Multicore Semantics:
Making Sense of Relaxed Memory

Peter Sewell', Christopher Pulte!, Shaked Flur!?
with contributions from Mark Batty?, Luc Maranget*, Alasdair Armstrong?

1 University of Cambridge, 2 Google, 3 University of Kent, # INRIA Paris

February — March, 2025

Slides for Part 2 of the Multicore Semantics and Programming course, version of 2026-02-12

Part 1 is by Tim Harris, with separate slides

Contents

These Slides

These are the slides for the Multicore Semantics part of the University of Cambridge Multicore
Semantics and Programming course (MPhil ACS, Part I, Part Il), 2024-2025.

They cover multicore semantics: the concurrency of multiprocessors and programming
languages, focussing on the concurrency behaviour one can rely on from mainstream machines
and languages, how this can be investigated, and how it can be specified precisely, all linked to
usage, microarchitecture, experiment, and proof.

We focus largely on x86; on Arm-A, IBM POWER, and RISC-V; and on C/C++. We use the
x86 part also to introduce some of the basic phenomena and the approaches to modelling and
testing, and give operational and axiomatic models in detail. For Armv8-A, POWER, and
RISC-V we introduce many but not all of the phenomena and again give operational and
axiomatic models, but omitting some aspects. For C/C++11 we introduce the
programming-language concurrency design space, including the thin-air problem, the C/C++11
constructs, and the basics of its axiomatic model, but omit full explanation of the model.

These lectures are by Peter Sewell, with Christopher Pulte for the Armv8/RISC-V model section.
The slides are for around 10 hours of lectures, and include additional material for reference.

The other part of the course, by Tim Harris, covers concurrent programming: simple
algorithms, correctness criteria, advanced synchronisation patterns, transactional memory.

Contents 1 Introduction: 2

These Slides

The slides include citations to some of the most directly relevant related work, but this is
primarily a lecture course focussed on understanding the concurrency semantics of mainstream
architectures and languages as we currently see them, for those that want to program above or
otherwise use those models, not a comprehensive literature review. There is lots of other
relevant research that we do not discuss.

Contents 1 Introduction: 3

Acknowledgements

Contributors to these slides: Shaked Flur, Christopher Pulte, Mark Batty, Luc Maranget, Alasdair
Armstrong. Ori Lahav and Viktor Vafeiadis for discussion of the current models for C/C++. Paul
Durbaba for his 2021 Part Il dissertation mechanising the x86-TSO axiomatic/operational
correspondence proof.

Our main industry collaborators: Derek Williams (IBM); Richard Grisenthwaite and Will Deacon
(Arm); Hans Boehm, Paul McKenney, and other members of the C++ concurrency group; Daniel
Lustig and other members of the RISC-V concurrency group

All the co-authors of the directly underlying research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
[16, 7, 17, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], especially all the above, Susmit Sarkar,
Jade Alglave, Scott Owens, Kathryn E. Gray, Jean Pichon-Pharabod, and Francesco Zappa Nardelli,
and the authors of the language-level research cited later.

The students of this and previous versions of the course, from 2010-2011 to date.

Research funding: ERC Advanced Grant 789108 (ELVER, Sewell); EPSRC grants EP/K008528/1 (Programme Grant REMS: Rigorous
Engineering for Mainstream Systems), EP/F036345 (Reasoning with Relaxed Memory Models), EP/H005633 (Leadership Fellowship,
Sewell), and EP/H027351 (Postdoc Research Fellowship, Sarkar); the Scottish Funding Council (SICSA Early Career Industry
Fellowship, Sarkar); an ARM iCASE award (Pulte); ANR grant WMC (ANR-11-JS02-011, Zappa Nardelli, Maranget); EPSRC I1AA
KTF funding; Arm donation funding; IBM donation funding; ANR project ParSec (ANR-06-SETIN-010); and INRIA associated team
MM. This work is part of the CIFV project sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8650-18-C-7809. The views, opinions, and/or findings contained in this paper are
those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government.

Contents 1 Introduction: 4

1. Introduction

2. Memory

2.1 Multiprocessors

2.2 Sequential consistency

2.3 Architecture specification

2.4 Litmus tests and candidate executions
2.5 Why?

3. x86

3.1 x86 basic phenomena

3.2 Creating a usable model

3.3 x86-TSO operational model

3.4 x86-TSO spinlock example and TRF
3.5 Axiomatic models

3.6 x86-TSO axiomatic model

4. Validating models

5. Arm-A, IBM Power, and RISC-V
5.1 Phenomena

5.1.1 Coherence

5.1.2 Out-of-order accesses

5.1.3 Barriers

5.1.4 Dependencies

5.1.5 Multi-copy atomicity

Contents 1 Introduction:

5.1.6 Further thread-local subtleties

5.1.7 Further Power non-MCA subtleties
5.2 More features

5.2.1 Armv8-A release/acquire accesses
5.2.2 Load-linked/store-conditional (LL/SC)
5.2.3 Atomics

5.2.4 Mixed-size

5.3 ISA semantics

5.3.1 Integrating ISA and axiomatic models
5.4 Armv8-A/RISC-V operational model

5.5 Armv8-A/RISC-V axiomatic model

5.6 Validation

6. Programming language concurrency
6.1 Introduction

6.2 Java

6.3 C/C++11

6.3.1 C/C++11 models and tooling

6.3.2 Mappings from C/C++11 to hardware
6.4 The thin-air problem

6.5 Other languages

7. Conclusion

References526

319

337

346
396
405
408
409
432
436

505
511
517

Memory

The abstraction of a memory goes back some time...

Contents 2 Memory:

Memory
The calculating part of the engine may be divided into two portions
1st The Mill in which all operations are performed

2nd The Store in which all the numbers are originally placed and to which the numbers computed by
the engine are returned.

[Dec 1837, On the Mathematical Powers of the Calculating Engine, Charles Babbage]

T —_(_
[T

%2
e

Mibwranton T8
i

A)

btk btk et Me Bt e i g,

Contents 2 Memory:

The Golden Age, (1837-) 1945-1962

Processor

Contents 2 Memory:

1962: First(?) Multiprocessor

BURROUGHS D825, 1962

“Outstanding features include truly modular hardware with parallel processing

throughout”
FUTURE PLANS The complement of compiling languages is to be expanded.”

Contents 2.1 Memory: Multiprocessors

Multiprocessors, 1962—now
Niche multiprocessors since 1962

IBM System 370/158MP in 1972

2+

Mass-market since 2005 (Intel Core 2 Duo).

Contents 2.1 Memory: Multiprocessors

10

Multiprocessors, 2019

Intel Xeon E7-8895 v3
36 hardware threads

IBM Power 8 server
(up to 1536 hardware threads)

Contents

2.1 Memory: Multiprocessors

11

Why now?

Exponential increases in transistor counts continued — but not per-core performance
> energy efficiency (computation per Watt)

» limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand, design, and program
concurrent systems? Still very hard.

Contents 2.1 Memory: Multiprocessors

12

Concurrency everywhere

At many scales:
P intra-core

» multicore processors < our focus

» ...and programming languages < our focus
» GPU

» datacenter-scale

>

internet-scale

explicit message-passing vs shared memory abstractions

Contents 2.1 Memory: Multiprocessors

The most obvious semantics: Sequential Consistency

‘ Thread, ‘ (XX Thread, ‘
+ :

‘ | Shared Memory ‘

Multiple threads acting on a sequentially consistent (SC) shared memory:
the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, respecting the order specified by the
program [Lamport, 1979]

Contents 2.2 Memory: Sequential consistency

14

A naive two-thread mutual-exclusion algorithm

Initial state: x=0; y=0;

Thread 0

Thread 1

x=1;

if (y==0) {...critical section...}

y=1;
if (x==0) {...critical section...}

Can both be in their critical sections at the same time, in SC?

Contents

2.2 Memory: Sequential consistency

15

A naive two-thread mutual-exclusion algorithm

Initial state: x=0; y=0;

Thread 0 Thread 1

x=1; y=1;
ro=y rl=x

Is a final state with r6=0 and r1=0 possible in SC?

Contents

2.2 Memory: Sequential consistency

16

A naive two-thread mutual-exclusion algorithm

’Initial state: x=0; y=0;

Thread 0 Thread 1

x=1; y=1;
ro=y rl=x

Is a final state with r0=0 and r1=0 possible in SC?
Try all six interleavings of SC model:

3:W

0:1:Wy=1 1:1:Rx=1

11:%(?\ 13:0:Wx=114:0:Ry=1

Contents 2.2 Memory: Sequential consistency

ro=1 rl1=0
ro=1 ril=1
re=l1 ril=1
re=1 ril=1
re=1 ril=1

ro=0 ril=1

17

Let's try...
We'll use the litmus7 tool (diy.inria.fr, Alglave, Maranget, et al. [27])

Write the test in litmus format, in a file SB.litmus:

1 X86_64 SB

2 "PodWR Fre PodWR Fre"
3 Cycle=Fre PodWR Fre PodWR
4 Relax=

5 Safe=Fre PodwWR
6 Generator=diy7 (version 7.55+01(dev))

7 Prefetch=0:x=F,0:y=T,1:y=F,1:x=T

8 Com=Fr Fr

9 Orig=PodWR Fre PodWR Fre

10 Align=

11 {

12 uint64_t y; uint64_t x; uint64_t 1l:rax; uint64_t 0:rax;

14 3}

15 PO | P1 ;
Contgnts . 22-Memory: Sequential congistency

diy.inria.fr

Let's try...

To install litmus7:
1. install the opam package manager for OCaml: https://opam.ocaml.org/
2. opam install herdtools7 (docs at diy.inria.fr)

Contents 2.2 Memory: Sequential consistency

19

https://opam.ocaml.org/
diy.inria.fr

Let's try...

[...]
Generated assembler
#START _litmus_P1
movqg $1, (%r9,%rcx)
movqg (%r8,%rcx),%rax
#START _1litmus_PO
movqg $1, (%r8,%rcx)
movqg (%r9,%rcx),%rax

Contents 2.2 Memory: Sequential consistency

20

Let's try...

$ litmus7 SB.litmus

[...]

Histogram (4 states)

14 *>0:rax=0; 1:rax=0;
499983:>0:rax=1; 1l:rax=0;
499949:>0:rax=0; 1l:rax=1;

54 :>0:rax=1; 1l:rax=1;

[...]

Observation SB Sometimes 14 999986
[...]

14 in 1e6, on an Intel Core i7-7500U
(beware: 1e6 is a small number; rare behaviours might need 19+, and litmus tuning)

Contents 2.2 Memory: Sequential consistency

21

Let's try...

Histogram (4 states)

7136481 x> 0:X2=0; 1:X2=0;

596513783:> 0:X2=0; 1:X2=1;

596513170:> 0:X2=1; 1:X2=0;

36566 > 0:X2=1; 1:X2=1;

[...]

Observation SB Sometimes 7136481 1193063519

7€6 in 1.2€9, on an Apple-designed ARMv8-A SoC (Apple A10 Fusion) in an iPhone 7

Contents 2.2 Memory: Sequential consistency 22

Let's try...

Why could that be?

1.

Noobk~kowh

error in the test

error in the litmus7-generated test harness

error in the OS

error in the hardware processor design

manufacturing defect in the particular silicon we're running on
error in our calculation of what the SC model allows

error in the model

Contents 2.2 Memory: Sequential consistency

23

Let's try...

Why could that be?
1. error in the test
error in the litmus7-generated test harness
error in the OS
error in the hardware processor design
manufacturing defect in the particular silicon we're running on
error in our calculation of what the SC model allows
error in the model < this time

Noobk~kowh

Sequential Consistency is not a correct model for x86 or Arm processors.

Contents 2.2 Memory: Sequential consistency

Let's try...

Why could that be?
1. error in the test
error in the litmus7-generated test harness
error in the OS
error in the hardware processor design
manufacturing defect in the particular silicon we're running on
error in our calculation of what the SC model allows
error in the model < this time

Noobk~kowh

Sequential Consistency is not a correct model for x86 or Arm processors.
...or for IBM Power, RISC-V, C, C++, Java, etc.

Instead, all these have some form of relaxed memory model (or weak memory
model), allowing some non-SC behaviour

Contents 2.2 Memory: Sequential consistency

What does it mean to be a good model?

Contents 2.3 Memory: Architecture specification

26

Processor implementations

Intel i7-8700K, AMD Ryzen 7 1800X, Qualcomm Snapdragon 865, Samsung Exynos
990, IBM Power 9 Nimbus, ...

Each has fantastically complex internal structure:

[Die shot of quad-core Intel i7-7700K (Kaby Lake) processor, en.wikichip.org]

Contents 2.3 Memory: Architecture specification 27

en.wikichip.org

Processor implementations

We can't use that as our programmer’s model — it's:
> too complex
» too confidential

> too specific:

software should run correctly on a wide range of hardware implementations,
current and future

Contents 2.3 Memory: Architecture specification

28

Architecture specifications

An architecture specification aims to define an envelope of the programmer-observable
behaviour of all members of a processor family:

the set of all behaviour that a programmer might see by executing multithreaded
programs on any implementation of that family.

The hardware/software interface, serving both as the

1. criterion for correctness of hardware implementations, and the
2. specification of what programmers can depend on.

Contents 2.3 Memory: Architecture specification 29

Architecture specifications
Thick books:

>
>
>

Intel 64 and |A-32 Architectures Software Developer's Manual [30], 5052 pages
AMDG64 Architecture Programmer's Manual [31], 3165 pages

Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile [32]
8248 pages

Power ISA Version 3.0B [33], 1258 pages

The RISC-V Instruction Set Manual Volume |: Unprivileged ISA [34] and Volume
[I: Privileged Architecture [35], 238+135 pages

Contents 2.3 Memory: Architecture specification

30

Architecture specifications
Thick books:

» Intel 64 and I1A-32 Architectures Software Developer's Manual [30], 5052 pages

» AMDG64 Architecture Programmer’'s Manual [31], 3165 pages

» Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile [32],
8248 pages

» Power ISA Version 3.0B [33], 1258 pages

» The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [34] and Volume
[I: Privileged Architecture [35], 238+135 pages

Each aims to define the:
» architected state (programmer-visible registers etc.)
» instruction-set architecture (ISA): instruction encodings and sequential behaviour

» concurrency architecture — how those interact
> ..

Contents 2.3 Memory: Architecture specification 31

Architecture specifications
Architectures have to be loose specifications:
» accommodating the range of behaviour from runtime nondeterminism of a single
implementation (e.g. from timing variations, cache pressure, ...)
» ...and from multiple implementations, with different microarchitecture

Contents 2.3 Memory: Architecture specification

32

Desirable properties of an architecture specification

Sound with respect to current hardware

Sound with respect to future hardware

Opaque with respect to hardware microarchitecture implementation detail
Complete with respect to hardware?

Strong enough for software

Unambiguous / precise

Executable as a test oracle

Incrementally executable

© 0Nk

Clear
Authoritative?

._.
©

Contents 2.3 Memory: Architecture specification

33

Litmus tests and candidate executions

SB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ’Thread 0 ‘ ’ Thread 1 ‘
Thread 0 Thread 1 aWx=1 cWy=1
movq $1, (x) //a|movg $1, (y) //c rf |PO rf lpo
movq (y), Srax //b | movqg (x), Srax //d "~ ~
b:Ry=0 d:Rx=0

’Fina|: 0:rax=0; 1:rax=0; ‘
Observation: 171/100000000
Candidate executions consist of:

» a choice of a control-flow unfolding of the test source

» a choice, for each memory read, of which write it reads from, or the initial state

» ...more later
Represented as graphs, with nodes the memory events and various relations, including:

» program order po

» reads-from rf

The final-state condition of the test often identifies a unique candidate execution
...which might be observable or not on h/w, and allowed or not by a model.

Contents 2.4 Memory: Litmus tests and candidate executions 34

Why is this an academic subject?

Why not just read the manuals?

Those desirable properties turn out to be very hard to achieve, esp. for subtle real-world
concurrency

In 2007, many architecture prose texts were too vague to interpret reliably

Research from then to date has clarified much, and several architectures now
incorporate precise models based on it (historical survey later)

...and this enables many kinds of research above these models

Much still to do!

Contents 2.5 Memory: Why? 35

Contents

3 x86:

x30

36

onten

ts

x86 basic phenomena

3.1 x86: x86 basic phenomena

37

Observable relaxed-memory behaviour arises from hardware optimisations

(and compiler optimisations for language-level relaxed behaviour)

Contents 3.1 x86: x86 basic phenomena

38

Observable relaxed-memory behaviour arises from hardware optimisations
(and compiler optimisations for language-level relaxed behaviour)

so we should be able to understand and explain them in those terms

Contents 3.1 x86: x86 basic phenomena

39

Scope: “user’ concurrency

Focus for now on the behaviour of memory accesses and barriers, as used in most
concurrent algorithms (in user or system modes, but without systems features).

Coherent write-back memory, assuming:
» no misaligned or mixed-size accesses

no exceptions

no self-modifying code

no page-table changes

no ‘non-temporal’ operations

vVvyyVvyyVvyy

no device memory

Most of those are active research areas. We also ignore fairness properties, considering
finite executions only

Contents 3.1 x86: x86 basic phenomena 40

SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ’Thread O‘ ’Thread 1 ‘

Thread 0 Thread 1 aWx=1 cWy=1
movq $1, (x) //a|movg $1, (y) //c rf po rf lpo
movq (y), %rax //b|movqg (x), S%rax //d \ \

b:Ry= d:Rx=
Final: 0:rax=0; 1:rax=0; ‘ y=0 =0

Observation: 171/100000000

Contents 3.1 x86: x86 basic phenomena

SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ’Thread O‘ ’Thread 1 ‘

Thread 0 Thread 1 aWx=1 cWy=1
movq $1, (x) //a|movg $1, (y) //c rf po rf lpo
movq (y), %rax //b|movqg (x), S%rax //d \ \

b:Ry= d:Rx=
Final: 0:rax=0; 1:rax=0; ‘ y=0 =0

Observation: 171/100000000
» experimentally: observed

Contents 3.1 x86: x86 basic phenomena

SB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘
Thread 0 Thread 1
movq $1, (x) //a|movq $1, (y) //c
movq (y), %rax //b|movqg (x), S%rax //d

Final: 0:rax=0; 1:rax=0;

|

Observation: 171/100000000
» experimentally: observed

» possible microarchitectural explanation?

Contents 3.1 x86: x86 basic phenomena

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 cWy=1

N N
b:Ry=0 d:Rx=0

43

SB x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

Thread 0 Thread 1
movq $1, (x) //a|movq $1, (y) //c
movq (y), %rax //b|movqg (x), S%rax //d

Final: 0:rax=0; 1:rax=0; ‘
Observation: 171/100000000

> experimentally: observed

» possible microarchitectural explanation?
buffer stores? out-of-order execution?

Contents 3.1 x86: x86 basic phenomena

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 cWy=1
N N
b:Ry=0 d:Rx=0
‘ Thread ‘ oo ‘ Thread

5 5
T T
w w
s s
))

Shared Memory

44

SB x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

Thread 0 Thread 1
movq $1, (x) //a|movq $1, (y) //c
movq (y), %rax //b|movqg (x), S%rax //d

Final: 0:rax=0; 1:rax=0; ‘
Observation: 171/100000000

> experimentally: observed

» possible microarchitectural explanation?
buffer stores? out-of-order execution?

» architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to
the same location. [Intel SDM,§8.2.2, and
Example 8-3]

Contents 3.1 x86: x86 basic phenomena

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 cWy=1
N N
b:Ry=0 d:Rx=0
‘ Thread ‘ oo ‘ Thread

z
&
o
s
)

z
&
w
s
)

Shared Memory

45

LB x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

Thread 0 Thread 1
movq (x), %rax //a|movq (y), Srax //c
movqg $1, (y) //b|movg $1, (x) //d

Final: 0:rax=1; 1:rax=1; ‘
Observation: 0/0

Contents 3.1 x86: x86 basic phenomena

’ Thread 0 ‘ ’Thread 1 ‘
a:Rx=1 cRy=1

po 2 b

b:wy=1 d:wWx=1

rf

46

LB

x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘
Thread 0 Thread 1

movq (x), %rax //a|movq (y), Srax //c

movqg $1, (y) //b|movq $1, (x) //d

Final: 0:rax=1; 1:rax=1;

|

Observation: 0/0

> experimentally: not observed

Contents 3.1 x86: x86 basic phenomena

’ Thread 0 ‘ ’Thread 1 ‘
a:Rx=1 c:Ry=1
rf lpoy lpo
b:wy=1 d:wWx=1

47

LB x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

Thread 0 Thread 1
movq (x), %rax //a|movq (y), Srax //c
movqg $1, (y) //b|movg $1, (x) //d

’Fina|: 0:rax=1; 1l:rax=1; ‘
Observation: 0/0

> experimentally: not observed

» possible microarchitectural explanation?

Contents 3.1 x86: x86 basic phenomena

’ Thread 0 ‘ ’Thread 1 ‘

a:Rx=1 c:Ry=1
rf lpoy lpo
b:wy=1 d:wWx=1

48

LB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘
Thread 0 Thread 1
movq (x), %rax //a|movq (y), Srax //c
movq $1, (y) //b|movg $1, (x) //d

’Fina|: 0:rax=1; 1:rax=1;

Observation: 0/0

» experimentally: not

observed

» possible microarchitectural explanation?
Buffer load requests?
Out-of-order execution?

Contents

3.1 x86: x86 basic phenomena

’ Thread 0 ‘ ’Thread 1 ‘
a:Rx=1 c:Ry=1
rf lpoy lpo
b:wy=1 d:Wx=1

‘ Thread ‘ oo ‘ Thread ‘

z 5
T 5
w us]
S S
g g

Shared Memory

49

LB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘
Thread 0 Thread 1
movq (x), %rax //a|movq (y), Srax //c
movqg $1, (y) //b|movqg $1, (x) //d

’Fina|: 0:rax=1; 1:rax=1;
Observation: 0/0
> experimentally: not observed

» possible microarchitectural explanation?
Buffer load requests?
Out-of-order execution?

» architecture prose and intent?

Reads may be reordered with older writes to
different locations but not with older writes to

the same location. [Intel SDM,§8.2.2]

So?

Contents 3.1 x86: x86 basic phenomena

’ Thread 0 ‘ ’Thread 1 ‘
a:Rx=1 c:Ry=1

po 2 b

b:wy=1 d:Wx=1

rf

‘ Thread ‘ oo ‘ Thread

z 5
T 53
w us)
S S
g g

Shared Memory

50

MP x86

’Initial state: 1:rax=0; 1:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1

movq $1, (x) //a|movqg (y), %rax //c

movqg $1, (y) //b|movqg (x), S%rbx //d

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

Contents 3.1 x86: x86 basic phenomena

’Thread 0‘ ’Thread 1‘

a:Wx=1 c:Ry=1
190%]: lpo
b:wy=1 d:Rx=0

51

MP x86

’Initial state: 1:rax=0; 1:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1

movq $1, (x) //a|movqg (y), %rax //c

movqg $1, (y) //b|movqg (x), S%rbx //d

’Fina|: 1:rax=1; 1:rbx=0;

Observation: 0/100000000
> experimentally: not observed

(but it is on Armv8-A and IBM Power)

Contents 3.1 x86: x86 basic phenomena

’Thread 0‘ ’Thread 1‘

a:Wx=1 c:Ry=1
190%]: lpo
b:wy=1 d:Rx=0

52

MP x86

’Initial state: 1:rax=0; 1:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1

movq $1, (x) //a|movqg (y), %rax //c

movqg $1, (y) //b|movqg (x), S%rbx //d

’Fina|: 1:rax=1; 1:rbx=0;

Observation: 0/100000000
> experimentally: not observed

(but it is on Armv8-A and IBM Power)

» possible microarchitectural explanation?

’Thread 0‘

’ Thread 1 ‘

a:Wx=1

c:Ry=1

po S e

b:wy=1

Out-of-order pipeline execution is another important
hardware optimisation — but not programmer-visible

here

Contents 3.1 x86: x86 basic phenomena

d:Rx=0

53

MP x86

’lnitia| state: 1:rax=0; 1:rbx=0; y=0; x=0; ‘ ’ Thread 0 ‘ ’ Thread 1 ‘

Thread 0 Thread 1 a:Wx=1 C:Ry=1
movg $1, (x)//a|movq (y), %rax //c lpo%f lpo
movqg $1, (y) //b|movqg (x), S%rbx //d

b:wy=1 d:Rx=0
’Fina|: 1:rax=1; 1:rbx=0; ‘ y
Observation: 0/100000000

> experimentally: not observed

(but it is on Armv8-A and IBM Power) Thread eee [Thread

» possible microarchitectural explanation?

Out-of-order pipeline execution is another important
hardware optimisation — but not programmer-visible
here

S S
5 &
o @©
< S
g g

» consistent with model sketch? -
ared Memory

Contents 3.1 x86: x86 basic phenomena 54

MP x86
’Initial state: 1:rax=0; 1:rbx=0; y=0; x=0; ‘

Thread 0 Thread 1
movq $1, (x) //a|movqg (y), %rax //c
movqg $1, (y) //b|movqg (x), S%rbx //d

’Fina|: 1:rax=1; 1:rbx=0; ‘
Observation: 6/100000000
> experimentally: not observed
(but it is on Armv8-A and IBM Power)

» possible microarchitectural explanation?

Out-of-order pipeline execution is another important
hardware optimisation — but not programmer-visible

here
» consistent with model sketch?

» architecture prose and intent?

’Thread 0‘

’ Thread 1 ‘

a:Wx=1

c:Ry=1

po S e

b:wy=1

Thread s Thread

d:Rx=0

z
T
@
=
E)

z
5]
@
S
)

Shared Memory

Reads are not reordered with other reads. Writes to
memory are not reordered with other writes, except
non-temporal moves and string operations. Example 8-1

Contents 3.1 x86: x86 basic phenomena

55

SB4-rfi-pos x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;

Thread 0 Thread 1

movqg $1, (x) //a|movq $1, (y) //d
movq (x), Srax//b|movq (y), %rax//e
movq (y), %rbx//c|movqg (x), %rbx//f

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

Contents 3.1 x86: x86 basic phenomena

"Thread 0‘ WThread 1‘
a:Wx=1 d:wy=1
rf lrf
b:Rx=1 e:Ry=1
.\{.1: po .\[f lpo
c:Ry=0 f:Rx=0

56

SB4-rfi-pos

x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;

Thread 0

Thread 1

movqg $1, (x) //a
movq (x), Srax//b
movq (y), %rbx//c

movq $1, (y) //d
movq (y), Srax//e
movq (x), S%rbx//f

1:rbx=0;

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

Observation: 320/100000000

» is that allowed in the previous model sketch?

Contents

3.1 x86: x86 basic phenomena

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 d:wy=1
rf lrf
b:Rx=1 e:Ry=1
.\{.1: po .\[f lpo
c:Ry=0 f:Rx=0
‘ Thread ‘ LR ‘ Thread

2 2
& &
@ @
S S
) g
g g

Shared Memory

57

SB4-rfi-pos x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;

Thread 0 Thread 1

movqg $1, (x) //a|movq $1, (y) //d
movq (x), Srax//b|movq (y), %rax//e
movq (y), %rbx//c|movqg (x), %rbx//f

Final: 0:rax=1; 0:rbx=0; 1:rax=1;
1:rbx=0;

Observation: 320/100000000

» is that allowed in the previous model sketch?

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 d:wy=1
rf lrf
b:Rx=1 e:Ry=1
.\{.1: po .\[f lpo
c:Ry=0 f:Rx=0
‘ Thread ‘ Thread

» we think the pairs of reads are not reordered — so no

Contents 3.1 x86: x86 basic phenomena

E
5
@
S
g
=}

E
5
@
=
g
=}

Shared Memory

58

SB4-rfi-pos x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;

Thread 0 Thread 1

movqg $1, (x) //a|movq $1, (y) //d
movq (x), Srax//b|movq (y), %rax//e
movq (y), %rbx//c|movqg (x), %rbx//f

Final: 0:rax=1; 0:rbx=0; 1:rax=1;
1:rbx=0;

Observation: 320/100000000

» is that allowed in the previous model sketch?

