΦ [[LP ]]]], and

—LP ≡ D♭ [[LΦ [[LP ]]]] ≡ D♯ [[LΦ [[LP ]]]].

This follows from the definitions of the encoding and decoding functions.

Lemma 10.2 (Semantic Correctness of IL)
For any Sys well-formed with respect to Φ, F [[Sys]] �̇

∅
ΦSys.

This lemma is the heart of the correctness argument. The proof uses expansion
up to expansion to relate each well-formed term in the intermediate language with
its corresponding target term. We use the techniques of Section 9 — part of the
reasoning for the LI message-delivery case was outlined there. In broad, we heav-
ily employ the congruence properties of translocating expansion for factoring out
program contexts which are not involved in house-keeping reductions of the tar-
get terms. Temporary immobility is used whenever we need to guarantee that
location-dependent messages to partially committed agents are safely delivered.

The following two lemmas relate intermediate language states to source terms,
by weak simulation relations using either the undo or commit decodings. Their
proofs are relatively straightforward.

Lemma 10.3 (D♭ is a strict simulation)
For any Sys well-formed for Φ, if Φ 
 Sys

β
−→
Ξ

Sys′ then Φ 
 D♭ [[Sys]]
β̂
−→
Ξ

D♭[[Sys′]].

Lemma 10.4 (D♯−1
is a progressing simulation)

For any Sys well-formed with respect to Φ, if Φ 
 D♯ [[Sys]]
β
−→
Ξ

LP then there exists

a well-formed state Sys′ such that LP ≡ D♯ [[Sys′]] and Φ 
 Sys
β

=⇒
Ξ

Sys′.
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These two lemmas are proved by direct constructions of simulation relations. The
analysis of possible transitions is made feasible by the factoring out of housekeeping
steps.

These results are combined to give a direct relation between the source and the
target terms, proving that a source term LP and its translation C [[LP ]] are related
by a coupled simulation.

Theorem 10.5 (Encoding Correctness)
For any LP well-formed with respect to a valid system context Φ, LP ⇌Φ CΦ [[LP ]].

Proof. The proof puts together the operational correspondence results devel-
oped, as can be summarised in the diagram below.

nπLD,LI LP
≡

(10.1)

⇌Φ

D [[LΦ [[LP ]]]]

⇌Φ (10.3,10.4)

IL LΦ [[LP ]]

�̇
∅

Φ
(10.2)

nπLD CΦ [[LP ]] F [[LΦ [[LP ]]]]
≡

(10.1)

11. RELATED WORK

A range of work on mobility from different perspectives (process migration within
a cluster, mobile computing, and wide-area migration in mobile agent languages)
is surveyed in the collection edited by Milojičić et al. [1999].

The direct precursors of our work on Nomadic Pict were programming languages
closely based on process calculi. The collection of Nielson [1997] describes CML,
FACILE, LCS, and the Poly/ML concurrency primitives, all of which draw on
channel based communication as in Milner’s CCS [1989]. With the exception of
FACILE, these are focussed on local concurrency, without support for distributed
programming. Milner, Parrow, and Walker generalised CCS to the π calculus [1992;
1992], allowing channel names to be themselves sent over channels, and with an
elegant operational semantics for fresh generation of new channel names. The π
calculus is small but very expressive, allowing data structures, functions, objects,
locks, and other constructs of sequential and concurrent programming to be encoded
with asynchronous message-passing. This was demonstrated in the Pict language of
Pierce and Turner [Pierce and Turner 2000; Turner 1996], which was an experiment
in building a concurrent (but again not distributed) programming language based
closely on the π calculus, by analogy to the development of functional programming
languages such as ML and Haskell above the λ-calculus.

The distributed join-calculus, of Fournet et al. [1996], aimed to redesign the π
calculus to make a better foundation for distributed programming, as developed
in the subsequent JoCaml programming language [Conchon and Le Fessant 1999].
The distributed join-calculus ensures syntactically that there is a unique receiver
for each channel, and then regains expressivity by allowing receivers to synchronise
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on multiple messages. It also distributes processes over a hierarchical structure
of abstract locations, which may be freshly generated and which may migrate to
different points in the hierarchy. In implementations one can think of the first
level of this hierarchy as physical machines, with lower levels as migratable running
computations. Implementations had an elaborate overlay network built-in, with
forwarding pointer chains (as in our algorithm of §5) and mechanisms to collapse
those chains. The hidden complexity of this algorithm, and the fact that its be-
haviour under failure had either to be exposed to the programmer or concealed by a
high-level semantics in which reconnection was prohibited, was the immediate spur
for our development of the lower level of abstraction of low-level Nomadic Pict, in
which the semantics under failure is clear and in which one can see and analyse the
design of such higher-level algorithms.

The π calculus is an attractive starting point for calculi for distributed compu-
tation, from its clear treatment of concurrency, the elegant treatment of names,
and the similarity between π asynchronous message passing and asynchronous net-
work communication1. This led to a wide variety of distributed process calculi,
adding notions of distribution, locality, mobility and security. Some parts of the
rather large design space are surveyed in Sewell [2000] and Cardelli [1999], and we
mention a few prominent examples below.

—The early πl calculus of Amadio and Prasad [1994], used for modelling the notions
of locality and failure presented in the programming language FACILE [Thomsen
et al. 1996].

—The dpi of Sewell [1998], used for studying a type system in which the input and
output capabilities of channels may be either global or local.

—The Seal calculus of Vitek, Castagna, and Zappa Nardelli [Vitek and Castagna
1998; Castagna et al. 2005], intended as a framework for writing secure dis-
tributed applications over large scale open networks such as the Internet, and
the Box-π calculus of Sewell and Vitek [2003], used for studying wrappers: se-
cure environments that provide fine-grain control of the allowable interaction
between them, and between components and other system resources.

—The various Dπ calculi of Hennessy, Riely, and others [Riely and Hennessy 1998;
Hennessy 2007], used for studying partially typed semantics, designed for mobile
agents in open distributed systems in which some sites may harbor malicious
intentions. These typically address code mobility but not computation mobility,
with a focus on type-based enforcement of desirable properties.

—The Ambient calculus of Cardelli and Gordon [1998], a calculus for describing the
movement of processes and devices, including movement through administrative
domains. This prompted further work on semantics, e.g. [Merro and Nardelli
2005], and several variant calculi.

—The extension of TyCO with distribution and code mobility [Vasconcelos et al.

1In practice, one would typically implement π-style asynchronous messaging above TCP connec-

tions, not UDP, as UDP does not provide retransmission and has a fixed upper-bound datagram
size. In the absence of migration, such an implementation would provide a FIFO property that is
not reflected in the π calculus semantics.
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1998], a name-passing process calculus, which allows asynchronous communica-
tion between concurrent objects via labelled messages carrying names.

The above systems address a variety of distributed-systems problems with seman-
tically well-founded approaches, generally focussing on the dynamics of interaction
(as one would expect from their process-calculus origins) and in some cases on type
systems. One can also take a more logical view, as in the P2 system [Loo et al. 2005]
and SD3 [Jim 2001], both of which describe distributed algorithms declaratively.
Murphy [2008] develops a language based on a Curry-Howard correspondence for
a modal logic, focussing on type-theoretic guarantees that mobile code will never
access resources that are not present at the current site.

There are many related programming languages, not based on a π calculus se-
mantics but supporting some form of mobility, including Kali Scheme [Cejtin et al.
1995], Obliq [Cardelli 1995], and Mozart [Van Roy and Haridi 2004].

As for mobility at the virtual machine level, Xen live migration [Clark et al.
2005] deals with the special case of migration over a single switched LAN. In that
setting, one can arrange for the migrating VM to carry its IP address with it, with
an unsolicited ARP reply. This results in the loss of some in-flight IP packets, but
(as higher-level protocols such as TCP must be resilient to such loss in any case) the
migration is essentially transparent. Migration in the wide-area setting, without
additional support from the IP layer, would presumably need overlay networks of
the kind we describe, though perhaps a TCP-connection-based approach would be
a better fit to applications than the asynchronous messages that we consider here.

Turning now to verification, Moreau [Moreau 2002; 2001] develops a fault-tolerant
directory service and message routing algorithm, based on forwarding pointers, and
verifies the correctness of the abstract algorithm (mechanised in Coq). Verification
of mobile communication infrastructures has also been considered in the Mobile
Unity setting, by McCann and Roman [1997]. There is, of course, a great deal
of other work on verification of distributed algorithms in general, and on proof
techniques for π calculi. Roughly speaking, the verification and proof techniques
of process calculi can be classified as those based on types and those based on
the dynamic behaviour of processes. A type system for the π calculus was first
proposed by Milner [Milner 1993], giving the notions of sort and sortings, which
ensure uniformity of the kind of names that can be sent or receive by channels.
Many refinements on the type system have subsequently been proposed, includ-
ing polymorphism [Turner 1996; Pierce and Sangiorgi 1997], subtyping [Pierce and
Sangiorgi 1996], linear types [Kobayashi et al. 1996], objects [Walker 1995], and
a generic type system [Igarashi and Kobayashi 2001]. Adding the notions of lo-
cality and distribution to the π calculus admits further refinements to be made.
Sewell [1998] formulated dpi for studying a type system where each channel is lo-
cated at an agent and can be given global/local usage capability as well as that
for input/output. An approximation to the join-style of interaction, for example,
can be obtained by giving them global-output and local-input capabilities. This
type system retains the expressiveness of channel communication, yet admits opti-
misation at compile time. Yoshida and Hennessy [1999] formulated a type system
for Dπλ which emulates the join-style of interaction using input/output subtyping.
The presence of higher-order processes makes this formulation challenging. The
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type system of Dπr
1 extends the concept of uniform receptiveness [Sangiorgi 1999]

to ensure that each output (perhaps an inter-agent message) is guaranteed to react
with a (unique) input process at its destination. The techniques of refining channel
types are also used in ensuring security-related properties. For example, the partial
typing of Riely and Hennessy [1999] ensures that resources of trusted sites are not
abused by untrusted sites; Sewell and Vitek introduced causality types [Sewell and
Vitek 2003] for reasoning about information flow between security domains; and
Cardelli et al. [2000] introduced a notion of groups which can be used for ensur-
ing that the boundary of an ambient may only be dissolved by trusted groups of
ambients.

The behavioural theories of these distributed variants of process calculi are gen-
erally adapted from those of the π calculus, which are based around operational
semantics and operational equivalences. A reduction semantics is given for all of the
cited calculi. This, together with some notions of barbs, allows a definition of barbed
bisimulation to be given, as is the case for the Distributed Join-calculus [Fournet
and Gonthier 1996], the Seal calculus [Castagna and Vitek 1999], and the Ambient
calculus [Gordon and Cardelli 1999]. A labelled transition semantics is also given
for the π1l, Dπ, Dπr

1, Ambient, Seal and Box π calculi, allowing some notions of
bisimilarity to be given. These definitions of labelled transition semantics often
involve refining that of the standard π with location annotation (@l for Dπ1

r and
“relative location” tags for Seal and Box-π). The labelled transition semantics of
Dπ [Riely and Hennessy 1998] extends the standard π input and output actions
with labels that indicate movements and failures of locations. The style of tran-
sition systems for the Ambient calculus [Gordon and Cardelli 1999; Merro and
Nardelli 2005] is quite different from those for π calculus , as they involves relative
locations of ambients. The definitions of labelled transition semantics and opera-
tional equivalences of distributed CCS [Riely and Hennessy 1997] and π1l [Amadio
1997] also take location failures into account.

Several authors have used process-calculus proof techniques to verify the correct-
ness of implementations or abstract machines for various ambient calculi. Fournet
et al. [2000] give a translation of Ambients into the Join calculus. As in our central
forwarding server proof, they build an intermediate language to capture interme-
diate states of the translation and use coupled simulations, though they work in a
barbed reduction-semantics setting rather than the labelled transition setting we
adopt. They also describe an implementation in JoCaml based on this translation,
though with some significant differences. Giannini et al. [2006] give an abstract
machine (PAN) for Safe Ambients [Levi and Sangiorgi 2000], a restricted calcu-
lus in which ambient movement depends on agreement between both parties, and
ambients are either single-threaded or immobile. This is rather different from No-
madic π, in which an agent can migrate to another site at any time. They prove the
abstract machine has the same barbs as the source. Hirschkoff et al. [2007] refine
this abstract machine, optimising the treatment of forwarders, and prove it weakly
bisimilar to PAN. They also describe an OCaml implementation loosely based on
their abstract machine.

