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These Slides
These are the slides for the Multicore Semantics part of the University of Cambridge Multicore
Semantics and Programming course (MPhil ACS, Part III, Part II), 2024–2025.

They cover multicore semantics: the concurrency of multiprocessors and programming
languages, focussing on the concurrency behaviour one can rely on from mainstream machines
and languages, how this can be investigated, and how it can be specified precisely, all linked to
usage, microarchitecture, experiment, and proof.

We focus largely on x86; on Arm-A, IBM POWER, and RISC-V; and on C/C++. We use the
x86 part also to introduce some of the basic phenomena and the approaches to modelling and
testing, and give operational and axiomatic models in detail. For Armv8-A, POWER, and
RISC-V we introduce many but not all of the phenomena and again give operational and
axiomatic models, but omitting some aspects. For C/C++11 we introduce the
programming-language concurrency design space, including the thin-air problem, the C/C++11
constructs, and the basics of its axiomatic model, but omit full explanation of the model.

These lectures are by Peter Sewell, with Christopher Pulte for the Armv8/RISC-V model section.
The slides are for around 10 hours of lectures, and include additional material for reference.

The other part of the course, by Tim Harris, covers concurrent programming: simple
algorithms, correctness criteria, advanced synchronisation patterns, transactional memory.
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These Slides

The slides include citations to some of the most directly relevant related work, but this is
primarily a lecture course focussed on understanding the concurrency semantics of mainstream
architectures and languages as we currently see them, for those that want to program above or
otherwise use those models, not a comprehensive literature review. There is lots of other
relevant research that we do not discuss.

Contents 1 Introduction: 3



Acknowledgements
Contributors to these slides: Shaked Flur, Christopher Pulte, Mark Batty, Luc Maranget, Alasdair
Armstrong. Ori Lahav and Viktor Vafeiadis for discussion of the current models for C/C++. Paul
Durbaba for his 2021 Part III dissertation mechanising the x86-TSO axiomatic/operational
correspondence proof.

Our main industry collaborators: Derek Williams (IBM); Richard Grisenthwaite and Will Deacon
(Arm); Hans Boehm, Paul McKenney, and other members of the C++ concurrency group; Daniel
Lustig and other members of the RISC-V concurrency group

All the co-authors of the directly underlying research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
[16, ?, 17, ?, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], especially all the above, Susmit Sarkar,
Jade Alglave, Scott Owens, Kathryn E. Gray, Jean Pichon-Pharabod, and Francesco Zappa Nardelli,
and the authors of the language-level research cited later.

The students of this and previous versions of the course, from 2010–2011 to date.
Research funding: ERC Advanced Grant 789108 (ELVER, Sewell); EPSRC grants EP/K008528/1 (Programme Grant REMS: Rigorous
Engineering for Mainstream Systems), EP/F036345 (Reasoning with Relaxed Memory Models), EP/H005633 (Leadership Fellowship,
Sewell), and EP/H027351 (Postdoc Research Fellowship, Sarkar); the Scottish Funding Council (SICSA Early Career Industry
Fellowship, Sarkar); an ARM iCASE award (Pulte); ANR grant WMC (ANR-11-JS02-011, Zappa Nardelli, Maranget); EPSRC IAA
KTF funding; Arm donation funding; IBM donation funding; ANR project ParSec (ANR-06-SETIN-010); and INRIA associated team
MM. This work is part of the CIFV project sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8650-18-C-7809. The views, opinions, and/or findings contained in this paper are
those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government.

Contents 1 Introduction: 4



1. Introduction 2
2. Memory 6
2.1 Multiprocessors 9
2.2 Sequential consistency 14
2.3 Architecture specification 26
2.4 Litmus tests and candidate executions 34
2.5 Why? 35
3. x86 36
3.1 x86 basic phenomena 37
3.2 Creating a usable model 87
3.3 x86-TSO operational model 99
3.4 x86-TSO spinlock example and TRF 139
3.5 Axiomatic models 185
3.6 x86-TSO axiomatic model 206
4. Validating models 232
5. Arm-A, IBM Power, and RISC-V 254
5.1 Phenomena 263
5.1.1 Coherence
5.1.2 Out-of-order accesses
5.1.3 Barriers
5.1.4 Dependencies
5.1.5 Multi-copy atomicity

5.1.6 Further thread-local subtleties
5.1.7 Further Power non-MCA subtleties
5.2 More features 319
5.2.1 Armv8-A release/acquire accesses
5.2.2 Load-linked/store-conditional (LL/SC)
5.2.3 Atomics
5.2.4 Mixed-size
5.3 ISA semantics 337
5.3.1 Integrating ISA and axiomatic models
5.4 Armv8-A/RISC-V operational model 346
5.5 Armv8-A/RISC-V axiomatic model 396
5.6 Validation 405
6. Programming language concurrency 408
6.1 Introduction 409
6.2 Java 432
6.3 C/C++11 436
6.3.1 C/C++11 models and tooling
6.3.2 Mappings from C/C++11 to hardware
6.4 The thin-air problem 505
6.5 Other languages 511
7. Conclusion 517
References526

Contents 1 Introduction: 5



Memory

The abstraction of a memory goes back some time...
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Memory
The calculating part of the engine may be divided into two portions

1st The Mill in which all operations are performed

2nd The Store in which all the numbers are originally placed and to which the numbers computed by
the engine are returned.

[Dec 1837, On the Mathematical Powers of the Calculating Engine, Charles Babbage]
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The Golden Age, (1837–) 1945–1962

Memory

Processor

W R
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1962: First(?) Multiprocessor

BURROUGHS D825, 1962

“Outstanding features include truly modular hardware with parallel processing

throughout”

FUTURE PLANS The complement of compiling languages is to be expanded.”
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Multiprocessors, 1962–now
Niche multiprocessors since 1962

IBM System 370/158MP in 1972

Mass-market since 2005 (Intel Core 2 Duo).
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Multiprocessors, 2019

Intel Xeon E7-8895 v3
36 hardware threads

Commonly 8 hardware threads.

IBM Power 8 server
(up to 1536 hardware threads)
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Why now?

Exponential increases in transistor counts continued — but not per-core performance
▶ energy efficiency (computation per Watt)
▶ limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand, design, and program
concurrent systems? Still very hard.
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Concurrency everywhere

At many scales:
▶ intra-core
▶ multicore processors ← our focus
▶ ...and programming languages ← our focus
▶ GPU
▶ datacenter-scale
▶ internet-scale

explicit message-passing vs shared memory abstractions
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The most obvious semantics: Sequential Consistency

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC) shared memory:
the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, respecting the order specified by the
program [Lamport, 1979]
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A naive two-thread mutual-exclusion algorithm

x=1;
if (y==0) {...critical section...}

Thread 0
y=1;
if (x==0) {...critical section...}

Thread 1

Initial state: x=0; y=0;

Can both be in their critical sections at the same time, in SC?
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A naive two-thread mutual-exclusion algorithm

x=1;
r0=y

Thread 0
y=1;
r1=x

Thread 1

Initial state: x=0; y=0;

Is a final state with r0=0 and r1=0 possible in SC?
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A naive two-thread mutual-exclusion algorithm

x=1;
r0=y

Thread 0
y=1;
r1=x

Thread 1

Initial state: x=0; y=0;

Is a final state with r0=0 and r1=0 possible in SC?
Try all six interleavings of SC model:

0:1:Wy=1
// 1:1:Rx=1 // r0=1 r1=03:0:Ry=0

66

4:1:Wy=1

''

5:1:Rx=1

''minit

6:0:Wx=1
66

7:1:Wy=1 ((

8:0:Ry=1

77

9:1:Rx=1

''


r0=1 r1=1

r0=1 r1=1

r0=1 r1=1

r0=1 r1=110:0:Wx=1

77

11:1:Rx=0 ((

12:0:Ry=1

77

13:0:Wx=1// 14:0:Ry=1// r0=0 r1=1
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Let’s try...
We’ll use the litmus7 tool (diy.inria.fr, Alglave, Maranget, et al. [27])

Write the test in litmus format, in a file SB.litmus:
1 X86_64 SB

2 "PodWR Fre PodWR Fre"

3 Cycle=Fre PodWR Fre PodWR

4 Relax=

5 Safe=Fre PodWR

6 Generator=diy7 (version 7.55+01(dev))

7 Prefetch=0:x=F,0:y=T,1:y=F,1:x=T

8 Com=Fr Fr

9 Orig=PodWR Fre PodWR Fre

10 Align=

11 {

12 uint64_t y; uint64_t x; uint64_t 1:rax; uint64_t 0:rax;

13
14 }

15 P0 | P1 ;

16 movq $1,(x) | movq $1,(y) ;

17 movq (y),%rax | movq (x),%rax ;

18 exists (0:rax=0 /\ 1:rax=0)

Use litmus7 to generate a test harness (C + embedded assembly), build it, and run it

Contents 2.2 Memory: Sequential consistency 18
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Let’s try...

To install litmus7:
1. install the opam package manager for OCaml: https://opam.ocaml.org/

2. opam install herdtools7 (docs at diy.inria.fr)
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Let’s try...

[...]

Generated assembler

#START _litmus_P1

movq $1,(%r9,%rcx)

movq (%r8,%rcx),%rax

#START _litmus_P0

movq $1,(%r8,%rcx)

movq (%r9,%rcx),%rax

[...]
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Let’s try...

$ litmus7 SB.litmus

[...]

Histogram (4 states)

14 *>0:rax=0; 1:rax=0;

499983:>0:rax=1; 1:rax=0;

499949:>0:rax=0; 1:rax=1;

54 :>0:rax=1; 1:rax=1;

[...]

Observation SB Sometimes 14 999986

[...]

14 in 1e6, on an Intel Core i7-7500U

(beware: 1e6 is a small number; rare behaviours might need 1e9+, and litmus tuning)
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Let’s try...

Histogram (4 states)

7136481 *> 0:X2=0; 1:X2=0;

596513783:> 0:X2=0; 1:X2=1;

596513170:> 0:X2=1; 1:X2=0;

36566 :> 0:X2=1; 1:X2=1;

[...]

Observation SB Sometimes 7136481 1193063519

7e6 in 1.2e9, on an Apple-designed ARMv8-A SoC (Apple A10 Fusion) in an iPhone 7
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Let’s try...

Why could that be?
1. error in the test
2. error in the litmus7-generated test harness
3. error in the OS
4. error in the hardware processor design
5. manufacturing defect in the particular silicon we’re running on
6. error in our calculation of what the SC model allows
7. error in the model
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Let’s try...

Why could that be?
1. error in the test
2. error in the litmus7-generated test harness
3. error in the OS
4. error in the hardware processor design
5. manufacturing defect in the particular silicon we’re running on
6. error in our calculation of what the SC model allows
7. error in the model ← this time

Sequential Consistency is not a correct model for x86 or Arm processors.
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Let’s try...

Why could that be?
1. error in the test
2. error in the litmus7-generated test harness
3. error in the OS
4. error in the hardware processor design
5. manufacturing defect in the particular silicon we’re running on
6. error in our calculation of what the SC model allows
7. error in the model ← this time

Sequential Consistency is not a correct model for x86 or Arm processors.

...or for IBM Power, RISC-V, C, C++, Java, etc.

Instead, all these have some form of relaxed memory model (or weak memory
model), allowing some non-SC behaviour
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What does it mean to be a good model?
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Processor implementations
Intel i7-8700K, AMD Ryzen 7 1800X, Qualcomm Snapdragon 865, Samsung Exynos
990, IBM Power 9 Nimbus, ...

Each has fantastically complex internal structure:

[Die shot of quad-core Intel i7-7700K (Kaby Lake) processor, en.wikichip.org]
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Processor implementations

We can’t use that as our programmer’s model – it’s:
▶ too complex
▶ too confidential
▶ too specific:

software should run correctly on a wide range of hardware implementations,
current and future
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Architecture specifications
An architecture specification aims to define an envelope of the programmer-observable
behaviour of all members of a processor family:

the set of all behaviour that a programmer might see by executing multithreaded
programs on any implementation of that family.

The hardware/software interface, serving both as the
1. criterion for correctness of hardware implementations, and the
2. specification of what programmers can depend on.
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Architecture specifications
Thick books:
▶ Intel 64 and IA-32 Architectures Software Developer’s Manual [30], 5052 pages
▶ AMD64 Architecture Programmer’s Manual [31], 3165 pages
▶ Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile [32],

8248 pages
▶ Power ISA Version 3.0B [33], 1258 pages
▶ The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [34] and Volume

II: Privileged Architecture [35], 238+135 pages
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Architecture specifications
Thick books:
▶ Intel 64 and IA-32 Architectures Software Developer’s Manual [30], 5052 pages
▶ AMD64 Architecture Programmer’s Manual [31], 3165 pages
▶ Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile [32],

8248 pages
▶ Power ISA Version 3.0B [33], 1258 pages
▶ The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [34] and Volume

II: Privileged Architecture [35], 238+135 pages

Each aims to define the:
▶ architected state (programmer-visible registers etc.)
▶ instruction-set architecture (ISA): instruction encodings and sequential behaviour
▶ concurrency architecture – how those interact
▶ ...
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Architecture specifications
Architectures have to be loose specifications:
▶ accommodating the range of behaviour from runtime nondeterminism of a single

implementation (e.g. from timing variations, cache pressure, ...)
▶ ...and from multiple implementations, with different microarchitecture
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Desirable properties of an architecture specification

1. Sound with respect to current hardware
2. Sound with respect to future hardware
3. Opaque with respect to hardware microarchitecture implementation detail
4. Complete with respect to hardware?
5. Strong enough for software
6. Unambiguous / precise
7. Executable as a test oracle
8. Incrementally executable
9. Clear

10. Authoritative?
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Litmus tests and candidate executions

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Candidate executions consist of:
▶ a choice of a control-flow unfolding of the test source
▶ a choice, for each memory read, of which write it reads from, or the initial state
▶ ...more later

Represented as graphs, with nodes the memory events and various relations, including:
▶ program order po
▶ reads-from rf

The final-state condition of the test often identifies a unique candidate execution
...which might be observable or not on h/w, and allowed or not by a model.
Contents 2.4 Memory: Litmus tests and candidate executions 34



Why is this an academic subject?

Why not just read the manuals?

Those desirable properties turn out to be very hard to achieve, esp. for subtle real-world
concurrency

In 2007, many architecture prose texts were too vague to interpret reliably

Research from then to date has clarified much, and several architectures now
incorporate precise models based on it (historical survey later)

...and this enables many kinds of research above these models

Much still to do!
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x86
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x86 basic phenomena
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Observable relaxed-memory behaviour arises from hardware optimisations

(and compiler optimisations for language-level relaxed behaviour)

so we should be able to understand and explain them in those terms

Contents 3.1 x86: x86 basic phenomena 38



Observable relaxed-memory behaviour arises from hardware optimisations

(and compiler optimisations for language-level relaxed behaviour)

so we should be able to understand and explain them in those terms
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Scope: “user” concurrency

Focus for now on the behaviour of memory accesses and barriers, as used in most
concurrent algorithms (in user or system modes, but without systems features).

Coherent write-back memory, assuming:
▶ no misaligned or mixed-size accesses
▶ no exceptions
▶ no self-modifying code
▶ no page-table changes
▶ no ‘non-temporal’ operations
▶ no device memory

Most of those are active research areas. We also ignore fairness properties, considering
finite executions only
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movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

▶ experimentally: observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]
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movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

▶ experimentally: observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]
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movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

▶ experimentally: observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]
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movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

▶ experimentally: observed

▶ possible microarchitectural explanation?
buffer stores? out-of-order execution?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]

W
rite

 B
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ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread
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movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

▶ experimentally: observed

▶ possible microarchitectural explanation?
buffer stores? out-of-order execution?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread
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movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

▶ experimentally: not observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2]

So?
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movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

▶ experimentally: not observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2]

So?
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movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

▶ experimentally: not observed

▶ possible microarchitectural explanation?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2]

So?
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movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

▶ experimentally: not observed

▶ possible microarchitectural explanation?
Buffer load requests?
Out-of-order execution?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2]

So?
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movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

▶ experimentally: not observed

▶ possible microarchitectural explanation?
Buffer load requests?
Out-of-order execution?

▶ architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2]

So?
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movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0; x=0;
MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

▶ experimentally: not observed
(but it is on Armv8-A and IBM Power)

▶ possible microarchitectural explanation?
Out-of-order pipeline execution is another important
hardware optimisation – but not programmer-visible
here

▶ consistent with model sketch?

▶ architecture prose and intent?

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1
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movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0; x=0;
MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

▶ experimentally: not observed
(but it is on Armv8-A and IBM Power)

▶ possible microarchitectural explanation?
Out-of-order pipeline execution is another important
hardware optimisation – but not programmer-visible
here

▶ consistent with model sketch?

▶ architecture prose and intent?

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1
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movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0; x=0;
MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

▶ experimentally: not observed
(but it is on Armv8-A and IBM Power)

▶ possible microarchitectural explanation?
Out-of-order pipeline execution is another important
hardware optimisation – but not programmer-visible
here

▶ consistent with model sketch?

▶ architecture prose and intent?

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1
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movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0; x=0;
MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

▶ experimentally: not observed
(but it is on Armv8-A and IBM Power)

▶ possible microarchitectural explanation?
Out-of-order pipeline execution is another important
hardware optimisation – but not programmer-visible
here

▶ consistent with model sketch?

▶ architecture prose and intent?

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1
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movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0; x=0;
MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

▶ experimentally: not observed
(but it is on Armv8-A and IBM Power)

▶ possible microarchitectural explanation?
Out-of-order pipeline execution is another important
hardware optimisation – but not programmer-visible
here

▶ consistent with model sketch?

▶ architecture prose and intent?

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the pairs of reads are not reordered – so no

▶ experimentally: observed

▶ microarchitectural refinement: allow – actually,
require – reading from the store buffer

▶ architecture prose and intent?

Principles? But Example 8-5
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible?
▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?

▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible?
▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no

▶ is it microarchitecturally plausible?
▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible?

▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread

Contents 3.1 x86: x86 basic phenomena 65



movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible? yes, e.g. with shared

store buffers or fancy cache protocols

▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible? yes, e.g. with shared

store buffers or fancy cache protocols
▶ experimentally: not observed

▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;
IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

▶ is that allowed in the previous model sketch?
▶ we think the T2,3 read pairs are not reorderable – so no
▶ is it microarchitecturally plausible? yes, e.g. with shared

store buffers or fancy cache protocols
▶ experimentally: not observed
▶ architecture prose and intent?

Any two stores are seen in a consistent order by
processors other than those performing the stores;
Example 8-7
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no
▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?

▶ we think the T1 read-write pair and T2 read pair are
not reorderable – so no

▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no

▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no
or in this one?

▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no
▶ experimentally: not observed

▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no
▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

▶ is that allowed in the previous model sketch?
▶ we think the T1 read-write pair and T2 read pair are

not reorderable – so no
▶ experimentally: not observed
▶ architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

▶ model sketch remains experimentally plausible, but
interpretation of vendor prose unclear
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movq $1, (x) //a
mfence //b
movq (y), %rax //c

Thread 0
movq $1, (y) //d
mfence //e
movq (x), %rax //f

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB+mfences x86

Final: 0:rax=0; 1:rax=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:mfencemovq (y), %rax

Ry=0c:

Thread 0

mfence

movq $1, (y)Wy=1d:mfencemovq (x), %rax

Rx=0f:

Thread 1

mfencerf rf

▶ experimentally: not observed

▶ architecture prose and intent?

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass
earlier reads or writes.
MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

▶ in the model sketch: ...waits for local write buffer
to drain? (or forces it to – it that observable?)
NB: no inter-thread synchronisation
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movq $1, (x) //a
mfence //b
movq (y), %rax //c

Thread 0
movq $1, (y) //d
mfence //e
movq (x), %rax //f

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB+mfences x86

Final: 0:rax=0; 1:rax=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:mfencemovq (y), %rax

Ry=0c:

Thread 0

mfence

movq $1, (y)Wy=1d:mfencemovq (x), %rax

Rx=0f:

Thread 1

mfencerf rf

▶ experimentally: not observed

▶ architecture prose and intent?

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass
earlier reads or writes.
MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

▶ in the model sketch: ...waits for local write buffer
to drain? (or forces it to – it that observable?)
NB: no inter-thread synchronisation
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movq $1, (x) //a
mfence //b
movq (y), %rax //c

Thread 0
movq $1, (y) //d
mfence //e
movq (x), %rax //f

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB+mfences x86

Final: 0:rax=0; 1:rax=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:mfencemovq (y), %rax

Ry=0c:

Thread 0

mfence

movq $1, (y)Wy=1d:mfencemovq (x), %rax

Rx=0f:

Thread 1

mfencerf rf

▶ experimentally: not observed

▶ architecture prose and intent?

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass
earlier reads or writes.
MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

▶ in the model sketch: ...waits for local write buffer
to drain? (or forces it to – it that observable?)
NB: no inter-thread synchronisation
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movq $1, (x) //a
mfence //b
movq (y), %rax //c

Thread 0
movq $1, (y) //d
mfence //e
movq (x), %rax //f

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB+mfences x86

Final: 0:rax=0; 1:rax=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:mfencemovq (y), %rax

Ry=0c:

Thread 0

mfence

movq $1, (y)Wy=1d:mfencemovq (x), %rax

Rx=0f:

Thread 1

mfencerf rf

▶ experimentally: not observed

▶ architecture prose and intent?

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass
earlier reads or writes.
MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

▶ in the model sketch: ...waits for local write buffer
to drain? (or forces it to – it that observable?)
NB: no inter-thread synchronisation
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Adding Read-Modify-Write instructions

x86 is not RISC – there are many instructions that read and write memory, e.g.

incq (x)//a0,a1

Thread 0
incq (x)//b0,b1

Thread 1

Initial state: x=0;
INC x86

Final: x=1;
Observation: 1441/1000000

incq (x)Rx=0a0:
Wx=1a1:

Thread 0
incq (x)Rx=0b0:
Wx=1b1:

Thread 1

co
rf rf
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Adding Read-Modify-Write instructions

x86 is not RISC – there are many instructions that read and write memory, e.g.

incq (x)//a0,a1

Thread 0
incq (x)//b0,b1

Thread 1

Initial state: x=0;
INC x86

Final: x=1;
Observation: 1441/1000000

incq (x)Rx=0a0:
Wx=1a1:

Thread 0
incq (x)Rx=0b0:
Wx=1b1:

Thread 1

co
rf rf

Non-atomic (even in SC semantics)
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Adding Read-Modify-Write instructions

One can add the LOCK prefix (literally a one-byte opcode prefix) to make INC atomic

lock incq (x) //a0,a1

Thread 0
lock incq (x) //b0,b1

Thread 1

Initial state: x=0;
LOCKINC x86

Final: x=1;
Observation: 0/1000000

lock incq (x)Rlck x=0a0:
Wlck x=1a1:

Thread 0
lock incq (x)Rlck x=0b0:
Wlck x=1b1:

Thread 1

co
rf rf
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Adding Read-Modify-Write instructions
One can add the LOCK prefix (literally a one-byte opcode prefix) to make INC atomic

lock incq (x) //a0,a1

Thread 0
lock incq (x) //b0,b1

Thread 1

Initial state: x=0;
LOCKINC x86

Final: x=1;
Observation: 0/1000000

lock incq (x)Rlck x=0a0:
Wlck x=1a1:

Thread 0
lock incq (x)Rlck x=0b0:
Wlck x=1b1:

Thread 1

co
rf rf

Also LOCK’d add, sub, xchg, etc., and cmpxchg

Being able to do that atomically is important for many low-level algorithms. On x86 can also do for
other sizes, including for 8B and 16B adjacent-doublesize quantities

In early hardware implementations, this would literally lock the bus. Now, interconnects are much
fancier.
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CAS

Compare-and-swap (CAS):

lock cmpxchgq src, dest

compares rax with dest, then:
▶ if equal, set ZF=1 and load src into dest,
▶ otherwise, clear ZF=0 and load dest into rax

All this is one atomic step.

Can use to solve consensus problem...
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Synchronising power of locked instructions

“Loads and stores are not reordered with locked instructions”
Intel Example 8-9: SB with xchg for the stores, forbidden
Intel Example 8-10: MP with xchg for the first store, forbidden

“Locked instructions have a total order”
Intel Example 8-8: IRIW with xchg for the stores, forbidden
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A rough guide to synchronisation costs
The costs of operations can vary widely between implementations and workloads, but for a very
rough intuition, from Paul McKenney (http://www2.rdrop.com/~paulmck/RCU/):

See Tim Harris’s lectures for more serious treatment of performance
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Creating a usable model
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History of x86 concurrency specs
▶ Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]
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History of x86 concurrency specs
▶ Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

Intel ‘Processor Ordering’ model,
informal prose

Example: Linux Kernel mailing list,
Nov–Dec 1999 (143 posts)

Keywords: speculation, ordering,
cache, retire, causality

A one-instruction programming
question; a microarchitectural de-
bate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unlock optimiza-
tion(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred Spraul, Peter
Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unlock() down from
about 22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl
$0,%0" instruction, a huge gain. Later, he reported that Ingo Molnar noticed a
4% speed-up in a benchmark test, making the optimization very valuable. Ingo
also added that the same optimization cropped up in the FreeBSD mailing list
a few days previously. But Linus Torvalds poured cold water on the whole
thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster timings.
They will crash, eventually.
The window may be small, but if you do this, then suddenly spin-
locks aren’t reliable any more.
The issue is not writes being issued in-order (although all the Intel
CPU books warn you NOT to assume that in-order write behaviour
- I bet it won’t be the case in the long run).
The issue is that you have to have a serializing instruction in order
to make sure that the processor doesn’t re-order things around the
unlock.
For example, with a simple write, the CPU can legally delay a read
that happened inside the critical region (maybe it missed a cache
line), and get a stale value for any of the reads that should have
been serialized by the spinlock.
Note that I actually thought this was a legal optimization, and for
a while I had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly

because of either

▶ we have a lot less contention on our
spinlocks these days. That might hide
the problem, because the spinlock will
be fine (the cache coherency still means
that the spinlock itself works fine - it’s
just that it no longer works reliably as an
exclusion thing)

▶ the window is probably very very small,
and you have to be unlucky to hit it.
Faster CPU’s, different compilers,
whatever.