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 d:wy=1
rf lrf
b:Rx=1 e:Ry=1
.\{.1: po .\[f lpo
c:Ry=0 f:Rx=0
‘ Thread ‘ Thread

» we think the pairs of reads are not reordered — so no

» experimentally: observed

Contents 3.1 x86: x86 basic phenomena

E
5
@
S
g
=}

E
5
@
=
g
=}

Shared Memory

59

SB4-rfi-pos x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;
Thread 0 Thread 1

movqg $1, (x) //a|movq $1, (y) //d
movq (x), Srax//b|movq (y), %rax//e
movq (y), %rbx//c|movqg (x), %rbx//f

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;
Observation: 320/100000000

» is that allowed in the previous model sketch?

v

v

experimentally: observed

v

Contents 3.1 x86: x86 basic phenomena

we think the pairs of reads are not reordered — so no \ \

microarchitectural refinement: allow — actually,
require — reading from the store buffer

’Thread 0 ‘ ’ Thread 1 ‘

a:Wx=1 d:wy=1

rf lrf

b:Rx=1 e:Ry=1

.\{.1: po .\[flpo

C:Ry=0 f:Rx=0
‘ Thread ‘ oo ‘ Thread

2 2
& &
jus) @
5 S
3)
g g

Shared Memory

60

SB4-rfi-pos

x86

Initial state: 0: rax=0; 0: rbx=0;
l:rax=0; 1:rbx=0; y=0; x=0;

Thread 0 Thread 1

movqg $1, (x) //a|movq $1, (y) //d
movq (x), Srax//b|movq (y), %rax//e
movq (y), %rbx//c|movqg (x), %rbx//f

Final: 0:rax=1; 0:rbx=0; 1:rax=1;
1:rbx=0;

Contents

Observation: 320/100000000

» is that allowed in the previous model sketch?

\4

v

experimentally: observed

v

» architecture prose and intent?
Principles? But Example 8-5

3.1 x86: x86 basic phenomena

microarchitectural refinement: allow — actually,
require — reading from the store buffer

’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 d:wy=1
rf lrf
b:Rx=1 e:Ry=1
.\{.1: po .\[f lpo
c:Ry=0 f:Rx=0
‘ Thread ‘ LR ‘ Thread

we think the pairs of reads are not reordered — so no

2 2
& &
jus) @
5 S
3)
g g

Shared Memory

61

IRIW

x86

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;

Thread 0

Thread 1

Thread 2

Thread 3

movq $1, (x)//a

movq (Xx), %rax//b
movq (y), %rbx//c

movq $1, (y)//d

movq (y), %rax//e
movq (x), %rbx//f

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: /100000000

Contents

3.1 x86: x86 basic phenomena

‘ Thread 0 ‘ ‘Thread 1 ‘

‘Thread 2‘ ‘Thread 3‘

aWx=1—""> b:Rx=1

o po
c:Ry=0

d;Wy=1i>eiRy=1

o IP°
f:Rx=0

62

IRIW

x86

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;

Thread 0

Thread 1 Thread 2

Thread 3

movq $1, (x)//a

movq (x), %rax//b|movq $1, (y)//d
movq (y), %rbx//c

movq (y), %rax//e
movq (x), %rbx//f

‘Final: l:rax=1; 1

:rbx=0; 3:rax=1; 3:rbx=0;

Observation: /100000000

» is that allowed in the previous model sketch?

Contents

3.1 x86: x86 basic phenomena

‘Thread 0‘ ‘Thread 1‘ ‘Thread 2‘ ‘Thread 3‘
aWx=1—"">pRx=1 d:wy=1 —rf eRy=1
NG NG
c:Ry=0 f:Rx=0
‘ Thread ‘ oo ‘ Thread

\ \

§ Ty} g

7 £

2 2

g g

Shared Memory

63

IRIW

x86

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;

Thread 0

Thread 1

Thread 2

Thread 3

movq $1, (x)//a

movq (Xx), %rax//b
movq (y), %rbx//c

movq $1, (y)//d

movq (y), %rax//e
movq (x), %rbx//f

‘Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: /100000000

» is that allowed in the previous model sketch?

» we think the T2,3 read pairs are not reorderable — so no

Contents

3.1 x86: x86 basic phenomena

‘Thread 0‘ ‘Thread 1‘ ‘Thread 2‘ ‘Thread 3‘
aWx=1—"">pRx=1 d:wy=1 —rf eRy=1
NG NG
c:Ry=0 f:Rx=0
‘ Thread ‘ oo ‘ Thread

\ \

§ Ty} g

7 £

2 2

g g

Shared Memory

64

IRIW

x86

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;

Thread 0

Thread 1

Thread 2

Thread 3

movq $1, (x)//a

movq (Xx), %rax//b
movq (y), %rbx//c

movq $1, (y)//d

movq (y), %rax//e
movq (x), %rbx//f

‘Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: /100000000

» is that allowed in the previous model sketch?

» we think the T2,3 read pairs are not reorderable — so no

» s it microarchitecturally plausible?

Contents

3.1 x86: x86 basic phenomena

‘Thread 0‘ ‘Thread 1‘ ‘Thread 2‘ ‘Thread 3‘
aWx=1—"">pRx=1 d:wy=1 —rf eRy=1
NG NG
c:Ry=0 f:Rx=0
‘ Thread ‘ oo ‘ Thread

\ \

§ Ty} g

7 £

2 2

g g

Shared Memory

65

‘ Thread 3 ‘

IRIW x86
‘Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0; ‘ ‘ Thread 0 ‘ ‘Thread 1 ‘ ‘Thread 2‘
W ox= o . rf e Rv=
Thread 0 Thread 1 Thread 2 Thread 3 aWx=1 b:Rx=1 d:wy=1 >eRy=1
movqg $1, (x)//a|movq (x), %rax//b|movq $1, (y)//d|movq (y), %rax//e lpo rflpo
movq (y), %srbx//c movq (x), S%rbx//f .\If N
c:Ry=0 f:Rx=0

‘Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

» s that allowed in the previous model sketch?

» we think the T2,3 read pairs are not reorderable — so no

» s it microarchitecturally plausible? yes, e.g. with shared
store buffers or fancy cache protocols

Contents

3.1 x86: x86 basic phenomena

‘Threado HThread1 ‘ ‘ThreadZ HThreadS ‘

1oyng slM

Jsyng SlM

Shared Memory

66

IRIW x86
‘Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0; ‘ ‘ Thread 0 ‘ ‘Thread 1 ‘ ‘Thread 2‘ ‘Thread 3‘
W ox= o . rf e Rv=
Thread 0 Thread 1 Thread 2 Thread 3 aWx=1 b:Rx=1 d:wy=1 >eRy=1
movqg $1, (x)//a|movq (x), %rax//b|movq $1, (y)//d|movq (y), %rax//e po rf |PO
movq (y), %srbx//c movq (x), S%rbx//f .\If N
Cc:Ry=0 f:Rx=0

‘Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;
Observation: 0/100000000

» s that allowed in the previous model sketch?

‘Threado HThread1 ‘ ‘ThreadZ HThreadS ‘

» we think the T2,3 read pairs are not reorderable — so no

» s it microarchitecturally plausible? yes, e.g. with shared
store buffers or fancy cache protocols

Joyng oM
Jayng 8lM

» experimentally: not observed

Shared Memory

Contents 3.1 x86: x86 basic phenomena 67

IRIW x86
‘Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0; ‘ ‘Thread O‘ p ‘Thread 1 ‘Thread 2‘ ‘Thread 3‘
Wx=1—"T 5. . rf e Rv=
Thread 0 Thread 1 Thread 2 Thread 3 aWx=1 b:Rx=1 d:wy=1 >eRy=1
movq $1, (x)//a|movq (x), %rax//b|movq $1, (y)//d|movq (y), %rax//e po rf |PO
movq (y), %rbx//c movq (x), %rbx//f .\If .\
c:Ry=0 f:Rx=0

‘Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;
Observation: 0/100000000

» s that allowed in the previous model sketch?

‘Threado HThread1 ‘ ‘ThreadZ HThreadS ‘

» we think the T2,3 read pairs are not reorderable — so no
» s it microarchitecturally plausible? yes, e.g. with shared
store buffers or fancy cache protocols] E
(0] [}
» experimentally: not observed g g
@ [}
» architecture prose and intent?
Any two stores are seen in a consistent order by Shared Memory
processors other than those performing the stores;
Example 8-7

Contents 3.1 x86: x86 basic phenomena 68

WRC

x86

‘|nitia| state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘

Thread 0 Thread 1 Thread 2
movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d
movq $1, (y) //c|movqg (x), %rbx//e

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 6/100000000

Contents 3.1 x86: x86 basic phenomena

Thread 0‘ ; ‘Thread 1 ‘ ‘Thread 2
aWx=1—">hRx=1 d:Ry=1

po Ll

cWy=1 e:Rx=0

69

WRC x86

‘Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘ Thread 0‘ ‘Thread 1 ‘ ‘Thread 2
EWIV r By ‘R y—
Thread 0 Thread 1 Thread 2 aWx=1——"—h:Rx=1 d:iRy=1
movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d lpoyrf lpo
movq $1, (y) //c|movqg (x), %rbx//e .\
Final: 1:rax=1; 2:rax=1; 2:rbx=0; ‘ cWy=1 e:Rx=0

Observation: 6/100000000

» is that allowed in the previous model sketch?

‘ Thread ‘ ore ‘ Thread

5 5
T T
w w
S =
g g

Shared Memory

Contents 3.1 x86: x86 basic phenomena

WRC x86
‘|nitia| state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1 Thread 2

movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d
movq $1, (y) //c|movqg (x), %rbx//e

Final: 1:rax=1; 2:rax=1; 2:rbx=0; ‘
Observation: 6/100000000

» is that allowed in the previous model sketch?

» we think the T1 read-write pair and T2 read pair are
not reorderable — so no

Contents 3.1 x86: x86 basic phenomena

Thread 0‘ ; ‘Thread 1 ‘ ‘Thread 2

aWx=1—">hRx=1 d:Ry=1

po Ll

cWy=1 e:Rx=0

‘ Thread

‘ oo ‘ Thread

z
&
w
S
)

=
5
w
=
)

Shared Memory

71

x86

WRC
‘Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; Thread 0‘ ‘Thread 1 ‘ ‘Thread 2
o 1 r . .
Thread 0 Thread 1 Thread 2 aWx=1——h:Rx=1 d:Ry=1
movg $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d lpoyv flpo
movg $1, (y) //c|movg (x), %rbx//e g
cWy=1 e:Rx=0

‘Fina|: 1:rax=1; 2:rax=1; 2:rbx=0;
Observation: 6/100000000

» s that allowed in the previous model sketch?

[Thread 0 |[Thread 1 | [Thread 2 |[Threads |

» we think the T1 read-write pair and T2 read pair are
not reorderable — so no
or in this one?

2 2
& 5
@ @
S 5
) 3
g g

Shared Memory

72

Contents 3.1 x86: x86 basic phenomena

WRC x86
‘|nitia| state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1 Thread 2

movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d
movq $1, (y) //c|movqg (x), %rbx//e

Final: 1:rax=1; 2:rax=1; 2:rbx=0; ‘
Observation: 6/100000000

» is that allowed in the previous model sketch?

» we think the T1 read-write pair and T2 read pair are
not reorderable — so no

» experimentally: not observed

Contents 3.1 x86: x86 basic phenomena

Thread 0‘ ; ‘Thread 1 ‘ ‘Thread 2

aWx=1—">hRx=1 d:Ry=1

po Ll

cWy=1 e:Rx=0

‘ Thread

‘ oo ‘ Thread

z
&
w
S
)

=
5
w
=
)

Shared Memory

73

WRC x86
‘|nitia| state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1 Thread 2

movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d
movq $1, (y) //c|movqg (x), %rbx//e

Final: 1:rax=1; 2:rax=1; 2:rbx=0; ‘
Observation: 6/100000000

» is that allowed in the previous model sketch?

» we think the T1 read-write pair and T2 read pair are
not reorderable — so no

» experimentally: not observed
» architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

Contents 3.1 x86: x86 basic phenomena

Thread 0‘ ; ‘Thread 1 ‘ ‘Thread 2

aWx=1—">hRx=1 d:Ry=1

po Ll

cWy=1 e:Rx=0

‘ Thread

‘ oo ‘ Thread

z
&
w
S
)

=
5
w
=
)

Shared Memory

74

WRC x86
‘|nitia| state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0; ‘
Thread 0 Thread 1 Thread 2

movq $1, (x)//a|movq (x), %rax//b|movq (y), %rax//d
movq $1, (y) //c|movqg (x), %rbx//e

Final: 1:rax=1; 2:rax=1; 2:rbx=0; ‘
Observation: 6/100000000

v

is that allowed in the previous model sketch?

» we think the T1 read-write pair and T2 read pair are
not reorderable — so no

» experimentally: not observed
» architecture prose and intent?

Memory ordering obeys causality (memory ordering
respects transitive visibility). Example 8-5

» model sketch remains experimentally plausible, but
interpretation of vendor prose unclear

Contents 3.1 x86: x86 basic phenomena

Thread 0‘ ; ‘Thread 1 ‘ ‘Thread 2

aWx=1—">hRx=1 d:Ry=1

po Ll

cWy=1 e:Rx=0

‘ Thread

‘ oo ‘ Thread

z
&
w
S
)

=
5
w
=
)

Shared Memory

75

SB+mfences x86
[Initial state: 0: rax=0; 1:rax=0; y=0; x=0; |
Thread 0 Thread 1
movq $1, (x) //a|movg $1, (y) //d
mfence //b | mfence //e
movq (y), %rax //c|movqg (x), Srax //f

Final: 0:rax=0; 1:rax=0;

Observ

Contents

ation: 0/100000000

3.1 x86: x86 basic phenomena

‘Thread 0 ‘ ‘Thread 1 ‘

a:Wx=1 d:wy=1
i mfence oJf lmfence
c:Ry=0 f:Rx=0

76

SB+mfences x86

[Initial state: 0: rax=0; 1:rax=0; y=0; x=0;

Thread 0 Thread 1
movq $1, (x) //a|movg $1, (y) //d
mfence //b | mfence //e
movq (y), %rax //c|movqg (x), Srax //f

‘Final: 0:rax=0; 1:rax=0; ‘
Observation: 6/100000000

» experimentally: not observed

Contents 3.1 x86: x86 basic phenomena

‘Thread 0‘

‘ Thread 1 ‘

a:Wx=1

i mfence oJf lmfence

c:Ry=0

d:wy=1

f:Rx=0

77

SB+mfences x86

‘|nitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ‘Thread 0 ‘ ‘Thread 1 ‘
Thread 0 Thread 1 aWx=1 d:wy=1

movqg $1, (x) //a|movq $1, (y) //d mfence lmfence

mfence //b | mfence //e '\If .\Arf

movq (y), %rax //c|movq (x), %rax //f c:Ry=0 f:Rx=0

‘Final: 0:rax=0; 1:rax=0; ‘
Observation: 6/100000000

» experimentally: not observed
» architecture prose and intent?

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass
earlier reads or writes.

MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

Contents 3.1 x86: x86 basic phenomena 78

SB+mfences x86
[Initial state: 0: rax=0; 1:rax=0; y=0; x=0; |
Thread 0 Thread 1
movq $1, (x) //a|movg $1, (y) //d
mfence //b | mfence //e
movq (y), %rax //c|movqg (x), Srax //f

‘Final: 0:rax=0; 1:rax=0;

Observation: 6/100000000

» experimentally: not observed

» architecture prose and intent?

‘Thread 0 ‘ ‘Thread 1 ‘
a:Wx=1 d:wy=1
i mfence .\Iflmfence
cRy=0 f:Rx=0
‘ Thread ‘ ore ‘ Thread

Reads and writes cannot pass earlier MFENCE
instructions. MFENCE instructions cannot pass

earlier reads or writes.

MFENCE serializes all store and load operations
that occurred prior to the MFENCE instruction in
the program instruction stream.

» in the model sketch: ...waits for local write buffer
to drain? (or forces it to — it that observable?)

NB: no inter-thread synchronisation

Contents 3.1 x86: x86 basic phenomena

z
5]
jor]
S
E)

z
5]
for]
=
E)

Shared Memory

79

Adding Read-Modify-Write instructions

x86 is not RISC — there are many instructions that read and write memory, e.g.

INC x86
’Initial state: x=0; ‘ ’Thread 0‘ ’Thread 1 ‘
rf o r
Thread 0 Thread 1 ad:Rx=0 g O:Rx=0
incq (x)//a0,al|incq (x)//b0,bl ' '
’Final: x=1; ‘

Observation: 1441/1000000

Contents 3.1 x86: x86 basic phenomena

80

Adding Read-Modify-Write instructions

x86 is not RISC — there are many instructions that read and write memory, e.g.

INC x86
’Initial state: x=0; ‘ ’Thread 0‘ ’Thread 1 ‘
rf o r
Thread 0 Thread 1 ad:Rx=0 g Q:Rx=0
incq (x)//a0,al|incq (x)//b0O,bl - ’
’Final:x=1; ‘

Observation: 1441/1000000

Non-atomic (even in SC semantics)

Contents 3.1 x86: x86 basic phenomena

81

Adding Read-Modify-Write instructions

One can add the LOCK prefix (literally a one-byte opcode prefix) to make INC atomic

LOCKINC

x86

’Initial state: x=0;

|

Thread 0

Thread 1

lock incq (x) //a0,al

lock incq (x) //b0,bl

’Final: x=1;

|

Observation: 0/1000000

Contents

3.1 x86: x86 basic phenomena

a0: Rick X=0 .CO—-‘;bO Rick X=0
al: Wick X= 1——bl: Wick X=1

82

Adding Read-Modify-Write instructions

One can add the LOCK prefix (literally a one-byte opcode prefix) to make INC atomic

LOCKINC x86

’Initial state: x=0; ‘ Thread 0 Thread 1
Thread 0 Thread 1 ’_f’g(l) ‘E{dlcki ? 'Co—f> E(l) ‘;R\’lckx ?

lock incq (x) //a0,al| lock incq (x) //b@,bl Lek ek X=

’Final: x=1; ‘

Observation: 0/1000000

Also LOCK'd add, sub, xchg, etc., and cmpxchg

Being able to do that atomically is important for many low-level algorithms. On x86 can also do for
other sizes, including for 8B and 16B adjacent-doublesize quantities

In early hardware implementations, this would literally lock the bus. Now, interconnects are much
fancier.

Contents 3.1 x86: x86 basic phenomena

83

CAS

Compare-and-swap (CAS):
lock cmpxchgq src, dest

compares rax with dest, then:
» if equal, set ZF=1 and load src into dest,

» otherwise, clear ZF=0 and load dest into rax

All this is one atomic step.

Can use to solve consensus problem...

Contents 3.1 x86: x86 basic phenomena

84

Synchronising power of locked instructions

“Loads and stores are not reordered with locked instructions”
Intel Example 8-9: SB with xchg for the stores, forbidden
Intel Example 8-10: MP with xchg for the first store, forbidden

“Locked instructions have a total order”
Intel Example 8-8: IRIW with xchg for the stores, forbidden

Contents 3.1 x86: x86 basic phenomena 85

A rough guide to synchronisation costs

The costs of operations can vary widely between implementations and workloads, but for a very
rough intuition, from Paul McKenney (http://www2.rdrop.com/~paulmck/RCU/):

Operation Cost (ns) Ratio

Clock period 0.4 1
“Best-case” CAS 12.2 33.8

Best-case lock 25.6| 71.2

Single cache miss 12.9 35.8

o CAS cache miss 7.0 19.4

3 Sl Single cache miss (off-core) 31.2 86.6
et sie-ael CAS cache miss (off-core) 31.2 86.5
ANSLCL-: M Single cache miss (off-socket) 92.4 256.7]

our 110s¢ A he mi ff-socket

See Tim Harris's lectures for more serious treatment of performance

Contents 3.1 x86: x86 basic phenomena 86

http://www2.rdrop.com/~paulmck/RCU/

onten

ts

Creating a usable model

3.2 x86: Creating a usable model

87

History of x86 concurrency specs
» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

Contents 3.2 x86: Creating a usable model

88

History of x86 concurrency specs

» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

Intel ‘Processor Ordering’ model,
informal prose

Example: Linux Kernel mailing list,
Nov—Dec 1999 (143 posts)

Keywords: speculation,
cache, retire, causality

ordering,

A one-instruction programming

question; a microarchitectural de-
bate!
Contents 3.2 x86: Creating a usable model

1. spin_unlock() Optimization On Intel

20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: "spin_unlock optimiza-
tion(i386)"

Topics: BSD: FreeBSD, SMP

People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred Spraul, Peter
Samuelson, Ingo Molnar

Manfred Spraul thought he'd found a way to shave spin_unlock() down from
about 22 ticks for the "lock; btrl $0,%0" asm code, to 1 tick for a simple "movl
$0,%0" instruction, a huge gain. Later, he reported that Ingo Molnar noticed a
4% speed-up in a benchmark test, making the optimization very valuable. Ingo
also added that the same optimization cropped up in the FreeBSD mailing list
a few days previously. But Linus Torvalds poured cold water on the whole
thing, saying:

It does NOT WORK!

Let the FreeBSD people use it, and let them get faster timings.
They will crash, eventually.

The window may be small, but if you do this, then suddenly spin-
locks aren't reliable any more.

The issue is not writes being issued in-order (although all the Intel
CPU books warn you NOT to assume that in-order write behaviour

- | bet it won't be the case in the long run).

The issue is that you _have_ to have a serializing instruction in order

to make sure that the processor doesn't re-order things around the
unlock.

For example, with a simple write, the CPU can legally delay a read
that happened inside the critical region (maybe it missed a cache
line), and get a stale value for any of the reads that _should_ have
been serialized by the spinlock.

Note that | actually thought this was a legal optimization, and for

a while | had this in the kernel. It crashed. In random ways.

89

PiSs, rCads (Caclic 1miss) and Writcs dppecar in-oracr. - ric concigaca mwmom wnis
that the second CPU would never see the spin_unlock() before the "b=a"
1 line. Linus agreed that on a Pentium, Manfred was right. However, he quoted
H lStory Of X86 Concu rrency in turn from the Pentium Pro manual, "The only enhancement in the Pen-
tiumPro processor is the added support for speculative reads and store-buffer

> Before Aug 2007 forwarding." He explained:

A Pentium is a in-order machine, without any of the interesting

ReSOIVed Only by appea/ to an speculation wrt reads etc. So on a Pentium you'll never see the
OraCIe.' problem.

But a Pentium is also very uninteresting from a SMP standpoint
these days. It's just too weak with too little per-CPU cache etc..
This is why the PPro has the MTRR's - exactly to let the core do
speculation (a Pentium doesn’'t need MTRR's, as it won't re-order
anything external to the CPU anyway, and in fact won’t even re-
order things internally).
Jeff V. Merkey added:
What Linus says here is correct for PPro and above. Using a mov
instruction to unlock does work fine on a 486 or Pentium SMP
system, but as of the PPro, this was no longer the case, though the
window is so infintesimally small, most kernels don't hit it (Netware
4/5 uses this method but it's spinlocks understand this and the code
is writtne to handle it. The most obvious aberrant behavior was
that cache inconsistencies would occur randomly. PPro uses lock to
signal that the piplines are no longer invalid and the buffers should
be blown out.
| have seen the behavior Linus describes on a hardware analyzer,
BUT ONLY ON SYSTEMS THAT WERE PPRO AND ABOVE. |
guess the BSD people must still be on older Pentium hardware and
that's why they don’t know this can bite in some cases.
Erich Boleyn, an Architect in an 1A32 development group at Intel, also replied
to Linus, pointing out a possible misconception in his proposed exploit. Re-
garding the code Linus posted, Erich replied:
It will always return 0. You don’t need "spin_unlock()" to be seri-

alizing.
The only thing you need is to make sure there is a store in "spin_
unlock()", and that is kind of true by the fact that you're changing

Contents 3.2 x86: Creating a usable model something to be observable on other processors.

History of x86 concurrency specs
» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale

Contents 3.2 x86: Creating a usable model

91

History of x86 concurrency specs
» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale
» IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
Intel published a white paper (IWP) defining 8 informal-prose principles, e.g.
P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores

P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores
that are causally related appear to execute in an order consistent with the

causal relation
supported by 10 litmus tests illustrating allowed or forbidden behaviours.

Contents 3.2 x86: Creating a usable model 92

History of x86 concurrency specs
» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale
» IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
Intel published a white paper (IWP) defining 8 informal-prose principles, e.g.
P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores

P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores
that are causally related appear to execute in an order consistent with the

causal relation
supported by 10 litmus tests illustrating allowed or forbidden behaviours.
» We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]

Contents 3.2 x86: Creating a usable model 93

History of x86 concurrency specs

» Before Aug. 2007 (Era of Vagueness): A Cautionary Tale
» IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)
Intel published a white paper (IWP) defining 8 informal-prose principles, e.g.
P1 Loads are not reordered with older loads
P2 Stores are not reordered with older stores
P5 Intel 64 memory ordering ensures transitive visibility of stores — i.e. stores
that are causally related appear to execute in an order consistent with the
causal relation
supported by 10 litmus tests illustrating allowed or forbidden behaviours.
» We codify these principles in an axiomatic model, x86-CC [1, POPL 2009]

But there are problems:
1. the principles are ambiguous (we interpret them as w.r.t. a single causal order)
2. the principles (and our model) leave IRIW allowed, even with mfences, but the Sun
implementation of the Java Memory Model assumes that mfences recovers SC
3. the model is unsound w.r.t. observable behaviour, as noted by Paul Loewenstein,
with an example that is allowed in the store-buffer model

Contents 3.2 x86: Creating a usable model 94

History of x86 concurrency specs

» Intel SDM rev.27— and AMD 3.17—, Nov. 2008—

Now explicitly excludes IRIW:

» Any two stores are seen in a consistent order by processors other than those
performing the stores

But, still ambiguous w.r.t. causality, and the view by those processors is left
unspecified

Contents 3.2 x86: Creating a usable model

95

Creating a good x86 concurrency model

We had to create a good concurrency model for x86 — “good” meaning the desirable
properties listed before

Key facts:
» Store buffering (with forwarding) is observable
These store buffers appear to be FIFO
We don't see observable buffering of read requests
We don't see other observable out-of-order or speculative execution
IRIW and WRC not observable, and now forbidden by the docs — so multicopy atomic

mfence appears to wait for the local store buffer to drain

vVVvVvvyVvYyVvyy

as do LOCK'd instructions, before they execute
» Various other reorderings are not observable and are forbidden

These suggested that x86 is, in practice, like SPARC TSO: the observable effects of
store buffers are the only observable relaxed-memory behaviour

Our x86-TSO model codifies this, adapting SPARC TSO
Owens, Sarkar, Sewell [4, TPHOLs2009] [5, CACM 2010]

Contents 3.2 x86: Creating a usable model

96

Operational and axiomatic concurrency model definitions

Two styles:

‘ Thread ‘ eee ‘ Thread ‘
Operational o] \

» an abstract machine

» incrementally executable

5 &
@ @
< £
g g

» often abstract-microarchitectural operational models N

Shared Memory ‘

Axiomatic

> a predicate on candidate executions [Thread 0] | Thread 1]

» usually (but not always) further from microarchitecture a:Wx=1 ; c:Ry=1
. . o r

(more concise, but less hardware intuition) lpo/\ff lpo

» not straightforwardly incrementally executable b:wy=1 d:Rx=0

Contents 3.2 x86: Creating a usable model 97

Operational and axiomatic concurrency model definitions

Two styles:

Operational

» an abstract machine

> incrementally executable

> often abstract-microarchitectural operational models
Axiomatic

» a predicate on candidate executions

» usually (but not always) further from microarchitecture
(more concise, but less hardware intuition)

» not straightforwardly incrementally executable

Ideally both, proven equivalent

Contents 3.2 x86: Creating a usable model

‘ Thread ‘

. ‘ Thread

]
T
)
<
)

z
o)
€
=
e

\ Shared Memory

‘ Thread 0 ‘

‘ Thread 1 ‘

a:Wx=1

c:Ry=1

po e

b:wy=1

d:Rx=0

98

onten

ts

x86-TSO operational model

3.3 x86: x86-TSO operational model

99

x86-TSO Abstract Machine

Like the sketch except with state recording which (if any) thread has the machine lock

Thread cee Thread

s cee | =
g] 3]
os] os]
S S
o) o)
K -
Lock Shared Memory

Contents 3.3 x86: x86-TSO operational model 100

x86-TSO Abstract Machine

We factor the model into the thread semantics and the memory model.
The x86-TSO thread semantics just executes each instruction in program order

The whole machine is modelled as a parallel composition of the thread semantics (for
each thread) and the x86-TSO memory-model abstract machine...