The work on Nomadic Pict described in the current paper led to two substan-
tial subsequent lines of research. Firstly, in a production language, one would like
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to express high-level abstractions such as that of high-level Nomadic Pict using a
general-purpose module system rather than the special-purpose encodings of the
Nomadic Pict implementation. An ML-style module system [Milner et al. 1997] is
a good fit for this: one can express the high- and low-level abstractions as signa-
tures, with abstract types of site name, agent name, etc., and operations to send
messages, migrate, etc., and express a particular overlay network implementation
as a functor from one to the other. However, when one imagines this in a wide-area
setting, it quickly becomes obvious that one will need multiple different overlay net-
work implementations, and that they will inevitably exist in multiple simultaneous
versions. This observation prompted work on type equality for abstract types in the
distributed setting [Sewell 2001; Leifer et al. 2003; Sewell et al. 2005; 2007; Billings
et al. 2006; Deniélou and Leifer 2006], and the Acute and HashCaml prototype
languages. The former provides a slightly lower level of abstraction than low-level
Nomadic Pict: instead of migration, it has a primitive for freezing a group of threads
into a thunk (together with support for modules, versions, etc.). This makes it pos-
sible to implement low-level Nomadic Pict itself as an Acute module [Sewell et al.
2007, §11], and high-level Nomadic Pict overlays could be implemented as further
modules above that.

Secondly, recall that the low-level Nomadic Pict abstraction was designed to be
implementable with a clear semantics in the presence of failure (site failure, message
loss, or disconnection): each low-level reduction step is implementable with at most
one asynchronous inter-site message. Later work took this further, characterising
the exact semantics (including failure cases) not for simple asynchronous messages,
but instead for the communication primitives provided by the Sockets API to the
UDP and TCP protocols [Serjantov et al. 2001; Wansbrough et al. 2002; Bishop
et al. 2005; 2006; Ridge et al. 2008]. Work by Compton [2005] (above that UDP
model) and Ridge [2009] (above a simplified TCP model) demonstrates that it is
feasible to verify, fully formally, executable distributed code above such models.

12. CONCLUSION

We have studied the overlay networks required for communication between mo-
bile computations. By expressing such distributed algorithms as Nomadic Pict
encodings, between carefully chosen (and well-defined) levels of abstraction, we
have descriptions of them that are:

—executable: one can rapidly prototype the algorithms, and applications written
above them in the high-level language;

—concise: with the details of concurrency, locking, name-generation etc. made
clear; and

—precise: with a semantics that we can use for formal reasoning and that gives a
solid understanding of the primitives for informal reasoning.

We discussed the design space of possible algorithms, and implemented a program-
ming language that lets the algorithms (and applications above them) be executed.
We developed semantics and proof techniques for proving correctness of such algo-
rithms. The techniques were illustrated by a proof that an example algorithm is
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correct with respect to coupled simulation. This algorithm, though non-trivial, is
relatively simple, but we believe that more sophisticated algorithms could be dealt
with using the same techniques (albeit with new intermediate languages, tailored
to particular algorithms).

More generally, the work is a step towards semantically-founded engineering of
wide-area distributed systems. Here we dealt with the combination of migration
and communication, and for a complete treatment one must also simultaneously
address failure and malicious attack.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/toplas/20YY-V-N/p1-URLend.
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Parrow, J. and Sjödin, P. 1992. Multiway synchronization verified with coupled simulation. In

Proceedings CONCUR 92, LNCS 630. Springer-Verlag, London, UK, 518–533.

Pierce, B. C. and Sangiorgi, D. 1996. Typing and subtyping for mobile processes. Mathematical

Structures in Computer Science 6, 5, 409–454. An extract appeared in Proceedings of LICS
’93: 376–385.

Pierce, B. C. and Sangiorgi, D. 1997. Behavioral equivalence in the polymorphic pi-calculus.
In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages. ACM, New York, NY, USA, 242–255.

Pierce, B. C. and Turner, D. N. 1995. Concurrent objects in a process calculus. In Proceedings

of the Theory and Practice of Parallel Programming (TPPP, Sendai, Japan, 1994), T. Ito and
A. Yonezawa, Eds. Lecture Notes in Computer Science, vol. 907. Springer-Verlag, 187–215.

Pierce, B. C. and Turner, D. N. 1997. Pict Language Definition. Available electronically as
part of the Pict distribution.

Pierce, B. C. and Turner, D. N. 2000. Pict: A programming language based on the pi-calculus.
In Proof, Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling,

and M. Tofte, Eds. Foundations of Computing. MIT press.

Popek, G. J. and Walker, B. J. 1985. The Locus Distributed System Architecture. MIT Press,

Cambridge, Mass.

Ridge, T. 2009. Verifying distributed systems: the operational approach. In POPL ’09: Proceed-
ings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages. ACM, New York, NY, USA, 429–440.



60 · P. Sewell, P. T. Wojceichowski, and A. Unyapoth

Ridge, T., Norrish, M., and Sewell, P. 2008. A Rigorous Approach to Networking: TCP,
from Implementation to Protocol to Service. In FM ’08: Proceedings of the 15th International
Symposium on Formal Methods, LNCS 5014. Springer-Verlag, Berlin, Heidelberg, 294–309.

Riely, J. and Hennessy, M. 1997. Distributed processes and location failures (extended abstract).

In ICALP ’97: Proceedings of the 24th International Colloquium on Automata, Languages and
Programming, LNCS 1256. Springer-Verlag, London, UK, 471–481.

Riely, J. and Hennessy, M. 1998. A typed language for distributed mobile processes (extended
abstract). In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages. ACM, New York, NY, USA, 378–390.

Riely, J. and Hennessy, M. 1999. Trust and partial typing in open systems of mobile agents.

In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages. ACM, New York, NY, USA, 93–104.

Sangiorgi, D. 1999. The name discipline of uniform receptiveness. Theoretical Computer Sci-
ence 221, 1–2, 457–493. An abstract appeared in the Proceedings of ICALP ’97 , LNCS 1256,
pages 303–313.

Sangiorgi, D. and Milner, R. 1992. The problem of “weak bisimulation up to”. In CONCUR

’92: Proceedings of the Third International Conference on Concurrency Theory, LNCS 630.
Springer-Verlag, London, UK, 32–46.

Serjantov, A., Sewell, P., and Wansbrough, K. 2001. The UDP calculus: Rigorous semantics
for real networking. In Proceedings of TACS 2001: Theoretical Aspects of Computer Software
(Sendai), LNCS 2215. Springer-Verlag, London, UK, 535–559.

Sewell, P. 1997. On implementations and semantics of a concurrent programming language.

In CONCUR ’97: Proceedings of the 8th International Conference on Concurrency Theory,
LNCS 1243. Springer-Verlag, London, UK, 391–405.

Sewell, P. 1998. Global/local subtyping and capability inference for a distributed pi-calculus.
In ICALP ’98: Proceedings of the 25th International Colloquium on Automata, Languages and
Programming, LNCS 1443. Springer-Verlag, London, UK, 695–706.

Sewell, P. 2000. A brief introduction to applied π. Tech. Rep. 498, Computer Laboratory,
University of Cambridge, Cambridge, UK. August.

Sewell, P. 2001. Modules, abstract types, and distributed versioning. In POPL ’01: Proceedings
of the 28th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages.
ACM, New York, NY, USA, 236–247.

Sewell, P., Leifer, J. J., Wansbrough, K., Zappa Nardelli, F., Allen-Williams, M.,
Habouzit, P., and Vafeiadis, V. 2005. Acute: high-level programming language design for

distributed computation. In ICFP ’05: Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming. ACM, New York, NY, USA, 15–26.

Sewell, P., Leifer, J. J., Wansbrough, K., Zappa Nardelli, F., Allen-Williams, M.,
Habouzit, P., and Vafeiadis, V. 2007. Acute: High-level programming language design for dis-

tributed computation. J. Functional Programming 17, 4–5 (July), 547–612. Invited submission
for an ICFP 2005 special issue.

Sewell, P. and Vitek, J. 2003. Secure composition of untrusted code: Box-π, wrappers and
causality types. Journal of Computer Security 11, 2, 135–188. Invited submission for a CSFW
00 special issue.

Sewell, P. and Wojciechowski, P. T. 2008. Verifying overlay networks for relocatable com-

putations (or: Nomadic Pict, relocated). In Proc. Joint HP-MSR Research Workshop on The
Rise and Rise of the Declarative Datacentre, Cambridge. http://research.microsoft.com/

riseandrise (accessed 19 June 2009).

Sewell, P., Wojciechowski, P. T., and Pierce, B. C. 1998. Location independence for mo-
bile agents. In Proceedings of IFL 98: the Workshop on Internet Programming Languages

(Chicago), in conjunction with ICCL. 6pp.

Sewell, P., Wojciechowski, P. T., and Pierce, B. C. 1999. Location-independent communi-
cation for mobile agents: a two-level architecture. In Internet Programming Languages, LNCS
1686. Springer-Verlag, 1–31.



Nomadic Pict · 61

Thomsen, B., Leth, L., and Kuo, T.-M. 1996. A Facile tutorial. In CONCUR ’96: Proceedings
of the 7th International Conference on Concurrency Theory, LNCS 1119. Springer-Verlag,
London, UK, 278–298.

Turner, D. N. 1996. The polymorphic pi-calculus: Theory and implementation. Ph.D. thesis,
University of Edinburgh.

Unyapoth, A. 2001. Nomadic π-calculi: Expressing and verifying communication infrastructure
for mobile computation. Ph.D. thesis, University of Cambridge. Also appeared as Technical

Report UCAM-CL-TR-514, Computer Laboratory, University of Cambridge.

Unyapoth, A. and Sewell, P. 2001. Nomadic Pict: correct communication infrastructure for mo-

bile computation. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages. ACM, New York, NY, USA, 116–127.

Van Roy, P. and Haridi, S. 2004. Concepts, Techniques, and Models of Computer Programming.
MIT Press.

van Steen, M., Hauck, F. J., Ballintijn, G., and Tanenbaum, A. S. 1998. Algorithmic design

of the Globe wide-area location service. The Computer Journal 41, 5, 297–310.

Vasconcelos, V. T., Lopes, L., and Silva, F. 1998. Distribution and mobility with lexical

scoping in process calculi. In Proceedings of HLCL ’98, U. Nestmann and B. C. Pierce, Eds.
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 16.3. Elsevier Science Pub-
lishers.

Vitek, J. and Castagna, G. 1998. Towards a calculus of secure mobile computations. In IEEE
Workshop on Internet Programming Languages. Chicago, Illinois.

Walker, D. 1995. Objects in the π-calculus. Information and Computation 116, 2, 253–271.

Wansbrough, K., Norrish, M., Sewell, P., and Serjantov, A. 2002. Timing UDP: Mechanized
semantics for sockets, threads, and failures. In ESOP ’02: Proceedings of the 11th European
Symposium on Programming Languages and Systems, LNCS 2305. Springer-Verlag, London,

UK, 278–294.

Wojciechowski, P. T. 2000a. Nomadic Pict. Documentation and User’s Manual. Available

as part of the Nomadic Pict distribution from http://www.cs.put.poznan.pl/pawelw/npict

(accessed 19 June 2009).

Wojciechowski, P. T. 2000b. Nomadic pict: Language and infrastructure design for mobile
computation. Ph.D. thesis, University of Cambridge. Also appeared as Technical Report
UCAM-CL-TR-492, Computer Laboratory, University of Cambridge.

Wojciechowski, P. T. 2000-2006a. The Nomadic Pict System. http://www.cs.put.poznan.pl/
pawelw/npict (accessed 19 June 2009).