I might be proven wrong, but I don’t think I am.
Note that another thing is that yes, "btcl" may be the worst pos-
sible thing to use for this, and you might test whether a simpler
"xor+xchgl" might be better - it’s still serializing because it is locked,
but it should be the normal 12 cycles that Intel always seems to
waste on serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:
As a completely made-up example (which will probably never show
the problem in real life, but is instructive as an example), imaging
running the following test in a loop on multiple CPU’s:
int test locking(void) { static int a; /* protected by spinlock */
int b;
spin lock() a = 1; mb(); a = 0; mb(); b = a; spin unlock(); return b;
}
Now, OBVIOUSLY the above always has to return 0, right? All
accesses to "a" are inside the spinlock, and we always set it to zero
before we read it into "b" and return it. So if we EVER returned
anything else, the spinlock would obviously be completely broken,
wouldn’t you say?
And yes, the above CAN return 1 with the proposed optimization.
I doubt you can make it do so in real life, but hey, add another
access to another variable in the same cache line that is accessed
through another spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with a simple
example like the above.
The reason it can return 1 quite legally is that your new "spin
unlock()" isnot serializing any more, so there is very little effective
ordering between the two actions
b = a; spin unlock();
as they access completely different data (ie no data dependencies
in sight). So what you could end up doing is equivalent to
CPU#1 CPU#2 b = a; /* cache miss, we’ll delay this.. */ spin
unlock(); spin lock(); a = 1; /* cache miss satisfied, the "a" line
is bouncing back and forth */ b gets the value 1 a = 0;
and it returns "1", which is wrong for any working spinlock.
Unlikely? Yes, definitely. Something we are willing to live with as
a potential bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize perfor-
mance, the Pentium processor allows memory reads to be reordered ahead of
buffered writes in most situations. Internally, CPU reads (cache hits) can be
reordered around buffered writes. Memory reordering does not occur at the
pins, reads (cache miss) and writes appear in-order." He concluded from this
that the second CPU would never see the spin unlock() before the "b=a"
line. Linus agreed that on a Pentium, Manfred was right. However, he quoted
in turn from the Pentium Pro manual, "The only enhancement in the Pen-
tiumPro processor is the added support for speculative reads and store-buffer
forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting
speculation wrt reads etc. So on a Pentium you’ll never see the
problem.
But a Pentium is also very uninteresting from a SMP standpoint
these days. It’s just too weak with too little per-CPU cache etc..
This is why the PPro has the MTRR’s - exactly to let the core do
speculation (a Pentium doesn’t need MTRR’s, as it won’t re-order
anything external to the CPU anyway, and in fact won’t even re-
order things internally).

Jeff V. Merkey added:
What Linus says here is correct for PPro and above. Using a mov
instruction to unlock does work fine on a 486 or Pentium SMP
system, but as of the PPro, this was no longer the case, though the
window is so infintesimally small, most kernels don’t hit it (Netware
4/5 uses this method but it’s spinlocks understand this and the code
is writtne to handle it. The most obvious aberrant behavior was
that cache inconsistencies would occur randomly. PPro uses lock to
signal that the piplines are no longer invalid and the buffers should
be blown out.
I have seen the behavior Linus describes on a hardware analyzer,
BUT ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I
guess the BSD people must still be on older Pentium hardware and
that’s why they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied
to Linus, pointing out a possible misconception in his proposed exploit. Re-
garding the code Linus posted, Erich replied:

It will always return 0. You don’t need "spin unlock()" to be seri-
alizing.
The only thing you need is to make sure there is a store in "spin
unlock()", and that is kind of true by the fact that you’re changing
something to be observable on other processors.
The reason for this is that stores can only possibly be observed
when all prior instructions have retired (i.e. the store is not sent
outside of the processor until it is committed state, and the earlier
instructions are already committed by that time), so the any loads,
stores, etc absolutely have to have completed first, cache-miss or
not.

He went on:
Since the instructions for the store in the spin unlock have to have
been externally observed for spin lock to be aquired (presuming a
correctly functioning spinlock, of course), then the earlier instruc-
tions to set "b" to the value of "a" have to have completed first.
In general, IA32 is Processor Ordered for cacheable accesses. Spec-
ulation doesn’t affect this. Also, stores are not observed specula-
tively on other processors.

There was a long clarification discussion, resulting in a complete turnaround
by Linus:

Everybody has convinced me that yes, the Intel ordering rules
are strong enough that all of this really is legal, and that’s what
I wanted. I’ve gotten sane explanations for why serialization (as
opposed to just the simple locked access) is required for the lock()
side but not the unlock() side, and that lack of symmetry was what
bothered me the most.
Oliver made a strong case that the lack of symmetry can be ade-
quately explained by just simply the lack of symmetry wrt specula-
tion of reads vs writes. I feel comfortable again.
Thanks, guys, we’ll be that much faster due to this..

Erich then argued that serialization was not required for the lock() side either,
but after a long and interesting discussion he apparently was unable to win
people over. (
In fact, as Peter Samuelson pointed out to me after KT publication (and many
thanks to him for it):

"You report that Linus was convinced to do the spinlock optimiza-
tion on Intel, but apparently someone has since changed his mind
back. See <asm-i386/spinlock.h> from 2.3.30pre5 and above:
/* * Sadly, some early PPro chips require the locked access,

* otherwise we could just always simply do * * #define spin
unlock string * "movb 0, ∗ ∗ Whichisnoticeablyfaster. ∗
/#definespin unlock string ”lock; btrl0,
– Ed: [23 Dec 1999 00:00:00 -0800]

▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]
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History of x86 concurrency
▶ Before Aug. 2007

Resolved only by appeal to an
oracle:

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin unlock optimiza-
tion(i386)"
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred Spraul, Peter
Samuelson, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unlock() down from
about 22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl
$0,%0" instruction, a huge gain. Later, he reported that Ingo Molnar noticed a
4% speed-up in a benchmark test, making the optimization very valuable. Ingo
also added that the same optimization cropped up in the FreeBSD mailing list
a few days previously. But Linus Torvalds poured cold water on the whole
thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster timings.
They will crash, eventually.
The window may be small, but if you do this, then suddenly spin-
locks aren’t reliable any more.
The issue is not writes being issued in-order (although all the Intel
CPU books warn you NOT to assume that in-order write behaviour
- I bet it won’t be the case in the long run).
The issue is that you have to have a serializing instruction in order
to make sure that the processor doesn’t re-order things around the
unlock.
For example, with a simple write, the CPU can legally delay a read
that happened inside the critical region (maybe it missed a cache
line), and get a stale value for any of the reads that should have
been serialized by the spinlock.
Note that I actually thought this was a legal optimization, and for
a while I had this in the kernel. It crashed. In random ways.

Note that the fact that it does not crash now is quite possibly

because of either

▶ we have a lot less contention on our
spinlocks these days. That might hide
the problem, because the spinlock will
be fine (the cache coherency still means
that the spinlock itself works fine - it’s
just that it no longer works reliably as an
exclusion thing)

▶ the window is probably very very small,
and you have to be unlucky to hit it.
Faster CPU’s, different compilers,
whatever.

I might be proven wrong, but I don’t think I am.
Note that another thing is that yes, "btcl" may be the worst pos-
sible thing to use for this, and you might test whether a simpler
"xor+xchgl" might be better - it’s still serializing because it is locked,
but it should be the normal 12 cycles that Intel always seems to
waste on serializing instructions rather than 22 cycles.

Elsewhere, he gave a potential (though unlikely) exploit:
As a completely made-up example (which will probably never show
the problem in real life, but is instructive as an example), imaging
running the following test in a loop on multiple CPU’s:
int test locking(void) { static int a; /* protected by spinlock */
int b;
spin lock() a = 1; mb(); a = 0; mb(); b = a; spin unlock(); return b;
}
Now, OBVIOUSLY the above always has to return 0, right? All
accesses to "a" are inside the spinlock, and we always set it to zero
before we read it into "b" and return it. So if we EVER returned
anything else, the spinlock would obviously be completely broken,
wouldn’t you say?
And yes, the above CAN return 1 with the proposed optimization.
I doubt you can make it do so in real life, but hey, add another
access to another variable in the same cache line that is accessed
through another spinlock (to get cache-line ping-pong and timing
effects), and I suspect you can make it happen even with a simple
example like the above.
The reason it can return 1 quite legally is that your new "spin
unlock()" isnot serializing any more, so there is very little effective
ordering between the two actions
b = a; spin unlock();
as they access completely different data (ie no data dependencies
in sight). So what you could end up doing is equivalent to
CPU#1 CPU#2 b = a; /* cache miss, we’ll delay this.. */ spin
unlock(); spin lock(); a = 1; /* cache miss satisfied, the "a" line
is bouncing back and forth */ b gets the value 1 a = 0;
and it returns "1", which is wrong for any working spinlock.
Unlikely? Yes, definitely. Something we are willing to live with as
a potential bug in any real kernel? Definitely not.

Manfred objected that according to the Pentium Processor Family Developers
Manual, Vol3, Chapter 19.2 Memory Access Ordering, "to optimize perfor-
mance, the Pentium processor allows memory reads to be reordered ahead of
buffered writes in most situations. Internally, CPU reads (cache hits) can be
reordered around buffered writes. Memory reordering does not occur at the
pins, reads (cache miss) and writes appear in-order." He concluded from this
that the second CPU would never see the spin unlock() before the "b=a"
line. Linus agreed that on a Pentium, Manfred was right. However, he quoted
in turn from the Pentium Pro manual, "The only enhancement in the Pen-
tiumPro processor is the added support for speculative reads and store-buffer
forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting
speculation wrt reads etc. So on a Pentium you’ll never see the
problem.
But a Pentium is also very uninteresting from a SMP standpoint
these days. It’s just too weak with too little per-CPU cache etc..
This is why the PPro has the MTRR’s - exactly to let the core do
speculation (a Pentium doesn’t need MTRR’s, as it won’t re-order
anything external to the CPU anyway, and in fact won’t even re-
order things internally).

Jeff V. Merkey added:
What Linus says here is correct for PPro and above. Using a mov
instruction to unlock does work fine on a 486 or Pentium SMP
system, but as of the PPro, this was no longer the case, though the
window is so infintesimally small, most kernels don’t hit it (Netware
4/5 uses this method but it’s spinlocks understand this and the code
is writtne to handle it. The most obvious aberrant behavior was
that cache inconsistencies would occur randomly. PPro uses lock to
signal that the piplines are no longer invalid and the buffers should
be blown out.
I have seen the behavior Linus describes on a hardware analyzer,
BUT ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. I
guess the BSD people must still be on older Pentium hardware and
that’s why they don’t know this can bite in some cases.

Erich Boleyn, an Architect in an IA32 development group at Intel, also replied
to Linus, pointing out a possible misconception in his proposed exploit. Re-
garding the code Linus posted, Erich replied:

It will always return 0. You don’t need "spin unlock()" to be seri-
alizing.
The only thing you need is to make sure there is a store in "spin
unlock()", and that is kind of true by the fact that you’re changing
something to be observable on other processors.
The reason for this is that stores can only possibly be observed
when all prior instructions have retired (i.e. the store is not sent
outside of the processor until it is committed state, and the earlier
instructions are already committed by that time), so the any loads,
stores, etc absolutely have to have completed first, cache-miss or
not.

He went on:
Since the instructions for the store in the spin unlock have to have
been externally observed for spin lock to be aquired (presuming a
correctly functioning spinlock, of course), then the earlier instruc-
tions to set "b" to the value of "a" have to have completed first.
In general, IA32 is Processor Ordered for cacheable accesses. Spec-
ulation doesn’t affect this. Also, stores are not observed specula-
tively on other processors.

There was a long clarification discussion, resulting in a complete turnaround
by Linus:

Everybody has convinced me that yes, the Intel ordering rules
are strong enough that all of this really is legal, and that’s what
I wanted. I’ve gotten sane explanations for why serialization (as
opposed to just the simple locked access) is required for the lock()
side but not the unlock() side, and that lack of symmetry was what
bothered me the most.
Oliver made a strong case that the lack of symmetry can be ade-
quately explained by just simply the lack of symmetry wrt specula-
tion of reads vs writes. I feel comfortable again.
Thanks, guys, we’ll be that much faster due to this..

Erich then argued that serialization was not required for the lock() side either,
but after a long and interesting discussion he apparently was unable to win
people over. (
In fact, as Peter Samuelson pointed out to me after KT publication (and many
thanks to him for it):

"You report that Linus was convinced to do the spinlock optimiza-
tion on Intel, but apparently someone has since changed his mind
back. See <asm-i386/spinlock.h> from 2.3.30pre5 and above:
/* * Sadly, some early PPro chips require the locked access,

* otherwise we could just always simply do * * #define spin
unlock string * "movb 0, ∗ ∗ Whichisnoticeablyfaster. ∗
/#definespin unlock string ”lock; btrl0,
– Ed: [23 Dec 1999 00:00:00 -0800]

▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]

Contents 3.2 x86: Creating a usable model 90



History of x86 concurrency specs
▶ Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]
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History of x86 concurrency specs
▶ Before Aug. 2007 (Era of Vagueness): A Cautionary Tale
▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose principles, e.g.
P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores
P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores

that are causally related appear to execute in an order consistent with the
causal relation

supported by 10 litmus tests illustrating allowed or forbidden behaviours.

▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]
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P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores
P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores
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causal relation

supported by 10 litmus tests illustrating allowed or forbidden behaviours.
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History of x86 concurrency specs
▶ Before Aug. 2007 (Era of Vagueness): A Cautionary Tale
▶ IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose principles, e.g.
P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores
P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores

that are causally related appear to execute in an order consistent with the
causal relation

supported by 10 litmus tests illustrating allowed or forbidden behaviours.
▶ We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]

But there are problems:
1. the principles are ambiguous (we interpret them as w.r.t. a single causal order)
2. the principles (and our model) leave IRIW allowed, even with mfences, but the Sun

implementation of the Java Memory Model assumes that mfences recovers SC
3. the model is unsound w.r.t. observable behaviour, as noted by Paul Loewenstein,

with an example that is allowed in the store-buffer model
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History of x86 concurrency specs

▶ Intel SDM rev.27– and AMD 3.17–, Nov. 2008–

Now explicitly excludes IRIW:
▶ Any two stores are seen in a consistent order by processors other than those

performing the stores

But, still ambiguous w.r.t. causality, and the view by those processors is left
unspecified
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Creating a good x86 concurrency model
We had to create a good concurrency model for x86 – “good” meaning the desirable
properties listed before

Key facts:
▶ Store buffering (with forwarding) is observable
▶ These store buffers appear to be FIFO
▶ We don’t see observable buffering of read requests
▶ We don’t see other observable out-of-order or speculative execution
▶ IRIW and WRC not observable, and now forbidden by the docs – so multicopy atomic
▶ mfence appears to wait for the local store buffer to drain
▶ as do LOCK’d instructions, before they execute
▶ Various other reorderings are not observable and are forbidden

These suggested that x86 is, in practice, like SPARC TSO: the observable effects of
store buffers are the only observable relaxed-memory behaviour

Our x86-TSO model codifies this, adapting SPARC TSO
Owens, Sarkar, Sewell [4, TPHOLs 2009] [5, CACM 2010]
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Operational and axiomatic concurrency model definitions

Two styles:

Operational
▶ an abstract machine
▶ incrementally executable
▶ often abstract-microarchitectural operational models

W
rite
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u

ffe
r

W
rite

 B
u

ffe
r

Shared Memory

ThreadThread

Axiomatic
▶ a predicate on candidate executions
▶ usually (but not always) further from microarchitecture

(more concise, but less hardware intuition)
▶ not straightforwardly incrementally executable

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf
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Operational and axiomatic concurrency model definitions

Two styles:

Operational
▶ an abstract machine
▶ incrementally executable
▶ often abstract-microarchitectural operational models
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W
rite
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r

Shared Memory

ThreadThread

Axiomatic
▶ a predicate on candidate executions
▶ usually (but not always) further from microarchitecture

(more concise, but less hardware intuition)
▶ not straightforwardly incrementally executable

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

Ideally both, proven equivalent
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x86-TSO operational model
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x86-TSO Abstract Machine

Like the sketch except with state recording which (if any) thread has the machine lock

Lock
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Shared Memory

Thread Thread
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x86-TSO Abstract Machine
We factor the model into the thread semantics and the memory model.

The x86-TSO thread semantics just executes each instruction in program order

The whole machine is modelled as a parallel composition of the thread semantics (for
each thread) and the x86-TSO memory-model abstract machine...

...exchanging messages for reads, writes, barriers, and machine lock/unlock events

Lock
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rite
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r
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rite
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r

Shared Memory

Thread Thread
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x86-TSO Abstract Machine: Memory Behaviour

We formalise the x86-TSO memory-model abstract machine as a transition system

m e−→ m′

Read as: memory in state m can do a transition with event e to memory state m′
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x86-TSO Abstract Machine: threads/memory interface
Events e ::= a:t:W x=v a write of value v to address x by thread t, ID a

| a:t:R x=v a read of v from x by t
| a:t:Dw x=v an internal action of the abstract machine, dequeuing

w = (a′:t:W x=v) from thread t’s write buffer
to shared memory

| a:t:F an MFENCE memory barrier by t
| a:t:L start of an instruction with LOCK prefix by t
| a:t:U end of an instruction with LOCK prefix by t

where

▶ a is a unique event ID, of type eid

▶ t is a hardware thread id, of type tid

▶ x and y are memory addresses, of type addr

▶ v and w are memory values, of type value

▶ w is a write event a:t:W x=v , of type write event
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x86-TSO Abstract Machine: Memory States
An x86-TSO abstract-machine memory state m is a record with fields M, B , and L:

m : ⟨M : addr→ value;
B : tid→ write event list;
L : tid option ⟩

Here:
▶ m.M is the shared memory, mapping addresses to values
▶ m.B gives the store buffer for each thread, a list of write events, most recent first

(we use a list of write events for simplicity in proofs, but the event and thread IDs are erasable)

▶ m.L is the global machine lock, indicating when some thread has exclusive access
to memory. It is a tid option, either None, or Some t for some thread ID t

The initial state minit has minit.M zero for each address, minit.B empty for all threads,
and minit.L = None (lock not taken).
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Notation
Some and None construct optional values

(·, ·) builds tuples

[ ] builds lists

@ appends lists

· ⊕ ⟨· := ·⟩ updates records

· ⊕ (· 7→ ·) updates functions.

id(e), thread(e), addr(e), value(e) extract the respective components of event e

isread(e), iswrite(e), isdequeue(e), ismfence(e) identify the corresponding kinds
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x86-TSO Abstract Machine: Auxiliary Definitions

Say there are no pending writes in t’s buffer m.B(t) for address x if there are no write
events w in m.B(t) with addr(w) = x .

Say t is not blocked in machine state m if either it holds the lock (m.L = Some t) or
the lock is not held (m.L = None).
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x86-TSO Abstract Machine: Behaviour

RM: Read from memory
not blocked(m, t)
m.M(x) = v
no pending(m.B(t), x)

m a:t:R x=v−−−−−−−→ m

Thread t can read v from memory at address x if t is not blocked, the memory does
contain v at x , and there are no writes to x in t’s store buffer.

(the event ID a is left unconstrained by the rule)
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x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(m, t)
∃a′ b1 b2. m.B(t) = b1 @ [a′:t:W x=v ] @ b2
no pending(b1, x)

m a:t:R x=v−−−−−−−→ m

Thread t can read v from its store buffer for address x if t is not blocked and has v as
the value of the most recent write to x in its buffer.
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x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

m a:t:W x=v−−−−−−−−→ m ⊕ ⟨B :=m.B ⊕ (t 7→ ([a:t:W x=v ] @m.B(t)))⟩

Thread t can write v to its store buffer for address x at any time.
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x86-TSO Abstract Machine: Behaviour

DM: Dequeue write from write buffer to memory
not blocked(m, t)
m.B(t) = b@ [a′:t:W x=v ]

m a:t:Da′:t:W x=v x=v−−−−−−−−−−−−−−→ m ⊕ ⟨M :=m.M ⊕ (x 7→ v)⟩ ⊕ ⟨B :=m.B ⊕ (t 7→ b)⟩

If Thread t is not blocked, it can silently dequeue the oldest write from its store buffer
and update memory at that address with the new value, without coordinating with any
hardware thread.

(we record the write in the dequeue event just to simplify proofs.)
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x86-TSO Abstract Machine: Behaviour

M: MFENCE
m.B(t) = [ ]

m a:t:F−−−−→ m

If Thread t’s store buffer is empty, it can execute an MFENCE (otherwise the MFENCE

blocks until that becomes true).
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Adding LOCK’d instructions to the model

We define the instruction semantics for locked instructions to bracket the transitions of
their unlocked variant with a:t:L and a′:t:U.
For example, a lock inc x, in thread t, will do

1. a1:t:L
2. a2:t:R x=v for an arbitrary v

3. a3:t:W x=(v + 1)
4. a4:t:U

This lets us reuse the inc semantics for lock inc, and to do so uniformly for all RMWs.
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x86-TSO Abstract Machine: Behaviour

L: Lock
m.L = None
m.B(t) = [ ]

m a:t:L−−−−→ m ⊕ ⟨L := Some(t)⟩

If the lock is not held and its buffer is empty, thread t can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction when its store buffer is not
empty, the machine can take one or more a:t:Dw x=v steps to empty the buffer and then
proceed.
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x86-TSO Abstract Machine: Behaviour

U: Unlock
m.L = Some(t)
m.B(t) = [ ]

m a:t:U−−−−→ m ⊕ ⟨L :=None⟩

If t holds the lock, and its store buffer is empty, it can end a LOCK’d instruction,
resetting the lock.
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite

 B
u
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r
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r

Shared Memory

Thread Thread

y= 0x=0

minit
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite
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W
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Shared Memory

Thread Thread

y= 0

a1:t0:W x=1

a1:t0:W x=1

x= 0

minit
a1:t0:W x=1−−−−−−−−−→
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite
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W
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Shared Memory

Thread Thread

y= 0

a2:t1:W y=1a1:t0:W x=1

a2:t1:W y=1

x= 0

minit
a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite
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Shared Memory

Thread Thread

y= 0

a2:t1:W y=1a1:t0:W x=1

x= 0

a3:t0:R y=0

minit
a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→ a3:t0:R y=0−−−−−−−−−→
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite
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Shared Memory

Thread Thread

y= 0

a2:t1:W y=1a1:t0:W x=1

x= 0

a4:t1:R x=0

minit
a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→ a3:t0:R y=0−−−−−−−−−→ a4:t1:R x=0−−−−−−−−−→

Contents 3.3 x86: x86-TSO operational model 119



First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock

W
rite
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Shared Memory

Thread Thread

y= 0

a5:t0:Da1:t0:W x=1 x=1

a2:t1:W x=1

x= 1

minit
a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→ a3:t0:R y=0−−−−−−−−−→ a4:t1:R x=0−−−−−−−−−→

a5:t0:Da1:t0:W x=1 x=1
−−−−−−−−−−−−−−−−→
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First Example, Revisited

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;
SB x86

Final: 0:rax=0; 1:rax=0;

Observation: 171/100000000

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Lock
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rite
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Shared Memory

Thread Thread

y= 1

a6:t1:Da2:t1:W y=1 y=1

x= 1

minit
a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→ a3:t0:R y=0−−−−−−−−−→ a4:t1:R x=0−−−−−−−−−→

a5:t0:Da1:t0:W x=1 x=1
−−−−−−−−−−−−−−−−→

a6:t1:Da2:t1:W y=1 y=1
−−−−−−−−−−−−−−−−→
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Does MFENCE restore SC?

Intuitively, if the program executed by the thread semantics has an mfence between
every pair of memory accesses, then any execution in x86-TSO will have essentially
identical behaviour to the same program with nops in place of mfences in SC.

What does “essentially identical” mean? The same set of interface traces except with
the a:t:F and a:t:Dw x=v events erased.
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Restoring SC with RMWs
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NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible behavior, based on hardware
intuition, but not a description of real implementation internals

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread ⊇beh
̸=hw

Force: Of the internal optimizations of x86 processors, only per-thread FIFO write
buffers are (ignoring timing) visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic unbuffering, arbitrary
interleaving
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Remark: Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel: hyperthreading): multiple
hardware threads/core sharing resources.

If the OS flushes store buffers on context switch (for x86 – or does whatever
synchronisation is needed on other archs), software threads should have the same
semantics as hardware threads.
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x86-TSO vs SPARC TSO

x86-TSO based on SPARC TSO

SPARC defined
▶ TSO (Total Store Order)
▶ PSO (Partial Store Order)
▶ RMO (Relaxed Memory Order)

But as far as we know, only TSO has really been used (implementations have not been
as weak as PSO/RMO or software has turned those off).

▶ The SPARC Architecture Manual, Version 8, Revision SAV080SI9308. 1992.
http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz App. K defines TSO and PSO.

▶ The SPARC Architecture Manual, Version 9, Revision SAV09R1459912. 1994
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz Ch. 8 and App. D define TSO, PSO, RMO

Those were in an axiomatic style – see later. x86-TSO is extensionally similar to
SPARC TSO except for x86 RMW operations
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This model (like other operational models) is an interleaving semantics, just like SC –
but with finer-grain transitions, as we’ve split each memory write into two transitions

Reasoning that a particular final state is allowed by an operational model is easy: just
exhibit a trace with that final state

Reasoning that some final state is not allowed requires reasoning about all
model-allowed traces – either exhaustively, as we did for SC at the start, or in some
smarter way.
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Making x86-TSO executable as a test oracle: the RMEM tool

RMEM is a tool letting one interactively or exhaustively explore the operational models
for x86, Armv8-A, IBM Power, and RISC-V. (Flur, Pulte, Sarkar, Sewell, et al. [28]).

Either use the in-browser web interface: http://www.cl.cam.ac.uk/users/pes20/rmem
or install locally and use the CLI interface (better performance), following:
https://github.com/rems-project/rmem

Go to the web interface, load an x86 litmus test, set the “All eager” execution option,
then click the allowed x86-TSO transitions to explore interactively
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Making x86-TSO executable as a test oracle: the RMEM tool

$ rmem -eager true -model tso SB.litmus

This provides a command-line version of the same gdb-like interface for exploring the
possible transitions of the operational model, showing the current state and its possible
transitions

help list commands

set always_print true print the current state after every command

set always_graph true generate a pdf graph in out.pdf after every step

<N> take transition labelled <N>, and eager successors

b step back one transition

search exhaustive exhaustive search from the current state

[...]
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Making x86-TSO executable as a test oracle: the RMEM tool
And non-interactive exhaustive search:

$ rmem -interactive false -eager true -model tso SB.litmus

Test SB Allowed

Memory-writes=

States 4

2 *>0:RAX=0; 1:RAX=0; via "0;0;1;0;2;1"

2 :>0:RAX=0; 1:RAX=1; via "0;0;1;2;0;1"

2 :>0:RAX=1; 1:RAX=0; via "0;1;1;2;3;0"

2 :>0:RAX=1; 1:RAX=1; via "0;1;2;1;3;0"

Unhandled exceptions 0

Ok

Condition exists (0:RAX=0 /\ 1:RAX=0)

Hash=90079b984f817530bfea20c1d9c55431

Observation SB Sometimes 1 3

Runtime: 0.171546 sec

One can then step through a selected trace interactively using -follow "0;0;1;0;2;1"
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x86-TSO spinlock example and TRF
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Consider language-level mutexes

Statements s ::= . . . | lock x | unlock x

Say lock free if it holds 0, taken otherwise.