...exchanging messages for reads, writes, barriers, and machine lock/unlock events

Thread e Thread

Joyng oM
Joyng oMM

‘ Shared Memory ‘

Contents 3.3 x86: x86-TSO operational model

101

x86-TSO Abstract Machine: Memory Behaviour

We formalise the x86-TSO memory-model abstract machine as a transition system

Read as: memory in state m can do a transition with event e to memory state m’

Contents 3.3 x86: x86-TSO operational model

102

x86-TSO Abstract Machine: threads/memory interface

Events e = at:Wx=v a write of value v to address x by thread t, ID a

| atRx=v a read of v from x by t

| at:Dy x=v an internal action of the abstract machine, dequeuing
w = (a’:t:W x=v) from thread t's write buffer
to shared memory

| atF an MFENCE memory barrier by t

| atlL start of an instruction with LOCK prefix by t

| at:U end of an instruction with LOCK prefix by t

where

» ais a unique event ID, of type eid

» tis a hardware thread id, of type tid

» x and y are memory addresses, of type addr
» v and w are memory values, of type value
>

w is a write event a:t:W x=v, of type write_event

Contents 3.3 x86: x86-TSO operational model 103

x86-TSO Abstract Machine: Memory States

An x86-TSO abstract-machine memory state m is a record with fields M, B, and L:

m: (M : addr — value;
B : tid — write_event list;
L : tid option)

Here:
» m.M is the shared memory, mapping addresses to values

> m.B gives the store buffer for each thread, a list of write events, most recent first
(we use a list of write events for simplicity in proofs, but the event and thread IDs are erasable)

» m.L is the global machine lock, indicating when some thread has exclusive access
to memory. It is a tid option, either None, or Some t for some thread ID t

The initial state my,; has my,it. M zero for each address, my,it. B empty for all threads,
and mypi¢.L = None (lock not taken).

Contents 3.3 x86: x86-TSO operational model 104

Notation

Some and None construct optional values

(+,-) builds tuples

[] builds lists

@ appends lists

- @ (-:=-) updates records

- @ (- = -) updates functions.

id(e), thread(e), addr(e), value(e) extract the respective components of event e

isread(e), iswrite(e), isdequeue(e), ismfence(e) identify the corresponding kinds

Contents 3.3 x86: x86-TSO operational model 105

x86-TSO Abstract Machine: Auxiliary Definitions

Say there are no pending writes in t's buffer m.B(t) for address x if there are no write
events w in m.B(t) with addr(w) = x.

Say t is not blocked in machine state m if either it holds the lock (m.L = Some t) or
the lock is not held (m.L = None).

Contents 3.3 x86: x86-TSO operational model 106

x86-TSO Abstract Machine: Behaviour

RM: Read from memory
not_blocked(m, t)

m.M(x) = v
no_pending(m.B(t), x)
a:it:Rx=v

m —— m

Thread t can read v from memory at address x if t is not blocked, the memory does
contain v at x, and there are no writes to x in t's store buffer.

(the event ID a is left unconstrained by the rule)

Contents 3.3 x86: x86-TSO operational model

107

x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not_blocked(m, t)

Ja’ by by. m.B(t) = by @ [a":t:W x=Vv] @ by
no_pending(b, x)

a:t:Rx=v
—_—

m m

Thread t can read v from its store buffer for address x if t is not blocked and has v as
the value of the most recent write to x in its buffer.

Contents 3.3 x86: x86-TSO operational model

108

x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

m m m® (B:=m.B&® (t — ([a:t:W x=v] @ m.B(t))))

Thread t can write v to its store buffer for address x at any time.

Contents 3.3 x86: x86-TSO operational model

109

x86-TSO Abstract Machine: Behaviour

DM: Dequeue write from write buffer to memory

not_blocked(m, t)
m.B(t) = b@[a:t:W x=v]

a:t:Da’:t:Wx:v X=V

mad (M:=mMe (x— v))®(B:=m.Ba& (t— b))

If Thread t is not blocked, it can silently dequeue the oldest write from its store buffer
and update memory at that address with the new value, without coordinating with any
hardware thread.

(we record the write in the dequeue event just to simplify proofs.)

Contents 3.3 x86: x86-TSO operational model 110

x86-TSO Abstract Machine: Behaviour

M: MFENCE
m.B(t) =[]
a:t:F
R

If Thread t's store buffer is empty, it can execute an MFENCE (otherwise the MFENCE
blocks until that becomes true).

Contents 3.3 x86: x86-TSO operational model

111

Adding LOCK'd instructions to the model

We define the instruction semantics for locked instructions to bracket the transitions of
their unlocked variant with a:t:L and a’:t:U.
For example, a lock inc x, in thread ¢, will do

1.

ar:t:iL

2. ap:t:Rx=v for an arbitrary v
3.
4. az:t:U

az3:t:W x=(v + 1)

This lets us reuse the inc semantics for lock inc, and to do so uniformly for all RMWs.

Contents 3.3 x86: x86-TSO operational model 112

x86-TSO Abstract Machine: Behaviour

L: Lock
m.L = None
m.B(t) = []

FEL 0 @ (L= Some(t))

If the lock is not held and its buffer is empty, thread t can begin a LOCK'd instruction.
Note that if a hardware thread t comes to a LOCK'd instruction when its store buffer is not

empty, the machine can take one or more a:t:D,, x=v steps to empty the buffer and then
proceed.

Contents 3.3 x86: x86-TSO operational model 113

x86-TSO Abstract Machine: Behaviour

U: Unlock
m.L = Some(t)
m.B(t) =]
a:t:U

m === m® (L:=None)

If ¢t holds the lock, and its store buffer is empty, it can end a LOCK'd instruction,
resetting the lock.

Contents 3.3 x86: x86-TSO operational model

114

First Example, Revisited
SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

’Thread 0‘ ’Thread 1‘

Thread 0 Thread 1 a:Wx=1 cWy=1
movg $1, (x) //a|movq $1, (y) //c ,\[f po .\[f lpo
(y), % //b (x), % //d
movq (y rax movq (X rax b:Ry=0 4R %0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

g s |2
5 [O
w w
c c
g g
‘ x=0 Shared Memory y=0

Minit
Contents 3.3 x86: x86-TSO operational model 115

First Example, Revisited
SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

’Thread 0‘ ’Thread 1‘

Thread 0 Thread 1 a:Wx=1 cWy=1
movg $1, (x) //a|movq $1, (y) //c ,\[f po .\[f lpo
(y), % //b (x), % //d
movq (y rax movq (X rax b:Ry=0 4R %0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

aifto:W x1
g s |2
5 [O
w fos]
£ S
g g
ayto:W x=1
‘ x=0 Shared Memory y=0

arito:W x=1
Mipit —————————
Contents 3.3 x86: x86-TSO operational model 116

First Example, Revisited
SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

’Thread 0‘ ’Thread 1‘

Thread 0 Thread 1 a:Wx=1 cWy=1
movg $1, (x) //a|movq $1, (y) //c ,\[f po .\[f lpo
(y), % //b (x), % //d
movq (y rax movq (X rax b:Ry=0 4R %0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

ait1:Wy+1

g s |2
5 [O
w fos]
£ S
g g

atg:W x=1 axtyWy+1

‘ x=0 Shared Memory y=0

ar:toW x=1 az:ti:Wy=1

Minit
Contents 3.3 x86: x86-TSO operational model 117

First Example, Revisited
SB x86

’Initial state: 0:rax=0; 1:rax=0; y=0; x=0; ‘

’Thread 0‘ ’Thread 1‘

Thread 0 Thread 1 a:Wx=1 cWy=1
movg $1, (x) //a|movq $1, (y) //c ,\[f po .\[f lpo
(y), % //b (x), % //d
movq (y rax movq (X rax b:Ry=0 4R %0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

g s |2
5 [O
w w
£ S
cf az:tg:Ry=0 3
ap:to:W x=1 axti:Wy=1
‘ x=0 Shared Memory y=0

aritoW x=1 ax:ti:-Wy=1 az:to:Ry=0

Minit
Contents 3.3 x86: x86-TSO operational model 118

First Example, Revisited

SB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ’Thread 0 ‘ ’ Thread 1 ‘
Thread 0 Thread 1 aWx=1 cWy=1
movq $1, (x) //a|movg $1, (y) //c rf |PO rf lpo
movq (y), Srax //b | movqg (x), Srax //d "~ ~
b:Ry=0 d:Rx=0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

g s |2

5] 7 5] 7

w fos] '

c c |

c? @ ag:t1:Rx=0
artg:W x=1 artyWy=1 :
‘ x=0 Shared Memory y=0

artoWx=1 ax:ti:Wy=1 az:to:Ry=0 a4:t1:Rx=0

Minit

Contents 3.3 x86: x86-TSO operational model

First Example, Revisited
SB x86

’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ‘ ’Thread 0 ‘ ’ Thread 1 ‘

Thread 0 Thread 1 a:Wx=1 cWy=1
movq $1, (x) //a|movg $1, (y) //c rf |PO rf lpo
movq (y), Srax //b | movqg (x), Srax //d \ \

b:Ry=0 d:Rx=0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

g s |2
5] 7 5] 7
w fos]
c c
= =
] e
axityW xs1
J35:tO:Da] oW x=1 X=1
‘ x=1 Shared Memory y=0

artoWx=1 axiti:Wy=1 as:to:Ry=0 a4:t;:Rx=0_a5:t0:Da;:t0:wx=1 x=1

Minit
Contents 3.3 x86: x86-TSO operational model

120

First Example, Revisited

|

SB x86
’lnitia| state: 0:rax=0; 1:rax=0; y=0; x=0; ’Thread 0 ‘ ’ Thread 1 ‘
Thread 0 Thread 1 a:Wx=1 cWy=1
movg $1, (x) //a|movq $1, (y) //c rf |PO rf lpo
movq (y), Srax //b | movqg (x), Srax //d \ \
b:Ry=0 d:Rx=0

Final: 0:rax=0; 1:rax=0; ‘

Observation: 171/100000000
Thread oo Thread

g s |2
5 " 3 1
W w
c c
£ E
] e
J asif1iD32.IWy—1Yjﬁ1
‘ x=1 Shared Memory y=1

aritoWx=1 a:ti:Wy=1 as:to:Ry=0 a4:t;:Rx=0 as5:t0:Day:towx=1X=1 a6:t1:Day:ty. wy=1y=1

init
121

Contents 3.3 x86: x86-TSO operational model

Does MFENCE restore SC?

Intuitively, if the program executed by the thread semantics has an mfence between
every pair of memory accesses, then any execution in x86-TSO will have essentially
identical behaviour to the same program with nops in place of mfences in SC.

What does “essentially identical” mean? The same set of interface traces except with
the a:t:F and a:t:D,, x=v events erased.

Contents 3.3 x86: x86-TSO operational model

122

Restoring SC with RMW:s

Contents 3.3 x86: x86-TSO operational model

123

NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible behavior, based on hardware

intuition, but not a description of real implementation internals

2beh

?’éhw

Force: Of the internal optimizations of x86 processors, only per-thread FIFO write
buffers are (ignoring timing) visible to programmers.

Jolng alm

Shared Memory

Still quite a loose spec: unbounded buffers, nondeterministic unbuffering, arbitrary

interleaving

Contents 3.3 x86: x86-TSO operational model

124

Remark: Processors, Hardware Threads, and Threads

Our ‘Threads' are hardware threads.

Some processors have simultaneous multithreading (Intel: hyperthreading): multiple
hardware threads/core sharing resources.

If the OS flushes store buffers on context switch (for x86 — or does whatever

synchronisation is needed on other archs), software threads should have the same
semantics as hardware threads.

Contents 3.3 x86: x86-TSO operational model 125

x86-TSO vs SPARC TSO

x86-TSO based on SPARC TSO

SPARC defined
» TSO (Total Store Order)
» PSO (Partial Store Order)
» RMO (Relaxed Memory Order)

But as far as we know, only TSO has really been used (implementations have not been
as weak as PSO/RMO or software has turned those off).

» The SPARC Architecture Manual, Version 8, Revision SAV080S19308. 1992.
http://sparc.org/wp- content/uploads/2014/01/v8.pdf.gz App. K defines TSO and PSO.

» The SPARC Architecture Manual, Version 9, Revision SAVO9R1459912. 1994
http://sparc.org/wp- content/uploads/2014/01/SPARCV9.pdf.gz Ch. 8 and App. D define TSO, PSO, RMO

Those were in an axiomatic style — see later. x86-TSO is extensionally similar to
SPARC TSO except for x86 RMW operations

Contents 3.3 x86: x86-TSO operational model 126

http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz

This model (like other operational models) is an interleaving semantics, just like SC —
but with finer-grain transitions, as we've split each memory write into two transitions

Reasoning that a particular final state is allowed by an operational model is easy: just
exhibit a trace with that final state

Reasoning that some final state is not allowed requires reasoning about all
model-allowed traces — either exhaustively, as we did for SC at the start, or in some
smarter way.

Contents 3.3 x86: x86-TSO operational model 127

Making x86-TSO executable as a test oracle: the RMEM tool

RMEM is a tool letting one interactively or exhaustively explore the operational models
for x86, Armv8-A, IBM Power, and RISC-V. (Flur, Pulte, Sarkar, Sewell, et al. [28]).

Either use the in-browser web interface: http://www.cl.cam.ac.uk/users/pes20/rmem
or install locally and use the CLI interface (better performance), following:

https://github.com/rems-project/rmem

Go to the web interface, load an x86 litmus test, set the “All eager’ execution option,
then click the allowed x86-TSO transitions to explore interactively

Contents 3.3 x86: x86-TSO operational model 128

http://www.cl.cam.ac.uk/users/pes20/rmem
https://github.com/rems-project/rmem

RMEM X86 SB |

Loadlitmus Load ELF Model | Next Back Restart Search v | Execution~ Interface v

100% +

-

Storage subsystem state (Ts0):

° 1
| |
| |
| |

Memory = [(1000:0:0):W 0x1000 (y)/8=0, (1000:1:0):W 0x1160 (x)/8=6]
Lock = unlocked

Thread o state:
0:1 0x050000 fetched movg 1, (%rax)
micro_op_state: MOS_pending mem write
(0:1:0):W 0x1100 (x)/8=1
©.0:1 _ propagate memor)

reg reads: RAX=0x_63'0000000000001160 (x) from initialstate

y_write to storage: (0:1:0):W 0x1100 (x)/8=1

Thread 1 state:

1:1 0x051000 fetched movq 1, (%rax)
micro_op_state: MOS_pending mem write
(1:1:0) :W 0x1000 (y)/8=

1 propagate memory write to storage: (1:1:0):W 0x1000 (y)/8=1

reg reads: RAX=0x_63'0000000000001000 (y) from initialstate

Choices so far (0):
2 enabled transitions
No disabled transitions

Graph v \ Link to this state v

Help

InKO:W 0x1100 (1)8:
In1:W 0x1000 (y)8:

Refresh Download .dot

centre

I o mova T G

151 mova 1, (erax)

to storage: bW

TestsB

100%

Step 1 (/2 finished, © trns) Choose [0]: |

100%

Openinnewtab | -

Help Contents

X86 SB

X86 B
2 “PodWR Fre PodWR Fre"
Syntax-gas

uint6d_t x=0
uint6d_t y=o

7 0:rax=x; 0:rbx=y; 1:rax=y; 1:rbx=x
PO P1
mov $1, (%rax mov $1, (%rax
mov (%rbx),%rcx | mov (%rbx),%rcx
12 exists

13 (0:rex=0 /\ 1:rex=

- 100% + | o ¢ x

Storage subsystem state (Ts0):

[
| (0:1:0):W 6x1100 (x)/8=1
I
|

Memory = [(1000:0:0) :W 0x1000 (y)/8=6, (1600:1:0):W 0x1100 (x)/8=0]
Lock = unlocked
2 propagate write to memory: (

1:0 0x1100 (x)/8=1

Thread o state:
0:1 0x050000 fetched movq 1, (%rax) mem writes: (6:1:0):W 0x1100 (x)/8=1 reg reads:
RAX=0X_63'0000000000001100 (x) from initialstate
micro_op_state: MOS_plain
1

len=8, locked=0

RMEM X86 SB | Loadlitmus Load ELF Model | Next Back Restart Search v | Execution~ Interface> Graphv | Linkto this state >

IN10:W 0x1100 ()

Int1:W 0x1000 (y)3=0

Help

Refresh Download .dot | centre - 100% +

[01 mova 1, (arax) |

151 mova 1, (verax)

Errys—————|

[mamry o o srson ¥ 01000 151 |

[W00 T]

02 mova (%bx), %ox

Test sB

0:2 0x050004 fetched movq (%rbx), %rcx mem reads: (0:2:0):R 0x1000 (y)/8 from [1 reg reads
RBX=0x_63'0000000000001000 (y) from initialstate
micro_op_state: MOS_pending mem_read
unsatisfied slices: [(0:2:0):R 0x1000 (y)/8: [0-7]]
writes read from: [(0:2:0):R 0x1000 (y)/8 from (1]
requested slices: []
[satisfy memory read from memory: (|

0x1000 (y)/8=0]

J:R 0x1000 (y)/8 = [0 from (1000:0:0)

Thread 1 state:

1:1 0x051000 fetched movq 1, (%rax) reg reads: RAX=0x_63'0000000000001000 (y) from initialstate
micro_op_state: MOS_pending_mem write
a

Choices so far (1)
3 enabled transitions
No disabled transitions

- 100% + | o ¢ x

Step 2 (1/3 finished, 30 trns) Choose [0]:

Openinnewtab | = 100% + ‘ o

Help Contents

X86 SB

1 X86 B
POdWR Fre PodWR F
Syntax-gas

uint6d_t x=0
uint6d_t y=o

e

0:rax=x; 0:rbx=y; 1:rax=y; 1:rbx=x

PO
mov $1, (%rax
mov (%rbx),%rex

2 exists

0:rex=0 /\ 1:rex=0

P1
mov $1, (%rax

mov

%rbx), %rex

Load litmus ~ Load ELF ~ Model

RMEM X86 SB |

Next

-

Back Restart Search v | Execution~ Interface v

100% +

Graph v \ Link to this state v

Help

Refresh Download .dot | centre = 100%

Storage subsystem state (Ts0):

[1
| (0:1:0):W 6x1100 (x)/8=1 | (1:1:0):W 0x1000 (y)/8=1
I |
| |

Memory = [(1000:0:0) :W 0x1000 (y)/8=6, (1600:1:0):W 0x1100 (x)/8=0]
Lock = unlocked

2 propagate write to memory 1:0):W 0x1100 (x)/8=1
1:0):W 0x1000 (y)/8=1

Thread o state:
©:1 0x050000 fetched movq 1, (%rax) mem writes: (9:1:0):W 0x1100 (x)/8=
RAX=0x_63'0000000000001100 (x) from initialstate

micro_op_state: MOS_plain
0:2 0x050004 fetched movg (%rbx), %rcx mem reads: (0:2:0):R 0x1000 (y)/8 from []
RBX=0x_63'0000000000001600 (y) from initialstate

micro_op_state: MOS_pending mem_read

:0):R 6x1000 (y)/8: [0-7]]

0):R 0x1000 (y)/8 from [1]

reg reads:

reg reads:

requested slices:
[satisfy memory read from memory: (|

):R 0x1000 (y)/8 = [0 from (1000:0:0):W 0x1000 (y)/8=0]

Thread 1 state:
1:1 0x651000 fetched movq 1, (%rax) mem writes: (1:1:0):W 0x1000 (y)/8=1 reg reads:
RAX=0x_63'0000000000001600 (y) from initialstate
micro_op_state: MOS_plain
1

1, len=8, locked=0
0x051004 fetched movq (%rbx), %rcx mem reads: (1:2:0):R 0x1100 (x)/8 from [] reg reads:
X_63'0000000000001100 (x) from initialstate

micro_op_state: MOS_pending_mem_read

unsatisfied slices: [(1:2:0):R 0x1100 (x)/8: [0-71]

writes read from: [(1:2:0):R 0x1100 (x)/8 from [1]

requested slices: [1
11: satisfy memor

read from memory: (1:2:0):R 0x1100 (x)/8 = [0 from (1000:1:0):W 0x1100 (x)/8=0]

Choices so far (2): 0;1
4 enabled transitions
No disabled transitions

Int0:W 01100 (x/8=0]
int1-W 0x1000 (y)/8=0|

S e W ST
o T

151 mova 1, (erax)

propagate wite to memory; c\W 0x1000 (y)8=1

CW 0x1000 (y)8=1

1:2 movg (%rbx), vercx
memory: ¢:R 0x1100 (x)8 = [0 from nilO:W

[02 mova (), e][

TestsB

[ssttmomony mest

Open in new

X86 SB

1 X86 B
2 “PodWR Fre PodWR Fre"
Syntax-gas

uint6d_t x=0
uint6d_t y=o

7 0:rax=x; 0:rbx=y; 1:rax=y; 1:rbx=x
PO P1
mov $1, (%rax mov $1, (%rax
mov (%rbx),%rcx | mov (%rbx),%rcx
12 exists

13 (0:rex=0 /\ 1:rex=

RMEM X86 SB | Loadlitmus Load ELF Model | Next Back Restart Search v | Execution~ Interface> Graphv | Linktothisstate~ Help

- 100% + Refresh Download .dot | centre = 100%

Storage subsystem state (Ts0):

[W 0x1100 (/8=0)
[W 0x1000 (y)58=0)

[1
| (0:1:0):W 6x1100 (x)/8=1 | (1:1:0):W 0x1000 (y)/8=1
I |
| |

} [T mova T, G T o, e]

| 29ropagate wrte to memory: W ox1100 cye=t | [zeronagate wte to memory: cw |
Memory = [(1000:0:0) :W 0x1000 (y)/8=0, (1000:1:0):W ©x1160 (x)/8=0] 110x1000 (y)/ [2W 0x1100 (x)y8=1 CW 0x1000 (y)/8=1 |
Lock = unlocked
2 propagate write to memory: (6:1:0):W 0x1100 (x)/8=1
3 1:1:0):W 0x1000 (y)/8=1 (02 mova G, 7rcn] [1:2 movg (%rbx), %arcx |
Thread o state: [oRox1000 8=0 | [|
©0:1 0x050000 fetched movq 1, (%rax) mem writes: (0:1:0):W 0x1100 (x)/8=1 reg reads: TostSB

RAX=0x_63'0000000000001100 (x) from initialstate
micro_op_state: MOS_plain

©:2 ©0x050004 fetched movq (%rbx), %rcx mem reads: (8:2:0):R from (1000:0:0):W 0x1000 (y)/8=0 reg

reads: RBX=6x_63'0000000000001600 (y) from initialstate reg writes: RCX=0x_63'0000000000000000
micro_op_stat
|

Thread 1 state:
1:1 0x051000 fetched movq 1, (%rax) mem writes: (1:1:0):W 0x1000 (y)/8=1 reg reads:
RAX=0x_63'0000000000001000 (y) from initialstate
micro_op_state: MOS_plain 1 X86 B
1:2 0x051004 fetched movq (%rbx), %rcx mem reads: (1:2:0):R 0x1100 (x)/8 from [1 reg reads: 2 "PodWR Fre PodWR Fre"
RBX=0x_63'0000000000001100 (x) from initialstate Syntax-gas
micro_op_state: MOS_pending mem_read

unsatisfied slices: [(1:2:0):R 0x1100 (x)/8: [0-7]] uinté4_t x=6

writes read from: [(1:2:0):R 0x1100 (x)/8 from []] uint64_t y=6

requested slices: [] 7 @:rax=x; 0:rbx=y; 1:rax=y; 1:rbx=x
11:2 satisfy memory read from memory: (1:2:0):R 0x1100 (x)/8 = [0 from (1000:1:0):W 8x1100 (x)/8=0]

PO P1
Choices so far (3): 0;1;0 mov $1, (%rax mov $1, (%rax

3 enabled transitions mov (%rbx),%rcx | mov (%rbx),%rcx
No disabled transitions 12 exists

13 (0:rex=0 /\ 1:rex=

Help v Open in new tab

Load litmus

RMEM X86 SB |

Load ELF Model | Next Back Restart

Storage subsystem state (Ts0):

:0):W 0x1100 (x)/8=1

[1
| (e: | (1:1:0):W x1000 (y)/8=1
I |
| |

Memory = [(1000:0:0) :W 0x1000 (y)/8=0,
Lock = unlocked

2 propagate write to memory: (0:1:0)
3 propagate write to memory: (

(1000:1:0) :W 0x1100 (x)/8=0]

0x1100 L);
1:1:0):W 0x1000 (y)/8=

Thread o state:

0:1 0x050000 fetched movq 1, (%rax) mem writes:

RAX=0x_63'0000000000001100 (x) from initialstate
micro_op_state: MOS_plain

0:2 0x050004 fetched movq (%rbx),
reads: RB)

micro_op_stat

(0:1:0) :W 0x1100 (x)/8=

srcx mem reads:

reg writes:

Thread 1 state
1

11 0x051000 fetched movq 1, (%rax) mem writes: (1:1:0):W 0x1000 (y)/8=1
RAX=0x_63'0000000000091000 ly) from initialstate

micro_op_state: MOS_p
12 Gx051004 fetched mnvu (%rbx), %rcx mem reads:
read

micro_op_state: MOS_plain
1

reg writes: RCX=0x

Ea_r (5264 (),1), locked=

L =1,

Choices so far (4): 0;1;0;1
2 enabled transitions
No disabled transitions

Search v

Execution v

- 100%

+

(6:2:0) :R from (1000:0:0):W 0x1000 (y)/8=0
x_63'0000000000001000 (y) from initialstate RCX=0x_63' 000000000

(1:2:0):R from (1000:1:0):W 0x1100 (x)/8=0
: RBX=0x_63'0000000000001100 (x) from initialstate 63

Interface ¥

Graph v \ Link to this state v

Help

1100 (x/8=0]
31000 (y)/8=0]

o

Refresh Download .dot

0:1 mova 1, (erax)

o, o]

1000 (/8 W 0x1100 (/8=1

0:2 movg (7arbx), Srcx
;R 0x1000 ()8 = 0

‘G 0x1000 (y)8=1

1:2 mova (%K), vercx|

centre

100%

reg reads: Test B
reg
9000000
reg reads:
reg Sources v Edit
X86 SB
1 x86 SB
2 "PodWR Fre PodWR Fre"
syntax-gas
uint64_t x-0
uint64_t y=o
7 0:rax=x; 0:rbx=y; l:rax=y: 1:rbx=x
Po PL
mov $1, (%rax mov $1, (%rax
mov (%rbx),%rex | mov (%rbx),%rex
12 exists

13 (0:rex=0 /\ 1:rex=

Help

Open in new tab

RMEM X86 SB | Loadlitmus Load ELF Model | Next Back Restart Search v

Executionv Interface Graph v \ Link to this state » Help

Storage subsystem state (TSO):

°
|
|
|

Refresh Download .dot | centre - 100%

1
| (1:1:0):W 0x1000 (y)/8=1
|

|

X1100 (/80
1000 (7)8=0

1:1 mova 1, (varax)