Wojciechowski, P. T. 2001. Algorithms for location-independent communication between mo-
bile agents. In Proceedings of AISB ’01 Symposium on Software Mobility and Adaptive Be-
haviour (York, UK). Also published as Technical Report IC-2001-13, School of Computer and

Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL).

Wojciechowski, P. T. 2006b. Scalable message routing for mobile software assistants. In Pro-

ceedings of EUC ’06: the 2006 IFIP International Conference on Embedded And Ubiquitous
Computing, LNCS 4096. Springer-Verlag, 355–364.

Wojciechowski, P. T. and Sewell, P. 1999. Nomadic Pict: Language and infrastructure design
for mobile agents. In Proceedings of ASA/MA ’99 (First International Symposium on Agent
Systems and Applications/Third International Symposium on Mobile Agents), Palm Springs,
CA, USA.

Wojciechowski, P. T. and Sewell, P. 2000. Nomadic Pict: Language and infrastructure de-
sign for mobile agents. IEEE Concurrency 8, 2 (April–June), 42–52. Invited submission for

ASA/MA 99.

Yoshida, N. and Hennessy, M. 1999. Subtyping and locality in distributed higher order processes

(extended abstract). In CONCUR ’99: Proceedings of the 10th International Conference on
Concurrency Theory, LNCS 1664. Springer-Verlag, London, UK, 557–572.

Received December 2008; revised June 2009; accepted September 2009.



Nomadic Pict · App–1

This document is the online-only appendix to:

Nomadic Pict: Programming Languages, Communication In-

frastructure Overlays, and Semantics for Mobile Computation
PETER SEWELL
Computer Laboratory, University of Cambridge
and
PAWE L T. WOJCIECHOWSKI
Institute of Computing Science, Poznań University of Technology
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A. NOMADIC π CALCULUS TYPE SYSTEM

A.1 Subtyping Γ ⊢ S ≤ T

Γ ⊢ B
Γ ⊢ B ≤ B

Γ ⊢ X
Γ ⊢ X ≤ X

⊢ Γ ok
Γ ⊢ Site ≤ Site

⊢ Γ Z ≤ Z ′

Γ ⊢ AgentZ ≤ AgentZ′

I = I ′ = rw ⇒ (Γ ⊢ S ≤ T ∧ Γ ⊢ T ≤ S)
I ≤ I ′ = r ⇒ Γ ⊢ S ≤ T
I ≤ I ′ = w ⇒ Γ ⊢ T ≤ S

Γ ⊢ ^̂̂IS ≤ ^̂̂I′

T

Γ,X ⊢ S ≤ T
Γ ⊢ {|X|}S ≤ {|X|}T

Γ ⊢ S1 ≤ T1 . . . Γ ⊢ Sn ≤ Tn

Γ ⊢ [S1 . . . Sn] ≤ [T1 . . . Tn]

A.2 Unlocated Type Context Formation ⊢ Γ ok

⊢ • ok
⊢ Γ ok X 6∈ dom(Γ)
⊢ Γ, X ok

⊢ Γ ok Γ ⊢ T x 6∈ dom(Γ)
⊢ Γ, x : T ok

A.3 Located Type Context Formation ⊢L Γ ok

⊢L • ok
⊢L Γ ok X 6∈ dom(Γ)
⊢L Γ, X ok

⊢L Γ Γ ⊢ s ∈ Site Γ ⊢ AgentZ x 6∈ dom(Γ)
⊢L Γ, x : AgentZ@s ok

⊢L Γ T 6= AgentZ Γ ⊢ T x 6∈ dom(Γ)
⊢L Γ, x : T ok
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A.4 Type Formation Γ ⊢ T

⊢ Γ ok B ∈ T
Γ ⊢ B

⊢ Γ ok Z ∈ {m, s}
Γ ⊢ AgentZ

⊢ Γ ok
Γ ⊢ Site

⊢ Γ ok X ∈ dom(Γ)
Γ ⊢ X

Γ ⊢ T I ∈ {r, w, rw}
Γ ⊢ ^̂̂IT

Γ ⊢ T1 . . . Γ ⊢ Tn

Γ ⊢ [T1 . . . Tn]
Γ,X ⊢ T X 6∈ dom(Γ)
Γ ⊢ {|X|}T

A.5 Value and Expression Formation Γ ⊢ e ∈ T

⊢ Γ, x : T, Γ′ ok
Γ, x : T, Γ′ ⊢ x ∈ T

⊢ Γ ok t ∈ B
Γ ⊢ t ∈ B

Γ ⊢ e ∈ S Γ ⊢ S ≤ T
Γ ⊢ e ∈ T

Γ ⊢ e ∈ {S/X}T Γ ⊢ S Γ,X ⊢ T
Γ ⊢ {|S|} e ∈ {|X|}T

Γ ⊢ e ∈ T Γ ⊢ e′ ∈ T
Γ ⊢ e = e′ ∈ Bool

Γ ⊢ e1 ∈ T1 . . . Γ ⊢ en ∈ Tn

Γ ⊢ [e1 . . . en] ∈ [T1 . . . Tn]

f ∈ F f is not = f : B1 × . . . × Bn → B Γ ⊢ e1 ∈ B1 . . . Γ ⊢ en ∈ Bn

Γ ⊢ f(e1, . . . , en) ∈ B

A.6 Pattern Formation Γ ⊢ p ∈ T ⊲ ∆

⊢ Γ ok Γ ⊢ T
Γ ⊢ x ∈ T ⊲ x : T

Γ ⊢ p1 ∈ T1 ⊲ ∆1 . . . Γ ⊢ pn ∈ Tn ⊲ ∆n

Γ ⊢ [p1 . . . pn] ∈ [T1 . . . Tn] ⊲ ∆1, . . . ,∆n

⊢ Γ ok Γ ⊢ T
Γ ⊢ ∈ T ⊲ •

Γ,X ⊢ p ∈ T ⊲ ∆ X 6∈ dom(Γ)
Γ ⊢ {|X|} p ∈ {|X|}T ⊲ X,∆

A.7 Basic Process Formation Γ ⊢a P

Γ ⊢ a ∈ Agents Γ ⊢ c ∈ ^̂̂wT Γ ⊢ v ∈ T
Γ ⊢a c!!!v

Γ ⊢ x ∈ ^̂̂rT Γ ⊢ p ∈ T ⊲ ∆ Γ,∆ ⊢a P
Γ ⊢a x???p→P and Γ ⊢a ***x???p→P

Γ ⊢ a, b ∈ Agents Γ ⊢ c ∈ ^̂̂wT Γ ⊢ v ∈ T
Γ ⊢a 〈b@?〉c!!!v

Γ ⊢ ev ∈ T Γ ⊢ p ∈ T ⊲ ∆ Γ,∆ ⊢a P
Γ ⊢a letletlet p = ev ininin P

Γ ⊢ v ∈ Bool Γ ⊢a P Γ ⊢a Q
Γ ⊢a ififif v thenthenthen P elseelseelse Q
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a 6= b Γ, b : AgentZ ⊢b P Γ, b : AgentZ ⊢a Q
Γ ⊢a createcreatecreateZ b = P ininin Q

Γ ⊢ a ∈ Agentm Γ ⊢ s ∈ Site Γ ⊢a P
Γ ⊢a migrate tomigrate tomigrate to s → P

Γ ⊢ b ∈ Agents Γ ⊢ c ∈ ^̂̂wT Γ ⊢ v ∈ T Γ ⊢a P Γ ⊢a Q
Γ ⊢a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q

⊢ Γ ok Γ ⊢ a ∈ Agents

Γ ⊢a 000
Γ ⊢a P Γ ⊢a Q
Γ ⊢a P | Q

Γ, x : ^̂̂IT ⊢a P
Γ ⊢a newnewnew x : ^̂̂IT ininin P

A.8 Located Process Formation Γ ⊢ LP

Γ ⊢a P Γ ⊢ a ∈ Agents

Γ ⊢ @aP
Γ, c : ^̂̂IT ⊢ LP
Γ ⊢ newnewnew c : ^̂̂IT ininin LP

Γ ⊢ LP Γ ⊢ LQ
Γ ⊢ LP | LQ

Γ, a : AgentZ ⊢ LP Γ ⊢ s ∈ Site

Γ ⊢ newnewnew a : AgentZ@s ininin LP

B. NOMADIC π CALCULUS REDUCTION AND LABELLED TRANSITION SE-
MANTICS

B.1 Structural Congruence P ≡ Q and LP ≡ LQ

Axioms

P ≡ P |000 P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

LP | LQ ≡ LQ | LP LP | (LQ | LR) ≡ (LP | LQ) | LR

x 6∈ fv(P )
P | newnewnew x : T ininin Q ≡ newnewnew x : T ininin P | Q

x 6∈ fv(LP )
LP | newnewnew x : T@z ininin LQ ≡ newnewnew x : T@z ininin LP | LQ

@a (P | Q) ≡ @aP | @aQ

x 6= a
@anewnewnew x : ^̂̂IT ininin P ≡ newnewnew x : ^̂̂IT ininin @aP

x, x′ are all distinct
newnewnew x : T ininin newnewnew x′ : T ′ ininin P ≡ newnewnew x′ : T ininin newnewnew x : T ininin P

x, x′ are all distinct
newnewnew x : T@z ininin newnewnew x′ : T ′@z′ ininin LP ≡ newnewnew x′ : T ′@z′ ininin newnewnew x : T@z ininin LP
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Congruence Rules

P ≡ P
P ≡ Q Q ≡ R
P ≡ R

P ≡ R
P | Q ≡ R | Q

P ≡ Q
newnewnew ∆ ininin P ≡ newnewnew ∆ ininin Q

P ≡ Q
c???p→P ≡ c???p→Q

P ≡ Q
***c???p→P ≡ ***c???p→Q

P ≡ Q
ififif v thenthenthen P elseelseelse R ≡ ififif v thenthenthen Q elseelseelse R

P ≡ Q
ififif v thenthenthen R elseelseelse P ≡ ififif v thenthenthen R elseelseelse Q

P ≡ Q
iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse R ≡ iflocaliflocaliflocal 〈a〉c!!!v thenthenthen Q elseelseelse R

P ≡ Q
iflocaliflocaliflocal 〈a〉c!!!v thenthenthen R elseelseelse P ≡ iflocaliflocaliflocal 〈a〉c!!!v thenthenthen R elseelseelse Q

P ≡ Q
letletlet p : T = ev ininin P ≡ letletlet p : T = ev ininin Q

P ≡ Q
createcreatecreatem b = R ininin P ≡ createcreatecreatem b = R ininin Q

P ≡ Q
createcreatecreatem b = P ininin R ≡ createcreatecreatem b = Q ininin R

P ≡ Q
migrate tomigrate tomigrate to s → P ≡ migrate tomigrate tomigrate to s → Q

P ≡ Q
@aP ≡ @aQ

LP ≡ LP
LP ≡ LQ LQ ≡ LR
LP ≡ LR

LP ≡ LR
LP | LQ ≡ LR | LQ

LP ≡ LQ
newnewnew ∆ ininin LP ≡ newnewnew ∆ ininin LQ

B.2 Reduction Γ 
 LP −→ Γ′

 LP ′

Γ 
 @amigrate tomigrate tomigrate to s→P −→ (Γ ⊕ a 7→ s) 
 @aP
Γ 
 @aififif truetruetrue thenthenthen P elseelseelse Q −→ Γ 
 @aP
Γ 
 @aififif falsefalsefalse thenthenthen P elseelseelse Q −→ Γ 
 @aQ
Γ 
 @a〈b@?〉c!!!v −→ Γ 
 @bc!!!v
Γ 
 @a (c!!!v|c???p→P ) −→ Γ 
 @amatch(p, v)P
Γ 
 @a (c!!!v|***c???p→P ) −→ Γ 
 @a((match(p, v)P )|***c???p→P )

Γ ⊢ a@s
Γ 
 @acreatecreatecreateZ b = P ininin Q −→ Γ 
 newnewnew b : AgentZ@s ininin (@bP | @aQ)
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eval(ev) defined
Γ 
 @aletletlet p = ev ininin P −→ Γ 
 @amatch(p, eval(ev)) P