For simplicity, don’t mix locations used as locks and other locations.

Semantics (outline): lock x has to atomically (a) check the mutex is currently free, (b)
change its state to taken, and (c) let the thread proceed.
unlock x has to change its state to free.

Record of which thread is holding a locked lock? Re-entrancy?
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Using a Mutex

Consider

P = t1 : ⟨lockm; r = x; x = r + 1; unlockm, R0⟩
| t2 : ⟨lockm; r = x; x = r + 7; unlockm, R0⟩

in the initial store M0:

⟨t1 : ⟨skip; r = x; x = r + 1; unlockm, R0⟩|t2 : ⟨lockm; r = x; x = r + 7; unlockm, R0⟩, M ′⟩
∗

++

⟨P, M0⟩

t1:LOCK m
99

t2:LOCK m
%%

⟨t1 : ⟨skip, R1⟩|t2 : ⟨skip, R2⟩, M0 ⊕ (x 7→ 8, m 7→ 0)⟩

⟨t1 : ⟨lockm; r = x; x = r + 1; unlockm, R0⟩|t2 : ⟨skip; r = x; x = r + 7; unlockm, R0⟩, M ′′⟩

∗
33

where M ′ = M0 ⊕ (m 7→ 1)
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Deadlock

lockm can block (that’s the point). Hence, you can deadlock.

P = t1 : ⟨lockm1; lockm2; x = 1; unlockm1; unlockm2, R0⟩
| t2 : ⟨lockm2; lockm1; x = 2; unlockm1; unlockm2, R0⟩
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Implementing mutexes with simple x86 spinlocks

Implementing the language-level mutex with x86-level simple spinlocks

lock x

critical section

unlock x
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Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
skip

}

critical section

unlock(x)

Invariant:
lock taken if x ≤ 0
lock free if x=1

(NB: different internal representation from high-level semantics)
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Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

unlock(x)

Contents 3.4 x86: x86-TSO spinlock example and TRF 145



Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x ←1 OR atomic write(x, 1)
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Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x ←1
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Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 atomic (LOCK’d) instructions in a Linux spinlock implementation.
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
x = 1 read x
x = 0 acquire
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer

Contents 3.4 x86: x86-TSO spinlock example and TRF 163



Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire
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Spinlock SC Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = 0 critical
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
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[TODO:]

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire
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Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race
... y ←v2
...

...
x←v1 x
...

...
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Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y ←v2
...

...
x←v1 x
...

...

... y ←v2

...
...

x←v1 x←w
...

...
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Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y ←v2
...

...
x←v1 x
...

...

... y ←v2

... mfence
x←v1 x
...

...

Contents 3.4 x86: x86-TSO spinlock example and TRF 178



Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y ←v2
...

...
x←v1 x
...

...

... y ←v2

...
...

x←v1 lock x
...

...
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Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... y ←v2
...

...
x←v1 x
...

...

... lock y ←v2

...
...

x←v1 x
...

...
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Triangular Races

Owens [6, ECOOP 2010]

▶ Read/write data race
▶ Only if there is a bufferable write preceding the read

Triangular race Triangular race
... y ←v2
...

...
x←v1 x
...

...

... y ←v2

...
...

lock x←v1 x
...

...
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TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution has a triangular race.

Theorem 1 (TRF). If a program is TRF then any x86-TSO execution is equivalent to
some SC execution.

If a program has no triangular races when run on a sequentially consistent memory, then

x86-TSO = SC

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread
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Spinlock Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

▶ acquire’s writes are locked
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Program Correctness

Theorem 2. Any well-synchronized program that uses the spinlock correctly is TRF.

Theorem 3. Spinlock-enforced critical sections provide mutual exclusion.
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Axiomatic models
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Coherence

Conventional hardware architectures guarantee coherence:
▶ in any execution, for each location, there is a total order over all the writes to that

location, and for each thread the order is consistent with the thread’s
program-order for its reads and writes to that location; or (equivalently)

▶ in any execution, for each location, the execution restricted to just the reads and
writes to that location is SC.

Without this, you wouldn’t even have correct sequential semantics, e.g. if different
threads act on disjoint locations within a cache line.

In simple hardware implementations, the coherence order is that in which the processors
gain write access to the cache line.
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Coherence

We’ll include the coherence order in the data of a candidate execution, e.g.

movq $1, (x) //a

Thread 0
movq $2, (x) //b

Thread 1

Initial state: x=0;
1+1W x86

Final: x=2;
Observation: 0/0

movq $1, (x)Wx=1a:
Thread 0

movq $2, (x)Wx=2b:
Thread 1

co

For tests with at most two writes to each location, with values distinct from each other
and from the initial state, the coherence order of a candidate execution is determined
by the final state. Otherwise one might have to add “observer” threads to the test.
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From-reads
Given coherence, there is a sense in which a read event is “before” the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
w fr−→ r iff r reads from a coherence-predecessor of w .

b:tj :W x = 2

c:tk :W x = 3

d:tr :R x = 1

a:ti :W x = 1

co

co

co

co

rf

fr

fr

fr
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From-reads
Given coherence, there is a sense in which a read event is “before” the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
w fr−→ r iff r reads from a coherence-predecessor of w .

Given a candidate execution with a coherence order co−→ (an irreflexive transitive relation
over same-address writes), and a reads-from relation rf−→ from writes to reads, define the
from-reads relation fr−→ to relate each read to all co−→-successors of the write it reads
from (or to all writes to its address if it reads from the initial state).

r fr−→ w iff (∃w0. w0
co−→ w ∧ w0

rf−→ r) ∨
(iswrite(w) ∧ addr(w) = addr(r) ∧ ¬∃w0. w0

rf−→ r)

w0
r

w

rf
co

fr

r

w

(rf)

fr
(co)
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From-reads
Given coherence, there is a sense in which a read event is “before” the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
w fr−→ r iff r reads from a coherence-predecessor of w .

Lemma 1. In any well-formed candidate execution:
▶ For any distinct same-address writes w and w ′, either w co−→ w ′ or w ′ co−→ w .
▶ For any same-address read r and write w , either w( co−→ ∪ id−→) rf−→ r , or r fr−→ w .
▶ For any same-address reads r and r ′, either they both read from the same write (or

both from the initial state), or r
( fr−→ rf−→

)
r ′, or r ′

( fr−→ rf−→
)
r .
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The SB cycle

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf
frfr

In this candidate execution the reads read from the initial state, which is
coherence-before all writes, so there are fr edges from the reads to all the writes at the
same address.

This suggests a more abstract characterisation of why this execution is non-SC, and
hence a different “axiomatic” style of defining relaxed models:

If we regard the reads as in their rf−→ and fr−→ places in the per-location coherence orders,
those are not consistent with the per-thread program orders.
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SC again, operationally

Define an SC abstract machine memory m
e−→ m′

(forgetting MFENCE and LOCK’d instructions for now)
Shared Memory

Thread1 Threadn

W R RW

Take each thread as executing in-order (again)

Events e ::= a:t:W x=v a write of value v to address x by thread t, ID a
| a:t:R x=v a read of v from x by t, ID a

States m are just memory states:

m : addr→ value

RM: Read from memory
m(x) = v

m a:t:R x=v−−−−−−−→ m

WM: Write to memory

m a:t:W x=v−−−−−−−−→ m ⊕ (x 7→ v)
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SC again, operationally

See how this captures the essence of SC:

reads read from the most recent write to the same address, in some
program-order-respecting interleaving of the threads.
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SC again, operationally

Say a trace T is a list of events [e1, . . . , en] that have unique IDs
∀i , j ∈ 1..n. i ̸= j =⇒ id(ei ) ̸= id(ej )

Write:
▶ e < e ′ iff e is before e ′ in the trace e < e′ ⇔ ∃i , j . e = ei ∧ e′ = ej ∧ i < j

Say the traces of the SC abstract machine memory are all traces T = [e1, . . . , en] with
unique IDs such that

minit
e1−→ m1 . . .

en−→ mn

for the initial memory state minit = λx : addr . 0 and some m1, . . . ,mn
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SC, axiomatically

Now we try to capture the same set of behaviours as a property of candidate executions
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Candidate Executions, more precisely
Say a candidate execution consists of a candidate pre-execution ⟨E , po−−→⟩, where:

▶ E is a finite set of events, with unique IDs, ranged over by e etc. ∀e, e′. e ̸= e′ =⇒ id(e) ̸= id(e′)
▶ program order (po) is an irreflexive transitive relation over E , that only relates pairs of events from the

same thread (In general this might not be an irreflexive total order for the events of each thread separately, but we assume that too for now.)
∀e. ¬(e po−−→ e) ∀e, e′. (thread(e) = thread(e′) ∧ e ̸= e′) =⇒ e po−−→ e′ ∨ e′ po−−→ e
∀e, e′, e′′. (e po−−→ e′ ∧ e′ po−−→ e′′) =⇒ e po−−→ e′′

∀e, e′. e po−−→ e′ =⇒ thread(e) = thread(e′)
and a candidate execution witness X = ⟨ rf−→, co−→⟩, consisting of:

▶ reads-from (rf ), a binary relation over E , that only relates write/read pairs with the same address and
value, with at most one write per read, and other reads reading from the initial state
(note that this is intensional: it identifies which write, not just the value)
∀e, e′, e′′. (e rf−→ e′′ ∧ e′ rf−→ e′′) =⇒ e = e′

∀e, e′. e rf−→ e′ =⇒ iswrite(e) ∧ isread(e′) ∧ addr(e) = addr(e′) ∧ value(e) = value(e′)
∀e. (isread(e) ∧ ¬∃e′.e′ rf−→ e) =⇒ value(e) = minit(addr(e))

▶ coherence (co), an irreflexive transitive binary relation over E , that only relates write/write pairs with the
same address, and that is an irreflexive total order when restricted to the writes of each address separately
∀e. ¬(e co−→ e)
∀e, e′, e′′. (e co−→ e′ ∧ e′ co−→ e′′) =⇒ e co−→ e′′

∀e, e′. e co−→ e′ =⇒ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)
∀a. ∀e, e′. (e ̸= e′ ∧ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = a ∧ addr(e′) = a) =⇒ e co−→ e′ ∨ e′ co−→ e
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Candidate Executions, more precisely
Say a candidate execution consists of a candidate pre-execution ⟨E , po−−→⟩, where:

▶ E is a finite set of events, with unique IDs, ranged over by e etc. ∀e, e′. e ̸= e′ =⇒ id(e) ̸= id(e′)
▶ program order (po) is an irreflexive transitive relation over E , that only relates pairs of events from the

same thread (In general this might not be an irreflexive total order for the events of each thread separately, but we assume that too for now.)
∀e. ¬(e po−−→ e) ∀e, e′. (thread(e) = thread(e′) ∧ e ̸= e′) =⇒ e po−−→ e′ ∨ e′ po−−→ e
∀e, e′, e′′. (e po−−→ e′ ∧ e′ po−−→ e′′) =⇒ e po−−→ e′′

∀e, e′. e po−−→ e′ =⇒ thread(e) = thread(e′)
and a candidate execution witness X = ⟨ rf−→, co−→⟩, consisting of:

▶ reads-from (rf ), a binary relation over E , that only relates write/read pairs with the same address and
value, with at most one write per read, and other reads reading from the initial state
(note that this is intensional: it identifies which write, not just the value)
∀e, e′, e′′. (e rf−→ e′′ ∧ e′ rf−→ e′′) =⇒ e = e′

∀e, e′. e rf−→ e′ =⇒ iswrite(e) ∧ isread(e′) ∧ addr(e) = addr(e′) ∧ value(e) = value(e′)
∀e. (isread(e) ∧ ¬∃e′.e′ rf−→ e) =⇒ value(e) = minit(addr(e))

▶ coherence (co), an irreflexive transitive binary relation over E , that only relates write/write pairs with the
same address, and that is an irreflexive total order when restricted to the writes of each address separately
∀e. ¬(e co−→ e)
∀e, e′, e′′. (e co−→ e′ ∧ e′ co−→ e′′) =⇒ e co−→ e′′

∀e, e′. e co−→ e′ =⇒ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)
∀a. ∀e, e′. (e ̸= e′ ∧ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = a ∧ addr(e′) = a) =⇒ e co−→ e′ ∨ e′ co−→ e

Contents 3.5 x86: Axiomatic models 197



SC, axiomatically

Say a trace T = [e1, . . . , en] and a candidate pre-execution ⟨E , po−→⟩ have the same
thread-local behaviour if
▶ they have the same events E = {e1, . . . , en}
▶ they have the same program-order relations, i.e.

po−→ = {(e, e ′) | e < e ′ ∧ thread(e) = thread(e ′)}

Then:

Theorem 4. If T and ⟨E , po−→⟩ have the same thread-local behaviour, then the
following are equivalent:

1. T is a trace of the SC abstract-machine memory
2. there exists an execution witness X = ⟨ rf−→, co−→⟩ for ⟨E , po−→⟩ such that

acyclic( po−→ ∪ rf−→ ∪ co−→ ∪ fr−→).
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Proof. For left-to-right, given the trace order <, construct an execution witness:

e rf−→ e ′ ⇔ iswrite(e) ∧ isread(e ′) ∧ addr(e) = addr(e ′) ∧ e < e ′∧
∀e ′′. (e < e ′′ ∧ e ′′ < e ′) =⇒ ¬(iswrite(e ′′) ∧ addr(e ′′) = addr(e ′))

e co−→ e ′ ⇔ iswrite(e) ∧ iswrite(e ′) ∧ addr(e) = addr(e ′) ∧ e < e ′

Now check the properties

Checking po properties: ...all follow from "have the same program-order relations"
Checking rf properties:
forall e,e’,e’’. (e rf e’’ & e’ rf e’’) => e=e’
...Suppose wlog e<e’ then that contradicts the no-intervening-write clause of the construction
forall e,e’. e rf e’ => iswrite e & isread e’ & addr e=addr e’
...by construction of rf
forall e,e’. e rf e’ => value e = value e’
...because there are no intervening writes to the same address between e and e’, m(addr e) remains constant (by induction on that part of the

execution trace), and hence is read at e’
forall e (isread e & not exists e’. e’ rf e) => value(e)=m0(addr(e))
...from the construction of rf, if there isn’t an rf edge then there isn’t a write to that address preceding in the trace (if there were

one, there would be a <-maximal one), so by induction along that part of the trace the value in m for this address is unchanged from m0.
Checking co properties:
forall e. not (e co e)
...if e co e then e<e but that contradicts the definition of <
forall e,e’,e’’ (e co e’ & e’ co e’’) => e co e’’
...equivalence of iswrite and same-addr, and transitivity of <
forall e, e’. e co e’ => iswrite e & iswrite e’ & addr e = addr e’
...by construction of co
forall a. forall e,e’. (e<>e’ & iswrite e & iswrite e’ & addr e = a & addr e’ = e) => e co e’ || e’ co e
...if e<>e’ then either e<e’ or e’<e; then in either case construct a co
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Now check each of po, rf, co, and rf go forwards in the trace. This is just about the construction; it doesn’t involve the machine.

po, rf, co: by construction
fr: suppose r fr w
case 1) for some w0, w0 co w & w0 rf r

w0
| \

co| \rf
v \
w<-- r

fr

If r < w we are done, so suppose for a contradiction that w < r.

By the definitions of co and rf, w0 is a write, w0 and w and r have the same address, w0 < w, and w0 < r. But then w0 < w < r, contradicting
the no-intervening-write clause of the definition of rf

case 2) iswrite w & addr w = addr r & not exists w0. w0 rf r
Suppose for a contradiction that w < r.
Then there is at least one write (namely w) with the same address as r before it in <.
Take the last such write, w’, then by the definition of rf, w’ rf r.

Finally, as we have po, rf, co, and fr all embedded in <, which by definition is acyclic, their union must be acyclic.
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For the right-to-left direction, given an execution witness E = ⟨ rf−→, co−→⟩ such that
acyclic( ob−→), where ob−→= ( po−→∪ rf−→∪ co−→∪ fr−→), construct a trace [e1, .., en] as an
arbitrary linearisation of ob−→.
By acyclic(ob), we know if ei ob ej then i<j (but not the converse).

Construct memory states mi inductively along that trace, starting with m0,
mutating the memory for each write event, and leaving it unchanged for each read.

To check that actually is a trace of the SC abstract machine memory, i.e. that m0 --e1--> m1 ... --en--> mn, it remains to check
for each read, say rj at index j, that m_{j-1}(addr(rj)) = value(rj)

By the construction of the mi,

m_{j-1}(addr(rj)) = value(ei) where i is the largest i<j such that iswrite ei & addr ei=addr rj, if there is one
or m0(addr(rj)) otherwise

In the first case, write wi for ei. We know by the fr lemma that either wi co* rf rj or rj fr wi.

Case the latter (rj fr wi): then rj ob wi so j<i, contradicting i<j.
Case the former (wi co* wk rf rj for some k):

We know i <= k < j, so unless i=k we contradict the "largest"
So wi rf rj, so they have the same value

In the second case, there is no i<j such that iswrite ei & addr ei=addr rj
So there is no w ob rj such that addr w = addr rj
So there is no w rf rj
So by the candidate-execution initial-state condition, value(rj)=m0(addr(rj))
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SC, axiomatically

This lets us take the predicate acyclic( po−→ ∪ rf−→ ∪ co−→ ∪ fr−→) as an equivalent
characterisation of sequential consistency.

The executions of the SC axiomatic model are all candidate executions, i.e. all pairs of
▶ a candidate pre-execution ⟨E , po−→⟩, and
▶ a candidate execution witness X = ⟨ rf−→, co−→⟩ for it,

that satisfy the condition acyclic( po−→ ∪ rf−→ ∪ co−→ ∪ fr−→).

Note that we’ve not yet constrained either the operational or axiomatic model to the
correct thread-local semantics for any particular machine language – we’ll come back to
that. So far, this is just the memory behaviour.
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SC, axiomatically

This characterisation suggests a good approach to test generation: construct interesting
non-SC tests from non-SC cycles of relations – the idea of the diy7 tool [27, Alglave,
Maranget]. More later.

It also gives different ways of making the model executable as a test oracle:
▶ enumerating all conceivable candidate executions and checking the predicate, as in

the herd7 tool [27], and
▶ translating the predicate into SMT constraints, as the isla-axiomatic [29,

Armstrong et al.] tool does.
More on these later too.

Note how the construction of an arbitrary linearisation of ob−→ illustrates some
“irrelevant” interleaving in the SC operational model.
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Expressing coherence axiomatically, on candidate executions

let pos = po & loc (* same-address part of po, aka po-loc *)

acyclic pos | rf | co | fr (* coherence check *)

Coherence is equivalent to per-location SC. Note that pos−−→, rf−→, co−→, and fr−→ only relate
pairs of events with the same address, so this checks SC-like acyclicity for each address
separately.

We already proved that any SC machine execution satisfies this, because pos−−→⊆ po−→
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Basic coherence shapes

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

porf

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poco

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

po

rf

fr

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

po

rf

rf
fr

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poco

rf

Theorem 5. If a candidate execution has a cycle in pos | co | rf | fr, it contains
one of the above shapes (where the reads shown as from the initial state could be from
any coherence predecessor of the writes) [23, 15, Alglave].

How does the SC machine prevent each of these?
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x86-TSO axiomatic model
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Axiomatic model style: single vs multi-event per access

In the x86-TSO operational model (unlike SC):

▶ each store has two events, w = (a:t0:W x=v) and
a′:t0:Dw x=v

▶ each load has one event, but it can arise in two ways Lock

W
rite

 B
u

ffe
r

W
rite

 B
u

ffe
r

Shared Memory

Thread Thread

(z,1)

a′:t0:Dw x=v

a′′:t1:W y=1

a:t0:W x=v
b:t1:R y=1
c :t1:R z=1

but that is not explicit in the candidate executions we’ve used.

We could conceivably:

1. add some or all of that data to candidate executions, and give an axiomatic
characterisation of the abstract-machine execution, or

2. stick with one-event-per-access candidate executions, expressing the conditions that
define allowed behaviour just on those

Perhaps surprisingly, 2 turns out to be possible
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Two x86-TSO axiomatic models

1. one in TPHOLs09 [4, Owens, Sarkar, Sewell], in SparcV8 style
2. one simplified from a current cat model, in the “herd” style of [15, Alglave et al.]

https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat

Both proved equivalent to the operational model and tested against hardware
(on small and large test suites for the two models respectively)
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forget LOCK’d instructions and MFENCEs for a bit
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Notation

Axiomatic models define predicates on candidate execution using various binary
relations over events

Binary relations are just sets of pairs.

We write
▶ (e, e ′) ∈ r

▶ e r−→ e ′

▶ e r e ′

interchangeably.
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Notation: relational algebra

As models become more complex, it’s convenient to use relational algebra instead of
pointwise definitions, as in the “cat” language of herd7 (and also isla-axiomatic):

r | s the union of r and s {(e, e ′) | e r e ′ ∨ e s e ′}
r & s the intersection of r and s {(e, e ′) | e r e ′ ∧ e s e ′}
r ; s the composition of r and s {(e, e ′′) | ∃e ′. e r e ′ s e ′′}
r \ s r minus s {(e, e ′) | e r e ′ ∧ ¬(e s e ′)}
[S] the identity on some set S of events {(e, e) | e ∈ S}
S*S’ the product of sets S and S’ {(e, e ′) | e ∈ S ∧ e ′ ∈ S’}
loc same-location, events at the same address {(e, e ′) | addr(e) = addr(e ′)}
int internal, events of the same thread {(e, e ′) | thread(e) = thread(e ′)}
ext external, events of different thread {(e, e ′) | thread(e) ̸= thread(e ′)}

R, W, MFENCE: the sets of all read, write, and mfence events {e | isread(e)}, etc.
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Internal vs external relations
In TSO, and in the more relaxed Armv8-A, IBM Power, and RISC-V that we come to
later, the same-thread and different-thread parts of rf, co, and fr behave quite
differently.

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porfe
rffre

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rfi rfi

rf rf

frefre

Write rfe and rfi for the external (different-thread) and internal (same-thread) parts
of rf, and similarly coe, coi, and fre, fri.

rfe = rf&ext = {(e, e ′) | e rf e ′ ∧ thread(e) ̸= thread(e ′)}
rfi = rf&int = {(e, e ′) | e rf e ′ ∧ thread(e) = thread(e ′)}
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Internal vs external relations for x86-TSO

In the abstract machine (ignoring LOCK’d instructions), threads interact only via the
common memory

Any external (inter-thread) reads-from, coherence, or from-reads edge is, in operational
terms, about write dequeue events:
▶ if w rfe e in the machine, then w must have been dequeued before e reads from it
▶ if w coe w ′ in the machine, then w must have been dequeued before w ′ is dequeued
▶ if r fre w in the machine, then r reads before w is dequeued
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Does the x86-TSO abstract machine maintain coherence? How?
The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:Dw x=v dequeue events (might not match the enqueue order)
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Does the x86-TSO abstract machine maintain coherence? How?
The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:Dw x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)
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Does the x86-TSO abstract machine maintain coherence? How?
The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:Dw x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)

But read events that read from buffers will be before the corresponding dequeue event
in the trace
▶ they will be after the a:t:W x=v enqueue event they read from, and before any

po-later enqueue event
▶ the ordering among same-thread write enqueues ends up included in the coherence

order by the FIFO nature of the buffer: two po-related writes are dequeued in the
same order
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Does the x86-TSO abstract machine maintain coherence? How?
The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:Dw x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)

But read events that read from buffers will be before the corresponding dequeue event
in the trace
▶ they will be after the a:t:W x=v enqueue event they read from, and before any

po-later enqueue event
▶ the ordering among same-thread write enqueues ends up included in the coherence

order by the FIFO nature of the buffer: two po-related writes are dequeued in the
same order

For reading from memory, if there’s a write to this address in the local buffer, it will end
up coherence-after all writes that have already reached memory, so it would be a
coherence violation to read from memory – hence the buffer-empty condition in RM
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Back to coherence, axiomatically

Recall we expressed coherence axiomatically as:

acyclic pos | rf | co | fr (* coherence check, where pos = po & loc *)
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Basic coherence shapes again
CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

posrfi

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poscoi

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

pos

rf

fri

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

pos

rfe

rf
fre

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poscoe

rfe

How does the machine prevent each of these?

CoRW1: a read can only see a same-thread write that is pos-before it (via buffer or via memory)
CoWW: the buffers are FIFO, so two pos writes are dequeued in pos-order
CoWR0: b reads from a coherence-predecessor c :t:W x=0 (which could be on any thread) of a
▶ Case c is on the same thread as b. c must be po-before a, as writes are enqueued in po and, because the buffers are FIFO, dequeued (establishing their coherence order) in

the same order.
▶ Case b reads from memory, by RM. Then c must have been dequeued.

▶ Case a has been dequeued before the read. Then that must have been after c was, so b would have read from a.
▶ Case a is still buffered at the read. That violates the no pending(m.B(t), x) condition of RM.

▶ Case b reads from buffer, by RB. Then a must still precede c in the buffer. This violates the no pending(b1, x) condition of RB.
▶ Case c is on a different thread to b. Then b reads from memory, by RM

▶ Case c was dequeued before a. Then b would have read from a.
▶ Case c was dequeued after a. Then a must still be in the buffer, violating the no pending(m.B(t), x) condition of RM.

CoRR: The dequeue of a must be before b reads, and b reads before c does. c reads from a coherence-predecessor d :t:W x=0 (which could be on any thread) of a, so d must
be dequeued before a. But then c would have read from a.
CoRW2: The dequeue of a must be before b reads, and b reads before c is enqueued, which is before c is dequeued. Then c is coherence-before a, so c must be dequeued before
a is. But this would be a cycle in machine execution time.
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Locally ordered before w.r.t. external relations
Now what about thread-local ordering of events that might be to different locations, as
seen by other threads?