1000 (e [0 mova T, ()
aW Ox11085

Memory = [(1000:0:0) :W 0x1000 (y)/8=6, (0:1:0):W 0x1160 (x)/8=1, (1000:1:0):W 0x1100 (x)/8=0]

Lock = unlocked

3 propagate write to memory:

0x1000 (y)/8=1
Thread o state:
0:1 0x050000 fetched movq 1,

02 mova (arbw), e
(%rax) mem writes: (0:1:0):W 0x1100 (x)/8=1 reg reads: DR 01000 18
RAX=0x_63'0000000000001100 (x) from initialstate

1:2 movg (1), sercx|

GR Ox1100 (/8= 0
TestsB
micro_op_state: MOS_plain
©:2 ©0x050004 fetched movq (%rbx), %rcx mem reads: (8:2:0):R from (1000:0:0
reads: RBX=0x_63'0000000000001000 (y) from initialstate

W 0x1000 (y)/8=0 reg
reg writes: RCX=0x_63'0606000000000000
M0S_plain

micro_op_stat

Thread 1 state:

1:1 0x051000 fetched movq 1, (%rax) mem writes:
RAX=0x_63'0000000000001000 (y) from initialstate
micro_op_state: MOS_plain

1:2 0x051004 fetched movq (%rbx), %rcx mem reads: (1:2:0):R from (10

1
reads: RBX=0x_63'0000000000001100 (x) from initialstate reg writes: RCX
micro_op_stat i

:0):W 0x1000 (y)/8=

reg reads:

00:1:0) :W 0x1100 (x)/8=0 reg
=0x_63'0000000000000000

X86 SB
Choices so far (5): 0;1;0;1;2
1 enabled transitions X86 SB
No disabled transitions

2 “PodWR Fre PodWR Fre"
Syntax-gas

uint6d_t x=0
uint6d_t y=o

0:rax=x; 0:rbx=y; 1:rax=y; 1:rbx=x
PO P1
mov $1, (%rax mov $1, (%rax
mov (%rbx),%rcx | mov (%rbx),%rcx
2 exists

0:rex=0 /\ 1:rex=0

Help v

Openinnewtab | =

RMEM X86 SB | Loadlitmus Load ELF Model | Next Back Restart

Search v Executionv Interface Graph v \ Link to this state v
State

Help

Storage subsystem state (Ts0):

Refresh Download .dot | centre - 100%
L] 1

| |

| |

| |

x1100 (x/8=0]

Q
0:1 movq 1, (%rax)
aW 0x1100 (x)/8=1

Memory = [(1:1

1000 (y)83Q
:0):W 0x1000 (y)/8=1, (0:1:0):W €x1100 (x)/8=1,
Lock = unlocked

oo e

(1000:0:0) :W 0x1000 (y)/8=0]
Thread o state:

0:1 ©0x050000 fetched movq 1, (%rax) mem writes: (0:1:0):W 0x1100 (x)/8=1
RAX=0x_63'0000000000001100 (x) from initialstate

0:2 movg (v4rb), sercx]

R 0x1000 (1)/8= 0

-2 mova (70, x|

QR Ox1100 (x/8 = 0

TestsB

reg reads:
micro_op_state: MOS_plain

©:2 ©0x050004 fetched movq (%rbx), %rcx mem reads: (8:2:0):R from (1090:0:0):W 0x1000 (y)/8=0 reg

reads: RBX=0x_63'0000000000001600 (y) from initialstate reg writes: RCX=0x_63'0000000600000000

micro_op_state: MOS_plain

Thread 1 state:

1:1 0x051000 fetched movq 1, (%rax) mem writes: (1:1:0):W 0x1000 (y)/8=1 reg reads:

RAX=0x_63'0000008000001000 (y) from initialstate

micro_op_state: MOS_plain

1:2 0x051004 fetched movq (%rbx), %rcx mem reads: (1:2:0):R from (1000:1:0):W 0x1100 (x)/8=0 reg Edit P
reads: RBX=0x_63'0000000000001100 (x) from initialstate reg writes: RCX=0x_63'0000000600000000

micro_op_stat i
Choices so far (6): 0;1;0;1;2;3
No enabled transitions X86 B
No disabled transitions PodWR Fre PodWR Fre

Syntax-gas

uinté4_t x=6
uint6d_t y=6
0:rax=x; 0:rbx=y

1:iraxy; 1:rbx=x
Po P1
mov $1, (%rax mov $1, (%rax

mov (%rbx),%rex | mov (%rbx),%rex
12 exists

13 (0:rex=0 /\ 1:rex=

Help v

Openinnewtab | =

Making x86-TSO executable as a test oracle: the RMEM tool

$ rmem -eager true -model tso SB.litmus

This provides a command-line version of the same gdb-like interface for exploring the
possible transitions of the operational model, showing the current state and its possible

transitions
help list commands
set always_print true print the current state after every command
set always_graph true generate a pdf graph in out.pdf after every step
<N> take transition labelled <N>, and eager successors
b step back one transition
search exhaustive exhaustive search from the current state

[...]

Contents 3.3 x86: x86-TSO operational model 136

Storage subsystem state (TS0):
] 1

Memory = [(1006:0:0):W 8x0600066600001600 (y)/8=0,

(1000:1:0):W 0x0000000000001100 (x)/8=0]
Lock = unlocked

[Thread 0 state:

ioid: @:1 loc: BxPOAOOEEEERASARAO fetched movg $1, (x) instruction kind: write
regs_in: {} regs_out: {} {1oids_feeding_address: {} nias: {succ} dia: none

mem writes_read_from: [] committed store: true propagated writes: [] potential_write_addresses: []
reg_reads: []

reg_writes: [] finished: false micro_op_state: MOS_pending_mem_write
(0:1: 0) W 0)(0000000000001100 (X)/ 1

atomic store success: not set committed_barriers: []

x [gate memor t stor e 1 11 =1 ***
[Thread 1 state:
ioid: 1:1 loc: Bx0000000000051000 fetched movq $1, (y) instruction kind: write

regs_in: {} regs_out: {} 1oids_feeding_address: {} nias: {succ} dia: none
mem writes_read_from: [] committed store: true propagated writes: []
reg_reads: []

reg_writes: [] finished: false micro_op_state: MOS_pending_mem_write
(1:1:0):W BxOOOOOEHEOOAO1HO0 (y)/ 1

pagate memor J

potential_write_addresses: [] atomic store success: not set committed_barriers: []

Enabled transitions:
P ¢

Step 1 (8/2 finished, © trns) Choose [8]:

Making x86-TSO executable as a test oracle: the RMEM tool

And non-interactive exhaustive search:

$ rmem -interactive false -eager true -model tso SB.litmus
Test SB Allowed
Memory-writes=

States 4

2 *>0:RAX=0; 1:RAX=0; via "0;0;1;0;2;1"
2 :>0:RAX=0; 1:RAX=1; via "0;0;1;2;0;1"
2 :>0:RAX=1; 1:RAX=0; wvia "0;1;1;2;3;0"
2 :>0:RAX=1; 1:RAX=1; via "0;1;2;1;3;0"
Unhandled exceptions 0

Ok

Condition exists (0:RAX=0 /\ 1:RAX=0)
Hash=90079b984f817530bfea20c1d9c55431
Observation SB Sometimes 1 3

Runtime: 0.171546 sec

One can then step through a selected trace interactively using -follow "0;0;1;0;2;1"

Contents 3.3 x86: x86-TSO operational model 138

onten

ts

x86-TSO spinlock example and TRF

3.4 x86: x86-TSO spinlock example and TRF

139

Consider language-level mutexes

Statements s :=...| lockx | unlockx

Say lock free if it holds 0, taken otherwise.

For simplicity, don't mix locations used as locks and other locations.

Semantics (outline): lock x has to atomically (a) check the mutex is currently free, (b)
change its state to taken, and (c) let the thread proceed.

unlock x has to change its state to free.

Record of which thread is holding a locked lock? Re-entrancy?

Contents 3.4 x86: x86-TSO spinlock example and TRF 140

Using a Mutex

Consider

P = t1 : (lockm; r=x; x=r+1; unlock m, Ry)
| to:(lockm; r=x; x=r+7; unlock m, Ry)

in the initial store Mpy:

(t1 @ (skip; r=x; x=r+1; unlockm, Ry)|ts : (lockm; r=x; x=r+7; unlock m, Ry), M)

n:Lcy \

(P, My) (t1 : (skip, Ri)|t2 : (skip, Ra), My @ (x — 8, m — 0))

s
t2:LOCK m

(t1: (lockm; r=x; x=r+1; unlock m, Ry)|ts : (skip; r=x; x=r+7; unlockm, Ry), M")

where M = My @ (m — 1)

Contents 3.4 x86: x86-TSO spinlock example and TRF 141

Deadlock

lock m can block (that's the point). Hence, you can deadlock.

P= t1 : (Lock my; lock mg; x=1; unlock my; unlock me, Ry)
| ty: (lock mg; lock my; x=2; unlock my; unlock me, Rp)

Contents 3.4 x86: x86-TSO spinlock example and TRF

142

Implementing mutexes with simple x86 spinlocks

Contents

Implementing the language-level mutex with x86-level simple spinlocks

lock x

critical section

unlock x

3.4 x86: x86-TSO spinlock example and TRF

143

Implementing mutexes with simple x86 spinlocks

Contents

while atomic_decrement(x) < 0 {
skip
}

critical section

unlock(x)

Invariant:
lock taken if x < 0
lock free if x=1
(NB: different internal representation from high-level semantics)

3.4 x86: x86-TSO spinlock example and TRF

144

Implementing mutexes with simple x86 spinlocks

Contents

while atomic_decrement(x) < 0 {
while x < 0 { skip }
}

critical section

unlock(x)

3.4 x86: x86-TSO spinlock example and TRF

145

Implementing mutexes with simple x86 spinlocks

while atomic_decrement(x) < 0 {
while x < 0 { skip }
}

critical section

x <1 OR atomic_write(x, 1)

Contents 3.4 x86: x86-TSO spinlock example and TRF

146

Implementing mutexes with simple x86 spinlocks

Contents

while atomic_decrement(x) < 0 {
while x < 0 { skip }
}

critical section

x 1

3.4 x86: x86-TSO spinlock example and TRF

147

Simple x86 Spinlock
The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:
critical section

release: MOV [eax]<+1

From Linux v2.6.24.7

NB: don’t confuse levels — we're using x86 atomic (LOCK'd) instructions in a Linux spinlock implementation.

Contents 3.4 x86: x86-TSO spinlock example and TRF

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

X 1

Shared Memory Thread 0 Thread 1

x=1

Contents

3.4 x86: x86-TSO spinlock example and TRF

149

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

X 1

Shared Memory Thread 0 Thread 1

x=1
x =0
Contents

acquire

3.4 x86: x86-TSO spinlock example and TRF

150

Spinlock Example (SC)

Shared Memory

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

X 1

Thread 0

Thread 1

x=1
x=0
x=0

acquire
critical

Contents 3.4 x86: x86-TSO spinlock example and TRF

151

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=0 critical
x=-1 critical acquire

Contents 3.4 x86: x86-TSO spinlock example and TRF

152

Spinlock Example (SC)

Shared Memory

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

X 1

Thread 0 Thread 1

x=1
x=0
x=0
x=-1
x=-1

acquire

critical

critical acquire

critical spin, reading x

Contents 3.4 x86: x86-TSO spinlock example and TRF

153

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=0 critical
x=-1 critical acquire
x=-1 critical spin, reading x
x=1 release, writing x
Contents 3.4 x86: x86-TSO spinlock example and TRF

154

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=0 critical
x=-1 critical acquire
x=-1 critical spin, reading x
x=1 release, writing x
x=1 read x
Contents 3.4 x86: x86-TSO spinlock example and TRF

155

Spinlock Example (SC)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=0 critical
x=-1 critical acquire
x=-1 critical spin, reading x
x=1 release, writing x
x=1 read x
X = acquire

Contents

3.4 x86: x86-TSO spinlock example and TRF

156

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

x=1

Contents

3.4 x86: x86-TSO spinlock example and TRF

157

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

x=1
x =20
Contents

acquire

3.4 x86: x86-TSO spinlock example and TRF

158

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

X =
X =
X =

Contents

1
0
-1

acquire
critical acquire

3.4 x86: x86-TSO spinlock example and TRF

159

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

X =
X =
X =
X =

Contents

1
0
-1
-1

acquire
critical acquire
critical spin, reading x

3.4 x86: x86-TSO spinlock example and TRF

160

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
Contents 3.4 x86: x86-TSO spinlock example and TRF

161

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x

Contents 3.4 x86: x86-TSO spinlock example and TRF 162

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x
x=1 write x from buffer

Contents

3.4 x86: x86-TSO spinlock example and TRF 163

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x
x=1 write x from buffer
x=1 read x

Contents

3.4 x86: x86-TSO spinlock example and TRF 164

Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x
x=1 write x from buffer
x=1 read x
x =20 acquire

Contents

3.4 x86: x86-TSO spinlock example and TRF 165

Spinlock SC Data Race

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x =0 acquire
x=0 critical
x =-1 critical acquire
x=-1 critical spin, reading x
x=1 release, writing x
Contents 3.4 x86: x86-TSO spinlock example and TRF

166

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

x=1

Contents 3.4 x86: x86-TSO spinlock example and TRF

167

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1
x=1
x=0 acquire

Contents 3.4 x86: x86-TSO spinlock example and TRF

168

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

x=1
x=0 acquire
x=-1 critical acquire

Contents 3.4 x86: x86-TSO spinlock example and TRF

169

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section

x +1

Shared Memory Thread 0 Thread 1

x=1

x=0 acquire

x=-1 critical acquire

x=-1 critical spin, reading x

Contents 3.4 x86: x86-TSO spinlock example and TRF

[TODO:

]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
Contents 3.4 x86: x86-TSO spinlock example and TRF

171

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x

Contents 3.4 x86: x86-TSO spinlock example and TRF 172

[TODO:]

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
Shared Memory Thread 0 Thread 1
x=1
x=0 acquire
x=-1 critical acquire
x=-1 critical spin, reading x
x =-1 release, writing x to buffer
x =-1 e spin, reading x
x=1 write x from buffer
Contents 3.4 x86: x86-TSO spinlock example and TRF 173

[TODO:]

critical section
x <1

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

Shared Memory Thread 0

Thread 1

x=1
x=0
x=-1
x=-1
x=-1
x=-1
x=1
x=1

Contents

acquire
critical
critical
release, writing x to buffer

write x from buffer

3.4 x86: x86-TSO spinlock example and TRF

acquire
spin, reading x

spin, reading x

read x

174

[TODO:]

critical section
x <1

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

Shared Memory Thread 0

Thread 1

x=1
x=0
x=-1
x=-1
x=-1
x=-1
x=1
x=1
x=0

Contents

acquire
critical
critical
release, writing x to buffer

write x from buffer

3.4 x86: x86-TSO spinlock example and TRF

acquire
spin, reading x

spin, reading x

read x
acquire

175

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race

y <w

XV X

Contents 3.4 x86: x86-TSO spinlock example and TRF

176

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race Not triangular race
y <w Yy <Ww
X4—Vvy X X4—Vq X4—wW

Contents 3.4 x86: x86-TSO spinlock example and TRF 177

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race Not triangular race
y <w Yy <Ww
mfence
X4—Vvy X X4—Vq X

Contents 3.4 x86: x86-TSO spinlock example and TRF

178

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race Not triangular race
y <w Yy <Ww
X4—Vvq X X—Vv1 lock x

Contents 3.4 x86: x86-TSO spinlock example and TRF 179

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race Not triangular race
y Vo : lock y +v»
X1 X X4—Vvy X

Contents 3.4 x86: x86-TSO spinlock example and TRF 180

Triangular Races

Owens [6, ECOOP 2010]

» Read/write data race
» Only if there is a bufferable write preceding the read

Triangular race Triangular race
y <w Yy <—Ww
X4—Vvq X lock x+vq X

Contents 3.4 x86: x86-TSO spinlock example and TRF 181

TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution has a triangular race.

Theorem 1 (TRF). If a program is TRF then any x86-TSO execution is equivalent to
some SC execution.

If a program has no triangular races when run on a sequentially consistent memory, then

x86-TSO — SC

‘ Thread ‘ bl ‘ Thread

[Thead |

Thread

Iayng olim
Jayng 8lum

! | Lock Shared Memory | ‘ Shared Memory ‘

Contents 3.4 x86: x86-TSO spinlock example and TRF 182

Spinlock Data Race

while atomic_decrement(x) < 0 {
while x < 0 { skip } }
critical section

x <1
x=1
x=0 acquire
x =-1 critical acquire
x=-1 critical spin, reading x
x=1 release, writing x

» acquire's writes are locked

Contents

3.4 x86: x86-TSO spinlock example and TRF

183

Program Correctness

Theorem 2. Any well-synchronized program that uses the spinlock correctly is TRF.

Theorem 3. Spinlock-enforced critical sections provide mutual exclusion.

Contents 3.4 x86: x86-TSO spinlock example and TRF

184

onten

ts

Axiomatic models

3.5 x86: Axiomatic models

185

Coherence

Conventional hardware architectures guarantee coherence:

> in any execution, for each location, there is a total order over all the writes to that
location, and for each thread the order is consistent with the thread’s
program-order for its reads and writes to that location; or (equivalently)

» in any execution, for each location, the execution restricted to just the reads and
writes to that location is SC.

Without this, you wouldn’t even have correct sequential semantics, e.g. if different
threads act on disjoint locations within a cache line.

In simple hardware implementations, the coherence order is that in which the processors
gain write access to the cache line.

Contents 3.5 x86: Axiomatic models 186

Coherence

We'll include the coherence order in the data of a candidate execution, e.g.

1+1W x86
“niﬂalstate:x:@; ‘ ”rhread 0‘ ’1‘hread 1‘
) co
Thread 0 Thread 1 aWx=1 > b:Wx=2
movq $1, (x) //a|movqg $2, (X) //b
’Final:x:Z; ‘

Observation: 0/0

For tests with at most two writes to each location, with values distinct from each other
and from the initial state, the coherence order of a candidate execution is determined
by the final state. Otherwise one might have to add “observer’ threads to the test.

Contents 3.5 x86: Axiomatic models 187

From-reads

Given coherence, there is a sense in which a read event is “before”’ the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
w 5 ¢ iff r reads from a coherence-predecessor of w.

Cco

co

Cco

cteWx=3

Cco
Contents 3.5 x86: Axiomatic models 188

From-reads
Given coherence, there is a sense in which a read event is “before”’ the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
fro 1 iff r reads from a coherence- predecessor of w.

Given a candidate execution with a coherence order <% (an irreflexive transitive relation
over same-address writes), and a reads-from relation , from writes to reads, define the
from-reads relation ™ to relate each read to all <-successors of the write it reads
from (or to all writes to its address if it reads from the initial state).

o g o ()
rfow iff (Fwp. wo > w A Woi>r) v \ (co))
(iswrite(w) A addr(w) = addr(r) A —3wo. wo 5 r) v "

Contents 3.5 x86: Axiomatic models 189

From-reads
Given coherence, there is a sense in which a read event is “before”’ the
coherence-successors of the write it reads from, in the from-reads relation [36, 3]:
fro 1 iff r reads from a coherence- predecessor of w.

Lemma 1. In any well-formed candidate execution:
/ CO

» For any distinct same-address writes w and w’, either w <% w’ or w' = w.

> For any same-address read r and write w, either w(<% U %) 5 1 or r 5 w.

» For any same-address reads r and r’, either they both read from the same write (or

both from the initial state), or r (f—r>i>) roor ! (5

Contents 3.5 x86: Axiomatic models 190

The SB cycle

’Thread 0‘ ’Thread 1‘

a:Wx=1 cWy=1
b:Ry=0 d:Rx=0

In this candidate execution the reads read from the initial state, which is
coherence-before all writes, so there are fr edges from the reads to all the writes at the
same address.

This suggests a more abstract characterisation of why this execution is non-SC, and
hence a different “axiomatic” style of defining relaxed models:

If we regard the reads as in their s and f5 places in the per-location coherence orders,
those are not consistent with the per-thread program orders.

Contents 3.5 x86: Axiomatic models 191

SC again, operationally [Theead, | eer [Theead, |

i i

Define an SC abstract machine memory m S om W o
(forgetting MFENCE and LOCK'd instructions for now) |

Shared Memory

Take each thread as executing in-order (again)

Events e = a:t:Wx=v a write of value v to address x by thread t, ID a
| a:t:Rx=v aread of v from x by t, ID a

States m are just memory states:

m : addr — value

RM: Read from memory WM: Write to memory

m(x) =v
a:t:Rx=v m m a:t:Wx=v ma (X N V)

Contents 3.5 x86: Axiomatic models 192

SC again, operationally

See how this captures the essence of SC:

reads read from the most recent write to the same address, in some
program-order-respecting interleaving of the threads.

Contents 3.5 x86: Axiomatic models

193

SC again, operationally
Say a trace T is a list of events [ey, ..., e,] that have unique IDs
Vi,j€l.n i#j = id(e) #id(e))

Write:

> e < ¢ iff eis before ¢ inthetrace e<e e dije=ene =eni<j

Say the traces of the SC abstract machine memory are all traces T = [ey, ..., e,] with
unique IDs such that

€1 €n
Mipit —> M1 ... — My

for the initial memory state my,ix = Ax : addr.0 and some my, ..., m,

Contents 3.5 x86: Axiomatic models 194

SC, axiomatically

Now we try to capture the same set of behaviours as a property of candidate executions

Contents 3.5 x86: Axiomatic models 195

Candidate Executions, more precisely

Say a candidate execution consists of a candidate pre-execution (E, %), where:
» FE is a finite set of events, with unique IDs, ranged over by e etc.

> program order (po) is an irreflexive transitive relation over E, that only relates pairs of events from the
same thread (In general this might not be an irreflexive total order for the events of each thread separately, but we assume that too fo

and a candidate execution witness X = (5, <23 consisting of:

> reads-from (rf), a binary relation over E, that only relates write/read pairs with the same address and
value, with at most one write per read, and other reads reading from the initial state

(note that this is intensional: it identifies which write, not just the value)

> coherence (co), an irreflexive transitive binary relation over E, that only relates write/write pairs with the
same address, and that is an irreflexive total order when restricted to the writes of each address separately

Contents 3.5 x86: Axiomatic models 196

Candidate Executions, more precisely

Say a candidate execution consists of a candidate pre-execution (E, £2), where:
> E is a finite set of events, with unique IDs, ranged over by e etc. Ve, e'. e # ¢/ = id(e) # id(e’)

> program order (po) is an irreflexive transitive relation over E, that only relates pairs of events from the
same thread (In general this might not be an irreflexive total order for the events of each thread separately, but we assume that too fo
Ve. —(e 2% e) Ve, e'. (thread(e) = thread(e’) Ae £ e') = e B e’ Ve B2 e
Ve, e’ e”. (e B e/ Ne! B2) — e B ¢
Ve,e'. e 2% ¢/ = thread(e) = thread(e’)

and a candidate execution witness X = (5, <23 consisting of:

> reads-from (rf), a binary relation over E, that only relates write/read pairs with the same address and
value, with at most one write per read, and other reads reading from the initial state
(note that this is intensional: it identifies which write, not just the value)
Ve, el e (e B e nel o) —= e=¢
Ve, e'. e 5 ¢/ — iswrite(e) A isread(e’) A addr(e) = addr(e’) A value(e) = value(e’)
Ve. (isread(e) A —3e’.e’ 5) = value(e) = mini¢ (addr(e))
> coherence (co), an irreflexive transitive binary relation over E, that only relates write/write pairs with the
same address, and that is an irreflexive total order when restricted to the writes of each address separately
Ve. =(e =% e)
Ve,e',e"’. (e £ e’ Ne! £ ") = e = ¢
Ve,e'. e =2 ¢/ = iswrite(e) A iswrite(e’) A addr(e) = addr(e’)
Va. Ve, e'. (e # €’ Aiswrite(e) A iswrite(e’) A addr(e) = aAaddr(e’) =a) = e = e’ Ve e

Contents 3.5 x86: Axiomatic models 197

SC, axiomatically

Say a trace T = [ey, ..., e,] and a candidate pre-execution (E, £%) have the same
thread-local behaviour if

» they have the same events E = {ey,...,e,}

» they have the same program-order relations, i.e.
2% ={(e, &) | e < € A thread(e) = thread(e’)}

Then:

o

Theorem 4. If T and (E, 22) have the same thread-local behaviour, then the
following are equivalent:

1. T is a trace of the SC abstract-machine memory

2. there exists an execution witness X = (5, <) for (E, 2%) such that
acyclic(2% U U < U).

Contents 3.5 x86: Axiomatic models

198

Proof. For left-to-right, given the trace order <, construct an execution witness:

e My e & iswrite(e) Aisread(e’) A addr(e) = addr(e’) A e < €A

Ve'. (e< e Ne' <€) = —(iswrite(e”) A addr(e”) = addr(e))
e =% e <& iswrite(e) Aiswrite(e’) A addr(e) = addr(e’) Ae < €

Now check the properties

Checking po properties: ...all follow from "have the same program-order relations"
Checking rf properties:
forall e,e’,e’’. (erfe'’ & e’ rfe’’) => e=e’

...Suppose wlog e<e’ then that contradicts the no-intervening-write clause of the construction

forall e,e’. e rf e’ => iswrite e & isread e’ & addr e=addr e’

...by construction of rf

forall e,e’. e rf e’ => value e = value e’

...because there are no intervening writes to the same address between e and e’, m(addr e) remains constant (by induction on that part of the
execution trace), and hence is read at e’

forall e (isread e & not exists e’. e’ rf e) => value(e)=mO(addr(e))

...from the construction of rf, if there isn’t an rf edge then there isn’t a write to that address preceding in the trace (if there were
one, there would be a <-maximal one), so by induction along that part of the trace the value in m for this address is unchanged from mo@.

Checking co properties:

forall e. not (e co e)

...if e co e then e<e but that contradicts the definition of <

forall e,e’,e’’ (e coe’ & e’ coe’'’) =>ecoe’’

...equivalence of iswrite and same-addr, and transitivity of <

forall e, e’. e co e’ => iswrite e & iswrite e’ & addr e = addr e’

...by construction of co

forall a. forall e,e’. (e<>e’ & iswrite e & iswrite e’ & addr e = a & addr e’ =e) =>e co e’ || e’ coe

...1if e<>e’ then either e<e’ or e’<e; then in either case construct a co

Contents 3.5 x86: Axiomatic models 199

Now check each of po, rf, co, and rf go forwards in the trace. This is just about the construction; it doesn’t involve the machine.

po, rf, co: by construction
fr: suppose rfrw
case 1) for some w@, w0 cow & wd rf r

wo
|\
co| \rf
v \
w<-- 1
fr

If r < w we are done, so suppose for a contradiction that w < r.

By the definitions of co and rf, w0 is a write, w0 and w and r have the same address, w0 < w, and w0 < r. But then w@ < w < r, contradicting
the no-intervening-write clause of the definition of rf

case 2) iswrite w & addr w = addr r & not exists w@. wl@ rf r
Suppose for a contradiction that w < r.
Then there is at least one write (namely w) with the same address as r before it in <.

Take the last such write, w’, then by the definition of rf, w’ rf r.

Finally, as we have po, rf, co, and fr all embedded in <, which by definition is acyclic, their union must be acyclic.

Contents 3.5 x86: Axiomatic models 200

For the right-to-left direction, given an execution witness E = (-5, %) such that

acyclic(2%), where 2= (250502, ™) construct a trace [er, .., e,] as an

arbitrary linearisation of ob,.

By acyclic(ob), we know if ei ob ej then i<j (but not the converse).

Construct memory states mi inductively along that trace, starting with m@,
mutating the memory for each write event, and leaving it unchanged for each read.

To check that actually is a trace of the SC abstract machine memory, i.e. that m0@ --el-->ml ... --en--> mn, it remains to check
for each read, say rj at index j, that m_{j-1}(addr(rj)) = value(rj)

By the construction of the mi,

m_{j-1}(addr(rj)) = value(ei) where i is the largest i<j such that iswrite ei & addr ei=addr rj, if there is one
or mO(addr(rj)) otherwise

In the first case, write wi for ei. We know by the fr lemma that either wi cox rf rj or rj fr wi.