Γ ⊢ a@s Γ ⊢ b@s
Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aP | @bc!!!v

Γ ⊢ a@s Γ ⊢ b@s′ s 6= s′

Γ 
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ 
 @aQ

LP ≡ LP ′ Γ 
 LP −→ Γ′

 LQ LQ ≡ LQ′

Γ 
 LP ′ −→ Γ′

 LQ′

Γ 
 LP −→ Γ′

 LR

Γ 
 LP | LQ −→ Γ′

 LR | LQ

Γ, x : AgentZ@s 
 LP −→ Γ′, x : AgentZ@s′ 
 LQ
Γ 
 newnewnew x : AgentZ@s ininin LP −→ Γ′


 newnewnew x : AgentZ@s′ ininin LQ

Γ, x : ^̂̂IT 
 LP −→ Γ′, x : ^̂̂IT 
 LQ
Γ 
 newnewnew x : ^̂̂IT ininin LP −→ Γ′


 newnewnew x : ^̂̂IT ininin LQ

B.3 Labelled Transitions Γ 
a P
α
−→
∆

LQ and Γ 
 LP
β
−→
∆

LQ

eval(ev) defined

Γ 
a letletlet p = ev ininin P
τ
−→ @amatch(p, eval(ev)) P

Γ ⊢ a@s

Γ 
a createcreatecreateZ b = P ininin Q
τ
−→ newnewnew b : AgentZ@s ininin (@bP | @aQ)

Γ 
a migrate tomigrate tomigrate to s→P
migrate to s
−−−−−−−→ @aP

Γ ⊢ a@s Γ ⊢ b@s

Γ 
a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
τ
−→ @aP | @bc!!!v

Γ ⊢ a@s Γ ⊢ b@s′ s 6= s′

Γ 
a iflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q
τ
−→ @aQ

Γ 
a c!!!v
c!!!v
−−→ @a000

Γ ⊢ c ∈ ^̂̂rT Γ,∆ ⊢ v ∈ T dom(∆) ⊆ fv(v) ∆ extensible.

Γ 
a c???p→P
c???v
−−→
∆

@amatch(p, v)P

and Γ 
a ***c???p→P
c???v
−−→
∆

@a (match(p, v)P | ***c???p→P )
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Γ 
a P
c!!!v
−−→
∆

LP Γ 
a Q
c???v
−−→
∆

LQ

Γ 
a P | Q
τ
−→ newnewnew ∆ ininin (LP | LQ)

Γ 
a ififif truetruetrue thenthenthen P elseelseelse Q
τ
−→ @aP

Γ 
a ififif falsefalsefalse thenthenthen P elseelseelse Q
τ
−→ @aQ

Γ 
a 〈b@?〉c!!!v
τ
−→ @bc!!!v

Γ, x : T 
a P
c!!!v
−−→
∆

LP x ∈ fv(v) x 6= c

Γ 
a newnewnew x : T ininin P
c!!!v

−−−−→
∆,x:T

LP

Γ 
a P
α
−→
∆

LP LP ≡ LQ

Γ 
a P
α
−→
∆

LQ

Γ 
a P
α
−→
∆

LP

Γ 
a P | Q
α
−→
∆

LP | @aQ

Γ, x : T 
a P
α
−→
∆

LP x 6∈ fv(α)

Γ 
a newnewnew x : T ininin P
α
−→
∆

newnewnew x : T ininin LP

Γ, x : T@z 
 LP
@ac!!!v
−−−−→

∆
LQ x ∈ fv(v) x 6= c x 6= a

Γ 
 newnewnew x : T@z ininin LP
@ac!!!v

−−−−−−→
∆,x:T@z

LQ

Γ 
a P
α
−→
∆

LP β =

{

τ if α = τ

@aα otherwise

Γ 
 @aP
β
−→
∆

LP

Γ 
 LP
@ac!!!v
−−−−→

∆
LP ′ Γ 
 LQ

@ac???v
−−−−→

∆
LQ′

Γ 
 LP | LQ
τ
−→ newnewnew ∆ ininin (LP ′ | LQ′)

Γ 
 LP
β
−→
∆

LQ LQ ≡ LR

Γ 
 LP
β
−→
∆

LR
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Γ 
 LP
β
−→
∆

LR

Γ 
 LP | LQ
β
−→
∆

LR | LQ

Γ, x : T@z 
 LP
β
−→
∆

LQ x 6∈ fv(β)

Γ 
 newnewnew x : T@z ininin LP
β
−→
∆

newnewnew x : T@z ininin LQ

Γ, a : Agentm@s 
 LP
@amigrate to s′

−−−−−−−−−→ LQ

Γ 
 newnewnew a : Agentm@s ininin LP
τ
−→ newnewnew a : Agentm@s′ ininin LQ

C. EXAMPLE INFRASTRUCTURE: QUERY SERVER WITH CACHING ALGO-
RITHM

In this appendix we give the full definition of the Query Server with Caching (QSC)
algorithm introduced in Section 6.

The QSC encoding consists of three parts, a top-level translation (applied to
whole programs), an auxiliary compositional translation [[P ]] of subprograms P ,
defined phrase-by-phrase, and an encoding of types. The encoding involves three
main classes of agents: the query server Q itself (on a single site), the daemons
(one on each site), and the translations of high-level application agents (which
may migrate). The top-level translation of a program P launches the query server
and all the daemons before executing [[P ]]. The query server and the code for a
single daemon are given in Figure 9; the interesting clauses of the compositional
translation are in the text below. The compositional translation is parametric on
a triple [AgentZ Agents Site].

Interactions between the query server, the per-site daemons, and the encodings
of high-level agents, are via the channels below.

register : ^̂̂rw[Agents [Site AgentZ ]]
migrating : ^̂̂rwAgents

migrated : ^̂̂rw[Site AgentZ ]
message : ^̂̂rw {|X|} [Agents Site AgentZ ^̂̂wX X]
trymessage : ^̂̂rw {|X|} [Agents ^̂̂wX X]
trydeliver : ^̂̂rw {|X|} [Agents Site AgentZ ^̂̂wX X Bool]
update : ^̂̂rw[Agents [Site AgentZ ]]
dack : ^̂̂w[]
ack : ^̂̂w[]

In addition, the translations of high-level agents use a channel name currentloc

internally.
The messages sent between agents fall into three groups, implementing the high-

level agent creation, agent migration, and location-independent messages. Typical
executions are illustrated in Figure 10 and below. Correspondingly, only these cases
of the compositional translation are non-trivial.

Each class of agents maintains some explicit state as an output on a lock channel.
The query server maintains a map from each agent name to the site (and daemon)
where the agent is currently located. This is kept accurate when agents are created
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or migrate. Each daemon maintains a map from some agent names to the site
(and daemon) that they guess the agent is located at. This is updated only when
a message delivery fails. The encoding of each high-level agent records its current
site (and daemon).

To send a location-independent message the translation of a high-level agent
simply asks the local daemon to send it. The compositional translation of 〈b@?〉c!!!v,
‘send v to channel c in agent b’, is below.

[[〈b@?〉c!!!v]][a Q SQ]
def
=

currentloc???[S DS ]→
iflocaliflocaliflocal 〈DS 〉trymessage!!![b c v] thenthenthen

currentloc!!![S DS ]
elseelseelse 000

This first reads the name S of the current site and the name DS of the local
daemon from the agent’s lock channel currentloc, then sends [b c v] on the channel
trymessage to DS , replacing the lock after the message is sent. The translation is
parametric on the triple [a Q SQ] of the name a of the agent containing this phrase,
the name Q of the query server, and the site SQ of the query server — for this
phrase, none are used. We return later to the process of delivery of the message.

To migrate while keeping the query server’s map accurate, the translation of a
migrate tomigrate tomigrate to in a high-level agent synchronises with the query server before and
after actually migrating, with migrating, migrated, and ack messages.

[[migrate tomigrate tomigrate to u → P ]][a Q SQ]
def
= currentloc???[S DS ]→

letletlet [U DU ] = u ininin

〈Q@SQ〉migrating!!!a
| ack??? →migrate tomigrate tomigrate to U →
〈Q@SQ〉migrated!!![U DU ]
| ack??? →
currentloc!!![U DU ]
| [[P ]][a Q SQ]
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QueryServersq
def
=

letletlet [SQ Q] = sq ininin

newnewnew lock : ^̂̂rw(Map AgentZ [Site Agents])
lock!!!(map.make ==)
| ***register???[a [S DS ]]→lock???m→
letletlet[Agents [Site Agents]] m′ = (m withwithwith a 7→ [S DS ]) ininin

lock!!!m′

| 〈a@S〉ack!!![]
| ***migrating???a→lock???m→
lookuplookuplookup[Agents [Site Agents]] a ininin m withwithwith

foundfoundfound([S DS ])→
〈a@S〉ack!!![]
| migrated???[S′ DS ′]→

letletlet[Agents [Site Agents]] m′ = (m withwithwith a 7→ [S′ DS ′]) ininin
lock!!!m′

| 〈a@S′〉ack!!![]
notfoundnotfoundnotfound→000

| ***message??? {|X|} [DU U a c v]→lock???m→
lookuplookuplookup[Agents [Site Agents]] a ininin m withwithwith

foundfoundfound([R DR])→

〈DU@U〉update!!![a [R DR]]
| 〈DR@R〉trydeliver!!![Q SQ a c v truetruetrue]
| dack??? → lock!!!m

notfoundnotfoundnotfound→000

Daemons
def
=

letletlet [S D] = s ininin

newnewnew lock : ^̂̂rw(Map AgentZ [Site Agents])
〈toplevel@firstSite〉ndack!!![S D]

| lock!!!(map.make ==)
| ***trymessage??? {|X|} [a c v]→lock???m→
lookuplookuplookup[Agents [Site Agents]] a ininin m withwithwith

foundfoundfound([R DR])→
〈DR@R〉trydeliver!!![D S a c v falsefalsefalse]
| lock!!!m

notfoundnotfoundnotfound→

〈Q@SQ〉message!!![D S a c v]
| lock!!!m

| ***trydeliver??? {|X|} [DU U a c v ackme]→
iflocaliflocaliflocal 〈a〉c!!!v thenthenthen

ififif ackme thenthenthen 〈DU@U〉dack!!![] elseelseelse 000
elseelseelse 〈Q@SQ〉message!!![DU U a c v]

| ***update???[a s]→lock???m→

letletlet[Agents [Site Agents]] m′ = (m withwithwith a 7→ s) ininin
lock!!!m′

Fig. 9. Parts of the Top Level — the Query Server and a site Daemon
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The best scenario: good guess in the D cache. This should be the common case.

a@S D@S DR@R b@R

-

trymessage!!![b c v]
X

X
X

X
X

X
X

XXz

trydeliver!!![D S b c v falsefalsefalse]

-

c!!!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-
trymessage!!![b c v]

X
X

X
X

X
X

XXz

message!!![D S b c v]

�
�

�
�

�
�

��9

update!!![b [R DR]]
X

X
X

X
X

X
XXz

trydeliver!!![Q SQ b c v truetruetrue]

�
�

�
�

�
�

��9

dack!!![]
-

c!!!v

The worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-
trymessage!!![b c v]

X
X

X
X

X
XXz

trydeliver!!![D S b c v falsefalsefalse]

X
X

X
X

X
XXz

message!!![D S b c v]

�
�

�
�

�
��

X
X

X
X

X
XXz

trydeliver!!![Q SQ b c v truetruetrue]

�
�

�
�

�
��9

update!!![b [R DR]]
�

�
�

�
�

��9

dack!!![]
-

c!!!v

Horizontal arrows are synchronised communications within a single machine (using iflocaliflocaliflocal);
slanted arrows are asynchronous messages.