Say a machine trace T is complete if it has no non-dequeued write, and for any write
enqueue event w in such, write D(w) for the unique corresponding dequeue event

For same-thread events in a complete machine trace:
▶ If w po w ′ then w is dequeued before w ′ (write D(w) < D(w ′))
▶ If r po r ′ then r reads before r ′ reads
▶ If r po w then r reads before w is enqueued, and hence before w is dequeued
▶ If w po r , then w is enqueued before r reads, but the dequeue of w and the read

are unordered

So, as far as external observations go (i.e. via rfe, coe, fre), po\([W];po;[R]) is
preserved.

Contents 3.6 x86: x86-TSO axiomatic model 220



x86-TSO axiomatic

That leads us to:

let pos = po & loc (* same-address part of po (aka po-loc)*)

acyclic pos | rf | co | fr (* coherence check *)

let obs = rfe | coe | fre (* observed-by *)

let lob = po \ ([W];po;[R]) (* locally-ordered-before *)

let ob = obs | lob (* ordered-before *)

(* ob = po \ ([W];po;[R]) | rfe | coe | fre just expanding out *)

acyclic ob (* ‘external’ check *)
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x86-TSO axiomatic: some examples again

SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

LB Forbidden

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
rferfe

MP Forbidden

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

SB+rfi-pos Allowed

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rfi rfi

rf rf

frefre

po po

WRC Forbidden

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

fr

2+2W Forbidden

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe

Coherence: acyclic pos|rf|co|fr ...the only pos here are the rfi edges
External observation: acyclic po\([W];po;[R]) | rfe | coe | fre ...solid edges
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x86-TSO axiomatic: more formally
Say an x86-TSO trace T is a list of x86-TSO machine events [e1, . . . , en] with unique IDs

Given such a trace, we write < for the trace order e < e′ ⇔ ∃i , j . e = ei ∧ e′ = ej ∧ i < j

Say an x86-TSO candidate pre-execution is ⟨E , po⟩ where
▶ E is exactly as for SC, a set of write and read events from the x86-TSO machine

event grammar, without D events
▶ po is a relation over E satisfying the same conditions as for SC

and a candidate execution witness is ⟨rf, co⟩ satisfying the same conditions as for SC.

Say a trace T = [e1, . . . , en] and a candidate pre-execution ⟨E , po⟩ have the same
thread-local behaviour if
▶ they have the same thread-interface access events (no dequeue or fence events)

E = {e | e ∈ {e1, . . . , en} ∧ (iswrite(e) ∨ isread(e))}
▶ they have the same program-order relations over those, i.e.

po = {(e, e′) | e ∈ E ∧ e′ ∈ E ∧ e < e′ ∧ thread(e) = thread(e′)}
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x86-TSO operational/axiomatic correspondence

Then:

Theorem 6. For any candidate pre-execution ⟨E , po⟩, the following are equivalent:
1. there exists a complete trace T of the x86-TSO abstract-machine memory with

the same thread-local behaviour as that candidate pre-execution
2. there exists an x86-TSO execution witness X = ⟨rf, co⟩ for ⟨E , po⟩ such that

acyclic(pos ∪ rf ∪ co ∪ fr) and acyclic ob.
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x86-TSO operational/axiomatic correspondence

Proof idea:
1. Given an operational execution, construct an axiomatic candidate in roughly the

same way as we did for SC, mapping dequeue transitions to write events, then
check the acyclicity properties.

2. Given an axiomatic execution, construct an operational trace by sequentialising ob,
mapping write events onto dequeue transitions and adding write enqueue
transitions as early as possible, then check the operational machine admits it.
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Proof sketch: x86-TSO operational implies axiomatic

Given such a trace T , construct a candidate execution.
E = {e | e ∈ {e1, . . . , en} ∧ (iswrite(e) ∨ isread(e)}

For rf, we recharacterise the machine behaviour in terms of the labels of the trace alone.
Say the potential writes for a read r are PW(r) = {w | w ∈ E ∧ iswrite(w) ∧ addr(w) = addr(r)}

w rf r ⇐⇒ isread(r) ∧ w ∈ PW(r) ∧ (
(* from-buffer, same-thread *)

(* w in buffer *) (thread(w) = thread(r) ∧ w < r < D(w)
(* no intervening in buffer *) ∧¬∃w ′ ∈ PW(r).thread(w ′) = thread(r) ∧ w < w ′ < r)

(* from-memory, any-thread *) ∨
(* w in memory *) (D(w) < r
(* no intervening in buffer *) ∧¬∃w ′ ∈ PW(r). thread(w ′) = thread(r) ∧ w ′ < r < D(w ′)
(* no intervening in memory *) ∧¬∃w ′ ∈ PW(r). D(w) < D(w ′) < r))

For co, say w co w ′ if iswrite(w) ∧ iswrite(w ′) ∧ addr(w) = addr(w ′) ∧ D(w) < D(w ′)
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Check the candidate execution well-formedness properties hold
...the w rf r implies value(r) = value(w) condition essentially checks correctness of the rf characterisation

For acyclic ob, check each (e, e′) in po\([W];po;[R]) | rfe | coe | fre is embedded in the trace
order w.r.t. read and dequeue-write points
i.e., that D̂(e) < D̂(e′), where D̂(w) = D(w) and D̂(r) = r

For acyclic pos|rf|co|fr, construct a modified total order <C , the machine coherence order
augmented with reads in the coherence-correct places, and check each (e, e′) is embedded in that.
<C is constructed from the trace order < by:

w 7→ []
r 7→ [r ] if r reads from memory

[] if r reads from its thread’s buffer
a:t:Dw x=v 7→ [w ] @[r | r reads from w via buffer, ordered by <]

Note how this preserves trace order among all D events and reads from memory (mapping the D’s to
W’s), and reshuffles reads from buffers to correct places in coherence, preserving pos but not other po.
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Proof sketch: x86-TSO axiomatic implies operational

Consider a candidate execution satisfying acyclic(ob) and acyclic(pos|rf|co|fr)

Take some arbitrary linearisation S of ob, and define a trace by recursion on S .

g [] T = T

g ((e::S’) as S) T =

(* eagerly enqueue all possible writes *)

let next_writes = [ w | w IN S & w NOTIN T & w not S-after any non-write thread(w) event ]

let T’ = T @ next_writes

match e with

| w -> g S’ (T’ @ [D(w)]) (* dequeue the write when we get to its W event in S *)

| r -> g S’ (T’ @ [r]) (* perform reads when we get to them *)

| ...likewise for mfence except that we’re ignoring those for now.

Check that that is a machine trace, using the acyclicity properties.
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Mechanised proof

Mechanised formalisation and proof, in Isabelle, by Paul Durbaba (Part III, 2020–21)
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x86-TSO axiomatic: adding MFENCEs and RMWs
include "x86fences.cat"
include "cos.cat"
let pos = po & loc (* same-address part of po, aka po-loc *)

(* Observed-by *)
let obs = rfe | fre | coe

(* Locally-ordered-before *)
let lob = po \ ([W]; po; [R])

| [W]; po; [MFENCE]; po; [R] (* W/R pairs separated by an MFENCE *)
| [W]; po; [R & X] (* W/R pairs with at least one from an *)
| [W & X]; po; [R] (* atomic RMW, where X identifies such *)

(* Ordered-before *)
let ob = obs | lob

(* Coherence check *)
acyclic pos | rf | co | fr

(* Atomicity requirement *)
empty rmw & (fre;coe) (* nothing between the R and W of atomic RMWs *)

(* External check *)
acyclic ob
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Summary of axiomatic-model sets and relations
The data of a candidate pre-execution:

▶ a set E of events
▶ po⊆ E × E , program-order

The data of a candidate execution witness:
▶ rf⊆ W × R, reads-from
▶ co⊆ W × W , coherence

Subsets of E :
R all read events
W all write events
MFENCE all mfence events
X all locked-instruction accesses

Derived relations, generic:

loc same-location, events at the same address {(e, e′) | addr(e) = addr(e′)}
ext external, events of different thread {(e, e′) | thread(e) ̸= thread(e′)}
int internal, events of the same thread {(e, e′) | thread(e) = thread(e′)}
pos same-location po po & loc (aka po-loc)
pod different-location po po \ loc
fr from-reads r fr w iff

(∃w0. w0 co w ∧ w0 rf r) ∨ (iswrite(w) ∧ addr(w) = addr(r) ∧ ¬∃w0. w0 rf r)
rfe, coe, fre different-thread (external) parts of rf, co, fr rfe=rf & ext etc.
rfi, coi, fri same-thread (internal) parts of rf, co, fr rfi=rf & int etc.

Derived relations, specific to x86 model:

obs observed-by obs = rfe | coe | fre
lob locally-ordered-before lob = po \([W];po;[R]) | ...
ob ordered before ob = obs | lob
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Validating models
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Validating the models?

We invented a new abstraction; we didn’t just formalise an existing
clear-but-non-mathematical spec. So why should we, or anyone else, believe it?
▶ some aspects of the vendor arch specs are clear (especially the examples)
▶ experimental comparison of model-allowed and h/w-observed behaviour on tests

▶ models should be sound w.r.t. experimentally observable behaviour of existing h/w
(modulo h/w bugs)

▶ but the architectural intent may be (often is) looser

▶ discussion with vendor architects – does it capture their intended envelope of
behaviour? Do they a priori know what that is in all cases?

▶ discussion with expert programmers – does it match their practical knowledge?
▶ proofs of metatheory

▶ operational / axiomatic correspondence
▶ implementability of C/C++11 model above x86-TSO [7, POPL 2011]
▶ TRF-SC result [6, ECOOP 2010]
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.

2. Writes are not reordered with older reads.

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind
Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod;[R]

2. Writes are not reordered with older reads.

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind
Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod;[R]

2. Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind
Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod;[R]

2. Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier is “cannot pass” the same as “cannot be reordered with”? MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind
Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod;[R]

2. Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier is “cannot pass” the same as “cannot be reordered with”? MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).of what order? Is “memory ordering” ob? Is it
the order of R and D events?

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.
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Re-read x86 vendor prose specifications with x86-TSO op/ax in mind
Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)
8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod;[R]

2. Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

3. Writes to memory are not reordered with other writes [...]

4. Reads may be reordered with older writes to different locations but not with older writes to the same location.

5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier is “cannot pass” the same as “cannot be reordered with”? MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).of what order? Is “memory ordering” ob? Is it
the order of R and D events?

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE – Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction
stream.microarchitectural?
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Experimental validation

Essential – but not enough by itself:
▶ the architectural intent is typically looser than any specific hardware
▶ one can’t always determine whether a strange observed behaviour is a hardware

bug or not without asking the architects – it’s their call

Experimental validation relies on having a good test suite and test harness, that
exercises corners of the model and of hardware implementations

...and it relies on making the model executable as a test oracle – we make operational
and axiomatic models exhaustively executable for (at least) litmus tests.
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Interesting tests

We can usually restrict to tests with some potential non-SC behaviour
(assuming no h/w bugs)

By the SC characterisation theorem, these are those with a cycle in po|rf|co|fr

(“critical cycles” [37])
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Generating tests

Hand-writing tests is sometimes necessary, but it’s also important to be able to
auto-generate them.

This is made much easier by the fact that we have executable-as-test-oracle models: we
can generate any potentially interesting test, and then use the models to determine the
model-allowed behaviour.

Usually, interesting tests have at least one potential execution, consistent with the
instruction-local semantics, which is a critical cycle

Tests only identify an interesting outcome; they don’t specify whether it is allowed or
forbidden. And in fact we compare all outcomes, not just that one.
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Generating a single test from a cycle
SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

Use diyone7 to generate a single test from a cycle, e.g. Fre PodWR Fre PodWR:

diyone7 -arch X86_64 -type uint64_t -name SB "Fre PodWR Fre PodWR"
X86_64 SB
"Fre PodWR Fre PodWR"
Generator=diyone7 (version 7.56)
Prefetch=0:x=F,0:y=T,1:y=F,1:x=T
Com=Fr Fr
Orig=Fre PodWR Fre PodWR
Align=
{
uint64_t y; uint64_t x; uint64_t 1:rax; uint64_t 0:rax;
}
P0 | P1 ;
movq $1,(x) | movq $1,(y) ;
movq (y),%rax | movq (x),%rax ;

exists (0:rax=0 /\ 1:rax=0)

Documentation: http://diy.inria.fr/doc/gen.html
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For small tests, we can be exhaustive, in various ways

e.g. the earlier coherence tests

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

porf

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poco

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

po

rf

fr

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

po

rf

rf
fr

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poco

rf
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Basic 4-edge test shapes
All 4-edge critical-cycle tests, with a pod pair of different-location memory accesses on
each thread. There are only six:

SB

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

MP

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

LB

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
rferfe

R

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq (x), %rax

Rx=0d:

Thread 1

po
coe

rf

fre

S

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
coerfe

2+2W

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe
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Generating the basic 4-edge tests
Use a configuration file X86_64-basic-4-edge.conf

# diy7 configuration file for basic x86 tests with four pod or rf/co/fr external edges

-arch X86_64

-nprocs 2

-size 4

-num false

-safe Pod**,Pos**,Fre,Rfe,Wse

-mode critical

-type uint64_t

(Ws, for “write serialisation”, is original diy7 syntax for coherence co, updated in newer versions)

Then

diy7 -conf X86_64-basic-4-edge.conf

generates those six critical-cycle tests
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Running a batch of tests on hardware using litmus

litmus7 -r 100 src-X86_64-basic-4-edge/@all > run-hw.log

This runs each of those tests 107 times, logging to run-hw.log. It takes ∼40s.

For serious testing, one should increase that by 10–1000, and typically will be using
many more tests.

This log contains, for each test, the histogram of observed final states. It also records
whether the identified final-state condition was observed or not.
Test SB Allowed (* NB: don’t get confused by these "Allowed"s, or the "Ok"s - just look at the "Observation" line *)
Histogram (4 states)
95 *>0:rax=0; 1:rax=0;
4999871:>0:rax=1; 1:rax=0;
4999876:>0:rax=0; 1:rax=1;
158 :>0:rax=1; 1:rax=1;
[...]
Observation SB Sometimes 95 9999905

Contents 4 Validating models: 247



Running a batch of tests in x86-TSO operational using rmem

rmem -model tso -interactive false -eager true -q

src-X86_64-basic-4-edge/@all > run-rmem.log.tmp

cat run-rmem.log.tmp | sed ’s/RAX/rax/g’ | sed ’s/RBX/rbx/g’ > run-rmem.log

This runs each of those tests exhaustively in the x86-TSO operational model, logging to
run-rmem.log. And, ahem, fixes up the register case.

This log contains, for each test, a list of the final states that are possible in the
operational model:
Test SB Allowed
States 4
0:rax=0; 1:rax=0;
0:rax=0; 1:rax=1;
0:rax=1; 1:rax=0;
0:rax=1; 1:rax=1;
[...]
Observation SB Sometimes 1 3
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Running a batch of tests in x86-TSO axiomatic using herd

herd7 -cat x86-tso.cat src-X86_64-basic-4-edge/@all > run-herd.log

This runs each of those tests exhaustively in the x86-TSO axiomatic model, logging to
run-herd.log.

This log contains, for each test, a list of the final states that are possible in the
axiomatic model:
Test SB Allowed
States 4
0:rax=0; 1:rax=0;
0:rax=0; 1:rax=1;
0:rax=1; 1:rax=0;
0:rax=1; 1:rax=1;
[...]
Observation SB Sometimes 1 3

Herd web interface: http://diy.inria.fr/www
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Comparing results

$ mcompare7 -nohash run-hw.log run-rmem.log run-herd.log

*Diffs*
|Kind | run-hw.log run-rmem.log run-herd.log

---------------------------------------------------------
---------------------------------------------------------
2+2W|Allow| [x=1; y=1;] == ==

|No | [x=1; y=2;]
| | [x=2; y=1;]

---------------------------------------------------------
LB |Allow| [0:rax=0; 1:rax=0;] == ==

|No | [0:rax=0; 1:rax=1;]
| | [0:rax=1; 1:rax=0;]

---------------------------------------------------------
MP |Allow| [1:rax=0; 1:rbx=0;] == ==

|No | [1:rax=0; 1:rbx=1;]
| | [1:rax=1; 1:rbx=1;]

---------------------------------------------------------
[...]
---------------------------------------------------------
SB |Allow| [0:rax=0; 1:rax=0;] == ==

|Ok | [0:rax=0; 1:rax=1;]
| | [0:rax=1; 1:rax=0;]
| | [0:rax=1; 1:rax=1;]

Or use -pos <file> and -neg <file> to dump positive and negative differences.
Normally we would check test hashes for safety, without -nohash, but they have temporarily diverged between the tools.
One can also use this to compare models directly against each other.
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Generating more tests
Allow up to 6 edges on up to 4 threads, and include MFENCE edges

diy7 configuration file X86_64-basic-6-edge.conf

# diy7 configuration file for basic x86 tests with six pod or rf/co/fr external edges

-arch X86_64

-nprocs 4

-size 6

-num false

-safe Pod**,Pos**,Fre,Rfe,Wse,MFenced**,MFences**
-mode critical

-type uint64_t

Then

diy7 -conf X86_64-basic-6-edge.conf

generates 227 critical-cycle tests, including SB, SB+mfence+po, SB+mfences, ..., IRIW, ...
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Generating more more tests

To try to observe some putative relaxation (some edge that we think should not be in ob),
remove it from the -safe list and add it to -relax, then diy7 will by default generate cycles of
exactly one relaxed edge and some safe edges.

x86-rfi.conf

#rfi x86 conf file
-arch X86
-nprocs 4
-size 6
-name rfi
-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencesWR FencedWR
-relax Rfi

x86-podwr.conf

#podrw x86 conf file
-arch X86
-nprocs 4
-size 6
-name podwr
-safe Fre
-relax PodWR

From http://diy.inria.fr/doc/gen.html#sec52

Many more options in the docs
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Generating more more tests

There’s a modest set of x86 tests at:

https://github.com/litmus-tests/litmus-tests-x86
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Arm-A, IBM Power, and RISC-V
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Armv8-A application-class architecture
Armv8-A is Arm’s main application profile architecture. It includes the AArch64 execution
state, supporting the A64 instruction-set, and AArch32, supporting A32 and T32. Arm also
define Armv8-M and Armv8-R profiles, for microcontrollers and real-time, and ARMv7 and
earlier are still in use.

Many cores designed by Arm and by others, in many SoCs. https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores

▶ Samsung Exynos 7420 and Qualcomm Snapdragon 810 SoCs, each containing
4xCortex-A57+4xCortex-A53 cores, both ARMv8.0-A

▶ Apple A14 Bionic SoC (in iPhone 12) https://en.wikipedia.org/wiki/Apple_A14

Each core implements some specific version (and optional features) of the architecture, e.g.
Cortex-A57 implements Armv8.0-A. Armv8-A architecture versions:

2013 A.a Armv8.0-A (first non-confidential beta)
2016 A.k Armv8.0-A (EAC)
2017 B.a Armv8.1-A (EAC), Armv8.2-A (Beta) (simplification to MCA)
...
2020 F.c Armv8.6-A (initial EAC)

Contents 5 Arm-A, IBM Power, and RISC-V: 255

https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores
https://en.wikipedia.org/wiki/Apple_A14
https://developer.arm.com/documentation/ddi0487/fc


IBM Power architecture
The architecture of a line of high-end IBM server and supercomputer processors, now under the
OpenPOWER foundation

Date Architecture version Processor
2004 Power ISA 2.03 POWER5
2007 Power ISA 2.03 POWER6
2010 Power ISA 2.06 POWER7
2014 Power ISA 2.07 POWER8
2017 Power ISA 3.08B POWER9
2021 Power ISA 3.1 POWER10
2021 Power ISA 3.1B
2024 Power ISA 3.1C

Power ISA 3.0B
POWER10: 240 hw threads/socket
POWER9: 96 hw threads/die https://en.wikipedia.org/wiki/POWER9

POWER 8: up to 192 cores, each with up to 8 h/w threads https://en.wikipedia.org/wiki/POWER8

Power7: IBM’s Next-Generation Server Processor Kalla, Sinharoy, Starke, Floyd
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RISC-V

Nascent open standard architecture, originated UCB, now under RISC-V International –
a large industry and academic consortium

Cores available or under development from multiple vendors

▶ The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [34]
▶ The RISC-V Instruction Set Manual Volume II: Privileged Architecture [35]
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Industry collaborations

2007 we started trying to make sense of the state of the art
2008/2009 discussion, still ongoing, with IBM Power and ARM architects
2017– contributed to RISC-V memory-model task group
2018 RISC-V memory-model spec ratified
2018 Arm simplified their concurrency model and included a formal definition
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x86
▶ programmers can assume instructions execute in program order, but with FIFO

store buffer
▶ (actual hardware may be more aggressive, but not visibly so)

ARM, IBM POWER, RISC-V
▶ by default, instructions can observably execute out-of-order and speculatively
▶ ...except as forbidden by coherence, dependencies, barriers
▶ much weaker than x86-TSO
▶ similar but not identical to each other
▶ (for RISC-V, this is “RVWMO”; the architecture also defines an optional “RVTSO”,

the Ztso extension)
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Abstract microarchitecture – informally

As before:

Observable relaxed-memory behaviour arises from hardware optimisations

So we have to understand just enough about hardware to explain and define the envelopes of
programmer-observable (non-performance) behaviour that comprise the architectures.

But no more – see a Computer Architecture course for that.

(Computer Architecture courses are typically largely about hardware implementation, aka
microarchitecture, whereas here we focus exactly on architecture specification.)
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Abstract microarchitecture – informally

Many observable relaxed phenomena arise from out-of-order and speculative execution.

Each hardware thread might have many instructions in flight, executing out-of-order, and this
may be speculative: executing even though there are unresolved program-order-predecessor
branches, or po-predecessor instructions that are not yet known not to raise an exception, or
po-predecessor instructions that might access the same address in a way that would violate
coherence.

Think of these as a per-thread tree of instruction instances, some finished and some not.

The hardware checks, and rolls back as needed, to ensure that none of this violates the
architected guarantees about sequential per-thread execution, coherence, or synchronisation.
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Abstract microarchitecture – informally

Observable relaxed phenomena also arise from the hierarchy of store buffers and caches, and
the interconnect and cache protocol connecting them.

We’ve already seen the effects of a FIFO store buffer, in x86-TSO. One can also have
observably hierarchical buffers, as we discussed for IRIW; non-FIFO buffers; and buffering of
read requests in addition to writes, either together with writes or separately. High-performance
interconnects might have separate paths for different groups of addresses; high-performance
cache protocols might lazily invalidate cache lines; and certain atomic RMW operations might
be done “in the interconnect” rather than in the core.

We descibe all of this as the “storage subsystem” of a hardware implementation or operational
model.

Some phenomena can be seen as arising either from thread or storage effects – then we can
choose, in an operational model, whether to include one, the other, or both.
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Phenomena
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Coherence
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Coherence

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

porf

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poco

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

po

rf

fr

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

po

rf

rf
fr

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poco

rf

Still all forbidden
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Out-of-order accesses
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Out-of-order pod WW and pod RR: MP (Message Passing)

MP Allowed

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP AArch64

Allowed: 1:X0=1; 1:X2=0;

Arm:YYYYY YYYYY
YYYYY NY

Power:Y RISC-V:N
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Out-of-order pod WW and pod RR: MP (Message Passing)

MP Allowed

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP AArch64

Allowed: 1:X0=1; 1:X2=0;

Arm:YYYYY YYYYY
YYYYY NY

Power:Y RISC-V:N

Microarchitecturally, as x and y are distinct locations, this could be:
▶ thread: out-of-order execution of the writes
▶ thread: out-of-order satisfaction of the reads
▶ non-FIFO write buffering
▶ storage subsystem: write propagation in either order

We don’t distinguish between those when we say WW and RR can be (observably) out-of-order
We check both WW and RR are possible by adding a barrier (MP+po+fen and MP+fen+po)
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Experimental data
arch key directory device SoC core arch version release
Armv8-A a ec2-a1 Amazon EC2 A1 instance AWS Graviton or Graviton 2 16xCortex-A72 or 64xNeoverse N1

b BCM2711 Raspberry Pi 4 Model B Broadcom BCM2711 4xCortex-A72 Armv8-A 2016
c h955 LG H955 phone Qualcomm Snapdragon 810 4xCortex-A57/A53 2015
d AMD ? ? AMD Opteron A1100 4xCortex-A57 2016
e Juno Arm Juno development board 2xCortex-A57+4xCortex-A53
f Kirin6220 HiKey development board HiSilicon Kirin 620 8xCortex-A53
g HelioG25 ? MediaTek Helio G25 8xCortex-A53 2020
h S905 ODROID-C2 development board Amlogic S905 4xCortex-A53
i Snapdragon425 Qualcomm Snapdragon 425 4xCortex-A53
j a10x-fusion ? Apple A10X Fusion 3xHurricane+3xZephyr Armv8.1-A
k iphone7 Apple iPhone 7 Apple A10 Fusion 2xHurricane+2xZephyr Armv8.1-A 2016
l ipadair2 Apple iPad air 2 Apple A8X 3xTyphoon Armv8-A 2014
m APM883208 ? Applied Micro APM883208 8xStorm Armv8-A 2012
n Cavium ? ? Cavium ThunderX or X2
o Exynos9 ? ? Samsung, could be custom or A77 or A55 or A53 ?
p nexus9 Google Nexus 9 tablet NVIDIA Tegra K1 2xDenver Armv8-A 2014
q openq820 Open-Q 820 development kit Qualcomm Snapdragon 820 (APQ 8096) 4xQualcomm Kryo 2016

Power r bim POWER7
RISC-V s HiFi board SiFive Freedom U540 SoC

We’ll show experimental data for Arm, Power, and RISC-V in an abbreviated form:
Y/N indicating whether the final state is observed or not, or – for no data, for each of
several hardware implementations, for each architecture. Detailed results for the tests in
these slides are at Page 520. Key: Arm:abcde fghij

klmno pq Power:r RISC-V:s

This shows only some of the data gathered over the years, largely by Luc Maranget and
Shaked Flur. More details of the former at
http://cambium.inria.fr/~maranget/cats7/model-aarch64/

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses 269

http://cambium.inria.fr/~maranget/cats7/model-aarch64/


Architectural intent and model behaviour

Except where discussed, for all these examples the architectural intent, operational
model, and axiomatic model all coincide, and are the same for Armv8-A, IBM Power,
and RISC-V.

We write Allowed or Forbidden to mean the given execution is allowed or forbidden in
all these.