Case the latter (rj fr wi): then rj ob wi so j<i, contradicting i<j.
Case the former (wi cox wk rf rj for some k):

We know i <= k < j, so unless i=k we contradict the "largest"

So wi rf rj, so they have the same value

In the second case, there is no i<j such that iswrite ei & addr ei=addr rj
So there is no w ob rj such that addr w = addr rj

So there is no w rf rj

So by the candidate-execution initial-state condition, value(rj)=mO(addr(rj))

Contents 3.5 x86: Axiomatic models

SC, axiomatically

This lets us take the predicate acyclic(£% U KoLy L) as an equivalent

characterisation of sequential consistency.

The executions of the SC axiomatic model are all candidate executions, i.e. all pairs of
» a candidate pre-execution (E, £%), and
> a candidate execution witness X = (5, %) for it,

that satisfy the condition acyclic(£% U T U < U).

Note that we've not yet constrained either the operational or axiomatic model to the

correct thread-local semantics for any particular machine language — we'll come back to
that. So far, this is just the memory behaviour.

Contents 3.5 x86: Axiomatic models 202

SC, axiomatically

This characterisation suggests a good approach to test generation: construct interesting
non-SC tests from non-SC cycles of relations — the idea of the diy7 tool [27, Alglave,
Maranget]. More later.

It also gives different ways of making the model executable as a test oracle:

» enumerating all conceivable candidate executions and checking the predicate, as in
the herd7 tool [27], and

> translating the predicate into SMT constraints, as the isla-axiomatic [29,
Armstrong et al.] tool does.

More on these later too.

Note how the construction of an arbitrary linearisation of b, illustrates some
“irrelevant” interleaving in the SC operational model.

Contents 3.5 x86: Axiomatic models 203

Expressing coherence axiomatically, on candidate executions

let pos = po & loc (* same-address part of po, aka po-loc x)
acyclic pos | rf | co | fr (* coherence check *)

Coherence is equivalent to per-location SC. Note that 2% 5 < and ™ only relate

pairs of events with the same address, so this checks SC-like acyclicity for each address
separately.

We already proved that any SC machine execution satisfies this, because 225 C 2%

Contents 3.5 x86: Axiomatic models 204

Basic coherence shapes

CoRW1 CoWww CoWRO0 CoRR CoRW?2
‘ Thread 0 ‘ ‘ Thread 0 ‘ ‘ Thread 0 ‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘
a:Rx=1 a:Wx=1 a:Wx=1 a:Wx=1;>b;Rx=1 a:Wx=lL>b;Rx=1
rf(lpo CO< lpo -\ lpo po o po
b:wx=1 b:wWx=2 " h:Rx=0 I CRx=0 c:Wx=2

Theorem 5. If a candidate execution has a cycle in pos | co | rf | fr, it contains
one of the above shapes (where the reads shown as from the initial state could be from

any coherence predecessor of the writes) [23, 15, Alglave].

How does the SC machine prevent each of these?

Contents 3.5 x86: Axiomatic models

205

onten

ts

x86-TSO axiomatic model

3.6 x86: x86-TSO axiomatic model

206

Axiomatic model style: single vs multi-event per access

Thread

Thread
bity:Ry=1
ctiRz=1

In the x86-TSO operational model (unlike SC): NimE - s

> each store has two events, w = (a:tg:W x=v) and
a':itg:Dy x=v

Jayng slM
Jo4ng SlM

W y1

oD A J

Shared Memory (z,1) ‘

» cach load has one event, but it can arise in two ways

but that is not explicit in the candidate executions we've used.
We could conceivably:

1. add some or all of that data to candidate executions, and give an axiomatic
characterisation of the abstract-machine execution, or

2. stick with one-event-per-access candidate executions, expressing the conditions that
define allowed behaviour just on those

Perhaps surprisingly, 2 turns out to be possible

Contents 3.6 x86: x86-TSO axiomatic model 207

Two x86-TSO axiomatic models

1. one in TPHOLs09 [4, Owens, Sarkar, Sewell], in SparcV8 style

2. one simplified from a current cat model, in the “herd” style of [15, Alglave et al.]
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat

Both proved equivalent to the operational model and tested against hardware
(on small and large test suites for the two models respectively)

Contents 3.6 x86: x86-TSO axiomatic model 208

https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat

forget LOCK'd instructions and MFENCEs for a bit

Contents 3.6 x86: x86-TSO axiomatic model

209

Notation

Axiomatic models define predicates on candidate execution using various binary
relations over events

Binary relations are just sets of pairs.

We write

> (e,ef)er
> el e
> ere

interchangeably.

Contents 3.6 x86: x86-TSO axiomatic model

210

Notation: relational algebra

As models become more complex, it's convenient to use relational algebra instead of
pointwise definitions, as in the “cat” language of herd7 (and also isla-axiomatic):

r | s the union of rand s {(e,€') |eréVveseé}

r & s the intersection of r and s {(e;e') |eré nes €}

r ; s the composition of r and s {(e,€")|3e’. ere se’}

r\ s rminuss {(e;€)|erée n=(ese)}

[S] the identity on some set S of events {(e,e) | e € s}

SxS’ the product of sets S and S’ {(e,e')|eesne es’}

loc same-location, events at the same address {(e, ¢’) | addr(e) = addr(e’)}
int internal, events of the same thread {(e, €) | thread(e) = thread(e’)}
ext external, events of different thread {(e, €’) | thread(e) # thread(e’)}

R, W, MFENCE: the sets of all read, write, and mfence events {e | isread(e)}, etc.

Contents 3.6 x86: x86-TSO axiomatic model 211

Internal vs external relations
In TSO, and in the more relaxed Armv8-A, IBM Power, and RISC-V that we come to

later, the same-thread and different-thread parts of rf, co, and fr behave quite

differently.
’Thread 0‘ ’Thread 1‘ ’Thread 0‘ ’Thread 1‘
a:Wx=1 c:Ry=1 a:Wx=1 d:wy=1
lPO%f lpo lrfi lrfi
b:wy=1 d:Rx=0 b:Rx=1 e:Ry=1
c:Ry=0 f:Rx=0

Write rfe and rfi for the external (different-thread) and internal (same-thread) parts
of rf, and similarly coe, coi, and fre, fri.

rfe = rf&ext = {(e,€)|erfe Athread(e) # thread(e’)}
rfi = rf&int = {(e,€')|erf e Athread(e) = thread(e’)}

212

Contents 3.6 x86: x86-TSO axiomatic model

Internal vs external relations for x86-TSO

In the abstract machine (ignoring LOCK'd instructions), threads interact only via the

common memory

Any external (inter-thread) reads-from, coherence, or from-reads edge is, in operational
terms, about write dequeue events:
» if w rfe e in the machine, then w must have been dequeued before e reads from it

» if w coe w' in the machine, then w must have been dequeued before w’ is dequeued

» if r fre w in the machine, then r reads before w is dequeued

Contents 3.6 x86: x86-TSO axiomatic model 213

Does the x86-TSO abstract machine maintain coherence? How?

The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:D,, x=v dequeue events (might not match the enqueue order)

Contents 3.6 x86: x86-TSO axiomatic model

214

Does the x86-TSO abstract machine maintain coherence? How?

The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:D,, x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)

Contents 3.6 x86: x86-TSO axiomatic model 215

Does the x86-TSO abstract machine maintain coherence? How?

The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:D,, x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)

But read events that read from buffers will be before the corresponding dequeue event
in the trace
> they will be after the a:t:W x=v enqueue event they read from, and before any
po-later enqueue event
> the ordering among same-thread write enqueues ends up included in the coherence
order by the FIFO nature of the buffer: two po-related writes are dequeued in the
same order

Contents 3.6 x86: x86-TSO axiomatic model 216

Does the x86-TSO abstract machine maintain coherence? How?

The coherence order over writes is determined by the order that they reach memory:
the trace order of a:t:D,, x=v dequeue events (might not match the enqueue order)

Read events that read from memory are in the right place in the trace w.r.t. that (after
the dequeue of their rf-predecessor and before the dequeues of their fr-successors)

But read events that read from buffers will be before the corresponding dequeue event
in the trace
> they will be after the a:t:W x=v enqueue event they read from, and before any
po-later enqueue event
> the ordering among same-thread write enqueues ends up included in the coherence
order by the FIFO nature of the buffer: two po-related writes are dequeued in the
same order

For reading from memory, if there's a write to this address in the local buffer, it will end
up coherence-after all writes that have already reached memory, so it would be a
coherence violation to read from memory — hence the buffer-empty condition in RM

Contents 3.6 x86: x86-TSO axiomatic model 217

Back to coherence, axiomatically

Recall we expressed coherence axiomatically as:

acyclic pos | rf | co | fr (* coherence check, where pos = po & loc x)

Contents 3.6 x86: x86-TSO axiomatic model 218

CoRW1

CowWww

Basic coherence shapes again

CoWRO0

CoRR

CoRW2

’Thread 0

’ Thread 0

’Thread 0

Thread 0‘ ’Thread 1‘

’ Thread 1 ‘

’Thread 0‘
a:Rx=1 aWx=1—""5 ph-Rrx=1 :

pos

a:Wx=1
pos

a:Wx=1

pos
S
b:Rx=0

rfi pos

0Ltc:Rx=0

coi(

b:Wx=2

b:Wx=1

How does the machine prevent each of these?

CoRW1: a read can only see a same-thread write that is pos-before it (via buffer or via memory)
CoWW: the buffers are FIFO, so two pos writes are dequeued in pos-order
CoWRO: b reads from a coherence-predecessor c:t:W x=0 (which could be on any thread) of a
» Case c is on the same thread as b. ¢ must be po-before a, as writes are enqueued in po and, because the buffers are FIFO, dequeued (establishing their coherence order) in
the same order.
» Case b reads from memory, by RM. Then ¢ must have been dequeued.
> Case a has been dequeued before the read. Then that must have been after c was, so b would have read from a.
> Case a is still buffered at the read. That violates the no_pending(m.B(t), x) condition of RM

> Case b reads from buffer, by RB. Then a must still precede c in the buffer. This violates the no_pending(by, x) condition of RB.
» Case c is on a different thread to b. Then b reads from memory, by RM
> Case c was dequeued before a. Then b would have read from a.
» Case c was dequeued after a. Then a must still be in the buffer, violating the no_pending(m.B(t), x) condition of RM.
CoRR: The dequeue of a must be before b reads, and b reads before ¢ does. ¢ reads from a coherence-predecessor d:t:W x=0 (which could be on any thread) of a, so d must
be dequeued before a. But then c would have read from a.
CoRW2: The dequeue of a must be before b reads, and b reads before c is enqueued, which is before c is dequeued. Then c is coherence-before a, so ¢ must be dequeued before
ais. But this would be a cycle in machine execution time.

Contents 3.6 x86: x86-TSO axiomatic model 219

Locally ordered before w.r.t. external relations

Now what about thread-local ordering of events that might be to different locations, as
seen by other threads?

Say a machine trace T is complete if it has no non-dequeued write, and for any write
enqueue event w in such, write D(w) for the unique corresponding dequeue event

For same-thread events in a complete machine trace:
» If w po w' then w is dequeued before w’ (write D(w) < D(w’))
» If r po r’ then r reads before r’ reads
» If r po w then r reads before w is enqueued, and hence before w is dequeued
» If w po r, then w is enqueued before r reads, but the dequeue of w and the read
are unordered

So, as far as external observations go (i.e. via rfe, coe, fre), po\([W];po;[R]) is
preserved.

Contents 3.6 x86: x86-TSO axiomatic model 220

x86-TSO axiomatic

That leads us to:

let pos = po & loc (*» same-address part of po (aka po-loc)x)
acyclic pos | rf | co | fr (* coherence check x)
let obs = rfe | coe | fre (* observed-by x)
let lob = po \ ([WI];po;I[R]) (* locally-ordered-before x)
let ob = obs | lob (* ordered-before x)

(x ob = po \ ([W];po;[R]) | rfe | coe | fre just expanding out x*)
acyclic ob (* ‘external’ check x*)

Contents 3.6 x86: x86-TSO axiomatic model 221

x86-TSO axiomatic: some examples again

SB Allowed LB Forbidden
’Thread O‘ ’Thread 1 ‘ ’Thread 0‘ ’Thread 1‘
a:Wx=1 cWy=1 a:Rx=1 rfefe c:Ry=1

=
b:Ry=0 d:Rx=0 b:wy=1 d:Wx=1
SB+rfi-pos Allowed WRC Forbidden
’ Thread 0 ‘ ’ Thread 1 ‘ ‘Thread O‘ - ‘Thread 1‘ ‘Thread 2
aWx=1 d:w y=1 aWx=1——">h:Rx=1 d:Ry=1
po rf po
c:Wy=/e:Rx=0
b:Rx=1 e:Ry=1
po lpo
C:Ry=0 f:Rx=0

Coherence: acyclic pos|rf|co|fr

External observation: acyclic po\([W];po;[R]) | rfe | coe | fre

E1QDRO0:use therfifrfe ste versions, as in the notes]

MP Forbidden
’ Thread 0 ‘ ’Thread 1 ‘
a:Wx=1 cfe c:Ry=1
pOl = Jpo
—
b:wy=1 d:Rx=0
242W Forbidden
’Thread O‘ ’Thread 1‘
AWX=2 e geCWYy=2
po lpo
b:wy=1 d:Wx=1

...the only pos here are the rfi edges

...solid edges

222

x86-TSO axiomatic: more formally
Say an x86-TSO trace T is a list of x86-TSO machine events [e, ..., e,] with unique IDs

Given such a trace, we write < for the trace order e<e ©3ije=ene =eni<]

Say an x86-TSO candidate pre-execution is (E, po) where
» E is exactly as for SC, a set of write and read events from the x86-TSO machine
event grammar, without D events
» po is a relation over E satisfying the same conditions as for SC
and a candidate execution witness is (rf, co) satisfying the same conditions as for SC.

Say a trace T = [ey,. .., ey] and a candidate pre-execution (E, po) have the same
thread-local behaviour if
» they have the same thread-interface access events (no dequeue or fence events)
E={e|ec{e,...,en} A (iswrite(e) Visread(e))}
» they have the same program-order relations over those, i.e.
po={(e,e') | e€ ENne € ENe< e Athread(e) = thread(e’)}
Contents 3.6 x86: x86-TSO axiomatic model 223

x86-TSO operational /axiomatic correspondence

Then:

Theorem 6. For any candidate pre-execution (E, po), the following are equivalent:

1. there exists a complete trace T of the x86-TSO abstract-machine memory with
the same thread-local behaviour as that candidate pre-execution

2. there exists an x86-TSO execution witness X = (rf, co) for (E, po) such that
acyclic(pos U rf U co U fr) and acyclic ob.

Contents 3.6 x86: x86-TSO axiomatic model 224

x86-TSO operational /axiomatic correspondence

Proof idea:

1. Given an operational execution, construct an axiomatic candidate in roughly the
same way as we did for SC, mapping dequeue transitions to write events, then
check the acyclicity properties.

2. Given an axiomatic execution, construct an operational trace by sequentialising ob,
mapping write events onto dequeue transitions and adding write enqueue
transitions as early as possible, then check the operational machine admits it.

Contents 3.6 x86: x86-TSO axiomatic model 225

Proof sketch: x86-TSO operational implies axiomatic

Given such a trace T, construct a candidate execution.
E={e|e€{e,...,en} A (iswrite(e) V isread(e)}

For rf, we recharacterise the machine behaviour in terms of the labels of the trace alone.
Say the potential writes for a read r are PW(r) = {w | w € E A iswrite(w) A addr(w) = addr(r)}

wrfr — isread(r) Aw € PW(r) A (
(* from-buffer, same-thread *)
(* w in buffer *) (thread(w) = thread(r) Aw < r < D(w)

(* no intervening in buffer *) A—3w’ € PW(r).thread(w’) = thread(r) Aw < w’ < r)
(* from-memory, any-thread *) v
(* w in memory *) (D(w) < r
(* no intervening in buffer *) A=3w’ € PW(r). thread(w’) = thread(r) A w’ < r < D(w')
(* no intervening in memory *) A-3w’ € PW(r). D(w) < D(w') < r))

For co, say w co w’ if iswrite(w) A iswrite(w’) A addr(w) = addr(w’) A D(w) < D(w")

Contents 3.6 x86: x86-TSO axiomatic model 226

Check the candidate execution well-formedness properties hold
...the w rf r implies value(r) = value(w) condition essentially checks correctness of the rf characterisation

For acyclic ob, check each (e, €’) in po\([W];po;[R]) | rfe | coe | fre is embedded in the trace
order w.r.t. read and dequeue-write points
i.e., that D(e) < D(e’), where D(w) = D(w) and D(r) =r

For acyclic pos|rf|co|fr, construct a modified total order <, the machine coherence order
augmented with reads in the coherence-correct places, and check each (e, e’) is embedded in that.
< is constructed from the trace order < by:

=l
— [r] if r reads from memory

[[if r reads from its thread’s buffer
a:it:Dux=v +— [w]@[r| r reads from w via buffer, ordered by <]

<

Note how this preserves trace order among all D events and reads from memory (mapping the D’s to
W's), and reshuffles reads from buffers to correct places in coherence, preserving pos but not other po.

Contents 3.6 x86: x86-TSO axiomatic model 227

Proof sketch: x86-TSO axiomatic implies operational

Consider a candidate execution satisfying acyclic(ob) and acyclic(pos|rf|co|fr)

Take some arbitrary linearisation S of ob, and define a trace by recursion on S.

gllT =T
g ((e::S") as S) T

(*x eagerly enqueue all possible writes x)
let next_writes = [w | w IN S & w NOTIN T & w not S-after any non-write thread(w) event]
let T" = T @ next_writes

match e with

| w->9gS" (T" @ [D(w)]) (* dequeue the write when we get to its W event in S x)
| r->gS’" (T"@I[rl]) (x perform reads when we get to them x)

| ...likewise for mfence except that we’re ignoring those for now.

Check that that is a machine trace, using the acyclicity properties.

Contents 3.6 x86: x86-TSO axiomatic model 228

Mechanised proof

Mechanised formalisation and proof, in Isabelle, by Paul Durbaba (Part IlI, 2020-21)

Contents 3.6 x86: x86-TSO axiomatic model

229

x86-TSO axjomatic: adding MFENCEs and RMWs

include "x86fences.cat"
include "cos.cat"
let pos = po & loc (* same-address part of po, aka po-loc *)

(* Observed-by x)
let obs = rfe | fre | coe

(* Locally-ordered-before *)

let lob = po \ ([W]; po; [RI])
| [W]; po; [MFENCE]; po; [R] (* W/R pairs separated by an MFENCE x)
| [W]; po; [R & X] (x W/R pairs with at least one from an x)
| [W & XI; po; [R] (x atomic RMW, where X identifies such x)

(* Ordered-before x)
let ob = obs | lob

(* Coherence check x)
acyclic pos | rf | co | fr

(* Atomicity requirement x)
empty rmw & (fre;coe) (* nothing between the R and W of atomic RMWs x)

(* External check x)

acyclic ob
Contents 3.6 x86: x86-TSO axiomatic model

Summary of axiomatic-model sets and relations

The data of a candidate pre-execution:
P> aset E of events
» poC E X E, program-order
The data of a candidate execution witness:
> rfC W X R, reads-from
» coC W x W, coherence
Subsets of E:

R all read events
w all write events
MFENCE all mfence events
X all locked-instruction accesses
Derived relations, generic:
loc same-location, events at the same address {(e, €’) | addr(e) = addr(e’)
ext external, events of different thread {(e, e’) | thread(e) # thread(e’)}
int internal, events of the same thread {(e, ¢’) | thread(e) = thread(e’)}
pos same-location po po & loc (aka po-loc)
pod different-location po po \ loc
fr from-reads r fr wiff
(3wo. wo co w A wo rf r) V (iswrite(w) A addr(w) = addr(r) A =3wp. wo rf
rfe, coe, fre different-thread (external) parts of rf, co, fr rfe=rf & ext etc.
rfi, coi, fri same-thread (internal) parts of rf, co, fr rfi=rf & int etc.

Derived relations, specific to x86 model:

obs observed-by obs = rfe | coe | fre
lob locally-ordered-before lob = po \([W];po;I[R]) |
ob ordered before ob = obs | lob

Contents 3.6 x86: x86-TSO axiomatic model 231

ontents

4 Validating models:

Validating models

232

Validating the models?

We invented a new abstraction; we didn't just formalise an existing
clear-but-non-mathematical spec. So why should we, or anyone else, believe it?

> some aspects of the vendor arch specs are clear (especially the examples)

» experimental comparison of model-allowed and h/w-observed behaviour on tests
» models should be sound w.r.t. experimentally observable behaviour of existing h/w
(modulo h/w bugs)
» but the architectural intent may be (often is) looser
> discussion with vendor architects — does it capture their intended envelope of
behaviour? Do they a priori know what that is in all cases?
» discussion with expert programmers — does it match their practical knowledge?
» proofs of metatheory

» operational / axiomatic correspondence
» implementability of C/C++11 model above x86-TSO [7, POPL 2011]
» TRF-SC result [6, ECOOP 2010]

Contents 4 Validating models: 233

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and I1A-32 Architectures Software Developer's Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1.

©® N O s WwN

Reads are not reordered with other reads.

Writes are not reordered with older reads.

Writes to memory are not reordered with other writes [...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.
Reads or writes cannot be reordered with locked instructions

Reads cannot pass earlier MFENCE instructions.

Writes cannot pass earlier MFENCE instructions.

MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

HPw N

5.

Writes by a single processor are observed in the same order by all processors.

Writes from an individual processor are NOT ordered with respect to the writes from other processors.
Memory ordering obeys causality (memory ordering respects transitive visibility).

Any two stores are seen in a consistent order by processors other than those performing the stores

Locked instructions have a total order.

MFENCE - Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.

Contents 4 Validating models: 234

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and IA-32 Architectures Software Developer’'s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod; [R]

Werites are not reordered with older reads.
Writes to memory are not reordered with other writes [...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.

2
3
4
5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.
In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.

Contents 4 Validating models: 235

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and IA-32 Architectures Software Developer’'s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod; [R]
Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?
Writes to memory are not reordered with other writes [...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.

2
3
4
5. Reads or writes cannot be reordered with locked instructions

6. Reads cannot pass earlier MFENCE instructions.

7. Writes cannot pass earlier MFENCE instructions.

8. MFENCE instructions cannot pass earlier reads or writes.
In a multiple-processor system, the following ordering principles apply:

1. Writes by a single processor are observed in the same order by all processors.

2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.

3. Memory ordering obeys causality (memory ordering respects transitive visibility).

4. Any two stores are seen in a consistent order by processors other than those performing the stores

5. Locked instructions have a total order.

MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.

Contents 4 Validating models: 236

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and IA-32 Architectures Software Developer’'s Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1. Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod; [R]
Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?
Writes to memory are not reordered with other writes [...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.

2
3
4
5. Reads or writes cannot be reordered with locked instructions
6. Reads cannot pass earlier is “cannot pass’ the same as “cannot be reordered with”? MFENCE instructions.
7. Writes cannot pass earlier MFENCE instructions.
8. MFENCE instructions cannot pass earlier reads or writes.
In a multiple-processor system, the following ordering principles apply:
1. Writes by a single processor are observed in the same order by all processors.
2. Writes from an individual processor are NOT ordered with respect to the writes from other processors.
3. Memory ordering obeys causality (memory ordering respects transitive visibility).
4. Any two stores are seen in a consistent order by processors other than those performing the stores
5. Locked instructions have a total order.

MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.

Contents 4 Validating models: 237

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and IA-32 Architectures Software Developer's Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer

forwarding.” This model can be characterized as follows.

1.

© N o o s wN

Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W];pod; [R]

Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

Writes to memory are not reordered with other writes |[...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.

Reads or writes cannot be reordered with locked instructions

Reads cannot pass earlier is “cannot pass” the same as “cannot be reordered with"? MFENCE instructions.

Writes cannot pass earlier MFENCE instructions.

MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1.
2.
3.

4.
5.

Writes by a single processor are observed in the same order by all processors.
Writes from an individual processor are NOT ordered with respect to the writes from other processors.

Memory ordering obeys causality (memory ordering respects transitive visibility).of what order? Is “memory ordering” ob? Is it
the order of R and D events?

Any two stores are seen in a consistent order by processors other than those performing the stores

Locked instructions have a total order.

MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction stream.

Contents 4 Validating models:

238

Re-read x86 vendor prose specifications with x86-TSO op/ax in mind

Intel 64 and 1A-32 Architectures Software Developer's Manual, Vol.3 Ch.8, page 3056 (note that the initial contents page only covers
Vol.1; Vol.3 starts on page 2783)

8.2.2 Memory Ordering in P6 and More Recent Processor Families The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and
P6 family processors also use a processor-ordered memory-ordering model that can be further defined as “write ordered with store-buffer
forwarding.” This model can be characterized as follows.

1.

® N o o, wN

Reads are not reordered with other reads.x86-TSO-op: instructions are not reordered, but the buffering has a similar effect for
[W1;pod; [R]

Writes are not reordered with older reads.x86-TSO-ax: does the order of “reordered” match ob?

Writes to memory are not reordered with other writes [...]

Reads may be reordered with older writes to different locations but not with older writes to the same location.

Reads or writes cannot be reordered with locked instructions

Reads cannot pass earlier is “cannot pass”’ the same as “cannot be reordered with"? MFENCE instructions.

Writes cannot pass earlier MFENCE instructions.

MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:

1.
2.
3.

4.
5.

Writes by a single processor are observed in the same order by all processors.
Writes from an individual processor are NOT ordered with respect to the writes from other processors.

Memory ordering obeys causality (memory ordering respects transitive visibility).of what order? Is “memory ordering” ob? Is it
the order of R and D events?

Any two stores are seen in a consistent order by processors other than those performing the stores

Locked instructions have a total order.

MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the program instruction
stream.microarchitectural?

Contents 4 Validating models: 239

Experimental validation

Essential — but not enough by itself:
> the architectural intent is typically looser than any specific hardware

> one can't always determine whether a strange observed behaviour is a hardware
bug or not without asking the architects — it's their call

Experimental validation relies on having a good test suite and test harness, that
exercises corners of the model and of hardware implementations

...and it relies on making the model executable as a test oracle — we make operational
and axiomatic models exhaustively executable for (at least) litmus tests.

Contents 4 Validating models: 240

Interesting tests

We can usually restrict to tests with some potential non-SC behaviour
(assuming no h/w bugs)

By the SC characterisation theorem, these are those with a cycle in po|rf|co|fr

(“critical cycles” [37])

Contents 4 Validating models:

241

Generating tests

Hand-writing tests is sometimes necessary, but it's also important to be able to
auto-generate them.

This is made much easier by the fact that we have executable-as-test-oracle models: we
can generate any potentially interesting test, and then use the models to determine the

model-allowed behaviour.

Usually, interesting tests have at least one potential execution, consistent with the
instruction-local semantics, which is a critical cycle

Tests only identify an interesting outcome; they don’t specify whether it is allowed or
forbidden. And in fact we compare all outcomes, not just that one.