Fig. 10. The Delivery of Location-Independent Message 〈b@?〉c!!!v from a to b.
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A sample execution is below.

a@S Q@SQ

X
X

X
X

X
X

X
XXz

migrating!!!a

�
�

�
�

�
�

�
��9

ack!!![]

migrate tomigrate tomigrate to U

X
X

X
X

X
X

X
XXz

migrated!!![U DU ]

�
�

�
�

�
�

�
��9

ack!!![]

The query server’s lock is kept during the migration. The agent’s own record of its
current site and daemon must also be updated with the new data [UDU ] when the
agent’s lock is released. Note that in the body of the encoding the name DU of
the daemon on the target site must be available. This is achieved by encoding site
names in the high-level program by pairs of a site name and the associated daemon
name; there is a translation of types

[[

AgentZ
]] def

= AgentZ

[[

Site
]] def

= [Site AgentZ ]

Similarly, a high-level agent a must synchronise with the query server while creating
a new agent b, with messages on register and ack.

[[

createcreatecreateZ b = P ininin P ′
]]

[a Q SQ]

def
=

currentloc???[S DS ]→
createcreatecreateZ b =

〈Q@SQ〉register!!![b [S DS ]]
| ack??? →iflocaliflocaliflocal 〈a〉ack!!![] thenthenthen

currentloc!!![S DS ]
| [[P ]][b Q SQ]

elseelseelse 000
ininin

ack??? →
currentloc!!![S DS ]

| [[P ′]][a Q SQ]

The current site/daemon data for the new agent must be initialised to [S DS ]; the
creating agent is prevented from migrating away until the registration has taken
place by keeping its currentloc lock until an ack is received from b. A sample
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execution is below.

a@S b@S Q@SQ

createcreatecreateZ b =

s
X

X
X

X
X

X
X

XXz

register!!![b [S DS ]]

�
�

�
�

�
�

�
��9

ack!!![]

�

ack!!![]

Returning to the process of message delivery, there are three cases (see Figure 10).
Consider the implementation of 〈b@?〉c!!!v in agent a on site S, where the daemon
is D. Suppose b is on site R, where the daemon is DR. Either D has the correct
site/daemon of b cached, or D has no cache data for b, or it has incorrect cache
data. In the first case D sends a trydeliver message to DR which delivers the
message to b using iflocaliflocaliflocal. For the PA application this should be the common
case; it requires only one network message.

In the cache-miss case D sends a message message to the query server, which
both sends a trydeliver message to DR (which then delivers successfully) and an
update message back to D (which updates its cache). The query server’s lock is
kept until the message is delivered, thus preventing b from migrating until then.

Finally, the incorrect-cache-hit case. Suppose D has a mistaken pointer to
DU@U . It will send a trydeliver message to DU which will be unable to de-
liver the message. DU will then send a message to the query server, much as
before (except that the cache update message still goes to D, not to DU ).

D. THE NOMADIC PICT PROGRAMMING LANGUAGE

This appendix gives a more detailed overview of the Nomadic Pict prototype dis-
tributed programming language, as outlined in Section 7, beginning with the low-
level language. The language implementation is described in the following Ap-
pendix E.

D.1 Primitives

We will introduce the low-level primitives in groups. They fall into two main
syntactic categories of processes and declarations. A program is simply a series of
declarations, which may contain processes. The other main syntactic categories are
abstractions, patterns, values, paths, types, and constants.

Declarations Declarations D include definitions of types, channels, process abstrac-
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tions, agents, and also a migration primitive.

typetypetype T = T’ type abbreviation
newnewnew c:T new channel name creation
defdefdef f[...]=P andandand ...andandand f’[...]=P’ process abstraction
agentagentagent a=P andandand ...andandand a’=P’ agent creation
migratemigratemigrate tototo s P agent migration

The declaration typetypetype T = T’ introduces a new name T for complex type T’. Exe-
cution of newnewnew c:^T creates a new unique channel name c for carrying values of type
T. The execution of the construct agentagentagent a=P spawns a new agent on the current
site, with body P. A group of agent definitions introduced by agentagentagent and separated
by andandand can be mutually recursive, i.e. each of the bodies P can refer to any of
the defined agent names. Agents can migrate to named sites — the execution of
migratemigratemigrate tototo s P as part of an agent results in the whole agent migrating to site s.
The defdefdef declarations are used to program in the functional style (examples will be
given in Section D.6).

Processes Processes P,Q,... form a separate syntactic category.

(P | Q) parallel composition
(D P) local declaration
() null process

The body of an agent may consist of many process terms in parallel, i.e. essentially
of many lightweight threads. They will interact only by message passing. We can
write a composition of more than two processes as (P1 | ... | Pn). Large pro-
grams often contain processes with long sequences of declarations like (newnewnew x1:T1

... (newnewnew x2:T2 P)). To avoid many nested parentheses this can be written sim-
ply as (newnewnew x1:T1 ... newnewnew x2:T2 P). In sequences of declarations, it is often
convenient to start some process running in parallel with the evaluation of the re-
minder of the declarations. The Pict declaration keyword runrunrun can be used for this,
e.g. a program

(newnewnew x:T

runrunrun print!"Hello"

newnewnew y:T

P)

will be transformed into (newnewnew x:T (print!"Hello" | (newnewnew y:T P))). The next
process forms are the π calculus-style interaction primitives of Pict.

c!v output v on channel c in the current agent
c?p = P input from channel c
c?*p = P replicated input from channel c
ififif v thenthenthen P elseelseelse Q conditional

An output c!v (of value v on channel c) and an input c?p=P in the same agent may
match, resulting in P with the appropriate parts of the value v bound to the formal
parameters in the pattern p. The communication is asynchronous, i.e. the output
is never blocked. The implementation uses local environments to store bindings of
parameters to actual values. A replicated input c?*p=P behaves similarly except
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that it persists after the matching, and so may receive another value. In both c?p=P

and c?*p=P the names in p are binding in P. Finally, the low-level language includes
primitives for interaction between agents.

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q test-and-send to agent a on this site
<a>c!v send to agent a on this site
<a@s>c!v send to agent a on site s

waitwaitwait c?p=P timeouttimeouttimeout t -> Q input with timeout

The semantics of the first three constructs has been described in Section 2. For
implementing infrastructures that are robust under some level of failure, or support
disconnected operation, some timed primitive is required. The low-level language
includes a single timed input as above, with timeout value n. If a message on channel
c is received within t seconds then P will be started as in a normal input, otherwise
Q will be. The timing is approximate, as the runtime system may introduce some
delays.

We also include a construct for explicit agent-level garbage collection.

terminateterminateterminate terminate execution of the current agent

The execution of terminate terminates the current agent and removes its clo-
sure from the heap, releasing memory occupied by the agent. Any I/O operations
(e.g. input from a keyboard) will be abruptly killed.

The high-level language is obtained by extending the low-level language with a
single location-independent communication primitive.

c@a!v LI output to channel c at agent a

The intended semantics of an output c@a!v is that its execution will reliably deliver
the message c!v to agent a, irrespective of the current site of a and of any migra-
tions. The low-level communication primitives are also available, for interacting
with application agents whose locations are predictable. The actual semantics of
c@a!v depends on the compile-time encoding (or translation) of this primitive into
the low-level language, from language libraries.

D.2 Names and Scope Extrusion

Names play a key rôle in the Nomadic Pict language. New names of agents and
channels can be created dynamically. These names are pure, in the sense of Need-
ham [1989]; no information about their creation is visible within the language (in
our current implementation they do contain site IDs, but could equally well be im-
plemented by choosing large random numbers). Site names contain an IP address
and TCP port number of the runtime system which they represent.

Channel, agent, and site names are first-class values and they can be freely sent
to processes which are located at other agents. As in the π calculus, names can be
scope-extruded — here channel and agent names can be sent outside the agent in
which they were created. For example, if the body of agent a is

agentagentagent b =

(

newnewnew d : T

iflocaliflocaliflocal <a>c!d thenthenthen () elseelseelse ()



Nomadic Pict · App–15

)

ininin

c?x=x![]

then channel name d is created in agent b. After the output message c!d has been
sent from b to a (iflocaliflocaliflocal) and has interacted with the input c?x=x![] there will
be an output d![] in agent a.

D.3 Types

All bound variables are explicitly typed. In practice, however, many of these type
annotations can be inferred by the compiler. Therefore we do not include them in
the syntax above. Types are required in definitions, e.g. execution of newnewnew c:^T P

creates a new unique channel name for carrying values of type T. The language
inherits a rich type system from Pict, including simple record types, higher-order
polymorphism, simple recursive types and subtyping. It has a partial type inference
algorithm. Below we summarise the key types, referring the reader to Pierce and
Turner [1997] for details.

Base Types The base types include String of strings, Char of characters, Int of
integers, and Bool of Booleans. They are two predefined Boolean constants false
and true of type Bool. Nomadic Pict adds new base types Site and Agent of site
and agent names.

Channel Types and Subtyping Pict’s four channel types are as follows: ^T is the
type of input/output channels carrying values of type T, !T is the type of output
channels accepting T, ?T is the type of input channels yielding T, and /T is the type
of responsive output channels carrying T in process abstractions and functions. The
first three correspond to channels with capabilities rw, w, and r of Section 2. The
type ^T is a subtype of both !T and ?T. That is, a channel that can be used for both
input and output may be used in a context where just one capability is needed.
The type /T is a subtype of !T and it was introduced to define process abstractions
and channels carrying results in a functional style (see examples in Section D.6).
Type /T guarantees that there is exactly one (local) receiver. We define a type Sig

as /[] to mark responsive channels which are used to signal completion rather than
for exchanging data.

Records, Polymorphic and Recursive types We can use tuples [T1...Tn] of types
T1...Tn and existential polymorphic types such as [#X T1...Tn] in which the type
variable X may occur in the field types T1...Tn. We can add labels to tuples obtain-
ing records such as [label1=T1...labeln=Tn]. Recursive types are constructed
as (recrecrec X=T), in which the type variable X occurs in type T.

Variant and Dynamic Types In Nomadic Pict we have added a variant type
[label1>T1...labeln>Tn] and a type Dyn of dynamic values. The variant type
[label1>T1...labeln>Tn] has values [label>v:T]. The dynamic type is useful
for implementing traders, i.e. maps from string keywords (or textual descriptions)
to dynamic values. Dynamic values are implemented as pairs (v, T ) of a value and
its type.

Defining Types and Type Operators We can use a declaration keyword typetypetype to
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define new types and type operators, e.g. typetypetype (Double X) = [X X] denotes a new
type operator Double which can be used as in newnewnew c:^(Double Int). In Nomadic
Pict programs, we often use a type operator Map from the libraries, taking two
types and giving the type of maps, or lookup tables, from one to the other (we have
already used maps in our translations).

D.4 Values and Patterns

Values Channels allow the communication of first-order values, consisting of chan-
nel, agent, and site names, constants, integers, strings, characters, tuples [v1...vn]
of the n values v1...vn, packages of existential types [#T v1...vn], elements of vari-
ant types [label>v], and dynamic values. A dynamic value can be constructed
using a constructor dynamicdynamicdynamic, as in (dynamicdynamicdynamic v). Values are deconstructed by
pattern matching on input or, in the case of variants and dynamic values, using
syntactic sugar switchswitchswitch and typecasetypecasetypecase, which we define in Section D.6.

Patterns p are of the same shapes as values (but names cannot be repeated), with
the addition of a wildcard pattern .

D.5 Expressing Encodings

A Nomadic Pict program is organised as a file containing a sequence of declarations,
preceded by a number of importimportimport clauses:

importimportimport "name" {- Imports and any global declarations -}
...

programprogramprogram arg : T =

(

{- A user-defined program in the high-level language -}
)

After imports, we can have any global declarations, such as constants and global
functions. Then, in the body of programprogramprogram, we include the actual program, which
can be expressed using the high-level language constructs. The program accepts an
argument arg of type T, which is usually a list of sites in the system.