Generally, if the given execution is Allowed, that means programmers should not depend
on any program idiom involving that shape; additional synchronisation will have to be
added.
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Comparing models and test results

model experimental observation conclusion
Allowed Y ok
Allowed N ok, but model is looser than hardware (or testing not aggressive)

Forbidden Y model not sound w.r.t. hardware (or hardware bug)
Forbidden N ok
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Out-of-order pod WR: SB (“Store Buffering”)

SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x; 1:X1=y;

1:X0=1; 1:X2=0; y=0; x=0;

SB AArch64

Allowed: 0:X2=0; 1:X2=0;

Arm:YYYYY YYYYY
YYYYY NY

Power:Y RISC-V:N
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Out-of-order pod WR: SB (“Store Buffering”)

SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x; 1:X1=y;

1:X0=1; 1:X2=0; y=0; x=0;

SB AArch64

Allowed: 0:X2=0; 1:X2=0;

Arm:YYYYY YYYYY
YYYYY NY

Power:Y RISC-V:N

Microarchitecturally:
▶ pipeline: out-of-order execution of the store and load
▶ storage subsystem: write buffering
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Out-of-order pod RW: LB (“Load Buffering”)

LB Allowed

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
rferfe

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB AArch64

Allowed: 0:X0=1; 1:X0=1;

Arm:NNNNN NNNNN
NNNNN NY

Power:N RISC-V:N
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Out-of-order pod RW: LB (“Load Buffering”)

LB Allowed

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
rferfe

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB AArch64

Allowed: 0:X0=1; 1:X0=1;

Arm:NNNNN NNNNN
NNNNN NY

Power:N RISC-V:N
Microarchitecturally:
▶ pipeline: out-of-order execution of the store and load
▶ storage subsystem: read-request buffering
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Out-of-order pod RW: LB (“Load Buffering”)

LB Allowed

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
rferfe

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB AArch64

Allowed: 0:X0=1; 1:X0=1;

Arm:NNNNN NNNNN
NNNNN NY

Power:N RISC-V:N
Microarchitecturally:
▶ pipeline: out-of-order execution of the store and load
▶ storage subsystem: read-request buffering

Architecturally allowed, but unobserved on most devices
Why the asymmetry between reads and writes (WR SB vs RW LB)? For LB, the hardware might have to make writes visible to another
thread before it knows that the reads won’t fault, and then roll back the other thread(s) if they do – but hardware typically treats
inter-thread writes as irrevocable. In contrast, re-executing a read that turns out to have been satisfied too early is thread-local,
relatively cheap.

Why architecturally allowed? Some hardware has exhibited LB, presumed via read-request buffering. But mostly this seems to be on
general principles, to maintain flexibility.

However, architecturally allowing LB interacts very badly with compiler optimisations, making it very hard to define sensible
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Out-of-order pod WW again: 2+2W

2+2W Allowed

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe

STR X0,[X1]//a
STR X2,[X3]//b

Thread 0
STR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=2; y=0; x=0;

2+2W AArch64

Allowed: y=2; x=2;

Arm:YYYYY YYYYY
YNYYY NY

Power:- RISC-V:N
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Out-of-order pod WW again: 2+2W

2+2W Allowed

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe

STR X0,[X1]//a
STR X2,[X3]//b

Thread 0
STR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=2; y=0; x=0;

2+2W AArch64

Allowed: y=2; x=2;

Arm:YYYYY YYYYY
YNYYY NY

Power:- RISC-V:N

Microarchitecturally:
▶ pipeline: out-of-order execution of the stores
▶ storage subsystem: non-FIFO write buffering
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Barriers
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Enforcing Order with Barriers
Each architecture has a variety of memory barrier (or fence) instructions. For normal code, the
ARMv8-A dmb sy, POWER sync, and RISC-V fence rw,rw prevent observable reordering of
any pair of loads and stores. Where these behave the same, we just write fen, so e.g. the
Armv8-A version of MP+fen+po is MP+dmb.sy+po. Adding fen between both pairs of
accesses makes the preceding tests forbidden:

MP+fens Forbidden

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:DMB SYLDR X2,[X3]

Rx=0f:

Thread 1

fen
rf

rf

fr

SB+fens Forbidden

STR X0,[X1]Wx=1a:DMB SYLDR X2,[X3]

Ry=0c:

Thread 0

fen

STR X0,[X1]Wy=1d:DMB SYLDR X2,[X3]

Rx=0f:

Thread 1

fen
rf rf

frfr

LB+fens Forbidden

LDR X0,[X1]Rx=1a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:DMB SYSTR X2,[X3]

Wx=1f:

Thread 1

fen
rfrf

2+2W+fens Forbidden

STR X0,[X1]Wx=2a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

STR X0,[X1]Wy=2d:DMB SYSTR X2,[X3]

Wx=1f:

Thread 1

fen
coco

Adding fen on just one thread leaves them allowed. For MP, this confirms WW and RR pod
reordering are both observable:

MP+fen+po Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:LDR X2,[X3]

Rx=0e:

Thread 1

po
rf

rf

fr

MP+po+fen Allowed

STR X0,[X1]Wx=1a:STR X0,[X2]

Wy=1b:

Thread 0

po

LDR X0,[X1]Ry=1c:DMB SYLDR X2,[X3]

Rx=0e:

Thread 1

fen
rf

rf

fr

Note: these barriers go between accesses, enforcing ordering between them; they don’t
synchronise with other barriers or other events.
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Weaker Barriers

Enforcing ordering can be expensive, especially write-to-read ordering, so each architecture also
provides various weaker barriers:

Armv8-A dmb ld read-to-read and read-to-write
dmb st write-to-write

Power lwsync read-to-read, write-to-write, and read-to-write
eieio write-to-write

RISC-V fence pred,succ pred,succ⊆nonempty {r, w}

Plus variations for inner/outer shareable domains, IO, and systems features, all of which we
ignore here

Note: later we’ll see that preventing pairwise reordering is not all these do.

There are also various forms of labelled access, sometimes better or clearer than barriers.
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Dependencies
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Enforcing order with dependencies: read-to-read address dependencies

Recall MP+fen+po is allowed:

MP+fen+po Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:LDR X2,[X3]

Rx=0e:

Thread 1

po
rf

rf

fr

But in many message-passing scenarios we want to enforce ordering between the reads
but don’t need the full force (or cost) of a strong barrier. Dependencies give us that in
some cases.
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Enforcing order with dependencies: read-to-read address dependencies

MP+fen+addr.real Forbidden

STR X0,[X1]Wx=1a:DMB SYSTR X1,[X3]

Wy=xc:

Thread 0

fen

LDR X2,[X1]Ry=xd:LDR X3,[X2]

Rx=0e:

Thread 1

addr
rf

rf

fr

x=1;
y=&x;

Thread 0
r1=y;
r2=*r1;

Thread 1

Initial state: x=0; y=z; z=2;

Forbidden: 1:r1=y; 1:r2=0;

STR X0,[X1]//a
DMB SY //b
STR X1,[X3]//c

Thread 0
LDR X2,[X1] //d
LDR X3,[X2] //e

Thread 1

Initial state: 0:X3=y; 0:X1=x; 0:X0=1;

1:X3=0; 1:X2=z; 1:X1=y; x=0; y=z; z=2;

MP+dmb.sy+addr.real AArch64

Forbidden: 1:X2=x; 1:X3=0;

Say there is an address dependency from a read to a program-order later read, written
as an addr edge, if there is a chain of “normal” register dataflow from the first read’s
value to the address of the second. (What’s “normal”? Roughly: via general-purpose and flag registers,

excluding the PC, and for Armv8-A excluding writes by store-exclusives. System registers are another story, too.)

These are architecturally guaranteed to be respected.

Microarchitecturally, this means hardware cannot observably speculate the value used
for the address of the second access.
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Enforcing order with dependencies: natural vs artificial

MP+fen+addr Forbidden

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 1

addr
rf

rf

fr

x=1;
y=1;

Thread 0
r1=y;
r2=*(x+(r1^r1));

Thread 1

Initial state: x=0; y=0;

Forbidden: 1:r1=y; 1:r2=0;

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=x; 1:X1=y; 1:X0=0;

1:X3=0; y=0; x=0;

MP+dmb.sy+addr AArch64

Forbidden: 1:X0=1; 1:X3=0;

Arm:--NNN N-N-N
NNNNN NN

Power:N RISC-V:N

Architectural guarantee to respect read-to-read address dependencies even if they are
“artificial”/“false” (vs “natural”/“true”), i.e. if they could “obviously” be optimised away.

In simple cases one can intuitively distinguish between artificial and natural
dependencies, but it’s very hard to make a meaningful non-syntactic precise distinction
in general: one would have to somehow bound the information available to optimisation,
and optimisation is w.r.t. the machine semantics, which itself involves dependencies.
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Enforcing order with dependencies: intentional artificial dependencies

That architectural guarantee means that introducing an artificial dependency can
sometimes be a useful assembly programming idiom for enforcing read-to-read (or
read-to-write) order.

In some architectures one can enforce similar orderings with a labelled access, e.g. the
Arm release/acquire access instructions, which may or may not be preferable in any
particular situation.
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Enforcing order with dependencies: in high-level languages?

But beware! These and certain other dependencies are guaranteed to be respected by
these architectures, but not by C/C++. Conventional compiler optimisations will
optimise them away, e.g. replacing r2^r2 by 0, and then the compiler or hardware
might reorder the now-independent accesses.

Inlining and link-time optimisation (and value range analysis?) mean this can happen
unexpectedly, and make it very hard to rule out – c.f. the original C++11 memory

order consume proposal, which has turned out not to be implementable.

This is an open problem, as high-performance concurrent code (e.g. RCU in the Linux
kernel) does rely on dependencies. Currently, one hopes the compilers won’t remove the
specific dependencies used.
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Enforcing order with dependencies: read-to-write address dependencies

Read to write address dependencies are similarly respected.
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Enforcing order with dependencies: read-to-write data dependencies

LB+datas Forbidden

LDR X0,[X1]Rx=1a:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wy=1b:

Thread 0

data

LDR X0,[X1]Ry=1c:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1d:

Thread 1

data
rfrfrf

r1=x;
y=1+r1-r1;

Thread 0
r1=y;
x=1+r1-r1;

Thread 1

Initial state: x=0; y=0;

Forbidden: 0:r1=1; 1:r1=1;

LDR X0,[X1]//a
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=0; 1:X3=x; 1:X1=y; 1:X0=0;

y=0; x=0;

LB+datas AArch64

Forbidden: 0:X0=1; 1:X0=1;

Arm:NNNNN N-NNN
NNNNN NN

Power:N RISC-V:N

Say there is an data dependency from a read to a program-order later write, written as
a data edge, if there is a chain of “normal” register dataflow from the first read’s value
to the value of the write.

Read-to-write data dependencies are architecturally guaranteed to be respected, just as
read-to-write address dependencies are (again irrespective of whether they are artificial).

(Note that because plain LB is not observable on most/all current implementations, experimental
results for LB variants don’t say much)
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Enforcing order with dependencies: read-to-write data dependencies and
no-thin-air

LB+data.reals Forbidden

LDR X2,[X1]Rx=1a:STR X2,[X3]

Wy=1b:

Thread 0

data

LDR X2,[X1]Ry=1c:STR X2,[X3]

Wx=1d:

Thread 1

data
rfrf

r1=x;
y=r1;

Thread 0
r1=y;
x=r1;

Thread 1

Initial state: x=0; y=0;

Forbidden: 0:r1=1; 1:r1=1;

LDR X2,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X2,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

1:X3=x; 1:X1=y; x=0; y=0;

LB+data.reals AArch64

Forbidden: 0:X2=1; 1:X2=1;

If read-to-write data dependencies weren’t respected, then the architecture would allow
any value. Such thin-air reads would make it impossible to reason about general code.
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Not enforcing order with dependencies: read-to-read control dependencies

MP+fen+ctrl Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00LDR X2,[X3]

Rx=0e:

Thread 1

ctrl
rf

rf

fr

x=1;
DMB SY;
y=1;

Thread 0
r1=y;
if (r1!=1) goto L;
L:
r2=x;

Thread 1

Initial state: x=0; y=0;

Allowed: 1:r1=1; 1:r2=0;

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
CBNZ X0,LC00
LC00:
LDR X2,[X3]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+ctrl AArch64

Allowed: 1:X0=1; 1:X2=0;

Arm:YYYYY Y-YYY
YYYNY NY

Power:Y RISC-V:N

Read-to-read control dependencies are not architecturally respected.

Microarchitecturally, the hardware might speculate past conditional branches and satisfy
the second read early.

In this example the second read is reachable by both paths from the conditional branch,
but the observable behaviour and architectural intent would be the same for a branch
conditional on r1 != 1 to after the second read. (Some ambiguity in Arm, [32, B2.3.2]?)
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Enforcing order with dependencies: read-to-read ctrlifen dependencies

MP+fen+ctrlifen Various

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00ISBLDR X2,[X3]

Rx=0f:

Thread 1

ctrl+ifen
rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
ISB //e
LDR X2,[X3] //f

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X3=x; 1:X1=y; 1:X0=0; 1:X2=0; y=0;

x=0;

MP+dmb.sy+ctrlisb AArch64

Forbidden: 1:X0=1; 1:X2=0;

Arm:NNNNN N-NNN
NNNNN NN

Power:N RISC-V:-

Read-to-read control dependencies are not architecturally respected.

But with an isb (Arm) or isync (Power) (generically, ifen) between the conditional
branch and the second read, they are. The RISC-V fence.i does not have this strength.
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Enforcing order with dependencies: read-to-write control dependencies

LB+ctrls Forbidden

LDR X0,[X1]Rx=1a:CBNZ X0,LC00STR X2,[X3]

Wy=1b:

Thread 0

ctrl

LDR X0,[X1]Ry=1c:CBNZ X0,LC01STR X2,[X3]

Wx=1d:

Thread 1

ctrl
rfrf

LDR X0,[X1]//a
CBNZ X0,LC00
LC00:
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
CBNZ X0,LC01
LC01:
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB+ctrls AArch64

Forbidden: 0:X0=1; 1:X0=1;

Arm:NNNNN N-NNN
NNNNN NN

Power:N RISC-V:N

Read-to-write control dependencies are architecturally respected.

(even if the write is reachable by both paths from the conditional branch)

Microarchitecturally, one doesn’t want to make uncommitted writes visible to other
threads.
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Enforcing Order with Dependencies: Summary

Read-to-read: address and control-isb/control-isync/control-fence.i dependencies
respected; control dependencies not respected

Read-to-write: address, data, and control dependencies all respected (writes are not
observably speculated, at least as far as other threads are concerned)

All whether natural or artificial.
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Multi-copy atomicity
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Iterated message-passing, x86
In the x86-TSO operational model, when a write has become visible to some other
thread, it is visible to all other threads.

That, together with thread-local read-to-write ordering, means that iterated
message-passing, across multiple threads, works on x86 without further ado
:

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

fr

x=1;

Thread 0
while (x==0) {};
y=1;

Thread 1
while (y==0) {};
r3=x;

Thread 2

Initial state: x=0; y=0;

Forbidden: 2:r3=0;

movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;
WRC x86

Forbidden: 1:rax=1; 2:rax=1; 2:rbx=0;
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Iterated message-passing

On Armv8, Power, and RISC-V, WRC would be allowed just by thread-local reordering.
But what if we add dependencies to rule that out? Test WRC+addrs:

std r1,0(r2)Wx=1a:
Thread 0

ld r1,0(r2)Rx=1b:xor r3,r1,r1stdx r4,r3,r5

Wy=1c:

Thread 1

addr

ld r1,0(r2)Ry=1d:xor r3,r1,r1ldx r4,r3,r5

Rx=0e:

Thread 2

addr

rf
rf

rf
fr

Arm:NNNNN N-NNN
-NNNN -N

Power:Y RISC-V:N

▶ IBM POWER: Allowed
▶ ARMv7-A and old ARMv8-A (first public beta, 2013 – first non-beta, June 2016):

Allowed
▶ current ARMv8-A (March 2017 – ) : Forbidden
▶ RISC-V: Forbidden
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Multicopy atomicity

Say an architecture is multicopy atomic (MCA) if, when a write has become visible to
some other thread, it is visible to all other threads.

And non-multicopy-atomic (non-MCA) otherwise.

So x86, Armv8-A (now), and RISC-V are MCA, and Power is non-MCA

Terminology: Arm say “other multicopy atomic” where we (and others) say MCA.
Terminology: “single-copy atomicity” is not the converse of MCA.
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Multicopy atomicity: Arm strengthening
Arm strengthened the Armv8-A architecture, from non-MCA to MCA, in 2017

▶ Armv8-A implementations (by Arm and by its Architecture Partners) had not
exploited the freedom that non-MCA permits, e.g.
▶ shared pre-cache store buffers that allow early forwarding of data among a subset of

threads, and
▶ cache protocols that post snoop invalidations without waiting for their

acknowledgement,

partly as the common ARM bus architecture (AMBA) has always been MCA.
▶ Allowing non-MCA added substantial complexity to the model, esp. combined with

the previous architectural desire for a model providing as much implementation
freedom as possible, and the Armv8-A store-release/load-acquire instructions.

▶ Hence, in the Arm context, the potential performance benefits were not thought to
justify the complexity of implementation, validation, and reasoning.

See [19, Pulte, Flur, Deacon,...].
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Cumulative barriers
In a non-MCA architecture, e.g. current Power, one needs cumulative barriers to
support iterated message-passing:

std r1,0(r2)Wx=1a:
Thread 0

ld r1,0(r2)Rx=1b:syncstd r3,0(r4)

Wy=1d:

Thread 1

sync

ld r1,0(r2)Ry=1e:xor r3,r1,r1ldx r4,r3,r5

Rx=0f:

Thread 2

addr

rf

rf
rf

fr

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
sync //c
std r3,0(r4)//d

Thread 1

ld r1,0(r2) //e
xor r3,r1,r1
ldx r4,r3,r5//f

Thread 2

Initial state: 0:r2=x; 0:r1=1;

1:r4=y; 1:r3=1; 1:r2=x; 1:r1=0;

2:r5=x; 2:r2=y; 2:r1=0; 2:r4=0;

y=0; x=0;

WRC+sync+addr Power

Forbidden: 1:r1=1; 2:r1=1;

2:r4=0;

Here the sync keeps all writes that have propagated to Thread 1 (and its own events)
before the sync (and hence before any writes by this thread after the sync) in order as
far as other threads are concerned – so writes a and d are kept in order as far as reads e
and f are concerned.
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Cumulative barriers, on the right

Cumulative barriers also ensure that chains of reads-from and dependency edges after
such a barrier are respected:

std r1,0(r2)Wx=1a:syncstd r1,0(r3)

Wy=1c:

Thread 0

sync

ld r1,0(r2)Ry=1d:xor r3,r1,r1add r3,r3,r4std r3,0(r5)

Wz=1e:

Thread 1

data

ld r1,0(r2)Rz=1f:xor r3,r1,r1ldx r4,r3,r5

Rx=0g:

Thread 2

addrrf rf
rf

fr
std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e

Thread 1
ld r1,0(r2) //f
xor r3,r1,r1
ldx r4,r3,r5//g

Thread 2

Initial state: 0:r3=y; 0:r2=x; 0:r1=1; 1:r5=z; 1:r4=1;

1:r2=y; 1:r1=0; 2:r5=x; 2:r2=z; 2:r1=0; 2:r4=0;

z=0; y=0; x=0;

ISA2+sync+data+addr Power

Forbidden: 1:r1=1; 2:r1=1; 2:r4=0;

Explain in terms of write and barrier propagation:
▶ Writes (a) and (c) are separated by the barrier
▶ ...so for Thread 1 to read from (c), both (a) and the barrier have to propagate there, in that order
▶ But now (a) and (e) are separated by the barrier
▶ ...so before Thread 2 can read from (e), (a) (and the barrier) has to propagate there too
▶ and hence (g) has to read from (a), instead of the initial state.
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Cumulative barriers

A strong cumulative barrier is also needed to forbid IRIW in a non-MCA architecture:

li r1,1stw r1,0(r2)Wx=1a:
Thread 0

lwz r1,0(r2)Rx=1b:synclwz r3,0(r4)

Ry=0d:

Thread 1

sync

li r1,1stw r1,0(r2)Wy=1e:
Thread 2

lwz r1,0(r2)Ry=1f:synclwz r3,0(r4)

Rx=0h:

Thread 3

sync

rf rf

rf rf
fr

fr
li r1,1
stw r1,0(r2)//a

Thread 0
lwz r1,0(r2)//b
sync //c
lwz r3,0(r4)//d

Thread 1
li r1,1
stw r1,0(r2)//e

Thread 2
lwz r1,0(r2)//f
sync //g
lwz r3,0(r4)//h

Thread 3

Initial state: 0:r2=x; 1:r4=y; 1:r2=x; 2:r2=y; 3:r4=x; 3:r2=y;
IRIW+syncs Power

Forbidden: 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

(the lwsync barrier does not suffice, even though it does locally order read-read pairs)

In operational-model terms, the sync’s block po-later accesses until their “Group A”
writes have been propagated to all other threads.
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Further thread-local subtleties
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These are various subtle cases that come up when defining architectural models that are
good for arbitrary code, not just for simple idioms.

From a programmer’s point of view, they illustrate some kinds of ordering that one
might falsely imagine are respected.
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Programmer-visible shadow registers

MOV W0,#1STR W0,[X1]Wx=1a:DMB SYMOV W2,#1STR W2,[X3]

Wy=1c:

Thread 0

fen

LDR W0,[X1]Ry=1d:ADD W4,W0,#0LDR W0,[X3]

Rx=0e:

Thread 1

po+rsrf

rf

fr

MP+fen+rs Pseudocode
Thread 0 Thread 1

x=1 r0=y
fen r4=r0
y=1 r0=x
Allowed: 1:r4=1 ∧ 1:r0=0
Arm:YYYYY Y-YYY

YYYNY NY
Power:Y RISC-V:-

MOV W0,#1
STR W0,[X1]//a
DMB SY //b
MOV W2,#1
STR W2,[X3]//c

Thread 0
LDR W0,[X1]//d
ADD W4,W0,#0
LDR W0,[X3]//e

Thread 1

Initial state: 0:X3=y; 0:X1=x;

1:X3=x; 1:X1=y;

MP+dmb.sy+rs AArch64

Allowed: 1:X0=0; 1:X4=1;

Reuse of the same architected register name does not enforce local ordering.

Microarchitecturally: there are shadow registers and register renaming.
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Register updates and dependencies
Armv8-A and Power include memory access instructions with addressing modes that, in
addition to the load or store, do a register writeback or update of a modified value into a
register used for address calculation, e.g.

STR <Xt>, [<Xn|SP>], #<simm> (post-index)
STR <Xt>, [<Xn|SP>, #<simm>]! (pre-index)

[...]
Mem[address, datasize DIV 8, AccType_NORMAL] = data;
if wback then
if postindex then
address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

But this apparent ordering of memory access before register writeback in the intra-instruction
pseudocode is misleading: later instructions dependent on Xn or RA can go ahead as soon as
the register dataflow is resolved.
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Satisfying reads by write forwarding
As in x86, threads can see their own writes “early”:

SB+rfi-addrs Allowed

STR X0,[X1]Wx=1a:LDR X2,[X1]

Rx=1b:EOR X3,X2,X2LDR X4,[X5,X3]

Ry=0c:

Thread 0

addr

STR X0,[X1]Wy=1d:LDR X2,[X1]

Ry=1e:EOR X3,X2,X2LDR X4,[X5,X3]

Rx=0f:

Thread 1

addr

rf rf

rf

rf

fr

fr

MP+rfi-addr+addr Allowed

MOV X0,#1STR X0,[X1]Wx=1a:LDR X2,[X1]

Rx=1b:EOR X3,X2,X2MOV X4,#1STR X4,[X5,X3]

Wy=1c:

Thread 0

po

addr

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 1

addr
rf

rf rf

fr

On the left is a variant of the SB+rfi-pos test we saw for x86, but with addr to prevent
out-of-order satisfaction of the reads.

On the right is an essentially equivalent MP variant.

They both show write(s) visible to same-thread po-later reads before becoming visible
to the other thread.Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 307



Satisfying reads by write forwarding on a speculative branch: PPOCA

PPOCA Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

PPOAA Forbidden

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

addr

rf

rf

rf

fr

In PPOCA, write e can be forwarded to f, resolving the address dependency to g and
letting it be satisfied, before read d is (finally) satisfied and its control dependency is
resolved.

Writes on speculatively executed branches are not visible to other threads, but can be
forwarded to po-later reads on the same thread. Microarchitecturally: they can be read
from an L1 store queue.

(PPOCA and PPOAA are nicknames for MP+fen+ctrl-rfi-addr and MP+fen+addr-rfi-addr)
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Satisfying reads before an unknown-address po-previous write: restarts
MP+fen+addr-po Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X6]

Rx=0f:

Thread 1

addr

po

rf

rffr

A microarchitecture that satisfies a load early, out-of-order, may later discover that this
violates coherence, and have to restart the load – and any po-successors that were
affected by it. (Speculative execution is not just speculation past branches.)

Here the Thread 0 writes are kept in order by fen. For Thread 1 f to read 0 early (but
in an execution where d sees 1), i.e. for f to be satisfied before those writes propagate
to Thread 1, f must be able to be restarted, in case resolving the address dependency
revealed that e was to the same address as f, which would be a coherence violation.
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Committing writes before an unknown-address po-previous write
AKA “Might-access-same-address”

LB+addrs+WW Forbidden

LDR W0,[X1]Rx=1a:EOR W2,W0,W0MOV W3,#1STR W3,[X4,W2,SXTW]

Wy=1b:MOV W5,#1STR W5,[X6]

Wz=1c:

Thread 0

addr

po

LDR W0,[X1]Rz=1d:EOR W2,W0,W0MOV W3,#1STR W3,[X4,W2,SXTW]

Wa=1e:MOV W5,#1STR W5,[X6]

Wx=1f:

Thread 1

addr

po

rf

rf

LB+datas+WW Allowed

LDR W0,[X1]Rx=1a:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

Wy=1b:MOV W4,#1STR W4,[X5]

Wz=1c:

Thread 0

data

po

LDR W0,[X1]Rz=1d:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

Wa=1e:MOV W4,#1STR W4,[X5]

Wx=1f:

Thread 1

data

po

rf

rf

Address and data dependencies to a write both prevent the write being visible to other threads
before the dependent value is fixed. But they are not completely identical: the existence of a
address dependency to a write might mean that another program-order-later write cannot be
propagated to another thread until it is known that the first write is not to the same address,
otherwise there would be a coherence violation, whereas the existence of a data dependency to
a write has no such effect on program-order-later writes that are already known to be to
different addresses.