Contents 4 Validating models: 242

Generating a single test from a cycle

SB Allowed
’Thread O‘ ’Thread 1 ‘
a:Wx=1 cWy=1
po o
'ff\ lp A/r_.f
b:Ry=0 d:Rx=0

Use diyone7 to generate a single test from a cycle, e.g. Fre PodWR Fre PodwR:

diyone7 -arch X86_64 -type uint64_t -name SB "Fre PodWR Fre PodWR"

X86_64 SB

"Fre PodWR Fre PodwR"
Generator=diyone7 (version 7.56)
Prefetch=0:x=F,0:y=T,1:y=F,1:x=T

Com=Fr Fr

Orig=Fre PodWR Fre PodwWR

Align=

{

uint64_t y; uint64_t x; uint64_t 1l:rax; uint64_t 0:rax;
}

PO | P1

movg $1,(x) | movg $1,(y)

movq (y),%rax | movq (x),%rax ;
exists (0:rax=0 /\ 1l:rax=0)

Documentatlon http: //d1y inria.fr/doc/gen.html

Contents Val |datmg models:

243

http://diy.inria.fr/doc/gen.html

For small tests, we can be exhaustive, in various ways

e.g. the earlier coherence tests

CoRW1 CoWww CoWRO0 CoRR CoRW2
‘ Thread 0 ‘ ‘ Thread 0 ‘ ‘ Thread 0 ‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘
a:Rx=1 a:Wx=1 a:Wx=1 a:Wx=1i>b;Rx=1 a:Wx=1i>b;Rx=1
rf(lpo CO< lpo N lpo po o lpo
) . rf. r
b:Wx=1 bW x=2 b:R x=0 I cRX=0 CW x=2

Contents

4 Validating models:

244

Basic 4-edge test shapes

All 4-edge critical-cycle tests, with a pod pair of different-location memory accesses on

each thread. There are only six:

SB
’Thread 0 ‘ ’Thread 1 ‘
a:Wx=1 cWy=1
po o}
e b
b:Ry=0 d:Rx=0
R
’Thread 0‘ ’Thread 1‘
aWx=1l . __ _cWy=2
coe
po e lpo
~ A/r.f
b:wy=1 d:Rx=0

Contents 4 Validating models:

MP
’Thread 0 ‘ ’Thread 1 ‘
a:Wx=1 cfe c:Ry=1
po o}
d lp -
b:wy=1 d:Rx=0
S
’Thread 0‘ ’Thread 1 ‘
a:Wx=2 coefe c:Ry=1
] > b
b:wy=1 d:wx=1

LB
’Thread 0‘ ’Thread 1
a:Rx=1 rfefe c:Ry=1
e,
b:wy=1 d:Wx=1
24+2W
’Thread 0‘ ’Thread 1
AWX=2 (e geCWy=2
o) > e
b:wy=1 d:wx=1

245

Generating the basic 4-edge tests
Use a configuration file X86_64-basic-4-edge.conf

diy7 configuration file for basic x86 tests with four pod or rf/co/fr external edges
-arch X86_64

-nprocs 2

-size 4

-num false

-safe Podxx,Posxx,Fre,Rfe,Wse

-mode critical

-type uint64_t

(Ws, for "write serialisation”, is original diy7 syntax for coherence co, updated in newer versions)
Then
diy7 -conf X86_64-basic-4-edge.conf

generates those six critical-cycle tests

Contents 4 Validating models: 246

Running a batch of tests on hardware using litmus

litmus7 -r 100 src-X86_64-basic-4-edge/@all > run-hw.log

This runs each of those tests 107 times, logging to run-hw.log. It takes ~40s.

For serious testing, one should increase that by 10-1000, and typically will be using
many more tests.

This log contains, for each test, the histogram of observed final states. It also records
whether the identified final-state condition was observed or not.

Test SB Allowed (* NB: don’t get confused by these "Allowed"s, or the "Ok"s - just look at the "Observation" line x)
Histogram (4 states)

95 *>0:rax=0; l:rax=0;

4999871:>0:rax=1; 1l:rax=0;

4999876:>0:rax=0; 1l:rax=1;

158 :>0:rax=1; l:rax=1;

[...1

Observation SB Sometimes 95 9999905

Contents 4 Validating models: 247

Running a batch of tests in x86-TSO operational using rmem

rmem -model tso -interactive false -eager true -q
src-X86_64-basic-4-edge/@all > run-rmem.log.tmp

cat run-rmem.log.tmp | sed 's/RAX/rax/g’ | sed 's/RBX/rbx/g’ > run-rmem.log

This runs each of those tests exhaustively in the x86-TSO operational model, logging to
run-rmem.log. And, ahem, fixes up the register case.

This log contains, for each test, a list of the final states that are possible in the
operational model:

Test SB Allowed

States 4

0:rax=0; 1l:rax=0;

0:rax=0; 1l:rax=1;

0:rax=1; l:rax=0;

0:rax=1; l:rax=1;

[...1

Observation SB Sometimes 1 3

Contents 4 Validating models: 248

Running a batch of tests in x86-TSO axiomatic using herd

herd7 -cat x86-tso.cat src-X86_64-basic-4-edge/@all > run-herd.log

This runs each of those tests exhaustively in the x86-TSO axiomatic model, logging to
run-herd. log.

This log contains, for each test, a list of the final states that are possible in the
axiomatic model:

Test SB Allowed

States 4

0:rax=0; 1l:rax=0;

0:rax=0; l:rax=1;

0:rax=1; l:rax=0;

0:rax=1; 1l:rax=1;

[...]

Observation SB Sometimes 1 3

Herd web interface: http://diy.inria.fr/www

Contents 4 Validating models: 249

http://diy.inria.fr/www

Comparing results

$ mcompare7 -nohash run-hw.log run-rmem.log run-herd.log
*Diffsx
|Kind | run-hw.log run-rmem.log run-herd.log

2+2W|Allow|
INo |

LB |Allow|
[No |

MP |Allow| [1:rax=0;
|No | [1:rax=0;

SB |Allow| [0:rax=0;
|0k | [0:rax=0;
| | [0:rax=1;
| | [0:rax=1;

Or use -pos <file> and -neg <file> to dump positive and negative differences.
Normally we would check test hashes for safety, without -nohash, but they have temporarily diverged between the tools.
One can also use this to compare models directly against each other.

Contents 4 Validating models:

250

Generating more tests

Allow up to 6 edges on up to 4 threads, and include MFENCE edges

diy7 configuration file X86_64-basic-6-edge.conf

diy7 configuration file for basic x86 tests with six pod or rf/co/fr external edges
-arch X86_64

-nprocs 4

-size 6

-num false

-safe Podxx,Pos*x,Fre,Rfe,Wse,MFenced**,MFencesx*x

-mode critical

-type uint64_t

Then
diy7 -conf X86_64-basic-6-edge.conf

generates 227 critical-cycle tests, including SB, SB+mfence+po, SB+mfences, ..., IRIW, ...

Contents 4 Validating models: 251

Generating more more tests

To try to observe some putative relaxation (some edge that we think should not be in ob),
remove it from the -safe list and add it to -relax, then diy7 will by default generate cycles of
exactly one relaxed edge and some safe edges.

x86-rfi.conf x86-podwr.conf

#rfi x86 conf file #podrw x86 conf file
-arch X86 -arch X86

-nprocs 4 -nprocs 4

-size 6 -size 6

-name rfi -name podwr

-safe PosRx PodR+ PodWW PosWW Rfe Wse Fre FencesWR FencedWR -safe Fre

-relax Rfi -relax PodWR

From http://diy.inria.fr/doc/gen.html#sec52
Many more options in the docs

Contents 4 Validating models: 252

http://diy.inria.fr/doc/gen.html#sec52

Generating more more tests

There's a modest set of x86 tests at:

https://github.com/litmus-tests/litmus-tests-x86

Contents 4 Validating models:

253

https://github.com/litmus-tests/litmus-tests-x86

onten

ts

Arm-A, IBM Power, and RISC-V

5 Arm-A, IBM Power, and RISC-V:

254

Armv8-A application-class architecture

Armv8-A is Arm’s main application profile architecture. It includes the AArch64 execution

state, supporting the A64 instruction-set, and AArch32, supporting A32 and T32. Arm also
define Armv8-M and Armv8-R profiles, for microcontrollers and real-time, and ARMv7 and

earlier are still in use.

Many cores designed by Arm and by Others, in many SOCS. https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores

» Samsung Exynos 7420 and Qualcomm Snapdragon 810 SoCs, each containing
4xCortex-A57+4xCortex-Ab3 cores, both ARMv8.0-A

» Apple A14 Bionic SoC (in iPhone 12) https://en.wikipedia.org/wiki/Apple_Al4

Each core implements some specific version (and optional features) of the architecture, e.g.
Cortex-A57 implements Armv8.0-A. Armv8-A architecture versions:

2013 | A.a | Armv8.0-A (first non-confidential beta)
2016 | Ak | Armv8.0-A (EAC)
2017 | B.a | Armv8.1-A (EAC), Armv8.2-A (Beta) (simplification to MCA)

2020 | F.c | Armv8.6-A (initial EAC)

Contents 5 Arm-A, IBM Power, and RISC-V: 255

https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores
https://en.wikipedia.org/wiki/Apple_A14
https://developer.arm.com/documentation/ddi0487/fc

IBM Power architecture

The architecture of a line of high-end IBM server and supercomputer processors, now under the
OpenPOWER foundation

Date | Architecture version | Processor
2004 | Power ISA 2.03 POWERb
2007 | Power ISA 2.03 POWERG6
2010 | Power ISA 2.06 POWER7
2014 | Power ISA 2.07 POWERS
2017 | Power ISA 3.08B POWER9
2021 | Power ISA 3.1 POWER10
2021 | Power ISA 3.1B

2024 | Power ISA 3.1C

Power ISA 3.0B
POWER10: 240 hw threads/socket

POWER9: 96 hw threads/die https://en.wikipedia.org/wiki/POWER9

POWER 8: up to 192 cores, each with up to 8 h/w threads https://en.wikipedia.org/wiki/POWERS

Power7: IBM's Next-Generation Server Processor Kalla, Sinharoy, Starke, Floyd

Contents

5 Arm-A, IBM Power, and RISC-V:

256

https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://en.wikipedia.org/wiki/POWER9
https://en.wikipedia.org/wiki/POWER8
http://www.hotchips.org/wp-content/uploads/hc_archives/hc21/3_tues/HC21.25.800.ServerSystemsII-Epub/HC21.25.829.Kalla-IBM-POWER7NextGenerationServerProcessorv7display.pdf

RISC-V

Nascent open standard architecture, originated UCB, now under RISC-V International —
a large industry and academic consortium

Cores available or under development from multiple vendors

» The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [34]
» The RISC-V Instruction Set Manual Volume II: Privileged Architecture [35]

Contents 5 Arm-A, IBM Power, and RISC-V: 257

Industry collaborations

2007 we started trying to make sense of the state of the art

2008/2009 discussion, still ongoing, with IBM Power and ARM architects

2017- contributed to RISC-V memory-model task group

2018 RISC-V memory-model spec ratified

2018 Arm simplified their concurrency model and included a formal definition

Contents 5 Arm-A, IBM Power, and RISC-V: 258

x86

» programmers can assume instructions execute in program order, but with FIFO
store buffer

» (actual hardware may be more aggressive, but not visibly so)

ARM, IBM POWER, RISC-V
» by default, instructions can observably execute out-of-order and speculatively
...except as forbidden by coherence, dependencies, barriers
much weaker than x86-TSO
similar but not identical to each other

(for RISC-V, this is "RVWMO"; the architecture also defines an optional “RVTSO",
the Ztso extension)

>
>
>
>

Contents 5 Arm-A, IBM Power, and RISC-V: 259

Abstract microarchitecture — informally

As before:
Observable relaxed-memory behaviour arises from hardware optimisations

So we have to understand just enough about hardware to explain and define the envelopes of
programmer-observable (non-performance) behaviour that comprise the architectures.

But no more — see a Computer Architecture course for that.

(Computer Architecture courses are typically largely about hardware implementation, aka
microarchitecture, whereas here we focus exactly on architecture specification.)

Contents 5 Arm-A, IBM Power, and RISC-V: 260

Abstract microarchitecture — informally
Many observable relaxed phenomena arise from out-of-order and speculative execution.

Each hardware thread might have many instructions in flight, executing out-of-order, and this
may be speculative: executing even though there are unresolved program-order-predecessor
branches, or po-predecessor instructions that are not yet known not to raise an exception, or
po-predecessor instructions that might access the same address in a way that would violate
coherence.

[]
I
BB 00— O
C—0]
Think of these as a per-thread tree of instruction instances, some finished] and some not.

The hardware checks, and rolls back as needed, to ensure that none of this violates the
architected guarantees about sequential per-thread execution, coherence, or synchronisation.

Contents 5 Arm-A, IBM Power, and RISC-V: 261

Abstract microarchitecture — informally

Observable relaxed phenomena also arise from the hierarchy of store buffers and caches, and
the interconnect and cache protocol connecting them.

We've already seen the effects of a FIFO store buffer, in x86-TSO. One can also have
observably hierarchical buffers, as we discussed for IRIW; non-FIFO buffers; and buffering of
read requests in addition to writes, either together with writes or separately. High-performance
interconnects might have separate paths for different groups of addresses; high-performance
cache protocols might lazily invalidate cache lines; and certain atomic RMW operations might
be done “in the interconnect” rather than in the core.

We descibe all of this as the “storage subsystem” of a hardware implementation or operational
model.

Some phenomena can be seen as arising either from thread or storage effects — then we can
choose, in an operational model, whether to include one, the other, or both.

Contents 5 Arm-A, IBM Power, and RISC-V: 262

Contents

Phenomena

5.1 Arm-A, IBM Power, and RISC-V: Phenomena

263

Contents

Coherence

5.1.1 Arm-A, IBM Power, and RISC-V: Phenomena: Coherence

264

Coherence

CoRW1 CoWww CoWRO0 CoRR CoRW2
’Thread O‘ ’Thread 0‘ ’Thread 0 ’Thread 0‘ ’Thread 1‘ ’Thread 0‘ ’Thread 1‘
a:Rx=1 a:Wx=1 a:Wx=1 a:Wx=lL>b;Rx=1 a:Wx=1L>b;RX=1
rf(lpo CO(lpo <\ lpo po o po
i . rfo.. r
b:wx=1 bW x=2 b:Rx=0 I cRX=0 CW x=2
Still all forbidden
Contents 5.1.1 Arm-A, IBM Power, and RISC-V: Phenomena: Coherence 265

Contents

Out-of-order accesses

5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

266

Out-of-order pod WW and pod RR: MP (Message Passing)

MP Allowed
’Thread 0‘ ’Thread 1‘
a:Wx=1 cfe cRy=1

MP AArch64
Initial state: 0:X2=y; 0:X1=x;
0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;
1:X2=0; y=0; x=0;

Thread 0 Thread 1

STR X0, [X1] //a|LDR X0, [X1]//c
STR X0, [X2] //b|LDR X2,[X3]//d

pol // Po_, Allowed: 1:x0=1; 1:x2=0; \

YYYYY YYYYY] V.
b:Wy=1 d:RX=G rf Arm.YYYYY NY Power:Y RISC-V:N
Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

267

Out-of-order pod WW and pod RR: MP (Message Passing)

MP AArch64
Initial state: 0:X2=y; 0:X1=x;
0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;
1:X2=0; y=0; x=0;

MP Allowed Thread 0 Thread 1
[Thread 0] [Thread 1] STR X0, [X1]//a | LDR X0, [X1] //c
aWx=1 . . cRy=1 STR X0, [X2] //b|LDR X2, [X3]//d
po 7 lpo Allowed: 1:x0=1; 1:x2=0; \
/ °

bwy=1 d:Rx=0 rf Armzzzzzz ET{YYY Power:Y RISC-V:N
Microarchitecturally, as x and y are distinct locations, this could be:

» thread: out-of-order execution of the writes

» thread: out-of-order satisfaction of the reads

» non-FIFO write buffering

> storage subsystem: write propagation in either order

We don't distinguish between those when we say WW and RR can be (observably) out-of-order
We check both WW and RR are possible by adding a barrier (MP+po+fen and MP+fen+po)

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses 268

Experimental data

arch k directory device SoC core arch version release
Armve-A a ec2-al Amazon EC2 Al instance AWS Graviton o Grav\lcn 2 16xCortex-A72 or 64xNeoverse N1
b BCM2711 Raspberry Pi 4 Model B Broadcom BCM: 4xCortex-AT2 Armvg-A 2016
< h955 LG H955 phone Qualcomm Snapdvagon 810 4xCortex-A57/A53 2015
d AMD ? 7 AMD Opteron A1100 4xCortex-A57 2016
e Juno Arm Juno development board 2xCortex-A57+4xCortex-A53
f Kirin6220 HiKey development board Hisilicon Kirin 620 8xCortex-A53
g HelioG25 ? MediaTek Helio G25 8xCortex-A53 2020
h 5905 ODROID-C2 development board Amlogic $905 4xCortex-A53
i Snapdragon25 Qualcomm Snapdragon 425 4xCortex-A53
j a10x-fusion ? Apple A10X Fusion 3xHurricane+3xZephyr Armv8.1-A
[3 iphone? Apple iPhone 7 Apple A10 Fusion 2xHurricane-+2xZephyr Armv8.1-A 2016
| Apple iPad air 2 Apple ABX 3xTyphoon Armv8-A 2014
m APM883208 ? Applied Micro APM883208 8xStorm Armvs-A 2012
n Cavium ? ? Cavium ThunderX or X2
° Exynos9 ? ? Samsung, could be custom or A77 or A55 or A53 7
P nexus9 Google Nexus 9 tablet NVIDIA Tegra K1 2xDenver Armvg-A 2014
aq openq820 Open-Q 820 kit Qual 820 (APQ 8096) 4xQualcomm Kryo 2016
Power v bim POWERT?
RISCV s HiFi board SiFive Freedom U540 SoC

We'll show experimental data for Arm, Power, and RISC-V in an abbreviated form:

Y /N indicating whether the final state is observed or not, or — for no data, for each of
several hardware implementations, for each architecture. Detailed results for the tests in
these slides are at Page 520. Key: am:3pede i poverr Risc-vis

This shows only some of the data gathered over the years, largely by Luc Maranget and
Shaked Flur. More details of the former at
http://cambium.inria.fr/~maranget/cats7/model-aarch64/

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses 269

http://cambium.inria.fr/~maranget/cats7/model-aarch64/

Architectural intent and model behaviour

Except where discussed, for all these examples the architectural intent, operational
model, and axiomatic model all coincide, and are the same for Armv8-A, IBM Power,
and RISC-V.

We write Allowed or Forbidden to mean the given execution is allowed or forbidden in
all these.

Generally, if the given execution is Allowed, that means programmers should not depend

on any program idiom involving that shape; additional synchronisation will have to be

added.

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses 270

Comparing models and test results

model experimental observation | conclusion
Allowed Y ok
Allowed N ok, but model is looser than hardware (or testing not aggressive)
Forbidden Y model not sound w.r.t. hardware (or hardware bug)
Forbidden N ok
Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses 271

Out-of-order pod WR: SB (“Store Buffering”)

SB AArch64
Initial state: 0:X3=y; 0:X1=x;
0:X0=1; 0:X2=0; 1:X3=x; 1:X1l=y;
1:X0=1; 1:X2=0; y=0; x=0;

SB Allowed Thread 0 Thread 1
[Thread 0] [Thread 1] STR X0, [X1]1//a|STR X0, [X1]//c
aWx=1 cWy=1 LDR X2, [X3]1//b | LDR X2, [X3]//d
0o 00 Allowed: 0:x2=0; 1:x2=0; \
.\ A/. YYYYY YYYYY . X
rf b:Ry=0 d:Rx=0 rf Arm:g ey NY Power:Y RISC-V:N

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

272

Out-of-order pod WR: SB (“Store Buffering”)

SB Allowed
’Thread 0‘ ’Thread 1 ‘
aWx=1 cWy=1
po o
r.f\‘ l P A/r.f
b:Ry=0 d:Rx=0

Microarchitecturally:

SB AArch64
Initial state: 0:X3=y; 0:X1=x;
0:X0=1; 0:X2=0; 1:X3=x; 1:X1l=y;
1:X0=1; 1:X2=0; y=0; x=0;
Thread 0 Thread 1

STR X0, [X1]1//a |STR X0, [X1]//c
LDR X2,[X3]//b|LDR X2,[X31//d
Allowed: 0:X2=0; 1:X2=0; \

YYYYY YYYYY . _\/:
Arm'YYYYY NY Power:Y RISC-V:N

> pipeline: out-of-order execution of the store and load

> storage subsystem: write buffering

Contents

5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

273

Out-of-order pod RW: LB (“Load Buffering”)
LB AArch64

LB Allowed
’Thread 0‘ ’Thread 1‘
a:Rx=1 rfefe c:Ry=1
R
b:wy=1 d:wx=1

Initial state: 0:X3=y; 0:X2=1;
0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=0; y=0; x=0;

Thread 0 Thread 1

LDR X0, [X1]//a|LDR X0, [X1]//c
STR X2,[X3]//b|STR X2,[X3]//d

Allowed: 0:X0=1; 1:X0=1;

|

.NNNNN NNNNN . v/
Arm'NNNNN NY Power:N RISC-V:N

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

274

Out-of-order pod RW: LB (“Load Buffering”)

LB AArch64
Initial state: 0:X3=y; 0:X2=1;
0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=0; y=0; x=0;

LB Allowed Thread 0 Thread 1
[Thread 0| | Thread 1] LDR X0, [X1]//a | LDR X, [X1]//c
aRx=1 | pra CRY=1 STR X2, [X3]//b | STR X2, [X3]//d
pol 0o |Allowed: 0:x0=1; 1:X0=1; \
Arm:NNNNNNNNNNp o\ RISC-V:N

Microarchitectbivhyit d:wx=1 'NNNNN NY
> pipeline: out-of-order execution of the store and load
> storage subsystem: read-request buffering

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

275

Out-of-order pod RW: LB (“Load Buffering”)

LB AArch64
Initial state: 0:X3=y; 0:X2=1;
0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=0; y=0; x=0;

LB Allowed Thread 0 Thread 1
[Thread 0| | Thread 1] LDR X0, [X1]//a | LDR X, [X1]//c
aRx=1 | pra CRY=1 STR X2, [X31//b | STR X2, [X31//d
pol 0o |Allowed: 0:x0=1; 1:X0=1; \

.NNNNN NNNNN
Arm Power:N RISC-V:N
M|croarch|tecthiﬂbﬂ°5/1. d:wx=1 'NNNNN NY

> pipeline: out-of-order execution of the store and load
> storage subsystem: read-request buffering
Architecturally allowed, but unobserved on most devices

Why the asymmetry between reads and writes (WR SB vs RW LB)? For LB, the hardware might have to make writes visible to another
thread before it knows that the reads won't fault, and then roll back the other thread(s) if they do — but hardware typically treats
inter-thread writes as irrevocable. In contrast, re-executing a read that turns out to have been satisfied too early is thread-local,
relatively cheap.

Why architecturally allowed? Some hardware has exhibited LB, presumed via read-request buffering. But mostly this seems to be on
general principles, to maintain flexibility.

However, architecturally allowing LB interacts very badly with compiler optimisations, making it very hard to define sensible

(W50 Smlng 'a"g'EE?z%?FnQ'A,_lE’ﬁl'ﬁ%‘%&r,‘%n‘bikfgfﬁ'\v: Phenomena: Out-of-order accesses 276

Out-of-order pod WW again: 2+2W

2+2W AArch64
Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=2; y=0; x=0;

2+2W Allowed Thread 0 Thread 1
| Thread 0] | Thread 1] STR X0, [X1]//a | STR X0, [X1]//c
a:Wx=2 C:Wy=2 STR XZ:[X3]//b STR X2,[X3]//d
vo| TS lpo Allowed: y=2; x=2;
YYYYY YYYYY X X
b-w y=1 d-Wx=1 Arm.YNYYY NY Power:- RISC-V:N

Contents 5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

277

Out-of-order pod WW again: 2+2W

242W Allowed
’Thread 0‘ ’Thread 1‘
a:Wx=2 Coecoec:Wy=2
po po
b:wy=1 d:Wx=1

Microarchitecturally:

2+2W AArch64
Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=2; y=0; x=0;
Thread 0 Thread 1

STR X0, [X1]//a|STR X0, [X1]//c
STR X2,[X3]//b|STR X2,[X3]//d

Allowed: y=2; x=2;

YYYYY YYYYY . \/.
Arm‘YNYYY NY Power:- RISC-V:N

» pipeline: out-of-order execution of the stores
> storage subsystem: non-FIFO write buffering

Contents

5.1.2 Arm-A, IBM Power, and RISC-V: Phenomena: Out-of-order accesses

278

Contents

Barriers

5.1.3 Arm-A, IBM Power, and RISC-V: Phenomena: Barriers

279

Enforcing Order with Barriers
Each architecture has a variety of memory barrier (or fence) instructions. For normal code, the
ARMv8-A dmb sy, POWER sync, and RISC-V fence rw, rw prevent observable reordering of
any pair of loads and stores. Where these behave the same, we just write fen, so e.g. the
Armv8-A version of MP+fen+po is MP+dmb.sy+po. Adding fen between both pairs of
accesses makes the preceding tests forbidden:

MP+fens Forbidden SB+fens Forbidden LB+fens Forbidden 2+2W-+fens Forbidden
‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘
aWx=1 d:Ry=1 aWx=1 d:wy=1 a:Rx=1 rf d:Ry=1 a:Wx=2 co d:wy=2
rf rf co
fen ' lfen fenl lfen fenl >< lfen fenl >< lfen
/rf r.f\ rf.
cWy=1 e—>{Rx=0 C:Ry=0 o—>f:Rx=0 cWy=1 fwx=1 cWy=1 f:Wx=1

Adding fen on just one thread leaves them allowed. For MP, this confirms WW and RR pod
reordering are both observable:

MP+fen+po Allowed MP+po+fen Allowed

‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 0 ‘ ‘ Thread 1 ‘
a:Wx=1 9d:Ry=1 a:Wx=1 ;Yc:Ry=l
f po,
en e 1po l /rf fen
cwy=1 o fs e:Rx=0 bWy=1 > e:Rx=0

Note: these barriers go between accesses, enforcing ordering between them; they don't
synchronise with other barriers or other events.
Contents 5.1.3 Arm-A, IBM Power, and RISC-V: Phenomena: Barriers 280

Weaker Barriers

Enforcing ordering can be expensive, especially write-to-read ordering, so each architecture also
provides various weaker barriers:

Armv8-A | dmb 1d read-to-read and read-to-write
dmb st write-to-write

Power lwsync read-to-read, write-to-write, and read-to-write
eieio write-to-write

RISC-V fence pred,succ | pred,succ Cponempty LW}

Plus variations for inner/outer shareable domains, 10, and systems features, all of which we
ignore here

Note: later we'll see that preventing pairwise reordering is not all these do.

There are also various forms of labelled access, sometimes better or clearer than barriers.

Contents 5.1.3 Arm-A, IBM Power, and RISC-V: Phenomena: Barriers 281

Contents

Dependencies

5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies

282

Enforcing order with dependencies: read-to-read address dependencies

Recall MP+fen+po is allowed:

MP+fen+po Allowed
’ Thread 0 ‘ ’Thread 1 ‘
a:Wx=1 9d:Ry=1
fen o]

/ p

cWy=1 o fs erX=0

But in many message-passing scenarios we want to enforce ordering between the reads
but don't need the full force (or cost) of a strong barrier. Dependencies give us that in
some cases.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 283

Enforcing order with dependencies: read-to-read address dependencies

MP+dmb.sy+addr.real AArch64

’|nitia| state: x=0; y=z; z=2; ‘

Initial state: 0:X3=y; 0:X1=x; 0:X0=1;

MP+fen+addr.real Forbidden Thread 0 Thread 1 LX?:;;:E_Z' LXI_Y'T;:;_; =4
[Theado] [edr] [0 |50, o R
ﬂ;_nl 97 : f;:;r ‘Forbidden: 1:rl=y; 1:r2=0; ‘ ‘Forbidd'enzl:x2=x; 1:X3=0,
/rf

cWy=x e—>e:Rx=0

Say there is an address dependency from a read to a program-order later read, written
as an addr edge, if there is a chain of “normal’ register dataflow from the first read's
value to the address of the second. (What's “normal? Roughly: via general-purpose and flag registers,

excluding the PC, and for Armv8-A excluding writes by store-exclusives. System registers are another story, too.)

These are architecturally guaranteed to be respected.