The (optional) compositional translation of the high-level location-independent
language into the low-level language, is structured as follows:

{- Any global declarations of the compositional translation -}

{topleveltopleveltoplevel P arg} T’ =

(

{- A top-level definition -}
)

{- A translation of types -}
{- A compositional translation of primitives -}

Firstly, we declare any global constants, functions, and channel names used by the
compositional translation. Then, we use topleveltopleveltoplevel to declare a top-level program
(in the low-level language), which declares actions that are executed before the
programprogramprogram is executed, e.g. spawning daemons and servers on remote sites. The
names P and arg, denote correspondingly the main program declared with programprogramprogram,
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and its argument (see the programprogramprogram declaration above). The type T’ is the type of
the translation parameter (e.g. Agent in our example translation in Figure 3).

Encodings of high-level types and language primitives can be expressed using a
rudimentary module language, allowing the translation of each interesting phrase
(all those involving agents or communication) to be specified and type checked;
the translation of a whole program (including the translation of types) can be ex-
pressed using this compositional translation. If the definition of some high-level
language construct is missing, the compiler will use the low-level language con-
struct. A concrete syntax of the language is in Wojciechowski [2000a]; the example
infrastructures in the previous sections should give the idea.

This special-purpose scheme for expressing encodings is sufficient for the purpose,
but can be replaced in a general-purpose language by use of a module system, as the
ML-style module system of Acute [Sewell et al. 2007] was used to express Nomadic
Pict-style encodings.

D.6 Syntactic Sugar

The core language described in Section D.1 lacks some constructs which are useful in
programming. In order to avoid complicating the semantics of the core language,
additional programming features are provided as syntactic sugar, i.e. there is an
unambiguous translation of the code with the additions into code without them.
Below we describe some syntactic sugar. Most are standard Pict forms; some are
new. Interested readers are directed to a formal description of the source-to-source
translations in Pict in Pierce and Turner [1997], where all Pict forms are described
in detail.

Process Abstractions and Functions In Pict, we can define process abstractions,
i.e. process expressions prefixed by patterns, via the declaration keyword defdefdef, as in

defdefdef f [x:T1 y:T2] = (x!y | x!y)

and instances are created using the same syntax as output expressions, as in f![a

b]. The name f has type /[T1 T2]. Recursive and mutually recursive definitions

defdefdef f [..] = ... g![..] ...

andandand g [..] = ... f![..] ...

are also allowed.
A functional style is supported by a small extension to the syntactic class of

abstractions. For example, we can replace a process abstraction defdefdef f [a1:T1

a2:T2 r:/T] = r!v, where v is some complex value, by a ‘function definition’

defdefdef f (a1:T1 a2:T2) : T = v

and avoid explicitly giving a name to the result channel r. For simplicity, we often
confuse process abstractions as above and process abstractions which do not return
any values, using a single term “functions”.

We can define anonymous abstractions as in Pict

\[...] = ...

For example, below is a function f which accepts process abstractions of type
String -> Sig
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defdefdef f g:/[String Sig] = ((g "foo"); ())

We can create an instance of f passing an anonymous function which prints an
argument s and sends an acknowledgement signal on channel r as follows

f!\[s:String r:Sig] = ((pr s); r![])

Functions can be effectively used in Nomadic Pict by all agents which have been
defined in the lexical scope of function definitions. So formally it looks as though
each agent has a private copy of each function it might ever use. Similarly, any
public library function imported by a program can be invoked in all agents defined
by the program. All functions defined inside an agent are private to this agent.

Declaration Values and Applications The syntactic category of values is extended
with declaration values of the form (D v), as in

c!(newnewnew d:T d)

The complex value is always evaluated to yield a simple value, which is substituted
for the complex expression; the process above creates a fresh channel d and sends
it off along c, as in (newnewnew d:T c!d).

In value expressions, we allow the application syntax (v v1 ... v2). For ex-
ample, we can define a process abstraction

defdefdef double [i:Int r:/Int] = +![i i r]

and then, in the scope of the declaration, write (double i) as a value, dropping
the explicit result channel r, e.g. printi!(double 2) would compute 4 and print
it out on the console, using the library channel printi.

Value Declarations A declaration

valvalval p=v

evaluates a complex value v and names its result. Formally, a valvalval declaration
(valvalval p=v e) is translated using the continuation-passing translation, so that the
body e appears inside an input prefix on the continuation channel which is used
to communicate a simple value evaluated from the complex value v. This means
that valvalval declarations are blocking : the body e cannot proceed until the bindings
introduced by the valvalval have actually been established.

Other Syntactic Sugar The idiom “invoke an operation, wait for a signal (i.e. a
null value []) as a result, and continue” appears frequently, so it is convenient to
introduce ; (semi-colon), as in

(v1 ...); (v2 ...)

for the sequence of operations v1 and v2.

Matching Variants and Dynamic Values In Nomadic Pict programs we use a variant
type [label1> T1 ... labeln> Tn] so often (e.g. in our infrastructure transla-
tions), that it is convenient to introduce a new construct switchswitchswitch, as in

c?v= switchswitchswitch v ofofof

(

label1> p1 -> P1
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...

labeln> pn -> Pn

)

that matches a value v of variant type with all the variants, chooses the one which
has the same label as v, and proceeds with a process P of the matched variant.

We can compare dynamic values at runtime using the construct typecasetypecasetypecase, as in

c?v= typecasetypecasetypecase v ofofof

s:String -> print!s

[s:String d:^String] -> d!s

elseelseelse print!"Type not recognised."

where c has type ^Dyn. Instances of dynamic values are created using (dynamicdynamicdynamic

v). For example, c!(dynamicdynamicdynamic ["ala" x]) in parallel with the process term above
may synchronise, resulting in "ala" being sent along the channel x, c!(dynamicdynamicdynamic

"ala") would print "ala", but any other (dynamic) value sent on c would print
an error message “Type not recognised”. The constructs switchswitchswitch and typecasetypecasetypecase

are desugared using the value equality testing primitive. In the examples above,
switchswitchswitch and typecasetypecasetypecase are process terms but we can also use these constructs in
expressions yielding a value.

D.7 Procedures

Within a single agent one can express ‘procedures’ in Nomadic Pict as simple repli-
cated inputs. Replicated inputs are useful to express server agents. Below is a first
attempt at a pair-server, that receives values x on channel pair and returns two
copies of x on channel result, together with a single invocation of the server.

newnewnew pair : ^T

newnewnew result : ^[T T]

( pair?*x = result![x x]

| pair!v

| result?z = ... z ... )

This pair-server can only be invoked sequentially—there is no association between
multiple requests and their corresponding results. A better idiom is below, in which
new result channels are used for each invocation. The pair-server has a polymorphic
type (X is a type variable), instantiated to Int by a client process.

typetypetype (Res X) = ^[X X]

newnewnew pair : ^[#X X (Res X)]

( pair?*[#X x r] = r![x x]

| (newnewnew result:(Res Int) (pair![1 result] | result?z =... z ...))

| (newnewnew result:(Res Int) (pair![2 result] | result?z =... z ...)))

The example can easily be lifted to remote procedure calls between agents. We
show two versions, firstly for location-dependent RPC between static agents and
secondly for location-independent RPC between agents that may be migrating. In
the first case, the server becomes

newnewnew pair : ^[#X X (Res X) Agent Site]

pair?*[#X x r b s] = <b @ s>r![x x]
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which returns the result using location-dependent communication to the agent b on
site s received in the request. If the server is part of agent a1 on site s1 it would
be invoked from agent a2 on site s2 by

newnewnew result : (Res Int)

( <a1 @ s1>pair![7 result a2 s2]

| result?z = ...z... )

If agents a1 or a2 can migrate this can fail. A more robust idiom is easily expressible
in the high-level language—the server becomes

newnewnew pair : ^[#X X (Res X) Agent]

pair?*[#X x r b] = r@b![x x]

which returns the result using location-independent communication to the agent b.
If the server is part of agent a1 it would be invoked from agent a2 by

newnewnew result : (Res Int)

( pair@a1![3 result a2]

| result?z= ...z... )

D.8 Mobile Agents

Nomadic Pict agents are located at sites and they can freely migrate to other named
sites. Agents carry their computation state with themselves and their execution
is resumed on a new site from the point where they stopped on previous site.
Mobile agents can exchange messages on channels. A channel name can be created
dynamically and sent to other agents which can use it for communication.

Below is a program in the high-level language showing how a mobile agent can
be expressed.

newnewnew answer : ^String

defdefdef spawn [s:Site] =

(agentagentagent b =

(migratemigratemigrate tototo s

answer@a!(sys.read "How are you?"))

ininin

())

( spawn![s1]

| spawn![s2]

| answer ?* s = print!s)

In the main part of the program, assumed to be part of some agent a, a function
spawn is invoked twice. The function spawns a new agent b, which migrates to a
site passed as the function argument. After migration, the agent outputs a location-
independent message to agent a, on channel answer, containing a string read from
a standard input on the target site; the answer is printed out on the current site of
a.

D.9 Locks, Methods and Distributed Objects

The language inherits a common idiom for expressing concurrent objects from
Pict [Pierce and Turner 1995]. The process
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newnewnew lock:^StateType

( lock!initialState

| method1?*arg = (lock?state = ... lock!state’ ...)

...

| methodn?*arg = (lock?state = ... lock!state’’ ...))

is analogous to an object with methods method1. . .methodn and a state of type
StateType. Mutual exclusion between the bodies of the methods is enforced by
keeping the state as an output on a lock channel; the lock is free if there is an output
and taken otherwise. For a more detailed discussion of object representations in
process calculi, the reader is referred to Pierce and Turner [1995]. It contains an
example program illustrating how a simple reference cell abstraction can be defined
in Pict.

Below we rewrite the example of a reference cell abstraction, showing how dis-
tributed objects can be expressed in Nomadic Pict. The program uses mobile agents
and many of the derived forms described in previous sections.

A reference cell can be modeled by an agent with two procedures connecting it
to the outside world — one for receiving set requests and one for receiving get

requests. Below is a cell, which holds an integer value (in channel contents) that
initially contains 0.

typetypetype RefInt =

[

set=/[Agent Int Sig]

get=/[Agent /Int]

]

defdefdef refInt [s:Site r:/RefInt] =

(

newnewnew set:^[Agent Int Sig]

newnewnew get:^[Agent !Int]

agentagentagent refIntAg =

(

newnewnew contents:^Int

runrunrun contents!0

migratemigratemigrate tototo s

( set?*[a:Agent v:Int c:Sig]= contents?_ = (contents!v | c![])

| get?*[a:Agent res:!Int]= contents?v = (contents!v | res@a!v))

)

r![

set = \[a:Agent v:Int c:Sig] = set@refIntAg![a v c]

get = \[a:Agent res:!Int] = get@refIntAg![a res]

]

)

A function refInt defines two method channels set and get and creates a cell
agent refIntAg which immediately migrates to site s. The cell agent maintains
the invariant that, at any given moment, there is at most one process ready to send
on contents and when methods set and get are not active, there is exactly one
value in contents. The function refInt returns a record which defines an interface
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to procedures of the cell agent. The record contains two labelled fields, set and
get, with anonymous functions implementing the location-independent access to
the corresponding procedures.

Now, we can create two instances (objects) cell1 and cell2 of our cell, one on
site s1 and second on site s2 and use them in some agent a, as below.

valvalval cell1 = (refInt s1)

valvalval cell2 = (refInt s2)

agentagentagent a =

(

(cell2.set ag 5);

(prNL (int.toString (cell1.get a)));

(prNL (int.toString (cell2.get a)));

()

)

The agent a first stores 5 at object cell2, then gets stored values from both objects
and prints them out (with a newline). Distributed objects are used in some Nomadic
Pict libraries.

D.10 Trading Names and Values

Nomadic Pict was designed as a language for prototyping distributed applications
and we almost never needed to split programs into many files, compiled and ex-
ecuted separately on different machines. We simply spawned different parts of
distributed programs dynamically on “empty” Nomadic Pict runtime systems, us-
ing agents and migration. However, occasionally it is convenient to compile and
execute server and client programs (likely to be on different machines) separately
and at different times.

The Nstd/Sys library offers two functions publish and subscribe that can be
used in order to exchange channel and agent names, basic values, and any complex
values which can be sent along channels at runtime, thus making possible to set
up connection between different programs. Below is an example program which is
split into files server.pi and client.pi.