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+addrs+WW Forbid 0/30G 0/8.7G 0/208G 0/16G 0/23G 0/18G 0/2.1G
LB+datas+WW Allow 0/30G 0/9.2G 0/208G 15k/6.3G 224/854M 0/18G 23/1.9G
LB+addrs+RW Forbid 0/3.6G 0/6.0G 0/128G 0/13G 0/23G 0/16G —Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 310



Intra-instruction ordering of address and data inputs to a write
To let the later writes (c,f) in LB+datas+WW be propagated early, the addresses of
the intervening writes (b,e) have to be resolvable even while there are still unresolved
data dependencies to them.
If one interprets the intra-instruction pseudocode sequentially, that means the reads of
registers that feed into the address have to precede those that feed into the data. (And
there’s no writeback into the data registers, so this is fine w.rt. that too.)
STR <Xt>,[<Xn|SP>],#<simm> STR <Xt>,[<Xn|SP>,#<simm>]!

if n == 31 then
CheckSPAlignment(); address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 311



Satisfying reads from the same write: RSW and RDW
Coherence suggests that reads from the same address must be satisified in program
order, but if they read from the same write event, that’s not true. In RSW, f can be
satisfied before e, resolving the address dependency to g and letting it be satisfied
before d reads from c.

RSW Allowed

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rz=0e:LDR X5,[X4]

Rz=0f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

po

addr

rf

rf

rf

fr
rf

RDW Forbidden

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rz=0e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

po

addr

STR X0,[X1]Wz=1h:
Thread 2

rf

rf

rf

rf

fr

fr

Microarchitecturally: the reads can in general be satisfied out-of-order, with coherence
hazard checking that examines whether the x cache line changes between the two reads.
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Making a write visible to another thread, following write subsumption
Conversely, one might think that, given two po-adjacent writes to the same address, the
first could be discarded, along with any dependencies into it, as it is
coherence-subsumed by the second. That would permit the following:

S+fen+data-wsi Forbidden

STR X0,[X1]Wx=3a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1e:STR X4,[X3]

Wx=2f:

Thread 1

data
co

co

rf
co

However, the Armv8-A and RISC-V architectures forbid this, as does our Power model
and the Power architectural intent. Note that there is a subexecution S+fen+data,
which all forbid, so allowing S+fen+data-wsi would require a more refined notion of
coherence.
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Non-atomic read satisfaction
MP+dmb.sy+fri-rfi-ctrlisb Various

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

dmb sy

LDR X0,[X1]Ry=1d:STR X2,[X1]

Wy=2e:LDR X3,[X1]

Ry=2f:CBNZ X3,LC00ISBLDR X4,[X5]

Rx=0h:

Thread 1

co

rf

rf

rf

fr

fr

ctrl+isb

In our original PLDI11 [8] model for Power, to straightforwardly maintain coherence, the read d, write
e, read f, isync (the Power analogue of the isb in the Arm version shown), and read h all have to
commit in program order. However, for Arm, this behaviour was observable on at least one
implementation, the Qualcomm APQ 8060, and the Arm architectural intent was determined to be
that it was allowed.

Microarchitecturally, one can explain the behaviour in two ways. In the first, read d could be issued
and then maintained in coherence order w.r.t. write e by keeping read requests and writes ordered in a
storage hierarchy, letting e commit before the read is satisfied and hence letting f and h commit, still
before d is satisfied. In the second, as write e is independent of read d in every respect except
coherence, one can allow the thread to forward it to f and hence again commit the later instructions.Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 314



Further Power non-MCA subtleties
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Coherence and lwsync
Z6.3+lwsync+lwsync+addr Allowed

Test Z6.3+lwsync+lwsync+addr

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
co

lwsync
rf

addrrf

This POWER example (blw-w-006 in [8]) shows that the transitive closure of lwsync and coherence does not
guarantee ordering of write pairs. Operationally, the fact that the storage subsystem commits to b being before
c in the coherence order has no effect on the order in which writes a and d propagate to Thread 2. Thread 1
does not read from either Thread 0 write, so they need not be sent to Thread 1, so no cumulativity is in play. In
other words, coherence edges do not bring writes into the “Group A” of a POWER barrier. Microarchitecturally,
coherence can be established late.

Replacing both lwsyncs by syncs forbids this behaviour. In the model, it would require a cycle in
abstract-machine execution time, from the point at which a propagates to its last thread, to the Thread 0 sync
ack, to the b write accept, to c propagating to Thread 0, to c propagating to its last thread, to the Thread 1
sync ack, to the d write accept, to d propagating to Thread 2, to e being satisfied, to f being satisfied, to a
propagating to Thread 2, to a propagating to its last thread.

Armv8-A and RISC-V are (now) MCA (and do not have an analogue of lwsync), so there is no analogue of this
example there.
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Unobservable interconnect topology

IRIW+addrs-twice Various

Test IRIW+addrs-twice

Thread 0

a: W[x]=1 d: R[x]=1

c: W[z]=1

Thread 1

e: R[y]=0

f: W[w]=1 m: R[w]=1

Thread 2

g: W[y]=1 k: R[y]=1

j: R[w]=0

Thread 3

l: R[x]=0

n: R[z]=0

i: R[z]=1

rf
addr

po

rf

addr

addr

po

addr

rf

rf

rf

rf

po po

rf

rf

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread 2 Thread 3Thread 0 Thread 1

A simple microarchitectural explanation for IRIW+addrs would be a storage hierarchy in which Threads 0 and 1
are “neighbours”, able to see each other’s writes before the other threads do, and similarly Threads 2 and 3. If
that were the only reason why IRIW+addrs were allowed, then one could only observe the specified behaviour
for some specific assignments of the threads of the test to the hardware threads of the implementation (some
specific choices of thread affinity). That would mean that two consecutive instances of IRIW+addrs, with
substantially different assignments of test threads to hardware threads, could never be observed.

In fact, however, on some POWER implementations the cache protocol alone suffices to give the observed
behaviour, symmetrically. Armv8-A and RISC-V are MCA, so no variants of IRIW+addrs are allowed there.

It is moreover highly desirable for an architecture specification to be symmetric w.r.t. permutation of threads.
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Power eieio

MP+eieio+addr Forbidden

li r1,1stw r1,0(r2)Wx=1a:eieioli r3,1stw r3,0(r4)

Wy=1c:

Thread 0

eieio

lwz r1,0(r2)Ry=1d:xor r3,r1,r1lwzx r4,r3,r5

Rx=0e:

Thread 1

addr
rf

rf

fr

WRC+eieio+addr Allowed

li r1,1stw r1,0(r2)Wx=1a:
Thread 0

lwz r1,0(r2)Rx=1b:eieioli r3,1stw r3,0(r4)

Wy=1d:

Thread 1

eieio

lwz r1,0(r2)Ry=1e:xor r3,r1,r1lwzx r4,r3,r5

Rx=0f:

Thread 2

addr

rf

rf
rf

fr

The Power eieio barrier (Enforce In-order Execution of I/O) orders pairs of
same-thread writes as far as other threads are concerned, forbidding MP+eieio+addr.
However, notwithstanding the architecture’s mention of cumulativity [33, p.875], it does
not prevent WRC+eieio+addr, because eieio does not order reads w.r.t. writes.

eieio also has other effects, e.g. for ordering for memory-mapped I/O, that are outside
our scope here.
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More features
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More features

▶ Armv8-A release/acquire accesses
▶ Load-linked/store-conditional (LL/SC)
▶ Atomics
▶ Mixed-size

For these, we’ll introduce the basics, as they’re important for concurrent programming,
but we don’t have time to be complete.
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Armv8-A release/acquire accesses
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Armv8-A release/acquire accesses

MP+popl+poap Forbidden

STR X0,[X1]Wx=1a:STLR X0,[X2]

Wrel y=1b:

Thread 0

po

LDAR X0,[X1]Racq y=1c:LDR X2,[X3]

Rx=0d:

Thread 1

porf

rf

fr

STR X0,[X1] //a
STLR X0,[X2]//b

Thread 0
LDAR X0,[X1]//c
LDR X2,[X3] //d

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+popl+poap AArch64

Forbidden: 1:X0=1; 1:X2=0;

Armv8-A added store-release STLR and load-acquire LDAR instructions, which let
message-passing idioms be expressed more directly, without needing barriers or
dependencies.

In the (other-)MCA setting, their semantics is reasonably straightforward:
▶ a store-release keeps all po-before accesses before it, and
▶ a load-acquire keeps all po-after accesses after it.

(the above test only illustrates writes before a write-release and reads after a read-acquire, not all their properties)

Additionally, any po-related store-release and load-acquire are kept in that order.
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Armv8-A acquirePC accesses

Armv8.3-A added “RCpc” variants of load-acquire, LDAPR, which lack the last property.

Compare with C/C++11 SC atomics and release/acquire atomics.
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Armv8-A release/acquire accesses

See [19, Pulte, Flur, Deacon, et al.] for more details, and [17, Flur et al.] for discussion
of Armv8 release/acquire in the previous non-MCA architecture

Together with the Arm architecture reference manual [32, Ch.B2 The AArch64
Application Level Memory Model]
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Load-linked/store-conditional (LL/SC)
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Load-linked/store-conditional (LL/SC)

LL/SC instructions, originating as a RISC alternative to compare-and-swap (CAS),
provide simple optimistic concurrency – roughly, optimistic transactions on single
locations.

Armv8-A load exclusive / store exclusive LDXR / STXR
Power load and reserve / store conditional lwarx / stwcx.
RISC-V load-reserved / store-conditional LR.D / SC.D
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LL/SC atomic increment
Here are two concurrent increments of x, expressed with exclusives.

llsc-inc Forbidden

LDXR X5,[X1]Rexc x=0a:ADD X5,X5,#1STXR W6,X5,[X1]

Wexc x=1b:

Thread 0

data

LDXR X5,[X1]Rexc x=0c:ADD X5,X5,#1STXR W6,X5,[X1]

Wexc x=1d:

Thread 1

data
co

rf rf

fr fr
fr

fr

LDXR X5,[X1] //a
ADD X5,X5,#1
STXR W6,X5,[X1]//b

Thread 0
LDXR X5,[X1] //c
ADD X5,X5,#1
STXR W6,X5,[X1]//d

Thread 1

Initial state: 0:X1=x; 1:X1=x; x=0;
llsc-inc AArch64

Forbidden: 0:X6=0; 1:X6=0; x=1;

Exclusives should be used in matched pairs: a load-exclusive followed by a store exclusive to
the same address, with some computation in between. The store exclusive can either:
▶ succeed, if the write can become the coherence immediate successor of the write the load

read from (in this case the write is done and the success is indicated by a flag value), or
▶ fail, if that is not possible, e.g. because some other thread has already written a coherence

successor, or for various other reasons. In this case the write is not done and the failure is
indicated by a different flag value.

Often they are used within a loop, retrying on failure.
Contents 5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC) 327



LL/SC – a few key facts:

Exclusives are not implicitly also barriers – load exclusives can be satisfied out of order and
speculatively, though not until after all po-previous load exclusives and store exclusives are
committed

...though Arm provide various combinations of exclusives and their release/acquire semantics

LL/SC is typically to a reservation granule size, not a byte address (architecturally or
implementation-defined; microarchitecturally perhaps the store buffer or cache line size)

A store exclusive can succeed even if there are outstanding writes by different threads, so long
as those can become coherence-later.

Arm, Power, and RISC-V differ w.r.t. what one can do within an exclusive pair, and what
progress guarantees one gets.

Can a store exclusive commit to succeeding early? Likewise for an atomic RMW?
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LL/SC – more details:

See [12, Sarkar et al.] for Power load-reserve/store-conditional, and [19, Pulte, Flur,
Deacon, et al.] (especially its supplementary material
https://www.cl.cam.ac.uk/~pes20/armv8-mca/), and [17, Flur et al.] for Armv8-A
load-exclusive/store-exclusives.

Together with the vendor manuals:
▶ Power: [33, §1.7.4 Atomic Update]
▶ Arm: [32, Ch.B2 The AArch64 Application Level Memory Model]
▶ RISC-V: [34, Ch.8, “A” Standard Extension for Atomic Instructions, Ch.14

RVWMO Memory Consistency Model, App.A RVWMO Explanatory Material,
App.B Formal Memory Model Specifications]
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Atomics
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Atomics

Armv8-A (in newer versions) and RISC-V also provide various atomic read-modify-write
instructions

e.g. for Armv8-A: add, maximum, exclusive or, bit set, bit clear, swap, compare and
swap
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Mixed-size
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Single-copy atomicity

Each architecture guarantees that certain sufficiently aligned loads and stores give rise
to single single-copy-atomic reads and writes, where:

A single-copy-atomic read that reads a byte from a single-copy-atomic write must, for
all other bytes of the common footprint, read either from that write or from a
coherence successor thereof.
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Misaligned accesses

Other, “misaligned” accesses architecturally give rise to multiple single-byte reads and
writes, with no implicit ordering among them.

(In typical implementations, they might be split at cache-line or store-buffer-size
boundaries but not necessarily into single bytes – more intentional architectural
looseness)
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Mixed-size: just a taste

MP+si+po Allowed

STRH W1,[X0]Wx=4368a:
Thread 0

LDRB W1,[X0,#1]Rx+1=17b:LDRB W2,[X0]

Rx=0c:

Thread 1

po

rfx[1]

rfx[0]frx[0]

STRH W1,[X0]//a

Thread 0
LDRB W1,[X0,#1]//b
LDRB W2,[X0] //c

Thread 1

Initial state: 0:X1=0x1110; 0:X0=x;

1:X0=x; x=0x0;

MP+si+po AArch64

Allowed: 1:X1=0x11; 1:X2=0x0;

Contents 5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size 335



Mixed-size: further details

See [18, Flur et al.] for more details for Power and Arm mixed-size.
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ISA semantics
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Architecture again

▶ Concurrency
Subtle, and historically poorly specified, but small

Operational models in executable pure functional code
(rmem, in Lem)

Axiomatic models in relational algebra
(herd and isla-axiomatic)

▶ Instruction-set architecture (ISA)
Relatively straightforward in detail, but large

in Sail, a custom language for ISA specification

integrated with rmem and isla-axiomatic concurrency
models
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Architecture again
Instruction-set architecture (ISA)

▶ ARMv8-A: Historically only pseudocode. Arm transitioned internally to
mechanised ASL [38, 39, Reid et al.]. We automatically translate that
ASL to Sail:

▶ RISC-V: Historically only text. We hand-wrote a Sail specification, now
adopted by RISC-V Foundation.

▶ Power: Only pseudocode. We semi-automatically translated a fragment
from an XML export of the Framemaker sources to Sail

▶ x86: Only pseudocode. We hand-wrote a fragment in Sail
(and Patrick Taylor semi-automatically translated the Goel et al. ACL2
model)

(the Power model and the first x86 model are in an old version of Sail)
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Sail

Custom language for expressing the sequential behaviour of instructions (including
decode, address translation, etc.) [20, Armstrong et al.],[16, Gray et al.]

▶ Imperative first-order language for ISA specification
▶ Lightweight dependent types for bitvectors (checked using Z3)
▶ Very simple semantics; good for analysis
▶ Behaviour of memory actions left to external memory model

... so can plug into tools for relaxed-memory concurrency
▶ Open-source public tooling

From Sail, we generate multiple artifacts...
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Sail ARMv8-A
Includes full ISA: Floating-point, address translation & page-table walks, synchronous
exceptions, hypervisor mode, crypto instructions, vector instructions (NEON and SVE),
memory partitioning and monitoring, pointer authentication, etc. . .

Such a complete authoritative architecture description not previously publicly available
for formal reasoning

ARMv8.5-A Sail model now available (125 KLoS), and the generated prover definitions

▶ Is it correct? Sail ARMv8.3-A tested on Arm-internal Architecture Validation Suite
[Reid]; passed 99.85% of 15 400 tests as compared with Arm ASL. Boots Linux
and Hafnium.

▶ Is it usable for sequential testing? Sail-generated v8.5-A emulator 200 KIPS
▶ Is it usable for proof? Proved characterisation of address translation, in Isabelle

[Bauereiss] (also found some small bugs in ASL)
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Sail RISC-V

Historically only text. We hand-wrote a Sail specification, now adopted by RISC-V
International as the official formal model.
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Integrating ISA and axiomatic models
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Arm Concurrency: isla-axiomatic tool, for axiomatic models [?]
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Armv8-A/RISC-V operational model
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For more details, see [19, Pulte, Flur, Deacon, et al.] (especially its supplementary
material https://www.cl.cam.ac.uk/~pes20/armv8-mca/), together with [20, 18, 17, 12, 8]

Together with the RISC-V manual:
▶ RISC-V: [34, Ch.14 RVWMO Memory Consistency Model, App.A RVWMO

Explanatory Material, App.B Formal Memory Model Specifications]
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As before: We have to understand just enough about hardware to explain and define
the envelopes of programmer-visible behaviour that comprise the architectures.

x86
Programmers can assume instructions execute in program order, but with FIFO store
buffer.

ARM, RISC-V, Power
By default, instructions can observably execute out-of-order and speculatively, except as
forbidden by coherence, dependencies, barriers.
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As with x86-TSO, structure the model into
▶ Thread semantics
▶ Storage/memory semantics

Model is integrated with Sail ISA semantics and executable in rmem.
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Thread semantics: out-of-order, speculative execution abstractly
Our thread semantics has to account for out-of-order and speculative execution.

finished
in progress

▶ instructions can be fetched before predecessors finished
▶ instructions independently make progress
▶ branch speculation allows fetching successors of branches
▶ multiple potential successors can be explored

NB actual hardware implementations can and do speculate even more, e.g. beyond
strong barriers, so long as it is not observable
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Memory/storage semantics

We could have an elaborate storage semantics, capturing caching effects of processors.

But it turns out, for Armv8 and RISC-V: the observable relaxed behaviour is already
explainable by an out-of-order (and speculative) thread semantics.
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Operational model

▶ each thread has a tree of instruction instances;
▶ no register state;
▶ threads execute in parallel above a flat memory state:

mapping from addresses to write requests

▶ for Power: need more complicated memory state to handle non-MCA

Thread Subsystem Storage Subsystem

0: Write 0x00000000

1: Write 0x00000000

2: Write 0x00000000
. . .

read/write

responses

(For now: plain memory reads, writes, strong barriers. All memory accesses same size.)
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Next: model transitions.

We will look at the Arm version of the model.
The RISC-V model is the same, except for model features not covered here.
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Fetch instruction instance

i i ′

Condition:
A possible program-order successor i ′ of instruction instance i can be fetched from
address loc and decoded if:

1. it has not already been fetched as successor of i
2. there is a decodable instruction in program memory at loc ; and
3. loc is a possible next fetch address for i :

3.1 for a non-branch/jump instruction, the successor instruction address (i.program
loc+4);

3.2 for an instruction that has performed a write to the program counter register (PC),
the value that was written;

3.3 for a conditional branch, either the successor address or the branch target address; or
3.4 . . . .
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Fetch instruction instance

i i ′

Action: construct a freshly initialised instruction instance i′ for the instruction in
program memory at loc and add i′ to the thread’s instruction tree as a successor of i.
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Example: speculative fetching

MP+fen+ctrl
(with “real” control dependency)

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00LDR X2,[X3]

Rx=0e:

Thread 1

ctrl
rf

rf

fr

Allowed. The barrier orders the writes, but the control dependency is weak: e can be
speculatively fetched and satisfied early (rmem web UI).
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Instruction semantics (ignore the details)

How do instructions work?

Each instruction is specified as an imperative Sail program.
For example:

function clause execute ( LoadRegister(n,t,m,acctype,memop, ...) ) = {
(bit[64]) offset := ExtendReg(m, extend_type, shift);
(bit[64]) address := 0;
(bit[’D]) data := 0; (* some local definitions *)
...
if n == 31 then { ... } else
address := rX(n); (* read the address register *)

if ~(postindex) then (* some bitvector arithmetic *)
address := address + offset;

if memop == MemOp_STORE then (* announce the address *)
wMem_Addr(address, datasize quot 8, acctype, false);

...

switch memop {
case MemOp_STORE -> {
if rt_unknown then

...
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Sail outcomes (ignore the details)

The Sail code communicates with the concurrency model via outcomes.

type outcome =
| Done (* Sail execution ended *)
| Internal of .. * outcome (* Sail internal step *)
| Read_mem of read_kind * addr * size * (mem_val -> outcome) (* read memory *)
| Write_ea of write_kind * addr * size * outcome (* announce write address *)
| Write_memv of mem_val * outcome (* write memory *)
| Read_reg of reg * (reg_val -> outcome) (* read register *)
| Write_reg of reg * reg_val * outcome (* write register *)
| Barrier of barrier_kind * outcome (* barrier effect *)
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Instruction instance states

each instruction instance has:
▶ instruction kind: load, store, barrier, branch, . . .
▶ status: finished, committed (for stores), . . .
▶ mem reads, mem writes: memory accesses so far
▶ reg reads: register reads so far, including:

read sources, the instruction instances whose register write the read was from
▶ reg writes: register writes so far, including:

write deps, the register reads the register write depended on
▶ regs in, regs out: the statically known register footprint
▶ . . .
▶ pseudocode state: the Sail state
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Sail pseudocode states (ignore the details)

type pseudocode_state =
| Plain of outcome
| Pending_memory_read of read_continuation
| Pending_memory_write of write_continuation

type outcome =
| Done (* Sail execution ended *)
| Internal of .. * outcome (* Sail internal step *)
| Read_mem of read_kind * addr * size * (mem_val -> outcome) (* read memory *)
| Write_ea of write_kind * addr * size * outcome (* announce write address *)
| Write_memv of mem_val * outcome (* write memory *)
| Read_reg of reg * (reg_val -> outcome) (* read register *)
| Write_reg of reg * reg_val * outcome (* write register *)
| Barrier of barrier_kind * outcome (* barrier effect *)
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In the following:
▶ (CO) coherence
▶ (BO) ordering from barriers
▶ (DO) ordering from dependencies
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Instruction life cycle: barrier instructions

▶ fetch and decode
▶ commit barrier
▶ finish
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Commit Barrier

Condition:
A barrier instruction i in state Plain (Barrier(barrier kind, next state′)) can be
committed if:

1. all po-previous conditional branch instructions are finished;
2. (BO) if i is a dmb sy instruction, all po-previous memory access instructions and

barriers are finished.
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Commit Barrier

Action:
1. update the state of i to Plain next state′.
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Barrier ordering

▶ so: a dmb barrier can only commit when all preceding memory accesses are finished
▶ a barrier commits before it finishes
▶ also (not seen yet): reads can only satisfy and writes can only propagate when

preceding dmb barriers are finished
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Barrier ordering

MP+fens

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:DMB SYLDR X2,[X3]

Rx=0f:

Thread 1

fen
rf

rf

fr

Forbidden. c can only propagate when the dmb is finished, the dmb can only finish
when committed, and only commit when a is propagated; similarly, the dmb on Thread
1 forces f to satisfy after d .
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Instruction life cycle: non-load/store/barrier instructions

for instance: ADD, branch, etc.
▶ fetch and decode
▶ register reads
▶ internal computation; just runs a Sail step (omitted)
▶ register writes
▶ finish
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Register write

Condition:
An instruction instance i in state Plain (Write reg(reg name, reg value, next state′))
can do the register write.
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Register write

Action:
1. record reg name with reg value and write deps in i.reg writes; and
2. update the state of i to Plain next state′.

where write deps is the set of all read sources from i.reg reads . . .
write deps: i.e. the sources all register reads the instruction has done so far
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Register read

(remember: there is no ordinary register state in the thread state)

Condition:
An instruction instance i in state Plain (Read reg(reg name, read cont)) can do a
register read if:
▶ (DO) the most recent preceding instruction instance i ′ that will write the register

has done the expected register write.

i ′

i

does not write reg name
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Register read

Let read source be the write to reg name by the most recent instruction instance i ′

that will write to the register, if any. If there is none, the source is the initial value. Let
reg value be its value.
Action:

1. Record reg name, read source, and reg value in i.reg reads; and
2. update the state of i to Plain (read cont(reg value)).

i ′

i

does not write reg name
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Example: address dependencies

MP+fen+addr

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 1

addr
rf

rf

fr

Forbidden. The barrier orders the writes, the address dependency prevents executing e
before d (rmem web UI).
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Instruction life cycle: loads

▶ fetch and decode
▶ register reads
▶ internal computation
▶ initiate read; when the address is available, constructs a read request (omitted)
▶ satisfy read
▶ complete load; hands the read value to the Sail execution (omitted)
▶ register writes
▶ finish
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Satisfy read in memory

Condition:
A load instruction instance i in state Pending mem reads read cont with unsatisfied
read request r in i.mem reads can satisfy r from memory if the read-request-condition
predicate holds. This is if:

1. (BO) all po-previous dmb sy instructions are finished.
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Satisfy read in memory

Let w be the write in memory to r ’s address. Action:
1. update r to indicate that it was satisfied by w ; and
2. (CO) restart any speculative instructions which have violated coherence as a result

of this.
I.e. for every non-finished po-successor instruction i ′ of i with a same-address read
request r′, if r ′ was satisfied from a write w ′ ̸= w that is not from a po-successor
of i , restart i′ and its data-flow dependents.
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Let w be the write in memory to r ’s address. Action:
1. update r to indicate that it was satisfied by w ; and
2. (CO) restart any speculative instructions which have violated coherence as a result

of this.
I.e. for every non-finished po-successor instruction i ′ of i with a same-address read
request r′, if r ′ was satisfied from a write w ′ ̸= w that is not from a po-successor
of i , restart i′ and its data-flow dependents.