Microarchitecturally, this means hardware cannot observably speculate the value used

for the address of the second access.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies

284

Enforcing order with dependencies: natural vs artificial

MP-+dmb.sy+addr AArch64

— Initial state: 0:X2=y; 0:X1=x;
’Imtlal state: x=0; y=0; ‘ 0:X0=1; 1:Xd=x; 1:X1=y; 1:X0=0;
1:X3=0; y=0; x=0;

Thread 0 Thread 1 Thread 0 Thread 1

MP+fen+addr Forbidden x=1; ri=y; STR X0, [X11//a | LDR X0, [X1] //d
N DMB SY //b | EOR X2,X0,X0
‘ Thread 0 ‘ ‘ Thread 1 ‘ y=1; r2=+(x+(ri?rl)); STR X8, [X2]//c | LDR X3, [X4,X2]//e
aWx=1 d:Ry=1 ’Forbidden: 1:rl=y; 1:r2=0; ‘ [Forbidden: 1:x0=1, 1:x3-0; |
rf_ Arm:=-NNN N-N-N

MIUNNNN NN Power:N RISC-V:N

fen addr
/rf

cWy=1l e—>e:Rx=0
Architectural guarantee to respect read-to-read address dependencies even if they are
“artificial”/“false” (vs “natural”/“true”), i.e. if they could “obviously” be optimised away.

In simple cases one can intuitively distinguish between artificial and natural
dependencies, but it's very hard to make a meaningful non-syntactic precise distinction
in general: one would have to somehow bound the information available to optimisation,
and optimisation is w.r.t. the machine semantics, which itself involves dependencies.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 285

Enforcing order with dependencies: intentional artificial dependencies

That architectural guarantee means that introducing an artificial dependency can
sometimes be a useful assembly programming idiom for enforcing read-to-read (or
read-to-write) order.

In some architectures one can enforce similar orderings with a labelled access, e.g. the
Arm release/acquire access instructions, which may or may not be preferable in any
particular situation.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 286

Enforcing order with dependencies: in high-level languages?

But beware! These and certain other dependencies are guaranteed to be respected by
these architectures, but not by C/C++. Conventional compiler optimisations will
optimise them away, e.g. replacing r2~r2 by 0, and then the compiler or hardware
might reorder the now-independent accesses.

Inlining and link-time optimisation (and value range analysis?) mean this can happen
unexpectedly, and make it very hard to rule out — c.f. the original C++11 memory_
order_consume proposal, which has turned out not to be implementable.

This is an open problem, as high-performance concurrent code (e.g. RCU in the Linux

kernel) does rely on dependencies. Currently, one hopes the compilers won't remove the
specific dependencies used.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 287

Enforcing order with dependencies: read-to-write address dependencies

Read to write address dependencies are similarly respected.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies

288

Enforcing order with dependencies: read-to-write data dependencies
| B+datas AArch64

Initial state: 0:X3=y; 0:X1=x;
— 0:X0=0; 1:X3=x; 1:X1=y; 1:X0=0;
’Inltlal state: x=0; y=0; ‘ y=0; x=0;
Thread 0 Thread 1
Thread 0 Thread 1 LDR X0, [X1]//a | LDR X@, [X1]//c
LB+datas Forbidden rl=x; ri=y; EOR X2,X0,X0 | EOR X2,X0,X0
ADD X2,X2,#1 | ADD X2,X2,#1
‘ Thread 0 ‘ ‘ Thread 1 ‘ y=1l+rl-rl; x=1+rl-rl; STR X2, [X3]//b | STR X2, [X31//d
aiRx=1 ¢ . CRy=1 Forbidden: 0:r1=1; 1:r1=1; | [Forbidden o:x6et; 1:xent;
mrf Arm:NNNNN N-NNN b, 0.y RISC-V:N
NNNNN NN
datal ldata

b:wy=1 d:Wx=1
Say there is an data dependency from a read to a program-order later write, written as

a data edge, if there is a chain of “normal” register dataflow from the first read’s value
to the value of the write.

Read-to-write data dependencies are architecturally guaranteed to be respected, just as
read-to-write address dependencies are (again irrespective of whether they are artificial).

(Note that because plain LB is not observable on most/all current implementations, experimental

E%alfjelrt;’tss for LB y?qaﬂFns—Aq?QNF égvyerrgHgl&)SC—V: Phenomena: Dependencies 289

Enforcing order with dependencies: read-to-write data dependencies and
no-thin-air

’lnitial state: x=0; y=0; ‘ LB+data.reals AArch64
Initial state: 0:X3=y; 0:X1=x;
Thread 0 Thread 1 1:X3=x; 1:X1=y; x=0; y=0;
LB+data.reals Forbidden rl=x; rl=y; Thread 0 Thread 1
=r1: =rl: LDR X2, [X11//a | LDR X2, [X1]//c
[Thread 0] [Thread 1] y=r K Xor STR X2, [X31//b | STR X2, [X31//d
a:Rx=1 rf rf C:Ry=1 ‘Forbldden: 0:rl=1; 1:rl1=1; ‘ ‘Forbidden: 0:X2=1; 1:X2=1; ‘
datal >< ldata
b:wy=1 d:Wx=1

If read-to-write data dependencies weren't respected, then the architecture would allow
any value. Such thin-air reads would make it impossible to reason about general code.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 290

Not enforcing order with dependencies: read-to-read control dependencies
‘ MP+dmb.sytctrl AArch64

’Inltlal state: x=0; y=0; Initial state: 0:X2=y; 0:X1=x;
0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;
Thread 0 Thread 1 1iX2=0; yd: xobs

x=1; rl=y; Thread 0 Thread 1
DMB SY; if (rl!=1) goto L; STR X0, [X1]//a | LDR X0, [X1]//d

MP+fen+ctr| A"owed y=1; L: DMB SY //b| CBNZ X0,LC00

. STR X0, [X2]//c | LCOO:
‘ Thread 0 ‘ ‘ Thread 1 ‘ r2=x; LDR X2, [X3]//e
aWx=1 d:Ry=1 ’Allowed: 1:rl=1; 1:r2=0; ‘ [Allowed: 1:x0=1; 1:2=;
rf Arm:YYYYY YYYY power:y RISC-ViN

"MYYYNY NY

fen ctrl
cWy=1 ar—f>e;Rx=e
Read-to-read control dependencies are not architecturally respected.

Microarchitecturally, the hardware might speculate past conditional branches and satisfy
the second read early.

In this example the second read is reachable by both paths from the conditional branch,
but the observable behaviour and architectural intent would be the same for a branch

conditional on r1 !'= 1 to after the second read. (Some ambiguity in Arm, [32, B2.3.2]?)
Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 201

Enforcing order with dependencies: read-to-read ctrlifen dependencies

MP+dmb.sy+ctrlisb AArch64
Initial state: 0:X2=y; 0:X1=x; 0:X0=1;
1:X3=x; 1:X1=y; 1:X0=0; 1:X2=0; y=0;
x=0;
Thread 0 Thread 1
STR X0, [X1]//a | LDR X0, [X1] //d
. . DMB SY //b | CBNZ X0,LC00
MP+fen+ctrlifen Various STR X0, [X2]//c | LCOO:
ISB //e
’Thread O‘ ’Thread 1 ‘ LDR X2, [X3] //f
a:Wx=1 £ d:Ry=1 Forbidden: 1:x0=1; 1:x2=0;
r NNNNN N-NNN
Arm: Power:N RISC-V:-
fen <7 |ctrivifen NN

cWy=1 of> fRx=0

Read-to-read control dependencies are not architecturally respected.

But with an isb (Arm) or isync (Power) (generically, ifen) between the conditional
branch and the second read, they are. The RISC-V fence.i does not have this strength.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 292

Enforcing order with dependencies: read-to-write control dependencies

L B+ctrls AArch64
Initial state: 0:X3=y; 0:X2=1;
0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;
1:X1=y; 1:X0=0; y=0; x=0;

Thread 0 Thread 1
H LDR X0, [X1]//a|LDR X0, [X1]//c
LB+Ctr|S Forbldden CBNZ X0,LC00 CBNZ X0,LCO1
Lcoo: Lcet:
’Thread 0‘ ’ Thread 1 ‘ STR X2, [X31//b | STR X2, [X31//d
a:Rx=1

rf rf cRy=1 Forbidden: 0:x0=1; 1:X0=1;
ct rll >< ctrl Armig NN A Power:N RISC-V:N

b:wy=1 d:wx=1

Read-to-write control dependencies are architecturally respected.
(even if the write is reachable by both paths from the conditional branch)

Microarchitecturally, one doesn’t want to make uncommitted writes visible to other
threads.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies 203

Enforcing Order with Dependencies: Summary

Read-to-read: address and control-isb/control-isync/control-fence.i dependencies
respected; control dependencies not respected

Read-to-write: address, data, and control dependencies all respected (writes are not
observably speculated, at least as far as other threads are concerned)

All whether natural or artificial.

Contents 5.1.4 Arm-A, IBM Power, and RISC-V: Phenomena: Dependencies

294

Contents

Multi-copy atomicity

5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity

295

Iterated message-passing, x86

In the x86-TSO operational model, when a write has become visible to some other
thread, it is visible to all other threads.

That, together with thread-local read-to-write ordering, means that iterated
message-passing, across multiple threads, works on x86 without further ado

‘Initial state: x=0; y=0; ‘

Thread 0 Thread 1 Thread 2
x=1; while (x==0) {}; while (y==0) {};
Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘ y=1; r3=x;
a:Wx=li>b:Rx=1 d:Ry=1 \Forbidden: 2:r3=0; \
rf
Fodf
cWy=1 e:Rx=0 WRC x86
[Initial state: 1:rax=0; 2:rax=0; 2: rbx=0; y=0; x=0; |
Thread 0 Thread 1 Thread 2

movqg $1, (x) //a|movqg (x), %rax//b|movq (y), %rax//d
movqg $1, (y) //c|movq (x), %rbx//e

Forbidden: 1:rax=1; 2:rax=1; 2:rbx=0;

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity

Iterated message-passing

On Armv8, Power, and RISC-V, WRC would be allowed just by thread-local reordering.
But what if we add dependencies to rule that out? Test WRC+addrs:

Thread 0 Thread 1 Thread 2

aWx=1——>>h:Rx=1 o d:Ry=1

lad%rfladdr

cWy=1 e:Rx=0

'NNNNN N-NNN . v
Arm'—NNNN N Power:Y RISC-V:N

» IBM POWER: Allowed

» ARMv7-A and old ARMv8-A (first public beta, 2013 — first non-beta, June 2016):
Allowed

» current ARMv8-A (March 2017 —) : Forbidden
» RISC-V: Forbidden

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity 297

Multicopy atomicity

Say an architecture is multicopy atomic (MCA) if, when a write has become visible to
some other thread, it is visible to all other threads.

And non-multicopy-atomic (non-MCA) otherwise.
So x86, Armv8-A (now), and RISC-V are MCA, and Power is non-MCA

Terminology: Arm say “other multicopy atomic” where we (and others) say MCA.
Terminology: “single-copy atomicity” is not the converse of MCA.

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity 208

Multicopy atomicity: Arm strengthening
Arm strengthened the Armv8-A architecture, from non-MCA to MCA, in 2017

» Armv8-A implementations (by Arm and by its Architecture Partners) had not
exploited the freedom that non-MCA permits, e.g.
» shared pre-cache store buffers that allow early forwarding of data among a subset of

threads, and
» cache protocols that post snoop invalidations without waiting for their

acknowledgement,
partly as the common ARM bus architecture (AMBA) has always been MCA.

» Allowing non-MCA added substantial complexity to the model, esp. combined with
the previous architectural desire for a model providing as much implementation
freedom as possible, and the Armv8-A store-release/load-acquire instructions.

> Hence, in the Arm context, the potential performance benefits were not thought to
justify the complexity of implementation, validation, and reasoning.

See [19, Pulte, Flur, Deacon,...].

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity 299

Cumulative barriers

In a non-MCA architecture, e.g. current Power, one needs cumulative barriers to
support iterated message-passing:

WRC+sync+addr Power
‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘ Initial state: 0:r2=x; 0:rl=1;
a:WX=1i’b:RX=1 e:Ry=1 l:rd=y; 1:r3=1; 1l:r2=x; 1:r1=0;
f 2:r5=x; 2:r2=y; 2:r1=0; 2:r4=0;
Sy%f addr y=0; x=0;
d:wy=1 f:Rx=0 Thread 0 Thread 1
std r1,0(r2)//a|ld r1,0(r2) //b
sync //c
std r3,0(r4)//d
Thread 2
1d r1,0(r2) //e
xor r3,rl,rl
ldx r4,r3,r5//f
Forbidden: 1:r1=1; 2:r1=1;
2:r4=0;

Here the sync keeps all writes that have propagated to Thread 1 (and its own events)
before the sync (and hence before any writes by this thread after the sync) in order as
far.as other theeads ke, concerned =, so,writes a.and,d are kept in order as far as reads g

-cOpy atomicity

Cumulative barriers, on the right

Cumulative barriers also ensure that chains of reads-from and dependency edges after
such a barrier are respected:

ISA2+sync+data+addr Power
‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘ Initial state: 0:r3=y; 0:r2=x; 0:rl=1; 1:r5=z; 1:r4=1;
a:Wx=1 d:Ry=1 fRz=1 1:r2=y; 1:r1=0; 2:r5=x; 2:r2=z; 2:r1=0; 2:r4=0;
z=0; y=0; x=0;
sync rf l y laddr
l // data oJf Thread 0 Thread 1 Thread 2

cWy=1 eWz=1 g:Rx=0 std r1,0(r2)//a|ld r1,0(r2) //d|1d r1,0(r2) //f
sync //b|xor r3,rl,rl xor r3,rl,rl

std r1,0(r3)//c|add r3,r3,r4 ldx r4,r3,r5//g
std r3,0(r5)//e

Forbidden: 1:r1=1; 2:r1=1; 2:r4=0;

Explain in terms of write and barrier propagation:

> Writes (a) and (c) are separated by the barrier
...so for Thread 1 to read from (c), both (a) and the barrier have to propagate there, in that order
But now (a) and (e) are separated by the barrier
...so before Thread 2 can read from (e), (a) (and the barrier) has to propagate there too

| 4
>
»
» and hence (g) has to read from (a), instead of the initial state.

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity 301

Cumulative barriers

A strong cumulative barrier is also needed to forbid IRIW in a non-MCA architecture:

IRIW+-syncs Power
‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘ ‘Thread 3 ‘ Initial state: 0:r2=x; 1:rd=y; 1:r2=x; 2:r2=y; 3:rd=x; 3:r2=y;
B - N B - r .
aWx=1—"—bRx=1 eWy=1—"—fRy=1 Thread 0 Thread 1 Thread 2 Thread 3
e rf sync o rf lsync 1ir1,1 lwz r1,0(r2)//b| i r1,1 lwz r1,0(r2)//f
~ ~S stw r1,0(r2)//a | sync //c|stw r1,0(r2)//e|sync //9
d:Ry=0 h:Rx=0 wz r3,0(r4)//d iz r3,0(r4) //h
Forbidden: 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

(the lwsync barrier does not suffice, even though it does locally order read-read pairs)

In operational-model terms, the sync's block po-later accesses until their “Group A"
writes have been propagated to all other threads.

Contents 5.1.5 Arm-A, IBM Power, and RISC-V: Phenomena: Multi-copy atomicity 302

onten

ts

Further thread-local subtleties

5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties

303

These are various subtle cases that come up when defining architectural models that are
good for arbitrary code, not just for simple idioms.

From a programmer’s point of view, they illustrate some kinds of ordering that one
might falsely imagine are respected.

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 304

Programmer-visible shadow registers

MP-+dmb.sy+rs AArch64

MP+fen+rs Pseudocode Initial state: 0:X3=y; 0:X1=x;
’ Thread 0 ‘ ’ Thread 1 ‘ Thread 0 Thread 1 1:X3=x; 1:Xl=y;
a:Wx=1 d:Ry=1 x=1 r0=y Thread 0 Thread 1
MOV WO, #1 LDR WO, [X1]//d
fen i /] l fen r4=r0 STR W0, [X1]//a | ADD W4,W0,#0
) po+rs y=1 rO=x DMB SY //b| LDR W0, [X3]//e
MOV W2, #1
. rf Allowed: 1:r4=1 A 1:r0=0 STR W2, [X3] //c
cWy=1 e—>e:Rx=0 Arm:YYYYY Y-YYY © o erY¥ RISC-V-- Allowed: 1:X0=0; 1:X4=1;

YYYNY NY

Reuse of the same architected register name does not enforce local ordering.

Microarchitecturally: there are shadow registers and register renaming.

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties

305

Register updates and dependencies

Armv8-A and Power include memory access instructions with addressing modes that, in
addition to the load or store, do a register writeback or update of a modified value into a
register used for address calculation, e.g.

STR <Xt>, [<Xn|SP>], #<simm> (post-index) Store Doubleword with Update DS-form
STR <Xt>, [<Xn|SP>, #<simm>]! (pre-index)

stdu RS,DS(RA)
[...] 62 RS | RA DS

Mem[address, datasize DIV 8, AccType_NORMAL] = data;
if wback then
if postindex then EA ¢« (RA) + EXTS(DS || 0b00)
address = address + offset; MEM (EA, 8) € (RS)
. RA € EA
if n == 31 then
SP[] = address;
else
X[n] = address;

11 16 130 31

But this apparent ordering of memory access before register writeback in the intra-instruction
pseudocode is misleading: later instructions dependent on Xn or RA can go ahead as soon as
the register dataflow is resolved.

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 306

Satisfying reads by write forwarding

As in x86, threads can see their own writes “early

SB+-rfi-addrs Allowed
‘Thread 0 ‘ ‘ Thread 1 ‘

a:Wx=1 d:wy=1
lrf lrf
b:Rx=1 e:Ry=1
addr addr
o f

c:Ry=0<ﬁo f:-Rx=0

MP+-rfi-addr+addr Allowed

‘ Thread 0 ‘ ‘ Thread 1 ‘
a:Wx=\1 d:Ry=1
p°l ‘)'—f / laddr
b:Rx=1 T/ e:rx=0 LT
addr
cWy=1

On the left is a variant of the SB+rfi-pos test we saw for x86, but with addr to prevent
out-of-order satisfaction of the reads.

On the right is an essentially equivalent MP variant.

They both show write(s) visible to same-thread po-later reads before becoming visible
Fpptiphtp nfhprsﬂﬁ«ﬁnrplA, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 307

Satisfying reads by write forwarding on a speculative branch: PPOCA

PPOCA Allowed PPOAA Forbidden
‘ Thread 0‘ ‘ Thread 1 ‘ ‘ Thread 0‘ ‘ Thread 1 ‘
allx=1 dRy=1 il x=1 diRy=1
fen V ctrl fen f laddr
cWy=1 eWz=1 cWy=1 eWz=1

lrf rf

f:Rz=1 f:Rz=1
of addr oJf addr

g:Rx=0 g:Rx=0

In PPOCA, write e can be forwarded to f, resolving the address dependency to g and
letting it be satisfied, before read d is (finally) satisfied and its control dependency is
resolved.

Writes on speculatively executed branches are not visible to other threads, but can be
forwarded to po-later reads on the same thread. Microarchitecturally: they can be read
from an L1 store queue.

Caontents. , , 5, 1.6.Arm-A, IBM.Ppwer, and RISC-V: Phepomena: Further thread-local spbtleties . . | | | 308

Satisfying reads before an unknown-address po-previous write: restarts
MP-+fen+addr-po Allowed
‘Thread 0‘ ‘Thread 1 ‘
a:Wx=1 d:Ry=1
fen V laddr
cWy=1 eWz=1

o f po
f:Rx=0

A microarchitecture that satisfies a load early, out-of-order, may later discover that this
violates coherence, and have to restart the load — and any po-successors that were
affected by it. (Speculative execution is not just speculation past branches.)

Here the Thread 0 writes are kept in order by fen. For Thread 1 f to read 0 early (but
in an execution where d sees 1), i.e. for f to be satisfied before those writes propagate
to Thread 1, f must be able to be restarted, in case resolving the address dependency

revealed that e was to the same address as f, which would be a coherence violation.

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 309

Committing writes before an unknown-address po-previous write
AKA “Might-access-same-address”

LB+addrs+WW Forbidden LB+datas+WW Allowed

[Thread 0] [Thread 1 [Thread 0] [Thread 1
a:Rx=1 d:Rz=1 a:Rx=1 d:Rz=1

Address and data dependencies to a write both prevent the write being visible to other threads
before the dependent value is fixed. But they are not completely identical: the existence of a
address dependency to a write might mean that another program-order-later write cannot be
propagated to another thread until it is known that the first write is not to the same address,
otherwise there would be a coherence violation, whereas the existence of a data dependency to
a write has no such effect on program-order-later writes that are already known to be to
different addresses.

I i POWER] ARM |
‘ ‘ Kind H PowerG5 | Power6 | Power7 | Tegra2 | Tegra3 | APQ8060 | A5X ‘
LB+addrs+WW | Forbid 0/30G | 0/8.7G | 0/208G 0/16G 0/23G 0/18G | 0/2.1G
[B+datastWW | Allow 0/30G | 0/9.2G | 0/208G | 15k/6.3G | 224/854M 0/18G | 23/1.9G
Contents 5.1.6 BraddsABW P& Ahd HEE /- 025 dn94RBOFL rt Y1 3 rbad-1823Cs i btl HLEG - 310

Intra-instruction ordering of address and data inputs to a write

To let the later writes (c,f) in LB4+datas+WW be propagated early, the addresses of
the intervening writes (b,e) have to be resolvable even while there are still unresolved

data dependencies to them.

If one interprets the intra-instruction pseudocode sequentially, that means the reads of
registers that feed into the address have to precede those that feed into the data. (And
there's no writeback into the data registers, so this is fine w.rt. that too.)

STR <Xt>, [<Xn|SP>],#<simm>

if n == 31 then
CheckSPAlignment(); address = SP[];
else
address = X[n];
if !postindex then
address = address + offset;
if rt_unknown then
data = bits(datasize) UNKNOWN;
else
data = X[t];
Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Contents

STR <Xt>, [<Xn|SP>,#<simm>]!

Store Doubleword with Update DS-form
stdu RS,DS(RA)
62 RS RA DS 1

0 6 11 16

30 31

EA € (RA) + EXTS(DS || 0b00)
MEM(EA, 8) ¢ (RS)
RA € EA

5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties

311

Satisfying reads from the same write: RSW and RDW
Coherence suggests that reads from the same address must be satisified in program
order, but if they read from the same write event, that's not true. In RSW, f can be
satisfied before e, resolving the address dependency to g and letting it be satisfied

before d reads from c.

RSW Allowed

[Thread 0] [Thread 1]
a:Wx=1 d;Ry:l
fenl V laddr
cWy=1 rf eRz=0
P
f:Rz=0

rf

oJf ladd r
g:Rx=0

RDW Forbidden
‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2
a:Wx=1 d:Ry=1 h:wz=1
fenl %\vrf laddr
cWy=1 e:Rz=0 rf
Py
f:Rz=1
of addr
g:Rx=0

Microarchitecturally: the reads can in general be satisfied out-of-order, with coherence

hazard checking that examines whether the x cache line changes between the two reads.
Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 312

Making a write visible to another thread, following write subsumption

Conversely, one might think that, given two po-adjacent writes to the same address, the
first could be discarded, along with any dependencies into it, as it is
coherence-subsumed by the second. That would permit the following:

S-+fen+data-wsi Forbidden

‘Thread 0‘ ‘Thread 1‘
a:Wx=3 o d:Ry=1

fen ldata
cWy=1 eWx=1
co
f:wx=2

However, the Armv8-A and RISC-V architectures forbid this, as does our Power model
and the Power architectural intent. Note that there is a subexecution S+fen+data,
which all forbid, so allowing S+fen+data-wsi would require a more refined notion of
coherence.

Contents 5.1.6 Arm-A, IBM Power, and RISC-V: Phenomena: Further thread-local subtleties 313

Non-atomic read satisfaction

MP+dmb.sy+fri-rfi-ctrlisb ~ Various

‘ Thread 0 ‘ ‘Thread 1 ‘
a:Wx=1 d:Ry=1
dmp” sy rf

cWy=1—C% eyyy=2
1rf
f:Ry=2

oJf 1ct ri+isb
h:Rx=0

In our original PLDI11 [8] model for Power, to straightforwardly maintain coherence, the read d, write
e, read f, isync (the Power analogue of the isb in the Arm version shown), and read h all have to
commit in program order. However, for Arm, this behaviour was observable on at least one
implementation, the Qualcomm APQ 8060, and the Arm architectural intent was determined to be
that it was allowed.

Microarchitecturally, one can explain the behaviour in two ways. In the first, read d could be issued
and then maintained in coherence order w.r.t. write e by keeping read requests and writes ordered in a
storage hierarchy, letting e commit before the read is satisfied and hence letting f and h commit, still

before d is satisfied. In the second, as write e is independent of read d in every respect except
Comtents 5.1.6 AroprA, JBM Power., and RISE-V: Phanamenay Further thread-locak subtleties rr 1 o [adar Tmct i bl 314

onten

ts

Further Power non-MCA subtleties

5.1.7 Arm-A, IBM Power, and RISC-V: Phenomena: Further Power non-MCA subtleties

315

Coherence and lwsync

26.3+lwsync+lwsync+addr Allowed
[Thread 0] [Thread 1] [Thread 2]

a: W[x]=1 c: W[yl=2 e: R[z]=1
co f
rf

addr
b: W[yl=1 d: W[z]=1 f: R[x]=0

Iwsync Iwsync

Test Z6.3+lwsync+lwsync+addr

This POWER example (blw-w-006 in [8]) shows that the transitive closure of lwsync and coherence does not
guarantee ordering of write pairs. Operationally, the fact that the storage subsystem commits to b being before
c in the coherence order has no effect on the order in which writes a and d propagate to Thread 2. Thread 1
does not read from either Thread 0 write, so they need not be sent to Thread 1, so no cumulativity is in play. In
other words, coherence edges do not bring writes into the “Group A” of a POWER barrier. Microarchitecturally,
coherence can be established late.

Replacing both Iwsyncs by syncs forbids this behaviour. In the model, it would require a cycle in
abstract-machine execution time, from the point at which a propagates to its last thread, to the Thread 0 sync
ack, to the b write accept, to c propagating to Thread 0, to c propagating to its last thread, to the Thread 1
sync ack, to the d write accept, to d propagating to Thread 2, to e being satisfied, to f being satisfied, to a
propagating to Thread 2, to a propagating to its last thread.

Armv8-A and RISC-V are (now) MCA (and do not have an analogue of lwsync), so there is no analogue of this
example there.

Contents 5.1.7 Arm-A, IBM Power, and RISC-V: Phenomena: Further Power non-MCA subtleties 316

Unobservable interconnect topology

[Thread 0 |[Thread 1 | [Thread2 |[Threads |

= s
. .) o)
IRIW+addrs-twice Various o @
[Thread 0] [Thread 1] [Thread 2] [Thread 3] @ @
a: W([x]=1 4I’d:RxJ:l g W[yl=1 T’k:RyJ:l
' addr J ' of addr
po tf e: R[y]=0 po I: Rx]=0 Shared Memory
po lpo
¢ Wizl=1 f: Wwl=1 i: Rizl=1 'f_—m: R[w]=1

rf‘j: R[w]=0 An: R[z]=0

Test IRTW+addrs-twice
A simple microarchitectural explanation for IRIW+addrs would be a storage hierarchy in which Threads 0 and 1
are “neighbours”, able to see each other’s writes before the other threads do, and similarly Threads 2 and 3. If
that were the only reason why IRIW+addrs were allowed, then one could only observe the specified behaviour
for some specific assignments of the threads of the test to the hardware threads of the implementation (some
specific choices of thread affinity). That would mean that two consecutive instances of IRIW+addrs, with
substantially different assignments of test threads to hardware threads, could never be observed.