{- server.pi -}
newnewnew c : ^String

valvalval s = (this_site)

agentagentagent b = ((publish "foo" (dynamicdynamicdynamic [b s c]));

c?p= print!p)

In file server.pi, the program creates a new channel name c, assigns the current
site name to s, creates agent b, and publishes a record containing c, s, and b at the
system trader. After the names are published, the program waits for a message on
c and prints the message out. The function publish takes as arguments a value to
be published (which must be converted to a type Dyn) and a string keyword (“foo”
in our example) to identify the value.

{- client.pi -}
agentagentagent a =

typecasetypecasetypecase (subscribe "foo" a) ofofof
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[ag:Agent si:Site ch:^String] ->

<ag@si>ch!"Hello world!"

elseelseelse print!"Type mismatch for foo"

In file client.pi, the program creates agent a and subscribes for the value pub-
lished by the server in file server.pi. The function subscribe takes two parame-
ters: the string keyword "foo" which was used to publish the value at the trader,
and the name of the current agent. The function blocks until the value is available.
The value returned by subscribe is a dynamic value which can be matched against
expected types using typecasetypecasetypecase. If the dynamic typechecking succeeds, then basic
values extracted from the dynamic value are used in our example for communication
(a string “Hello world!” is passed to the server).

When the runtime system starts up, we have to specify — using options -trader
and -tport, an address and port number for the runtime system selected to be a
trader. By default the current runtime system is chosen.

E. NOMADIC PICT IMPLEMENTATION

Programs in high-level Nomadic Pict are compiled in the same way as they are for-
mally specified, by translating the high-level program into the low-level language.
That in turn is compiled to a core language executed by the runtime (see Fig-
ure 11). The core language is architecture-independent; its constructs correspond
approximately to those of the Low Level Nomadic π calculus, extended with value
types and system function calls.

The compiler and runtime are written in OCaml [Leroy 1995]. The former is
around 15 000 lines (roughly double that of the Pict compiler). The runtime is only
around 1700 lines, not including distributed infrastructure algorithms and standard
libraries, which are, of course, written in Nomadic Pict itself.

In this appendix we describe the compiler and runtime system in more detail.

E.1 Architecture of the Compiler

The compilation of a Nomadic Pict program has the following phases: parsing
the high-level program and infrastructure encoding; importing separately compiled
units (e.g. standard libs); scope resolution and typechecking the high-level program
and meta-definitions of the encoding; applying the encoding to generate low-level
code; scope resolution and typechecking the low-level code; continuation-passing
translation of the low-level code to the core language; joining imported code (if
there are any bindings exported from a unit); and incremental optimisation of the
core language.

Below, we describe briefly the more interesting phases. The generation of the core
language from the low-level language is based on Pierce and Turner’s Pict compiler,
extended with rules for the Nomadic Pict constructs; see the Pict definition [Pierce
and Turner 1997] for a formal description of this translation for Pict constructs.

Importing A program consists of a collection of named compilation units, each
comprising a sequence of import statements, followed by a sequence of declarations.
Individual units can be compiled separately. Compilation begins with the unit that
has been designated as the main unit. A program defined in the main unit can use
the high-level constructs. If this is the case, there will be also included: a top-level
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Local Virtual Machine
Nomadic Pict

Application

Infrastructure

Fig. 11. The Nomadic Pict Two-Levels of Abstraction

and a compositional translation of high-level constructs. The program begins the
execution from the top-level clause, which creates all the necessary daemons, and
initializes any parameters of the language translation.

Scope Resolution The process of resolving variable scopes yields an alpha-renamed
copy of the original term. The alpha-renamed term has the property that every
bound variable is unique, so that a simplified implementation of substitution and
inlining can be used.

Typechecking The typechecker performs partial type inference. Typechecking is
performed twice, before and after an encoding is applied, for more precise error
reporting. In the last phases, any separately compiled modules are joined and the
compiler incrementally optimises the resulting core language code.

Some languages, such as ML and Haskell, which are based on the Hindley-Milner
type system, can automatically infer all necessary type annotations. Pict’s type
system, however, is significantly more powerful than the Hindley-Milner type system
(e.g. it allows higher-order polymorphism and subtyping). Thus, a simple partial
type inference algorithm is used (the algorithm is partial, in the sense that it may
sometimes have to ask the user to add more explicit type information rather than
determine the types itself). The algorithm is formalised in Pierce and Turner
[1997]. It exploits the situations where the type assigned to a bound variable can
be completely determined by the surrounding program context. The inference is
local, in the sense that it only uses the immediately surrounding context to try to
fill in a missing type annotation. For example, the variable x in the input expression
c?x=e has type Int if the channel c is known to have type ^Int.

Types are erased before execution and so there is no way that type annotations
in the program could affect its behaviour, except for uses of type Dyn, which allows
data that are created dynamically to be used safely.
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Applying Encodings Each high-level construct in a program is replaced by its meta
definition, in such a way that free occurrences of variables in the meta definition
are substituted by current variables from the program. Also certain types, such as
Agent and Site defined in the program are replaced by their encodings.

Continuation Passing Style (CPS) The compiler uses a continuation passing style
translation to reduce the overheads of interpreting the source program. In partic-
ular, the CPS translation is used to simplify complex expressions of the low-level
language so that they fall within the core language. The complex expressions are
complex values, value declarations (valvalval x = v P), application (v v1 ... vn),
and abstractions such as a “function definition” defdefdef f (a1 a2) = v. The CPS
conversion in Pict is similar to those used in some compilers for functional lan-
guages (e.g. [Appel 1992]). In essence, it transforms a complex value expression
into a process that performs whatever computation is necessary and sends the final
value along a designated continuation channel.

A complex value is always evaluated “strictly” to yield a simple value, which is
substituted for the complex expression. For example, when we write c![13 (v v1

v2)], we do not mean to send the expression [13 (v v1 v2)] along c but to send
a simple value evaluated from this complex value. Thus, the expression must be
interpreted as a core language expression that evaluates first the ‘function’ value
v, followed by the argument values v1 and v2, then calls the function instructed
to return its result along the application expression’s continuation channel, and
finally packages the result received along the continuation channel into a simple
tuple along with the integer 13 and sends the tuple along c.

Optimisations In the last phase, all separately compiled units are joined with the
main unit, and the compiler incrementally optimises the resulting core language
program. It does a static analysis and partial evaluation of a program, reducing π
computations whenever possible and removing inaccessible fragments of code. The
remaining computations make up the generated or “residual” program executed by
the runtime system. The Pict optimiser also checks the program’s consistency — the
following conditions must hold: no unbound variables (every variable mentioned in
the program must be in scope), all bound variables must be unique, static variables
(i.e. ones whose value is known to be a compile-time constant) are represented as
global variables in the generated code. In the current implementation of Nomadic
Pict, global variables are dynamically copied to a local agent environment upon
agent creation; other solutions are plausible in a more optimised version of the
compiler and runtime system.

Architecture-Independent Core Language The compiler generates the core language
which is executed by the Nomadic Pict runtime system. The core language is
architecture-independent; its constructs correspond approximately to those of the
Low Level Nomadic π calculus (extended with value types and system function
calls). Process terms are output atoms, input and migrate prefixes, parallel com-
positions, processes prefixed by declarations, terminate, test-and-send, and condi-
tional processes. There is no separate primitive for cross-network communication
— these are all encoded by terms of agent migration and test-and-send. Declara-
tions introduce new channels and agents. Finally, Values (i.e. entities that can be
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Fig. 12. Architecture of the Nomadic Pict Runtime System. Abbreviations: ai, agent IDs; ci,
channel IDs; ni, names; v, values; P or Q, processes; ei, local environments; si, strings

communicated on channels) include variables, agent and channel names, records
of values, and constants (such as String, Char, Int, and Bool). Record values
generalise tuple values (since the labels in a record are optional).

If a program uses only the Pict language, then it is compiled to a subclass of
the core language, and an original Pict backend can be chosen to translate it to a
C program, which is then compiled and executed on a single machine; see Turner
[1996] for a detailed description of generating C code from Pict core language.

E.2 Architecture of the Runtime System

Because much of the system functionality, including all distributed infrastructure,
is written in Nomadic Pict, the runtime has a very simple architecture (illustrated
in Figure 12). It consists of two layers: the Virtual Machine and I/O server, above
TCP. The implementation of the virtual machine builds on the abstract machine
designed for Pict [Turner 1996].

Virtual Machine and Execution Fairness The virtual machine maintains a state con-
sisting of an agent store of agent closures; the agent names are partitioned into
an agent queue, of agents waiting to be scheduled, and a waiting room, of agents
whose process terms are all blocked. An agent closure consists of a run queue, of
Nomadic π process/environment pairs waiting to be scheduled (round-robin), chan-
nel queues of terms that are blocked on internal or inter-agent communication, and
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an environment. Environments record bindings of variables to channels and basic
values.

The virtual machine executes in steps, in each of which the closure of the agent
at the front of the agent queue is executed for a fixed number of interactions. This
ensures fair execution of the fine-grain parallelism in the language. Agents with
an empty run queue wait in the waiting room. They stay suspended until some
other agent sends an output term to them. The only operations that remove agent
closures from the agent store are terminateterminateterminate and migratemigratemigrate. An operation migratemigratemigrate

moves an agent to a remote site. On the remote site, the agent is placed at the end
of the agent queue.

The agent scheduler provides fair execution, guaranteeing that runnable concur-
rent processes of all non-terminating agents will eventually be executed, and that
processes waiting to communicate on a channel will eventually succeed (of course, if
sufficient communication partners become available on a local or remote site). The
implementation is deterministic and the language parallel operations are interleaved
fairly. Non-deterministic behaviour will naturally arise because of time-dependent
interactions between the abstract machine, the I/O server, and the system function
calls to the operating system.

Interaction with an Operating System and User For many library functions execu-
tion consists of one or more calls to corresponding Unix I/O routines. For ex-
ample, processing print!"foo" involves an invocation of the OCaml library call
output string. All interaction between the abstract behaviour of a Nomadic Pict
library function and its environment (the operating system and user) occurs via
invocations of system function calls. When a system function call reaches the front
of the run queue some special processing takes place. The interpreter invokes the
system function, passing all the function parameters and a result channel. The
functions which can block for some time or can potentially never return (such as
input from a user) will be executed within a separate execution thread, so that they
do not block parallel computation. The agent operations migratemigratemigrate and terminateterminateterminate

are special cases — they have to wait until all threads that execute system functions
invoked inside the agent have terminated. If the system function returns any value,
the Nomadic Pict program will receive it along the result channel.

I/O Server The multithreaded I/O server receives incoming agents, consisting of
an agent name and an agent closure; they are unmarshalled and placed in the agent
store. Note that an agent closure contains the entire state of an agent, allowing
agent execution to be resumed from the point where it was suspended. Agent
communication uses standard network protocols (TCP in our first implementation).
The runtime system does not support any reliable protocols that are tailored for
agents, such as the Agent Transfer Protocol of Lange and Aridor [1997]. Such
protocols must be encoded explicitly in an infrastructure encoding — the key point
in our experiments is to understand the dependencies between machines (both in
the infrastructure and in application programs); we want to understand exactly
how the system behaves under failure, not simply to make things that behave well
under very partial failure. This is assisted by the purely local nature of the runtime
system implementation.
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When the runtime system starts up, the user has to specify an address for the run-
time system selected to maintain the trader’s map from strings to published names
and values. The library functions publish and subscribe, written in Nomadic
Pict, implement the whole distributed protocol which is necessary to contact the
trading runtime system (so, the implementation of the I/O Server remains purely
local).

F. NOMADIC PICT SYNTAX

This chapter describes the syntax of Nomadic Pict programs (for description of
lexical rules and Pict syntax we use extracts from Pierce and Turner [1997], by
courtesy of Benjamin C. Pierce).

F.1 Lexical Rules

Whitespace characters are space, newline, tab, and formfeed (control-L). Com-
ments are bracketed by {- and -} and may be nested. A comment is equivalent to
whitespace.