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

po

rf

rf
fr

Think
▶ r = b, r ′ = c , w = a

▶ b is about to be satisfied by a

▶ c already satisfied from initial write

Forbidden. If c is satisfied from the initial write x = 0 before b is satisfied, once b
reads from a it restarts c (rmem web UI).
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Finish instruction

Condition:
A non-finished instruction i in state Plain (Done) can be finished if:

1. (CO) i has fully determined data;
2. all po-previous conditional branches are finished; and
3. if i is a load instruction:

3.1 (BO) all po-previous dmb sy instructions are finished;
3.2 (CO) it is guaranteed that the values read by the read requests of i will not cause

coherence violations, i.e. . . .
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Finish instruction

Action:
1. record the instruction as finished, i.e., set finished to true; and
2. if i is a branch instruction, discard any untaken path of execution. I.e., remove any

(non-finished) instructions that are not reachable by the branch taken in
instruction tree.
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Example: finishing loads and discarding branches

MP+fen+ctrl

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00LDR X2,[X3]

Rx=0e:

Thread 1

ctrl
rf

rf

fr

Speculatively executing the load past the conditional branch does not allow finishing
the load until the branch is determined. Finishing the branch discards untaken branches
(rmem web UI).
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Instruction life cycle: stores

▶ fetch and decode
▶ register reads and internal computation
▶ initiate write; when the address is available, constructs a write request without

value (omitted)
▶ register reads and internal computation
▶ instantiate write; when the value is available, updates the write request’s value

(omitted)
▶ commit and propagate
▶ complete store; just resumes the Sail execution (omitted)
▶ finish
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Commit and propagate store
Commit Condition:
For an uncommitted store instruction i in state Pending mem writes write cont, i can
commit if:

1. (CO) i has fully determined data (i.e., the register reads cannot change);
2. all po-previous conditional branch instructions are finished;
3. (BO) all po-previous dmb sy instructions are finished;
4. (CO) all po-previous memory access instructions have initiated and have a fully

determined footprint
Propagate Condition:
For an instruction i in state Pending mem writes write cont with unpropagated write,
w in i.mem writes, the write can be propagated if:

1. (CO) all memory writes of po-previous store instructions to the same address have
already propagated

2. (CO) all read requests of po-previous load instructions to the same address have
already been satisfied, and the load instruction is non-restartable.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 387



Commit and propagate write

Commit Action: record i as committed.
Propagate Action:

1. record w as propagated; and
2. update the memory with w ; and
3. (CO) restart any speculative instructions which have violated coherence as a result

of this.
I.e., for every non-finished instruction i′ po-after i with read request r′ that was
satisfied from a write w′ ̸= w to the same address, if w′ is not from a po-successor
of i,restart i′ and its data-flow dependents.
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Commit Action: record i as committed.
Propagate Action:

1. record w as propagated; and
2. update the memory with w ; and
3. (CO) restart any speculative instructions which have violated coherence as a result

of this.
I.e., for every non-finished instruction i′ po-after i with read request r′ that was
satisfied from a write w′ ̸= w to the same address, if w′ is not from a po-successor
of i,restart i′ and its data-flow dependents.

CoWR

STR X0,[X1]Wx=1a:
Thread 0

STR X0,[X1]Wx=2b:LDR X2,[X1]

Rx=1c:

Thread 1

po

co

rf
fr

Think
▶ w = a, r ′ = b, w ′ = c

▶ a is about to propagate
▶ b was already satisfied by c

Forbidden. If b is satisfied from c before a is propagated, a’s propagation restarts b.
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Write forwarding on a speculative branch

PPOCA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

Allowed. But with just the previous rules we cannot explain this in the model.
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Write forwarding on a speculative branch

PPOCA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

Allowed. But with just the previous rules we cannot explain this in the model.
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Satisfy read by forwarding

Condition:
A load instruction instance i in state Pending mem reads read cont with unsatisfied
read request r in i.mem reads can satisfy r by forwarding an unpropagated write by a
program-order earlier store instruction instance, if the read-request-condition predicate
holds. This is if:

1. (BO) all po-previous dmb sy instructions are finished.
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Satisfy read by forwarding
Let w be the most-recent write from a store instruction instance i ′ po-before i , to the
address of r, and which is not superseded by an intervening store that has been
propagated or read from by this thread. That last condition requires:
▶ (CO) that there is no store instruction po-between i and i′ with a same-address

write, and
▶ (CO) that there is no load instruction po-between i and i′ that was satisfied by a

same-address write from a different thread.
Action: Apply the action of Satisfy read in memory.

i ′

i

no same-address write or
same-address read from different thread
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Write forwarding on a speculative branch

PPOCA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

PPOCA allowed. (rmem web UI)
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Write forwarding on a speculative branch

PPOCA PPOAA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

addr

rf

rf

rf

fr

PPOCA allowed. (rmem web UI)
PPOAA forbidden.
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Armv8-A/RISC-V axiomatic model
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For more details, see [19, Pulte, Flur, Deacon, et al.] (especially its supplementary
material https://www.cl.cam.ac.uk/~pes20/armv8-mca/), together with [15, 3].

Together with the vendor manuals:
▶ Arm: [32, Ch.B2 The AArch64 Application Level Memory Model]
▶ RISC-V: [34, Ch.8, “A” Standard Extension for Atomic Instructions, Ch.14

RVWMO Memory Consistency Model, App.A RVWMO Explanatory Material,
App.B Formal Memory Model Specifications]
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(Again) By default, instructions can observably execute out-of-order and
speculatively, except as forbidden by coherence, dependencies, barriers.

Axiomatic model already allows “out-of-order” and speculative execution by default –
everything is allowed unless ruled out by the axioms.

We will look at the Arm version of the model.
The RISC-V model is the same, except for model features not covered here.
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Official axiomatic model

(without weaker barriers, release-/acquire-, and load-/store-exclusive instructions)

acyclic pos | fr | co | rf (* coherence check *)

let obs = rfe | fre | coe (* Observed-by *)

let dob = addr | data (* Dependency-ordered-before *)

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi (* Think ‘coi’ (globally equivalent) *)

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po (* Barrier-ordered-before *)

...

let ob = obs | dob | aob | bob (* Ordered-before *)

acyclic ob (* external check *)
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Executable axiomatic models

Axiomatic model executable in:
▶ Herd [Alglave + Maranget]:

http://diy.inria.fr/doc/herd.html

http://diy.inria.fr/www

▶ Isla [Armstrong], with integrated Sail semantics:
https://isla-axiomatic.cl.cam.ac.uk/
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Example: address dependencies

MP+fen+addr

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 1

addr
rfe

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Forbidden. Each edge of the cycle is included in ob.
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Example: speculative execution

MP+fen+ctrl

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00LDR X2,[X3]

Rx=0e:

Thread 1

ctrl
rfe

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Allowed. The edges form a cycle, but ctrl;[R] to read events is not in ob
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Write forwarding from an unknown-address write

PPOAA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

addr

rfe

rfi

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Forbidden. ob includes addr;rfi: forwarding is only possible when the address is
determined
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Write forwarding on a speculative path

PPOCA

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rfe

rfi

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Allowed. Forwarding is allowed: rfi (and ctrl;rfi and rfi;addr) not in ob

(compare x86-TSO)
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Validation
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lots...
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Desirable properties of an architecture specification

1. Sound with respect to current hardware
2. Sound with respect to future hardware
3. Opaque with respect to hardware microarchitecture implementation detail
4. Complete with respect to hardware?
5. Strong enough for software
6. Unambiguous / precise
7. Executable as a test oracle
8. Incrementally executable
9. Clear

10. Authoritative?
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Programming language concurrency
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Introduction

Contents 6.1 Programming language concurrency: Introduction 409



For a higher-level programming language that provides some concurrent shared-memory
abstraction, what semantics should (or can) it have?

NB: this is an open problem

Despite decades of research, we do not have a good semantics for any
mainstream concurrent programming language that supports high-performance
shared-memory concurrency.

(if you don’t need high performance, you wouldn’t be writing shared-memory
concurrent code in the first place)
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For a higher-level programming language that provides some concurrent shared-memory
abstraction, what semantics should (or can) it have?

NB: this is an open problem

Despite decades of research, we do not have a good semantics for any
mainstream concurrent programming language that supports high-performance
shared-memory concurrency.

(if you don’t need high performance, you wouldn’t be writing shared-memory
concurrent code in the first place)
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A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

...that is efficiently implementable, w.r.t. both:

▶ the cost of providing whatever synchronisation the language-level model mandates
above those various hardware models

▶ the impact of providing the language-level model on existing compiler optimisations
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A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

...that is efficiently implementable

, w.r.t. both:

▶ the cost of providing whatever synchronisation the language-level model mandates
above those various hardware models

▶ the impact of providing the language-level model on existing compiler optimisations
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A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

...that is efficiently implementable, w.r.t. both:

▶ the cost of providing whatever synchronisation the language-level model mandates
above those various hardware models

▶ the impact of providing the language-level model on existing compiler optimisations
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In other words...

At the language level, observable relaxed-memory behaviour arises from the
combination of:

1. the hardware optimisations we saw before, and

2. a diverse collection of compiler optimisations,

both of which have been developed over many decades to optimise while preserving
sequential behaviour, but which have substantial observable consequences for
concurrent behaviour
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Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 Thread 2
x = 1

y = 1 if (y == 1)

print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?
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Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 Thread 2
x = 1 int r1 = x

y = 1 if (y == 1)

print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there’s some other read of x in the context...
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Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 Thread 2
x = 1 int r1 = x

y = 1 if (y == 1)

print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there’s some other read of x in the context...
then common subexpression elimination can rewrite

print x =⇒ print r1
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Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 Thread 2
x = 1 int r1 = x

y = 1 if (y == 1)

print r1

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there’s some other read of x in the context...
then common subexpression elimination can rewrite

print x =⇒ print r1

So the compiled program can print 0
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Here ARM64 gcc 8.2 reorders the thread1 loads, even without that control dependency.

Compiler Explorer (short link) (full link) NB: these are MP-shaped, but it’s not legal C to run these in parallel!
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Compiler analysis and transform passes

LLVM GCC

Analysis passes
-aa-eval: Exhaustive Alias Analysis Precision Evaluator
-basic-aa: Basic Alias Analysis (stateless AA impl)
-basiccg: Basic CallGraph Construction
-count-aa: Count Alias Analysis Query Responses
-da: Dependence Analysis
-debug-aa: AA use debugger
-domfrontier: Dominance Frontier Construction
-domtree: Dominator Tree Construction
-dot-callgraph: Print Call Graph to “dot” file
-dot-cfg: Print CFG of function to “dot” file
-dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)
-dot-dom: Print dominance tree of function to “dot” file
-dot-dom-only: Print dominance tree of function to “dot” file (with no function bodies)
-dot-postdom: Print postdominance tree of function to “dot” file
-dot-postdom-only: Print postdominance tree of function to “dot” file (with no function
bodies)
-globalsmodref-aa: Simple mod/ref analysis for globals
-instcount: Counts the various types of Instructions
-intervals: Interval Partition Construction
-iv-users: Induction Variable Users
-lazy-value-info: Lazy Value Information Analysis
-libcall-aa: LibCall Alias Analysis
-lint: Statically lint-checks LLVM IR
-loops: Natural Loop Information
-memdep: Memory Dependence Analysis
-module-debuginfo: Decodes module-level debug info
-postdomfrontier: Post-Dominance Frontier Construction
-postdomtree: Post-Dominator Tree Construction
-print-alias-sets: Alias Set Printer
-print-callgraph: Print a call graph
-print-callgraph-sccs: Print SCCs of the Call Graph
-print-cfg-sccs: Print SCCs of each function CFG
-print-dom-info: Dominator Info Printer
-print-externalfnconstants: Print external fn callsites passed constants
-print-function: Print function to stderr
-print-module: Print module to stderr
-print-used-types: Find Used Types
-regions: Detect single entry single exit regions
-scalar-evolution: Scalar Evolution Analysis
-scev-aa: ScalarEvolution-based Alias Analysis
-stack-safety: Stack Safety Analysis
-targetdata: Target Data Layout

Transform passes
-adce: Aggressive Dead Code Elimination
-always-inline: Inliner for always inline functions
-argpromotion: Promote ‘by reference’ arguments to scalars
-bb-vectorize: Basic-Block Vectorization
-block-placement: Profile Guided Basic Block Placement
-break-crit-edges: Break critical edges in CFG

-codegenprepare: Optimize for code generation
-constmerge: Merge Duplicate Global Constants
-dce: Dead Code Elimination
-deadargelim: Dead Argument Elimination
-deadtypeelim: Dead Type Elimination
-die: Dead Instruction Elimination
-dse: Dead Store Elimination
-function-attrs: Deduce function attributes
-globaldce: Dead Global Elimination
-globalopt: Global Variable Optimizer
-gvn: Global Value Numbering
-indvars: Canonicalize Induction Variables
-inline: Function Integration/Inlining
-instcombine: Combine redundant instructions
-aggressive-instcombine: Combine expression patterns
-internalize: Internalize Global Symbols
-ipsccp: Interprocedural Sparse Conditional Constant Propagation
-jump-threading: Jump Threading
-lcssa: Loop-Closed SSA Form Pass
-licm: Loop Invariant Code Motion
-loop-deletion: Delete dead loops
-loop-extract: Extract loops into new functions
-loop-extract-single: Extract at most one loop into a new function
-loop-reduce: Loop Strength Reduction
-loop-rotate: Rotate Loops
-loop-simplify: Canonicalize natural loops
-loop-unroll: Unroll loops
-loop-unroll-and-jam: Unroll and Jam loops
-loop-unswitch: Unswitch loops
-loweratomic: Lower atomic intrinsics to non-atomic form
-lowerinvoke: Lower invokes to calls, for unwindless code generators
-lowerswitch: Lower SwitchInsts to branches
-mem2reg: Promote Memory to Register
-memcpyopt: MemCpy Optimization
-mergefunc: Merge Functions
-mergereturn: Unify function exit nodes
-partial-inliner: Partial Inliner
-prune-eh: Remove unused exception handling info
-reassociate: Reassociate expressions
-reg2mem: Demote all values to stack slots
-sroa: Scalar Replacement of Aggregates
-sccp: Sparse Conditional Constant Propagation
-simplifycfg: Simplify the CFG
-sink: Code sinking
-strip: Strip all symbols from a module
-strip-dead-debug-info: Strip debug info for unused symbols
-strip-dead-prototypes: Strip Unused Function Prototypes
-strip-debug-declare: Strip all llvm.dbg.declare intrinsics
-strip-nondebug: Strip all symbols, except dbg symbols, from a module
-tailcallelim: Tail Call Elimination

IPA passes
IPA free lang data
IPA remove symbols
IPA OpenACC
IPA points-to analysis
IPA OpenACC kernels
Target clone
IPA auto profile
IPA tree profile
IPA free function summary
IPA increase alignment
IPA transactional memory
IPA lower emulated TLS
IPA whole program visibility
IPA profile
IPA identical code folding
IPA devirtualization
IPA constant propagation
IPA scalar replacement of aggregates
IPA constructor/destructor merge
IPA function summary
IPA inline
IPA pure/const analysis
IPA free function summary
IPA reference
IPA single use
IPA comdats
Materialize all clones
IPA points-to analysis
OpenMP simd clone
Tree SSA passes
Remove useless statements
OpenMP lowering
OpenMP expansion
Lower control flow
Lower exception handling control flow
Build the control flow graph
Find all referenced variables
Enter static single assignment form
Warn for uninitialized variables
Dead code elimination
Dominator optimizations
Forward propagation of single-use variables
Copy Renaming
PHI node optimizations
May-alias optimization
Profiling
Static profile estimation
Lower complex arithmetic
Scalar replacement of aggregates
Dead store elimination
Tail recursion elimination
Forward store motion
Partial redundancy elimination
Full redundancy elimination

Loop optimization
Loop invariant motion.
Canonical induction variable creation.
Induction variable optimizations.
Loop unswitching
Loop splitting
Vectorization
SLP Vectorization
Autoparallelization
Tree level if-conversion for vectorizer
Conditional constant propagation
Conditional copy propagation
Value range propagation
Folding built-in functions
Split critical edges
Control dependence dead code elimination
Tail call elimination
Warn for function return without value
Leave static single assignment form
Merge PHI nodes that feed into one another
Return value optimization
Return slot optimization
Optimize calls to builtin object size
Loop invariant motion
Loop nest optimizations
Removal of empty loops
Unrolling of small loops
Predictive commoning
Array prefetching
Reassociation
Optimization of stdarg functions
RTL passes
Generation of exception landing pads
Control flow graph cleanup
Forward propagation of single-def values
Common subexpression elimination
Global common subexpression elimination
Loop optimization
Jump bypassing
If conversion
Web construction
Instruction combination
Mode switching optimization
Modulo scheduling
Instruction scheduling
Register allocation
The integrated register allocator (IRA)
Reloading
Basic block reordering
Variable tracking
Delayed branch scheduling
Branch shortening
Register-to-stack conversion
Final
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Compiler analysis and transform passes

Hard to confidently characterise what all those syntactic transformations might do –
and there are more, e.g. language implementations involving JIT compilation can use
runtime knowledge of values.

But one can usefully view many, abstractly, as reordering, elimination, and introduction
of memory reads and writes [40, Ševčík].
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Defining PL Memory Models

Option 1: Don’t. No Concurrency

Tempting... but poor match for current practice
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Defining PL Memory Models

Option 2: Don’t. No Shared Memory

A good match for some problems

(c.f. Erlang, MPI, ...)
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Defining PL Memory Models

Option 3: sequential consistency (SC) everywhere

It’s probably going to be expensive. Naively, one would have to:
▶ add strong barriers between every memory access, to prevent hardware reordering

(or x86 LOCK’d accesses, Arm RCsc release/acquire pairs, etc.)
▶ disable all compiler optimisations that reorder, introduce, or eliminate accesses

(smarter: one could do analysis to approximate the thread-local or non-racy accesses, but aliasing always hard)

It’s also not clear that SC is really more intuitive for real concurrent code than (e.g.)
release/acquire-based models (c.f. Paul McKenney).
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Defining PL Memory Models

Option 4: adopt a hardware-like model for the high-level language

If the aim is to enable implementations of language-level loads and stores with plain
machine loads and stores, without additional synchronisation, the model would have to
be as weak as any of the target hardware models.

But compiler optimisations do much more aggressive optimisations, based on deeper
analysis, than hardware – so this would limit those.
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Data races

All these hardware and compiler optimisations don’t change the meaning of
single-threaded code (any that do would be implementation bugs)

The interesting non-SC phenomena are only observable by code in which multiple
threads are accessing the same data in conflicting ways (e.g. one writing and the other
reading) without sufficient synchronisation between them – data races

(caution: the exact definition of what counts as a data race varies)
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DRF-SC
Option 5: Use Data race freedom as a definition

Previously we had h/w models defining the allowed behaviour for arbitrary programs,
and for x86-TSO had DRF as a theorem about some programs.

For a programming language, we could define a model by:
▶ programs that are race-free in SC semantics have SC behaviour
▶ programs that have a race in some execution in SC semantics can behave in any

way at all

Kourosh Gharachorloo et al. [41, 42]; Sarita Adve & Mark Hill [43, 44]
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DRF-SC
Option 5: Use Data race freedom as a definition

To implement: choose the high-level language synchronisation mechanisms, e.g. locks:
▶ prevent the compiler optimising across them
▶ ensure the implementations of the synchronisation mechanisms insert strong

enough hardware synchronisation to recover SC in between (e.g. fences, x86
LOCK’d instructions, ARM “load-acquire”/“store-release” instructions,...)
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DRF-SC
Option 5: Use Data race freedom as a definition

Pro:
▶ Simple!
▶ Only have to check race-freedom w.r.t. SC semantics
▶ Strong guarantees for most code
▶ Allows lots of freedom for compiler and hardware optimisations

“Programmer-Centric”
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DRF-SC
Option 5: Use Data race freedom as a definition

Con:
▶ programs that have a race in some execution in SC semantics

can behave in any way at all
▶ Undecidable premise.
▶ Imagine debugging based on that definition. For any surprising behaviour, you have

a disjunction: either bug is X ... or there is a potential race in some execution
▶ No guarantees for untrusted code

...impact of that depends on the context
▶ restrictive. Forbids fancy high-performance concurrent algorithms
▶ need to define exactly what a race is

what about races in synchronisation and concurrent datastructure libraries?
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Java
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Java (as of JSR-133): DRF-SC plus committing semantics
Option 6: Use Data race freedom as a definition, with committing semantics
for safety
Java has integrated multithreading, and it attempts to specify the precise behaviour of
concurrent programs.

By the year 2000, the initial specification was shown:
▶ to allow unexpected behaviours;
▶ to prohibit common compiler optimisations,
▶ to be challenging to implement on top of a weakly-consistent multiprocessor.

Superseded around 2004 by the JSR-133 memory model [45, Manson, Pugh, Adve]
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Java (as of JSR-133): DRF-SC plus committing semantics
Option 6: Use Data race freedom as a definition, with committing semantics
for safety
▶ Goal 1: data-race free programs are sequentially consistent;
▶ Goal 2: all programs satisfy some memory safety and security requirements;
▶ Goal 3: common compiler optimisations are sound.

Idea: an axiomatic model augmented with a committing semantics to enforce a
causality restriction – there must exist an increasing sequence of subsets of the events
satisfying various conditions. See [45, 46] for details.
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Java (as of JSR-133): DRF-SC plus committing semantics
Option 6: Use Data race freedom as a definition, with committing semantics
for safety
The model is intricate, and fails to meet Goal 3: Some optimisations may generate
code that exhibits more behaviours than those allowed by the un-optimised source.

As an example, JSR-133 allows r2=1 in the optimised code below, but forbids r2=1 in the
source code:

x = y = 0

r1=x r2=y

y=r1 x=(r2==1)?y:1

HotSpot optimisation−→
x = y = 0

r1=x x=1

y=r1 r2=y

[46, Ševčík & Aspinall]
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C/C++11
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C/C++11: DRF-SC plus low-level atomics

Option 7: Use Data race freedom as a definition, extended with low-level
atomics

C and C++ already require the programmer to avoid various undefined behaviour (UB),
and give/impose no guarantees for programs that don’t.

So DRF-SC is arguably a reasonable starting point

circa 2004 – 2011: effort by Boehm et al. in ISO WG21 C++ concurrency subgroup,
adopted in C++11 and C11, to define a model based on DRF-SC but with low-level
atomics to support high-performance concurrency

[47, Boehm & Adve]; https://hboehm.info/c++mm/; many ISO WG21 working papers
Boehm, Adve, Sutter, Lea, McKenney, Saha, Manson, Pugh, Crowl, Nelson, ....
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C/C++11 low-level atomics
Normal C/C++ accesses are deemed non-atomic, and any race on such (in any
execution) gives rise to UB (NB: the whole program has UB, not just that execution)

Atomic accesses are labelled with a “memory order” (really a strength), and races are
allowed.

strongerOO

��

memory order seq cst SC semantics among themselves

memory order release/memory order acquire release/acquire semantics for message-passing

memory order release/memory order consume(deprecated) was supposed to expose dependency guarantees in C/C++

memory order relaxed implementable with plain machine loads and stores

weaker
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C/C++11 low-level atomics
Normal C/C++ accesses are deemed non-atomic, and any race on such (in any
execution) gives rise to UB (NB: the whole program has UB, not just that execution)

Atomic accesses are labelled with a “memory order” (really a strength), and races are
allowed.

C concrete syntax – either:
▶ annotate the type, then all accesses default to SC atomics:

Atomic(Node *) top;

▶ or annotate the accesses with a memory order:
t = atomic load explicit(&st->top, memory order acquire);

C++ concrete syntax – either:
▶ annotate the type and default to SC atomics, or
▶ annotate the accesses:

x.store(v, memory order release)

r = x.load(memory order acquire)
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C/C++11 formalisation
WG21 worked initially just with prose definitions, and paper maths for a fragment

In 2009–2011 we worked with them to formalise the proposal:
▶ theorem-prover definitions in HOL4 and Isabelle/HOL
▶ executable-as-test-oracle versions that let us compute the behaviour of examples,

in the cppmem tool http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
(now mostly superseded by Cerberus BMC [21, Lau et al.] http://cerberus.cl.cam.ac.uk/bmc.html)

▶ found and fixed various errors in the informal version
(but not all – see later, and the web-page errata)

▶ achieved tight correspondence between eventual C++11 standard prose and our
mathematical definitions

[7, 24, 11, 12, Batty et al.]
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C/C++11 formalisation: Candidate executions

In an axiomatic style, broadly similar to axiomatic hardware models

Candidate pre-execution has events E and relations:
▶ sb sequenced-before (like po program order, but can be partial)
▶ asw additional synchronizes with (synchronisation from thread creation etc.)

Candidate execution witness:
▶ rf – reads-from
▶ mo – modification order (like co coherence, but over atomic writes only)
▶ sc – SC order (total order over all SC accesses)
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C/C++11 formalisation: structure

For any program P, compute the set of candidate pre-executions that are consistent
with the thread-local semantics (but with unconstrained memory read values)

For each, enumerate all candidate execution witnesses, and take all of those that satisfy
a consistent execution predicate

Check whether any consistent execution has a race. If so, P has undefined behaviour;
otherwise, its semantics is the set of all those consistent executions.

Thanks to Mark Batty for the following slides
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A single threaded program

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

sb sb

sb sb



A single threaded program

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw asw,rf

sb



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw asw,rf

dr

sb



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);

c:Wsc y=1

d:Rsc x=0

e:Wsc x=1

f:Rsc y=0

sb sb



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);

c:Wsc y=1

d:Rsc x=0

e:Wsc x=1

f:Rsc y=0

FORBIDDEN
sb sb



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);

c:Wsc y=1

d:Rsc x=0

e:Wsc x=1

f:Rsc y=1

sc
sc

sc



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

c:Racq y=1

d:Rna x=1

sb

rf

sb



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

c:Racq y=1

d:Rna x=1

sb

sw

sb



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

d:Rna x=1

c:Racq y=1

sb hb

sw
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Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

d:Rna x=1

c:Racq y=1

sb hb

sw

sb

simple-happens-before−−−−−−−−−−−−→ =

(
sequenced-before−−−−−−−−−→∪ synchronizes-with−−−−−−−−−−→)+



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb sc

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb sw

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb hb

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

i:Rna x=1

h:L mutex

sb

sb
rf
hb

sb



Happens before is key to the model

Non-atomic loads read the most recent write in happens
before. (This is unique in DRF programs)

The story is more complex for atomics, as we shall see.

Data races are defined as an absence of happens before.



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw asw,rf

dr

sb



Data race definition

let data races actions hb =
{ (a, b) | ∀ a∈actions b∈actions |

¬ (a = b) ∧
same location a b ∧
(is write a ∨ is write b) ∧
¬ (same thread a b) ∧
¬ (is atomic action a ∧ is atomic action b) ∧
¬ ((a, b) ∈ hb ∨ (b, a) ∈ hb) }

A program with a data race has undefined behaviour.



Relaxed writes: load buffering

x.load(relaxed);

y.store(1, relaxed);
y.load(relaxed);

x.store(1, relaxed);

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

f:Wrlx x=1

sb
rf

sb
rf

No synchronisation cost, but weakly ordered.