Integers are sequences of digits (negative integers start with a - character).
Strings can be any sequence of characters and escape sequences enclosed in double-
quotes. Sites can be any sequence of characters and escape sequences enclosed in
double single-quote characters (’’), used to denote the IP address, followed by a
colon and integer, to denote a port number. The escape sequences \", \n, and \\

stand for the characters double-quote, newline, and backslash. The escape sequence
\ddd (where d denotes a decimal digit) denotes the character with code ddd (codes
outside the range 0..255 are illegal). Character constants consist of a single quote
character (’), a character or escape sequence, and another single quote.

Alphanumeric identifiers begin with a symbol from the following set:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Subsequent symbols may contain the following characters in addition to those men-
tioned above:

0 1 2 3 4 5 6 7 8 9 ’

Symbolic identifiers are non-empty sequences of symbols drawn from the following
set:

~ * % \ + - < > = & | @ $ , ‘

F.2 Reserved Words

The following symbols are reserved words:
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Agent agent and Bool ccode Char def

dynamic else false if iflocal import inline

Int in migrate new now of program

rec run Site String terminate then timeout

to Top toplevel true Type type typecase

val switch wait where with @ ^

\ / . ; : = |

! # ? ?* _ < >

-> { ( [ } ) ]

F.3 Concrete Grammar

For each syntactic form, we note whether it is part of the core language (C), the
language for expressing encodings (T), a derived form (D), an optional type anno-
tation that is filled in during type reconstruction if omitted by the programmer (R),
or an extra-linguistic feature (E). Syntactic forms characteristic for the Nomadic
Pict language are marked by N.

Compilation units

TopLevel ::=

Import . . . Import Dec . . . Dec E Compilation unit
Import . . . Import TopDec . . . TopDec EN Compilation unit

Import ::=

import String E Import statement

Top-level declarations

TopDec ::=

Dec Declaration
{ Agent } = Type TN Agent type
{ Site } = Type TN Site type
program Id : Type = Proc TN Program declaration
{ toplevel Id Id } Type = Proc TN Toplevel declaration
{ def Id } Id Abs TN Process abstraction
{ agent Id = Id in Id } Id = Proc TN Agent creation
{ migrate to Id Id } Id = Proc TN Agent migration
{ Id ?* Id = Id } Id = Proc TN Replicated input
{ < Id @ Id > Id ! Id } Id = Proc TN Output to agent on site
{ < Id > Id ! Id } Id = Proc TN Output to adjacent agent
{ iflocal < Id > Id ! Id then Proc else Proc } Id = Proc TN Test-and-send to agent
{ Id @ Id ! Id } Id = Proc TN Location-independent output
{ do String Id in Id } Id = Proc TN Macro definition

Declarations

Dec ::=
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new Id : Type C Channel creation
val Pat = Val D Value binding
run Proc D Parallel process
Val ; D Sequential execution
inline def Id Abs D Inlinable definition
def Id1 Abs1 and ... and Idn Absn C Recursive definition (n ≥ 1)
type Id = Type D Type abbreviation
type ( Id KindedId1 . . . KindedIdn ) = Type D Type operator abbrev (n ≥ 1)
now ( Id Flag . . . Flag ) E Compiler directive
agent Id1 = Proc1 and ... and Idn = Procn CN Agent creation (n ≥ 1)
agent Id1 = Proc1 and ... and Idn = Procn in CN Agent creation (n ≥ 1)
migrate to Val CN Migrate to site
do String Val TN Macro inlining
do String Val in TN Macro inlining
{ Id } Val TN Declaration inlining

Flag ::=

Id E Ordinary flag
Int E Numeric flag
String E String flag

Abstractions
Abs ::=

Pat = Proc C Process abstraction
( Label FieldPat . . . Label FieldPat ) RType = Val D Value abstraction

Patterns
Pat ::=

Id RType C Variable pattern
[ Label FieldPat . . . Label FieldPat ] C Record pattern
( rec RType Pat ) C Rectype pattern
_ RType C Wildcard pattern
Id RType @ Pat C Layered pattern
! Id T Reference pattern

FieldPat ::=

Pat C Value field
# Id Constr C Type field

Type constraints
Constr ::=

〈empty〉 D No constraint
< Type C Subtype constraint
= Type C Equality constraint

Processes
Proc ::=

Val ! Val C Output atom
Val ? Abs C Input prefix
Val ?* Abs CN Replicated input
wait Val ? Abs timeout Val -> Proc CN Timed input
< Val @ Val > Val ! Val DN Output to agent on site
< Val > Val ! Val DN Output to adjacent agent
iflocal < Val > Val ! Val then Proc else Proc CN Test-and-send to agent
Val @ Val ! Val DN Location-independent output
( ) C Null process
( Proc1 | ... | Procn ) C Parallel composition (n ≥ 2)
( Dec1 . . . Decn Proc ) C Local declarations (n ≥ 1)
if Val then Proc else Proc C Conditional
terminate C Agent termination
typecase Val of Pat1 -> Proc1 ... Patn -> Procn else
Procn+1

DN Type matching (n ≥ 1)

switch RType Val of ( Id1 > Pat1 -> Proc1 ... Idn > Patn
-> Procn )

DN Variant matching (n ≥ 1)

{ Id } Val TN Process inlining
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Values
Val ::=

Const C Constant
Path C Path
\ Abs D Process abstraction
[ Label FieldVal . . . Label FieldVal ] C Record
if RType Val then Val else Val D Conditional
( Val RType with Label FieldVal . . . Label FieldVal ) D Field extension
( Val RType where Label FieldVal . . . Label FieldVal ) D Field override
( RType Val Label FieldVal . . . Label FieldVal ) D Application
( Val > Val1 . . . Valn ) D Right-assoc application (n ≥ 2)
( Val < Val1 . . . Valn ) D Left-assoc application (n ≥ 2)
( rec RType Val ) C Rectype value
( Dec1 . . . Decn Val ) D Local declarations (n ≥ 1)
( ccode Int Id String FieldVal . . . FieldVal ) E Inline C code (Pict only)
( ccode Int Id String FieldVal . . . FieldVal ) EN System function call
( dynamic Val RType ) DN Typed value
[ Id > Val ] DN Variant
typecase RType Val of Pat1 -> Val1 ... Patn -> Valn else
Valn+1

DN Type matching (n ≥ 1)

switch RType Val of ( Id1 > Pat1 -> Val1 ... Idn > Patn
-> Valn )

DN Variant matching (n ≥ 1)

{{ Id }} TN Value inlining

Path ::=

Id C Variable
Path . Id C Record field projection

FieldVal ::=

Val C Value field
# Type C Type field

Const ::=

String C String constant
Char C Character constant
Int C Integer constant
true C Boolean constant
false C Boolean constant

Types
Type ::=

Top C Top type
Id C Type identifier
^ Type C Input/output channel
! Type C Output channel
/ Type C Responsive output channel
? Type C Input channel
Int C Integer type
Char C Character type
Bool C Boolean type
String C String type
[ Label FieldType . . . Label FieldType ] C Record type
( Type with Label FieldType . . . Label FieldType ) D Record extension
( Type where Label FieldType . . . Label FieldType ) D Record field override
\ KindedId1 . . . KindedIdn = Type C Type operator (n ≥ 1)
( Type Type1 . . . Typen ) C Type application (n ≥ 1)
( rec KindedId = Type ) C Recursive type
Agent CN Agent type
Site DN Site type
Dyn DN Dynamic type
[ Id1 > Type1 ... Idn > Typen ] DN Variant type
{ Id } TN Type inlining

FieldType ::=

Type C Value field
# Id Constr C Type field
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RType ::=

〈empty〉 R Omitted type annotation
: Type C Explicit type annotation

Kinds
Kind ::=

( Kind1 . . . Kindn -> Kind ) C Operator kind (n ≥ 1)
Type C Type kind

KindedId ::=

Id : Kind C Explicitly-kinded identifier
Id D Implicitly-kinded identifier

Labels
Label ::=

〈empty〉 C Anonymous label
Id = C Explicit label

G. THE INTERMEDIATE LANGUAGE (EXCERPT)

G.1 Typing Rules for the Intermediate Language

Θ ⊢ map ∈ List [Agents Site] ∧ consolidate(map) = [a1 s1]:::::: . . .::::::[an sn]::::::nilnilnil ∧
{a1, . . . , an} = agents(Θ) ∧ ∀i ∈ {1, . . . , n} . Θ ⊢ ai@si

Θ ⊢ map ok

mesgQ =
∏

i∈I mesgReq({|Ti|} [ai ci vi]) ∀i ∈ I . Θ ⊢ [ai ci vi] ∈ [Agents ^̂̂wTi Ti]
Θ ⊢ mesgQ ok

Θ ⊢ a@s
Θ ⊢a FreeA(s) ok

Θ, b : AgentZ@s ⊢b P Θ, b : AgentZ@s ⊢a Q
Θ ⊢ a@s ⊢ Θ, b : AgentZ@s
Θ ⊢a RegA(b Z s P Q) ok

Θ ⊢a P Θ ⊢ s ∈ Site

Θ ⊢a MtingA(s P ) ok

Θ ⊢a P Θ ⊢ s ∈ Site

Θ ⊢a MrdyA(s P ) ok

∀a ∈ dom(A) ∃P,E . A(a) = [P E] ∧ Θ ⊢a P ∧ Θ ⊢a E ok
∃61a ∈ dom(A) . ∃Q, s,R . A(a) = [Q MrdyA(s R)]
Θ ⊢ A ok

Φ,∆ ⊢ map ok Φ,∆ ⊢ mesgQ ok Φ,∆ ⊢ A ok ⊢ Φ ok dom(A) = dom(map)
Φ ⊢ eProg(∆; [map mesgQ];A) ok
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G.2 LTS for the Intermediate Language

A(a) = [P |Q E] Φ,∆ 
a P
τ
−→ @aP ′

P ≡ ififif v thenthenthen P1 elseelseelse P2 ∨ P ≡ letletlet p = ev ininin P1 ∨
P ≡ (c!!!v | c???p→R) ∨ P ≡ (c!!!v | ***c???p→R)

Φ 
 eProg(∆;D;A)
τ
−→ eProg(∆;D;A ⊕ a 7→ [P ′|Q E])

A(a) = [((createcreatecreateZ b = P ininin Q) | R) FreeA(s)] b 6∈ dom(Φ,∆)

Φ 
 eProg(∆;D;A)
τ
−→ eProg(∆;D;A ⊕ a 7→ [R RegA(b Z s P Q)])

A(a) = [((migrate tomigrate tomigrate to s→P ) | Q) FreeA(s′)]

Φ 
 eProg(∆;D;A)
τ
−→ eProg(∆;D;A ⊕ a 7→ [Q MtingA(s P )])

A(a) = [(〈b@?〉c!!!v | P ) E] (Φ,∆)(c) = ^̂̂IT
Φ 
 eProg(∆; [map mesgQ];A)

τ
−→ eProg(∆; [map mesgQ|mesgReq({|T |} [b c v])];A ⊕ a 7→ [P E])

A(a) = [R RegA(b Z s P Q)] b 6∈ dom(Φ,∆)
eProg(∆; [map mesgQ];A) idle
Φ 
 eProg(∆; [map mesgQ];A)

τ
−→ eProg(∆, b : AgentZ@s; [[b s]::::::map mesgQ];

A ⊕ a 7→ [Q|R FreeA(s)] ⊕ b 7→ [P FreeA(s)])

A(a) = [R MtingA(s P )] eProg(∆;D;A) idle

Φ 
 eProg(∆;D;A)
τ
−→ eProg(∆;D;A ⊕ a 7→ [R MrdyA(s P )])

A(a) = [R MrdyA(s P )]
Φ 
 eProg(∆; [map mesgQ];A)

τ
−→ eProg(∆ ⊕ a 7→ s; [[a s]::::::map mesgQ];A ⊕ a 7→ [P |R FreeA(s)])

eProg(∆;D;A) idle A(a) = [P E]
Φ 
 eProg(∆; [map mesgQ|mesgReq({|T |} [a c v])];A)

τ
−→ eProg(∆; [map mesgQ];A ⊕ a 7→ [c!!!v|P E])