Relaxed writes: independent reads, independent writes

atomic_int x = 0;

atomic_int y = 0;

x.store(1, relaxed); y.store(2, relaxed); x.load(relaxed);

y.load(relaxed);
y.load(relaxed);

x.load(relaxed);

c:Wrlx x=1 e:Rrlx x=1d:Wrlx y=1 g:Rrlx y=1

f:Rrlx y=0 h:Rrlx x=0

rf rfsb sb



Expert concurrency: fences avoid excess synchronisation

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;



Expert concurrency: fences avoid excess synchronisation

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

e:Rrlx y=1

f:Facq

g:Rna x=1

sb
rf

sb

sb



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

e:Rrlx y=1

f:Facq

g:Rna x=1

sb
rf

sw

sb

sb



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

g:Rna x=1

e:Rrlx y=1

f:Facq

sb hb
rf

sw

sb

sb



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);

b:Wrlx x=1

c:Wrlx x=2

d:Rrlx x=1

e:Rrlx x=2

sb
rf

rf

sb



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);

b:Wrlx x=1

c:Wrlx x=2

d:Rrlx x=1

e:Rrlx x=2

mo
rf

rf

sb



Coherence and atomic reads

All forbidden!

CoRR

a:W x=1

b:W x=2 d:R x=2

c:R x=1
rfmo

rf

hb

CoWR

b:W x=2 c:W x=1

d:R x=2
hb

mo
rf

CoWW

a:W x=1

b:W x=2
hb mo

CoRW

a:W x=1 c:R x=1

d:W x=2
mo

rf
hb

Atomics cannot read from later writes in happens before.



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:
x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:
x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

sb

sb



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:
x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

mo

sb
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Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:
x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

mo

sb

rf,mo

mo



Very expert concurrency: consume

Weaker than acquire

Stronger than relaxed

Non-transitive happens before! (only fully transitive
through data dependence, dd)



Consume

It turned out to be impractical to ensure that compilers preserve such data
dependencies (which might go via compilation units that don’t even use atomics)
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The model as a whole

C1x and C++11 support many modes of programming:

sequential
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The model as a whole

C1x and C++11 support many modes of programming:

sequential

concurrent with locks

with seq_cst atomics

with release and acquire

with relaxed, fences and the rest

with all of the above plus consume



C/C++11 models and tooling
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The original formal model of [7, Batty et al.] is in executable typed higher-order logic,
in Isabelle/HOL, from which we generated OCaml code to use in a checking tool.

This was later re-expressed in Lem [?], a typed specification language which can be
translated into OCaml and multiple provers.
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The full model

a
r−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a 6 r−→ b = (a, b) /∈ r

r−→ = r

a
r−→ b

s−→ c = a
r−→ b ∧ b

s−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧
(∀x ∈ s. ∀y ∈ s. x

ord−−→ y ∨ y
ord−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord−−→pred y =

pred x ∧ x
ord−−→ y ∧ ¬(∃z . pred z ∧ x

ord−−→ z
ord−−→ y)

x |
ord−−→ y =

x
ord−−→ y ∧ ¬(∃z . x ord−−→ z

ord−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed
| Mo release
| Mo acquire
| Mo consume
| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location
| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ‖ → F

is unlock a =
case a of Unlock → T ‖ → F

is atomic load a =
case a of Atomic load → T ‖ → F

is atomic store a =
case a of Atomic store → T ‖ → F

is atomic rmw a =
case a of Atomic rmw → T ‖ → F

is load a = case a of Load → T ‖ → F

is store a = case a of Store → T ‖ → F

is fence a = case a of Fence → T ‖ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

‖ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
‖ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic
| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a
‖ Non atomic → is load or store a
‖ Atomic → is load or store a ∨ is atomic action a)

‖ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
‖ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

‖ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

‖ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

‖ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf−→) ∧

(∀a. ∀a′. ∀b. a rf−→ b ∧ a′
rf−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈ rf−→.
same location a b ∧
(value read b = value written a) ∧
(a 6= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨
(rs element arel b ∧ arel

modification-order−−−−−−−−−−→ b ∧
(∀c . arel modification-order−−−−−−−−−−→ c

modification-order−−−−−−−−−−→ b =⇒
rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨
(rs element a b ∧ a

modification-order−−−−−−−−−−→ b ∧
(∀c . a modification-order−−−−−−−−−−→ c

modification-order−−−−−−−−−−→ b =⇒
rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧
(∃c . a release-sequence−−−−−−−−−→ c

rf−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧
a

sequenced-before−−−−−−−−−→ x ∧ y
sequenced-before−−−−−−−−−→ b ∧

(∃z . x hypothetical-release-sequence−−−−−−−−−−−−−−−−→ z
rf−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧
a

sequenced-before−−−−−−−−−→ x ∧
(∃z . x hypothetical-release-sequence−−−−−−−−−−−−−−−−→ z

rf−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧
x

sequenced-before−−−−−−−−−→ b ∧
(∃z . a release-sequence−−−−−−−−−→ z

rf−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to−−−−−−−−−−−−−→ b =

a ((
rf−→∩ sequenced-before−−−−−−−−−→) ∪ data-dependency−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧
(∃e. a release-sequence−−−−−−−−−→ e

rf−→ b) ∧
(b

carries-a-dependency-to−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before−−−−−−−−−−−−−→ =

(
sequenced-before−−−−−−−−−→∪ synchronizes-with−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb−−→)

inter thread happens before =
inter-thread-happens-before−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with−−−−−−−−−−→∪
dependency-ordered-before−−−−−−−−−−−−−−−→∪
(
synchronizes-with−−−−−−−−−−→ ◦ sequenced-before−−−−−−−−−→) in

(
r−→∪ (

sequenced-before−−−−−−−−−→ ◦ r−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before−−−−−−−−−−−−−−−→)

happens before =
happens-before−−−−−−−−→ =

sequenced-before−−−−−−−−−→∪ inter-thread-happens-before−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before−−−−−−−−→|all sc actions in

let sc mod order =
modification-order−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc−→) ∧

sc happens before−−−−−−−−−−−→ ⊆ sc−→∧
sc mod order−−−−−−−−→ ⊆ sc−→

consistent modification order = consistent modification order =

(∀a. ∀b. a modification-order−−−−−−−−−−→ b =⇒ same location a b) ∧
(∀l ∈ locations of actions. case location-kind l of

Atomic → (
let actions at l = {a. (location a = Some l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order−−−−−−−−−−→|actions at l) ∧

(* happens-before at the writes of l is a subset of mo for l *)
happens-before−−−−−−−−→|writes at l ⊆ modification-order−−−−−−−−−−→∧
(* Mo seq cst fences impose modification order *)

(
sequenced-before−−−−−−−−−→ ◦ (

sc−→|is fence) ◦ sequenced-before−−−−−−−−−→|writes at l)

⊆ modification-order−−−−−−−−−−→)
‖ → (

let actions at l = {a. (location a = Some l)} in

(
modification-order−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect−−−−−−−−−→ b =

a
happens-before−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧
a

happens-before−−−−−−−−→ c
happens-before−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in
visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order−−−−−−−−−−→ c ∧

¬(b happens-before−−−−−−−−→ c) ∧
(∀a. vsse head

modification-order−−−−−−−−−−→ a
modification-order−−−−−−−−−−→ c

=⇒ ¬(b happens-before−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).
(b, if is at atomic location b then

{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse visible-side-effect−−−−−−−−−→ b)

then (∃avse . avse visible-side-effect−−−−−−−−−→ b ∧ avse
rf−→ b)

else ¬(∃a. a rf−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf−→ b))

else ¬(∃a. a rf−→ b))) ∧

(∀(x , a) ∈ rf−→.

∀(y , b) ∈ rf−→.

a
happens-before−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈ happens-before−−−−−−−−→.
∀c .
c

rf−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈ happens-before−−−−−−−−→.
∀c .
c

rf−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order−−−−−−−−−−→ b) ∧

(∀(a, b) ∈ rf−→. is atomic rmw b

=⇒ a |
modification-order−−−−−−−−−−→ b) ∧

(∀(a, b) ∈ rf−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc−→λc. is write c∧same location b c b =⇒ x

modification-order−−−−−−−−−−→ a)) ∨
a |

sc−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈ sequenced-before−−−−−−−−−→. ∀y .
(is fence x ∧ is seq cst x ∧ is atomic action b ∧

is write a ∧ same location a b ∧
a |

sc−→ x ∧ y
rf−→ b)

=⇒ (y = a) ∨ a
modification-order−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈ sequenced-before−−−−−−−−−→. ∀(y , b) ∈ rf−→.
(is atomic action a ∧ is fence x ∧ is seq cst x ∧

is write a ∧ same location a b ∧
x

sc−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈ sequenced-before−−−−−−−−−→. ∀(y , b) ∈ sequenced-before−−−−−−−−−→. ∀z .
(is atomic action a ∧ is fence x ∧ is seq cst x ∧

is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧
x

sc−→ y ∧ z
rf−→ b)

=⇒ (z = a) ∨ a
modification-order−−−−−−−−−−→ z)

all data dependency =
all data dependency−−−−−−−−−−−−→ =

(
rf−→∪ carries-a-dependency-to−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency−−−−−−−−−−−→∪ all data dependency−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in
let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in
consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a rf−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧
¬(a sequenced-before−−−−−−−−−→ b ∨ b

sequenced-before−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧
¬(a happens-before−−−−−−−−→ b ∨ b

happens-before−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in
let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in
let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in
let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in
let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in
let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in
data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in
if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .

(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf 6= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency 6= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc 6= {})

then {}
else executions



CppMem

CppMem: makes C/C+11 executable as a test oracle, and with a web interface for
exploring candidate executions [Batty, Owens, Pichon-Pharabod, Sarkar, Sewell]

Enumerates candidate pre-executions for a small C-like language and applies the
consistent-execution and race predicates to them.

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
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C/C++11 and variants in .cat

Rephrased in relational algebra, in .cat, and improved in various ways:
▶ Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48].

Supplementary material: http://multicore.doc.ic.ac.uk/overhauling/

Usable in herd, for examples in a small C-like language
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C11 cat from [48, Batty, Donaldson, Wickerson], adapted by Lau for [49]
// Modified from:
// https://github.com/herd/herdtools/tree/master/cats/c11/popl2016
// C11.cat w/o locks, consume
output addr
output data

let sb = po | I * (M \ I)
let mo = co

let cacq = [ACQ | (SC & (R | F)) | ACQ_REL]

let crel = [REL | (SC & (W | F)) | ACQ_REL]

let fr = rf_inv ; mo

let fsb = [F] ; sb
let sbf = sb ; [F]

//(* release_acquire_fenced_synchronizes_with,
// hypothetical_release_sequence_set,
// release_sequence_set *)

let rs_prime = int | (U * (R & W))
let rs = mo & (rs_prime \ ((mo \ rs_prime) ; mo))

let swra_head = crel ; fsb ? ; [A & W]
let swra_mid = [A & W] ; rs ? ; rf ; [R & A]
let swra_tail = [R & A] ; sbf ? ; cacq
let swra = (swra_head ; swra_mid ; swra_tail) & ext

let pp_asw = asw \ (asw ; sb)
let sw = pp_asw | swra

//(* happens_before,
// inter_thread_happens_before,
// consistent_hb *)
let ithbr = sw | (sw; sb)
let ithb_prime = (ithbr | (sb ; ithbr))
let ithb = ithb_prime+
let hb = sb | ithb
acyclic hb as hb_acyclic

//(* coherent_memory_use *)
let hbl = hb & loc

let coh_prime_head = rf_inv? ; mo
let coh_prime_tail = rf ? ; hb
let coh_prime = coh_prime_head ; coh_prime_tail

irreflexive coh_prime as coh_irreflexive

//(* visible_side_effect_set *)
let vis = ([W] ; hbl ; [R]) \ (hbl; [W]; hbl)

//(* consistent_atomic_rf *)
let rf_prime = rf ; hb
irreflexive rf_prime as rf_irreflexive

//(* consistent_non_atomic_rf *)

let narf_prime = (rf ; nonatomicloc) \ vis
empty narf_prime as nrf_empty

let rmw_prime = rf | (mo ; mo ; rf_inv) | (mo ; rf)
irreflexive rmw_prime as rmw_irreflexive

//(* data_races *)
let cnf = ((W * U) | (U * W)) & loc
let dr = ext & (((cnf \ hb) \ (hb^-1)) \ (A * A))

//(* unsequenced_races *)
let ur = (((((W * M) | (M * W)) & int & loc) \ sb) \ sb^-1) \ id

let sc_clk_imm = [SC] ; (sc_clk \ (mo ; sc_clk))

let s1_prime = [SC]; sc_clk_imm ; hb
irreflexive s1_prime as s1

let s2_prime_head = [SC]; sc_clk ; fsb?
let s2_prime_tail = mo ; sbf?
let s2_prime = [SC]; s2_prime_head ; s2_prime_tail
irreflexive s2_prime as s2

let s3_prime_head = [SC]; sc_clk ; rf_inv ; [SC]
let s3_prime_tail = [SC] ; mo
let s3_prime = [SC]; s3_prime_head ; s3_prime_tail
irreflexive s3_prime as s3

let s4_prime = [SC]; sc_clk_imm ; rf_inv ; hbl ; [W]
irreflexive s4_prime as s4

let s5_prime = [SC]; sc_clk ; fsb ; fr
irreflexive s5_prime as s5

let s6_prime = [SC]; sc_clk ; fr ; sbf
irreflexive s6_prime as s6

let s7_prime_head = [SC]; sc_clk ; fsb
let s7_prime_tail = fr ; sbf
let s7_prime = [SC]; s7_prime_head ; s7_prime_tail
irreflexive s7_prime as s7

let __bmc_hb = hb

undefined_unless empty dr as dr_ub
undefined_unless empty ur as unsequenced_race
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Cerberus BMC

▶ Cerberus-BMC: a Principled Reference Semantics and Exploration Tool for
Concurrent and Sequential C. Lau, Gomes, Memarian, Pichon-Pharabod, Sewell.
[49]

Integrates the Cerberus semantics for a substantial part of C [?, 50, Memarian et al.]
with arbitrary concurrency semantics expressed in .cat relational style.

Translates both the C semantics and the concurrency model into SMT constraints.

https://cerberus.cl.cam.ac.uk/bmc.html
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RC11 .cat adapted for C++20 changes [51, 52] by Lahav, Vafeiadis (untested)
// RC11 .cat file without fences
// adpated for the changes that were approved for C++20
output addr
output data

let sb = po | I * (M \ I)
let rfstar = rf*
let rs = [W & ~NA] ; rfstar

//let sw = [REL | ACQ_REL | SC] ; ([F] ; sb)? ; rs ; rf ; [R & ~NA] ; (sb ; [F])? ; [ACQ | ACQ_REL | SC]

let sw_prime = [REL | ACQ_REL | SC] ; rs ; rf ; [R & ~NA & (ACQ | ACQ_REL | SC)]
let sw = sw_prime | asw
let hb = (sb | sw)+

let mo = co

let fr = (rf_inv ; mo) \ id
let eco = rf | mo | fr | mo ; rf | fr ; rf

irreflexive (hb ; eco) as coh

irreflexive eco as atomic1
irreflexive (fr ; mo) as atomic2

let fhb = [F & SC] ; hb?
let hbf = hb? ; [F & SC]
let scb = sb | sb ; hb ; sb | hb & loc | mo | fr
let psc_base = ([SC] | fhb) ; scb ; ([SC] | hbf)
let psc_f = [F & SC] ; (hb | hb; eco; hb) ; [F & SC]
let psc = psc_base | psc_f
acyclic psc as sc

let conflict = (((W * U) | (U * W)) & loc)
let race = ext & (((conflict \ hb) \ (hb^-1)) \ (A * A))

let __bmc_hb = hb

undefined_unless empty race as racy
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Mappings from C/C++11 to hardware
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Implementability

Can we compile to x86?

Operation x86 Implementation
load(non-seq cst) mov
load(seq cst) lock xadd(0)
store(non-seq cst) mov
store(seq cst) lock xchg
fence(non-seq cst) no-op

x86-TSO is stronger and simpler.



Theorem

Eopsem
consistent execution

evt comp

Xwitness

Ex86 valid execution
Xx86

evt comp−1

We have a mechanised proof that C1x/C++11 behaviour
is preserved.



Can we compile to Power? To ARMv7? To Armv8-A?

Mappings from C/C++11 operations to x86, Power, ARMv7, Itanium originally
developed by C++11 contributors

Supposed paper proof for Power [11], but flawed – see errata (thanks to Lahav et al.
and Manerkar et al.)

More recent mechanised proofs for fragments of C11 and variants by [53, Podkopaev,
Lahav, Vafeiadis]
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Mappings
Compilation from C/C++11 involves mapping each synchronisation operation to hardware and
restricting compiler optimisations across these.

C/C++11 operation x86 Armv8-A AArch64 Power RISC-V
Load Relaxed mov ldr ld

Store Relaxed mov str st

Load Acquire mov ldar2 ld;cmp;bc;isync

Store Release mov stlr lwsync;st

Load Seq Cst mov ldar3 sync;ld;cmp;bc;isync4

Store Seq Cst xchg1 stlr3 sync;st4

Acquire fence nothing dmb ld lwsync

Release fence nothing dmb lwsync

Acq Rel fence nothing dmb lwsync

Seq Cst fence mfence dmb hwsync

1 xchg is implicitly LOCK’d
2 or ldarp for Armv8.3 or later?
3 note that Armv8-A store-release and load-acquire are strong enough for SC atomics (developed for those)
4 for Power this is the leading sync mapping. Note how it puts a sync between each pair of SC accesses
Note that the mapping has to be part of the ABI: e.g. one can’t mix (by linking) a leading and trailing
sync mapping
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C/C++11 operational model

proved equivalent to that axiomatic model, in Isabelle [?, Nienhuis et al.]
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C/C++11 after 2011
▶ Clarifying and Compiling C/C++ Concurrency: from C++11 to POWER. Batty, Memarian, Owens, Sarkar, Sewell. [11]
▶ Synchronising C/C++ and POWER. Sarkar, Memarian, Owens, Batty, Sewell, Maranget, Alglave, Williams. [12]
▶ Compiler testing via a theory of sound optimisations in the C11/C++11 memory model. Morisset, Pawan, Zappa Nardelli. [?]
▶ Outlawing ghosts: avoiding out-of-thin-air results. Boehm, Demsky. [54]
▶ The Problem of Programming Language Concurrency Semantics. Batty, Memarian, Nienhuis, Pichon-Pharabod, Sewell. [?]
▶ Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. Vafeiadis, Balabonski,

Chakraborty, Morisset, Zappa Nardelli. [?]
▶ Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48]
▶ An operational semantics for C/C++11 concurrency. Nienhuis, Memarian, Sewell. [?]
▶ Counterexamples and Proof Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. Manerkar,

Trippel, Lustig, Pellauer, Martonosi. [55]
▶ Repairing sequential consistency in C/C++11. Lahav, Vafeiadis, Kang, Hur, Dreyer. [?]
▶ Mixed-size Concurrency: ARM, POWER, C/C++11, and SC. Flur, Sarkar, Pulte, Nienhuis, Maranget, Gray, Sezgin, Batty,

Sewell. [18]
▶ Bridging the gap between programming languages and hardware weak memory models. Podkopaev, Lahav, Vafeiadis. [53]
▶ Cerberus-BMC: a Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C. Lau, Gomes,

Memarian, Pichon-Pharabod, Sewell. [49]
▶ P0668R5: Revising the C++ memory model. Boehm, Giroux, Vafeiadis. [51]
▶ P0982R1: Weaken Release Sequences. Boehm, Giroux, Vafeiadis. [52]
▶ ...and more

...the last two in C++20
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The thin-air problem
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The thin-air problem

The C/C++11 concurrency model (with later modifications) is, as far as is known, sound
w.r.t. existing compiler and hardware optimisations

But... for relaxed atomics, it admits undesirable executions where values seem to appear out of
thin air, as noted at the time [?, 23.9p9]:

[Note: The requirements do allow r1 == r2 == 42 in the following example, with x and y

initially zero: LB+ctrldata+ctrl-single

r1 = loadrlx(x); r2 = loadrlx(y);

if (r1 == 42) if (r2 == 42)

storerlx(y,r1) storerlx(x,42)

a:Rrlxx = 42 b:Rrlxy = 42

c:Wrlxy = 42 d:Wrlxx = 42
sb cd,dd sb cd

rf
rf

However, implementations should not allow such behavior. – end note]

Using condensed syntax for brevity, not actual C++11. On the right cd and dd indicate control and data dependencies.
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The thin-air problem

[Note: The requirements do allow r1 == r2 == 42 in the following example, with x and y

initially zero: LB+ctrldata+ctrl-single

r1 = loadrlx(x); r2 = loadrlx(y);

if (r1 == 42) if (r2 == 42)

storerlx(y,r1) storerlx(x,42)

a:Rrlxx = 42 b:Rrlxy = 42

c:Wrlxy = 42 d:Wrlxx = 42
sb cd,dd sb cd

rf
rf

However, implementations should not allow such behavior. – end note]

There is no precise definition of what thin-air behaviour is—if there were, it could simply be
forbidden by fiat, and the problem would be solved. Rather, there are a few known litmus tests
(like the one above) where certain outcomes are undesirable and do not appear in practice (as
the result of hardware and compiler optimisations). The problem is to draw a fine line between
those undesirable outcomes and other very similar litmus tests which important optimisations
do exhibit and which therefore must be admitted.
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The thin-air problem
Batty et al. [?] observe that this cannot be solved with any per-candidate-execution model that
uses the C/C++11 notion of candidate execution. Consider:

LB+ctrldata+ctrl-double
r1 = loadrlx(x); r2 = loadrlx(y);

if (r1 == 42) if (r2 == 42)

storerlx(y,r1) storerlx(x,42)

else

storerlx(x,42)

Compilers will optimise the second thread’s conditional, removing the control dependency, to:

r1 = loadrlx(x); r2 = loadrlx(y);

if (r1 == 42) storerlx(x,42)

storerlx(y,r1)

a:Rrlxx = 42 b:Rrlxy = 42

c:Wrlxy = 42 d:Wrlxx = 42
sb cd,dd sb cd

rf
rf

then compiler or hardware reordering of the second thread will make this observable in practice,
so it has to be allowed.
But this is exactly the same candidate execution as that of LB+ctrldata+ctrl-single, which we
want to forbid.
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The thin-air problem

Basic issue: compiler analysis and optimisation passes examine and act on the program text,
incorporating information from multiple executions
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The thin-air problem
Possible approaches

▶ Option 8a: A concurrency semantics for relaxed atomics that permits optimisation and
avoids thin-air executions. Pichon-Pharabod, Sewell. [?]

▶ Option 8b: Explaining Relaxed Memory Models with Program Transformations. Lahav,
Vafeiadis. [56]

▶ Option 8c: forbid load-to-store reordering, making rf ∪ sb acyclic [57, 54, ?, ?]

▶ Option 8d: Promising 2.0: global optimizations in relaxed memory concurrency. Lee,
Cho, Podkopaev, Chakraborty, Hur, Lahav, Vafeiadis [58]

▶ Option 8e: Modular Relaxed Dependencies in Weak Memory Concurrency. Paviotti,
Cooksey, Paradis, Wright, Owens, Batty. [59]

▶ Option 8f: Pomsets with Preconditions: A Simple Model of Relaxed Memory.
Jagadeesan, Jeffrey, Riely [60]

▶ ...? See talk by Boehm and McKenney
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Other languages
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Defining PL Memory Models

Option 9: DRF-SC, but exclude races statically

By typing? Rust.

But not expressive enough for high-performance concurrent code, which needs unsafe
blocks.

See RustBelt https://plv.mpi-sws.org/rustbelt/#project (Dreyer, Jung, et al.)
for ongoing research on how to verify those
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Linux kernel C

Option 10: Axiomatic model for Linux kernel concurrency primitives

Linux uses its own primitives, not C11: READ ONCE, WRITE ONCE, smp load acquire(),
smp mb(), ...

Axiomatic model for these:
▶ Frightening Small Children and Disconcerting Grown-ups: Concurrency in the

Linux Kernel. Alglave, Maranget, McKenney, Parri, Stern. [61]
aiming to capture the intent (including RCU) – but it relies on dependencies. Those in
use are believed/hoped to be preserved by compilers, but in general they are not, so this
is not sound in general w.rt. compiler optimisations
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GPU concurrency

▶ GPU Concurrency: Weak Behaviours and Programming Assumptions. Alglave,
Batty, Donaldson, Gopalakrishnan, Ketema, Poetzl, Sorensen, Wickerson. [62]

▶ Remote-scope promotion: clarified, rectified, and verified. Wickerson, Batty,
Beckmann, Donaldson. [63]

▶ Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48].
▶ Exposing errors related to weak memory in GPU applications. Sorensen,

Donaldson. [?]
▶ Portable inter-workgroup barrier synchronisation for GPUs. Sorensen, Donaldson,

Batty, Gopalakrishnan, Rakamaric. [64]
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JavaScript and WebAssembly

Option 11: broadly follow C/C++11
aim: DRF-SC model, with defined semantics for data-races (no thin-air), in a
per-candidate-execution model, with the same compilation scheme as C/C++...

...tricky. And other issues, as discussed in:
▶ Repairing and mechanising the JavaScript relaxed memory model. Watt, Pulte,

Podkopaev, Barbier, Dolan, Flur, Pichon-Pharabod, Guo. [65]
▶ Weakening WebAssembly. Watt, Rossberg, Pichon-Pharabod. [66]
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Multicore OCaml

“local data race freedom”
▶ Bounding data races in space and time. Dolan, Sivaramakrishnan, Madhavapeddy.

[67]
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Conclusion
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Taking stock
In 2008, all this was pretty mysterious. Now:

Hardware models
▶ “user” fragment – what you need for concurrent algorithms. In pretty good shape, for all these

major architectures (albeit still some gaps, and we don’t yet have full integration of
ISA+concurrrency in theorem provers)

▶ “system” fragment – what you need in addition for OS kernels and hypervisors: instruction fetch,
exceptions, virtual memory. Ongoing – e.g. [22, Simner et al.] for Armv8-A self-modifying code
and cache maintenance.

Programming language models
▶ remains an open problem: C/C++ not bad, but thin-air is a big problem for reasoning about

code that uses relaxed atomics in arbitrary ways

Verification techniques
▶ lots of ongoing work on proof-based verification and model-checking above the models, that

we’ve not had time to cover

Overall: a big success for rigorous semantics inspired by, applied to, and impacting mainstream systems
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x86 Experimental Results
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AArch64 Experimental Results
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Power Experimental Results
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RISC-V Experimental Results
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