In fact, however, on some POWER implementations the cache protocol alone suffices to give the observed

behzviour, symmetridathA, g ewaramd RISCW PikadWEA: Bothe Parantsrof{RIWhkladelrs are allowed there. 317

Power eieio

MP+-eieio+addr Forbidden WRC+-eieio+addr Allowed
[Thread 0] [Thread 1] [Thread 0] _ [Thread 1] [Thread 2]

a:Wx=1 d:Ry=1 a:Wx:l;»b;Rxﬂ e:Ry=1
eieiol)f// laddr lei%—f laddr

cWy=1 oLf> e:Rx=0 d;Wy=1 f:Rx=0

The Power eieio barrier (Enforce In-order Execution of 1/0) orders pairs of
same-thread writes as far as other threads are concerned, forbidding MP+eieio+addr.
However, notwithstanding the architecture’'s mention of cumulativity [33, p.875], it does
not prevent WRC+-eieio+addr, because eieio does not order reads w.r.t. writes.

eieio also has other effects, e.g. for ordering for memory-mapped 1/0O, that are outside
our scope here.

Contents 5.1.7 Arm-A, IBM Power, and RISC-V: Phenomena: Further Power non-MCA subtleties 318

Contents

More features

5.2 Arm-A, IBM Power, and RISC-V: More features

319

More features

» Armv8-A release/acquire accesses

» Load-linked/store-conditional (LL/SC)
> Atomics

» Mixed-size

For these, we'll introduce the basics, as they're important for concurrent programming,
but we don't have time to be complete.

Contents 5.2 Arm-A, IBM Power, and RISC-V: More features 320

Contents

Armv8-A release/acquire accesses

5.2.1 Arm-A, IBM Power, and RISC-V: More features: Armv8-A release/acquire accesses

321

Armv8-A release/acquire accesses
MP+-popl+poap AArch64

Initial state: 0:X2=y; 0:X1=x;
0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;
MP+popl+poap Forbidden 1:X2=0; y=0; x=0;
Thread 0 Thread 1
‘ Thread 0 ‘ ‘ Thread 1 ‘ STR X0, [X1] //a | LDAR X0, [X1]//c
a:Wx=1 C:Racq¥=1 STLR X0, [X2]1//b | LDR X2,[X3] //d
pol /r1/ lpo [Forbidden: 1:xe=1; 1:x2=6; |
f
b:Wee y=1 d:Rx=0 <

Armv8-A added store-release STLR and load-acquire LDAR instructions, which let
message-passing idioms be expressed more directly, without needing barriers or
dependencies.

In the (other-)MCA setting, their semantics is reasonably straightforward:
> a store-release keeps all po-before accesses before it, and

» a load-acquire keeps all po-after accesses after it.

(the above test only illustrates writes before a write-release and reads after a read-acquire, not all their properties)

Additionally, any po-related store-release and load-acquire are kept in that order.
Contents 5.2.1 Arm-A, IBM Power, and RISC-V: More features: Armv8-A release/acquire accesses 322

Armv8-A acquirePC accesses

Armv8.3-A added “RCpc” variants of load-acquire, LDAPR, which lack the last property.

Compare with C/C++411 SC atomics and release/acquire atomics.

Contents 5.2.1 Arm-A, IBM Power, and RISC-V: More features: Armv8-A release/acquire accesses 323

Armv8-A release/acquire accesses

See [19, Pulte, Flur, Deacon, et al.] for more details, and [17, Flur et al.] for discussion
of Armv8 release/acquire in the previous non-MCA architecture

Together with the Arm architecture reference manual [32, Ch.B2 The AArch64
Application Level Memory Model]

Contents 5.2.1 Arm-A, IBM Power, and RISC-V: More features: Armv8-A release/acquire accesses 324

onten

ts

Load-linked /store-conditional (LL/SC)

5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC)

325

Load-linked /store-conditional (LL/SC)

LL/SC instructions, originating as a RISC alternative to compare-and-swap (CAS),
provide simple optimistic concurrency — roughly, optimistic transactions on single

locations.

Contents

Armv8-A load exclusive / store exclusive LDXR / STXR
Power load and reserve / store conditional Iwarx / stwex.
RISC-V load-reserved / store-conditional LR.D / SC.D

5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC) 326

LL/SC atomic increment

Here are two concurrent increments of x, expressed with exclusives.

lIsc-inc AArch64
Initial state: 0:X1=x; 1:X1=x; x=0;
Thread 0 Thread 1
lsc-inc Forbidden LDXR X5, [X1] ~ //a|LDXR X5,[X1] //c
ADD X5,X5,#1 ADD X5,X5,#1
‘ Thread 0 ‘ ‘ Thread 1 ‘ STXR W6,X5, [X1]//b | STXR W6,X5, [X1]//d
LR, x=0 CRoxe x=0 <14 [Forbidden: 0:x6=6; 1:X6=0; x=1;

datal ldata

b:Wexe x=1 —2> d:Weyc x=1

Exclusives should be used in matched pairs: a load-exclusive followed by a store exclusive to
the same address, with some computation in between. The store exclusive can either:

» succeed, if the write can become the coherence immediate successor of the write the load
read from (in this case the write is done and the success is indicated by a flag value), or
» fail, if that is not possible, e.g. because some other thread has already written a coherence
successor, or for various other reasons. In this case the write is not done and the failure is
indicated by a different flag value.
Often they are used within a loop, retrying on failure.
Contents 5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC)

327

LL/SC — a few key facts:

Exclusives are not implicitly also barriers — load exclusives can be satisfied out of order and
speculatively, though not until after all po-previous load exclusives and store exclusives are
committed

...though Arm provide various combinations of exclusives and their release/acquire semantics

LL/SC is typically to a reservation granule size, not a byte address (architecturally or
implementation-defined; microarchitecturally perhaps the store buffer or cache line size)

A store exclusive can succeed even if there are outstanding writes by different threads, so long
as those can become coherence-later.

Arm, Power, and RISC-V differ w.r.t. what one can do within an exclusive pair, and what
progress guarantees one gets.

Can a store exclusive commit to succeeding early? Likewise for an atomic RMW?

Contents 5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC) 328

LL/SC — more details:

See [12, Sarkar et al.] for Power load-reserve/store-conditional, and [19, Pulte, Flur,
Deacon, et al.] (especially its supplementary material
https://www.cl.cam.ac.uk/~pe520/armv8—mca/), and [17, Flur et aI.] for Armv8-A
load-exclusive/store-exclusives.

Together with the vendor manuals:
» Power: [33, §1.7.4 Atomic Update]
» Arm: [32, Ch.B2 The AArch64 Application Level Memory Model]

» RISC-V: [34, Ch.8, “A" Standard Extension for Atomic Instructions, Ch.14
RVWMO Memory Consistency Model, App.A RVWMO Explanatory Material,
App.B Formal Memory Model Specifications]

Contents 5.2.2 Arm-A, IBM Power, and RISC-V: More features: Load-linked/store-conditional (LL/SC) 329

https://www.cl.cam.ac.uk/~pes20/armv8-mca/

Contents

Atomics

5.2.3 Arm-A, IBM Power, and RISC-V: More features: Atomics

330

Atomics

Armv8-A (in newer versions) and RISC-V also provide various atomic read-modify-write

instructions

e.g. for Armv8-A: add, maximum, exclusive or, bit set, bit clear, swap, compare and
swap

Contents 5.2.3 Arm-A, IBM Power, and RISC-V: More features: Atomics 331

Contents

Mixed-size

5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size

332

Single-copy atomicity

Each architecture guarantees that certain sufficiently aligned loads and stores give rise
to single single-copy-atomic reads and writes, where:

A single-copy-atomic read that reads a byte from a single-copy-atomic write must, for

all other bytes of the common footprint, read either from that write or from a
coherence successor thereof.

Contents 5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size 333

Misaligned accesses

Other, “misaligned” accesses architecturally give rise to multiple single-byte reads and
writes, with no implicit ordering among them.

(In typical implementations, they might be split at cache-line or store-buffer-size

boundaries but not necessarily into single bytes — more intentional architectural
looseness)

Contents 5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size

334

Mixed-size: just a taste

MP+si+po Allowed

f
awx=4368 3 b Rxe1=17

po

Contents

MP+si+po

AArch64

1:X0=x; x=0x0;

Initial state: 0:X1=0x1110; 0:X0=x;

Thread 0 Thread 1

LDRB W2, [X0]

STRH W1, [X0]//a | LDRB W1, [X0,#1]1//b

//c

[Allowed: 1:X1=0x11; 1:X2=0x8;

|

5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size

335

Mixed-size: further details

See [18, Flur et al.] for more details for Power and Arm mixed-size.

Contents 5.2.4 Arm-A, IBM Power, and RISC-V: More features: Mixed-size

336

Contents

ISA semantics

5.3 Arm-A, IBM Power, and RISC-V: ISA semantics

337

Architecture again

_ » Concurrency
Intel® 64 and 1A-32 Archlltectures . . e
Software Developer's Manual Subtle, and historically poorly specified, but small

Combined Volumes:
1,2A,2B,2C, 2D, 3A,3B,3C, 3D and 4

Operational models in executable pure functional code
Arm’ Architecture Reference Manual (I’memv in Lem)
Armv8, for Armv8-A architecture profile
Axiomatic models in relational algebra
(herd and isla-axiomatic)

Power ISA™ » Instruction-set architecture (ISA)
Version 3.0 B Relatively straightforward in detail, but large

in Sail, a custom language for ISA specification

integrated with rmem and isla-axiomatic concurrency
models

Contents 5.3 Arm-A, IBM Power, and RISC-V: ISA semantics 338

Architecture again

Instruction-set architecture (ISA)

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Combined Volumes:
1,2A,2B,2C, 2D, 3A,3B,3C, 3D and 4

» ARMV8-A: Historically only pseudocode. Arm transitioned internally to
mechanised ASL [38, 39, Reid et al.]. We automatically translate that
ASL to Sail:

> RISC-V: Historically only text. We hand-wrote a Sail specification, now

Arm’ Architecture Reference Manual
Armv8, for Armv8-A architecture profile

adopted by RISC-V Foundation.

» Power: Only pseudocode. We semi-automatically translated a fragment

from an XML export of the Framemaker sources to Sail

Power ISA™
Version 3.0 B

»> x86: Only pseudocode. We hand-wrote a fragment in Sail
(and Patrick Taylor semi-automatically translated the Goel et al. ACL2
model)

(the Power model and the first x86 model are in an old version of Sail)

Contents 5.3 Arm-A, IBM

Power, and RISC-V: ISA semantics 339

Sail

Custom language for expressing the sequential behaviour of instructions (including
decode, address translation, etc.) [20, Armstrong et al.],[16, Gray et al.]

» Imperative first-order language for ISA specification

» Lightweight dependent types for bitvectors (checked using Z3)
> Very simple semantics; good for analysis
>

Behaviour of memory actions left to external memory model
. so can plug into tools for relaxed-memory concurrency

» Open-source public tooling

From Sail, we generate multiple artifacts...

Contents 5.3 Arm-A, IBM Power, and RISC-V: ISA semantics 340

CHERI RISC-V CHERI-MIPS

Morello
ARMv (CHERI ARM)
ASL ASL

Sail Sail
*aslftofsail *aslfloﬁsail
ARMvE-A Morello, RISC-V MIPS
Sail Sail Sail Sail

Sequential Execution » — i lLaTex i Documentation
fragments

Sequential / !
Emulator (C)
s | Cog | Prover Definitions
equential . :
Emulator (OCaml) R Lem
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, symbolic evaluator T |sabelle '
""""""""""""" isla-axiomatic RMEM HOL4
Test concurrency concurrency
Generation : tool tool
Tests 1 A A ELF model
Concurrency models Concurrency models Lem
Axiomatic, Cat Operational, Lem

Concurrent Execution

Contents 5.3 Arm-A, IBM Power, and RISC-V: ISA semantics

S10BJILY palelausn)

suoniueq vSi

341

Sail ARMv8-A

Includes full ISA: Floating-point, address translation & page-table walks, synchronous
exceptions, hypervisor mode, crypto instructions, vector instructions (NEON and SVE),
memory partitioning and monitoring, pointer authentication, etc. ..

Such a complete authoritative architecture description not previously publicly available
for formal reasoning

ARMv8.5-A Sail model now available (125 KLoS), and the generated prover definitions

» Is it correct? Sail ARMv8.3-A tested on Arm-internal Architecture Validation Suite
[Reid]; passed 99.85% of 15400 tests as compared with Arm ASL. Boots Linux
and Hafnium.

» Is it usable for sequential testing? Sail-generated v8.5-A emulator 200 KIPS
» |s it usable for proof? Proved characterisation of address translation, in Isabelle
[Bauereiss] (also found some small bugs in ASL)

Contents 5.3 Arm-A, IBM Power, and RISC-V: ISA semantics 342

Sail RISC-V

Historically only text. We hand-wrote a Sail specification, now adopted by RISC-V
International as the official formal model.

Contents 5.3 Arm-A, IBM Power, and RISC-V: ISA semantics

343

Contents

Integrating ISA and axiomatic models

5.3.1 Arm-A, IBM Power, and RISC-V: ISA semantics: Integrating ISA and axiomatic models

344

Arm Concurrency: isla-axiomatic tool, for axiomatic models [?]
[isia - | e zarch = | Litmus il = Memory model = Sailarchi > share - —

MPiomi 0| Memory model
1 arch = "AArchea” 1 ¢ SPECIAL, EXENPLARY, Of consEquenTaL owaces (xkcuuotug, aur vor Linreo [- lofl -
2| name = "M 32 % TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS Of 3
hash = 2‘165"295572Dua““gd‘d““z‘mﬂf * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON nNV THEORY UF
¢ symboic - * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
[threxd 0] 36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
. 5
“ARMVE AArch64”
It
* Include the cos.cat file shipped with herd
43 * This builds the co relation as a total order over writes to the sane 7
14 * location and then consequently defines the fr relation using co and Thredd #0 Thread #1
" rf.
B
include "cos.cat” str wo, [x1] Idr w0, [x1]

18 LDR Wo,[X1]

W #x600000 (4): 1 |/ R #x600010 (4): #x1 32

19 LR w2, 0x3] a9 (v

20 * Fences

22 *)

= [final] let dmb.ish = (po & (_ * DMB.ISH)); po / 3
23 expect = "sa (po & (_ * DMB.ISHLD)); po o of
24 assertion = "(and (= (register X0 1) 1) (= (register X2 1) 0))" (po & (_ * DMB.ISHST)) ; po /

25 (po & (_ * DMB.SY)); po /

— = . = (po & (_ * DMB.ST)); po / fr rf
c Objdump x =) = (po & (_ * DMB.LD)); po /

1 5 let dnb.sy = dnb.fullsy | dab.ish

2 /tmp/isla/isla 18918 1: file format elf6a-littleaarch6d 59 let dnb.st = dnb.fullst | dmb.ishst

3 50 let dnb.ld = dmb.fullld | dmb. 1sh\d /

(po & (_ * DSB.SY)
0 & (_ * DSB.ST)); vu str w2, [x3] Idr w2, [x3]

Disassembly of section litmus 0:

7 0000000000400000 <litmus_0>:

400000: 52800020 mov WO, #0x1 17 #1
9 400004: b9000020 str wo, [x1]
10 400008: 52800022 mov w2, #0x1 17 #1

11 40000c: b9E00O62 str w2, [x3]
=

1 Disassembly of section litmus 1:
15 0000000000410000 <Litmus 1>:

16 410000: bo40ee20 ldr we, [x1]
17 410004: bo4oeos2 ldr w2, [x3]

18

Contents 5.3.1 Arm-A, IBM Power,

55 let dsb.1d = (po & (_ * DSB.LD)
54 let isb = (po & (_ * 158)); po

show dub.sy,dmb.st,dnb.d,dsb.sy,sb.st,dsb. 1d,dnb, dsb

| (- Dependencias =)
59 show data,ad

70 Tet ctriish = (ctrl & (_* 158); po
71 show ctrlis

2 show isb \ ctrlisb as isb

3 show ctrl \ ctrlisb as ctrl

(v

* s a restriction of the model, all observers are limited to the same
* inner-shareable domain. Consequently, the ISH, OSH and SY barrier

W #x600010 (4): 1

R #x600000 (4): #x0 32

and RISC-V: ISA semantics: Integrating ISA and axiomatic models

345

onten

ts

Armv8-A/RISC-V operational model

5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

346

For more details, see [19, Pulte, Flur, Deacon, et al.] (especially its supplementary
material https://www.cl.cam.ac.uk/~pe520/armv8-mca/), together with [20, 18, 17, 12, 8]

Together with the RISC-V manual:

» RISC-V: [34, Ch.14 RVWMO Memory Consistency Model, App.A RVWMO
Explanatory Material, App.B Formal Memory Model Specifications]

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

347

https://www.cl.cam.ac.uk/~pes20/armv8-mca/

As before: We have to understand just enough about hardware to explain and define
the envelopes of programmer-visible behaviour that comprise the architectures.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

348

As before: We have to understand just enough about hardware to explain and define
the envelopes of programmer-visible behaviour that comprise the architectures.

x86

Programmers can assume instructions execute in program order, but with FIFO store
buffer.

ARM, RISC-V, Power

By default, instructions can observably execute out-of-order and speculatively, except as
forbidden by coherence, dependencies, barriers.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 349

As with x86-TSO, structure the model into
» Thread semantics

» Storage/memory semantics

Model is integrated with Sail ISA semantics and executable in rmem.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

350

Thread semantics: out-of-order, speculative execution abstractly
Our thread semantics has to account for out-of-order and speculative execution.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

351

Thread semantics: out-of-order, speculative execution abstractly
Our thread semantics has to account for out-of-order and speculative execution.

]
]

BB

C—0

E—f———0

B finished
[] in progress

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 352

Thread semantics: out-of-order, speculative execution abstractly
Our thread semantics has to account for out-of-order and speculative execution.

]
]

S EE

C—]

B—E——{—H

] finished
[] in progress

P instructions can be fetched before predecessors finished
> instructions independently make progress

» branch speculation allows fetching successors of branches
» multiple potential successors can be explored

NB actual hardware implementations can and do speculate even more, e.g. beyond

strong barriers, so long as it is not observable
Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 353

Memory/storage semantics

We could have an elaborate storage semantics, capturing caching effects of processors.

But it turns out, for Armv8 and RISC-V: the observable relaxed behaviour is already
explainable by an out-of-order (and speculative) thread semantics.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 354

Operational model

» each thread has a tree of instruction instances;
P no register state;

> threads execute in parallel above a flat memory state:
mapping from addresses to write requests

read/write

Thread Subsystem Storage Subsystem

O
+—
B>B->0-0->B->0 D[K:[] responses | | 0: Write 0x00000000
T 1: Write 0x00000000
2: Write 0x00000000

T

(For now: plain memory reads, writes, strong barriers. All memory accesses same size.)

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 355

Operational model

» each thread has a tree of instruction instances;

P no register state;

> threads execute in parallel above a flat memory state:
mapping from addresses to write requests

» for Power: need more complicated memory state to handle non-MCA

Thread Subsystem

B->E->O—>O0->-E->0

O
mm(m

O—0

read/write

T

T

responses

Storage Subsystem

0: Write 0x00000000
1: Write 0x00000000
2: Write 0x00000000

(For now: plain memory reads, writes, strong barriers. All memory accesses same size.)

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

356

Next: model transitions.

We will look at the Arm version of the model.
The RISC-V model is the same, except for model features not covered here.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

357

Fetch instruction instance

]
]

O—0
i

O—O—0—0O—0—0

Condition:
A possible program-order successor i’ of instruction instance i can be fetched from
address loc and decoded if:

1. it has not already been fetched as successor of i

2. there is a decodable instruction in program memory at loc; and
3. loc is a possible next fetch address for i:
3.1 for a non-branch/jump instruction, the successor instruction address (i.program_
loc+4);
3.2 for an instruction that has performed a write to the program counter register (PC),
the value that was written;
3.3 for a conditional branch, either the successor address or the branch target address; or
3.4

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 358

Fetch instruction instance

N
DDDDDD(ZKD

Action: construct a freshly initialised instruction instance / for the instruction in
program memory at loc and add 7 to the thread’s instruction_tree as a successor of I.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

359

Example: speculative fetching

MP+fen+-ctrl
(with “real” control dependency)

’ Thread 0 ‘ ’ Thread 1 ‘
aWx=1 97d:Ry:l
fen

/ ; ctrl
cWy=1 o> c:Rx=0

Allowed. The barrier orders the writes, but the control dependency is weak: e can be
speculatively fetched and satisfied early (rmem web Ul).

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 360

https://is.gd/IdZDpP

Instruction semantics (ignore the details)

How do instructions work?

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

361

Instruction semantics (ignore the details)

How do instructions work? Each instruction is specified as an imperative Sail program.
For example:

function clause execute (LoadRegister(n,t,m,acctype,memop, ...)) = {
(bit[64]) offset := ExtendReg(m, extend_type, shift);
(bit[64]) address := 0;

(bit[’'D]) data := 0; (x some local definitions x)
if n == 31 then { ... } else
address := rX(n); (* read the address register x)
if ~(postindex) then (* some bitvector arithmetic *)
address := address + offset;
if memop == MemOp_STORE then (* announce the address x*)

wMem_Addr(address, datasize quot 8, acctype, false);

switch memop {
case MemOp_STORE -> {
if rt_unknown then

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 362

Sail outcomes (ignore the details)

The Sail code communicates with the concurrency model via outcomes.

Contents

type outcome =

Done

Internal of .. * outcome

Read_mem of read_kind * addr x size * (mem_val -> outcome)
Write_ea of write_kind * addr * size * outcome

Write_memv of mem_val * outcome

Read_reg of reg * (reg_val -> outcome)

Write_reg of reg * reg_val * outcome

Barrier of barrier_kind * outcome

5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

(*
(*
(*

Sail execution ended x)
Sail internal step x)
read memory)

announce write address x*)
write memory x)

read register x*)

write register x)

barrier effect x)

363

Instruction instance states

L]
L]

O—0

C—]

BB 00—

each instruction instance has:
» instruction_kind: load, store, barrier, branch, ...
» status: finished, committed (for stores), ...
> mem_reads, mem_writes: memory accesses so far
> reg_reads: register reads so far, including:
read_sources, the instruction instances whose register write the read was from
> reg_writes: register writes so far, including:
write_deps, the register reads the register write depended on
> regs_in, regs_out: the statically known register footprint
> ...

> pseudocode_state: the Sail state
Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

Sail pseudocode states (ignore the details)

Contents

type pseudocode_state =

Plain of outcome
Pending_memory_read of read_continuation
Pending_memory_write of write_continuation

type outcome =

Done

Internal of .. * outcome

Read_mem of read_kind * addr x size * (mem_val -> outcome)
Write_ea of write_kind * addr * size * outcome

Write_memv of mem_val * outcome

Read_reg of reg * (reg_val -> outcome)

Write_reg of reg * reg_val * outcome

Barrier of barrier_kind * outcome

5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

(*

(*
(*
(*
(*

(*

Sail execution ended x)
Sail internal step *)
read memory *)

announce write address x)
write memory x)

read register x)

write register x)

barrier effect x)

365

In the following:

» (CcO) coherence

» (BO) ordering from barriers

» (DO) ordering from dependencies

Contents

5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

366

Instruction life cycle: barrier instructions

» fetch and decode
» commit barrier
» finish

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

367

Commit Barrier

Condition:
A barrier instruction i in state Plain (Barrier(barrier_kind, next_state’)) can be
committed if:

1. all po-previous conditional branch instructions are finished;
2. (BO)if i is a dmb sy instruction, all po-previous memory access instructions and
barriers are finished.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

368

Commit Barrier

Action:

1. update the state of / to Plain next_state'.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

369

Barrier ordering

» so: a dmb barrier can only commit when all preceding memory accesses are finished
» a barrier commits before it finishes

» also (not seen yet): reads can only satisfy and writes can only propagate when
preceding dmb barriers are finished

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 370

Barrier ordering

MP--fens
’ Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 f d:Ry=1
fenl // lfen

cWy=1 .r_f> f:Rx=0

Forbidden. ¢ can only propagate when the dmb is finished, the dmb can only finish
when committed, and only commit when a is propagated; similarly, the dmb on Thread
1 forces f to satisfy after d.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 371

Instruction life cycle: non-load/store/barrier instructions

for instance: ADD, branch, etc.
» fetch and decode
> register reads
» internal computation; just runs a Sail step (omitted)
P register writes
» finish

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

372

Register write

Condition:
An instruction instance i in state Plain (Write_reg(reg_name, reg_value, next_state’))
can do the register write.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 373

Register write

Action:

1. record reg_name with reg_value and write_deps in i.reg_writes; and
2. update the state of / to Plain next_state.

where write_deps is the set of all read_sources from i.reg_reads ...
write_deps: i.e. the sources all register reads the instruction has done so far

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

374

Register read
(remember: there is no ordinary register state in the thread state)

Condition:
An instruction instance / in state Plain (Read_reg(reg_name, read_cont)) can do a

register read if:
» (DO) the most recent preceding instruction instance i’ that will write the register

has done the expected register write.

[]

]
]

DD@DDK

[] does not write reg_name

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 375

Register read

Let read_source be the write to reg_name by the most recent instruction instance i/
that will write to the register, if any. If there is none, the source is the initial value. Let

reg_value be its value.
Action:

1. Record reg_name, read_source, and reg_value in i.reg_reads; and
2. update the state of i to Plain (read_cont(reg_value)).

0
DDEDDK?D

[] does not write reg_name

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 376

Example: address dependencies

MP-+fen+addr
’Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 9Yd:Ry=1

fen
/ addr

cWy=1 o'f> e:Rx=0

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 377

https://is.gd/4zDgOz

Example: address dependencies

MP-+fen+addr
’ Thread 0 ‘ ’ Thread 1 ‘
a:Wx=1 9yd:Ry=1
fen
/ addr

cWy=1 o'f> e:Rx=0

Forbidden. The barrier orders the writes, the address dependency prevents executing e
before d (rmem web Ul).

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 378

https://is.gd/4zDgOz

Instruction life cycle: loads

fetch and decode

register reads

internal computation

initiate read; when the address is available, constructs a read request (omitted)
satisfy read

complete load; hands the read value to the Sail execution (omitted)

register writes
finish

vVvVvvyVvYVvyVvVvyVvyy

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

379

Satisfy read in memory

Condition:
A load instruction instance / in state Pending_mem_reads read_cont with unsatisfied

read request r in i.mem_reads can satisfy r from memory if the read-request-condition
predicate holds. This is if:

1. (BO) all po-previous dmb sy instructions are finished.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 380

Satisfy read in memory

Let w be the write in memory to r's address. Action:
1. update r to indicate that it was satisfied by w; and
2. (CO) restart any speculative instructions which have violated coherence as a result

of this.
l.e. for every non-finished po-successor instruction i’ of i with a same-address read

request ¥, if r’ was satisfied from a write w’ # w that is not from a po-successor
of i, restart / and its data-flow dependents.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 381

Let w be the write in memory to r's address. Action:

1. update r to indicate that it was satisfied by w; and

2. restart any speculative instructions which have violated coherence as a result
of this.
l.e. for every non-finished po-successor instruction i’ of i with a same-address read
request ¥, if r’ was satisfied from a write w’ # w that is not from a po-successor
of i, restart / and its data-flow dependents.

CoRR
’Thread 0‘ ’Thread 1‘
aWx=1—"">p:Rx=1

po
» c already satisfied from initial write
Lf>c:Rx=0 y

Think
> r=br'=c,w=a
» b is about to be satisfied by a

Forbidden. If c is satisfied from the initial write x = 0 before b is satisfied, once b
reads from a it restarts ¢ (rmem web Ul).

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 382

https://is.gd/WsRzlu

Finish instruction

Condition:
A non-finished instruction /i in state Plain (Done) can be finished if:

1. (co) i has fully determined data;
2. all po-previous conditional branches are finished; and
3. if i is a load instruction:

3.1 (BO) all po-previous dmb sy instructions are finished;

3.2 (CO) it is guaranteed that the values read by the read requests of /i will not cause
coherence violations, i.e. ...

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 383

Finish instruction

Action:

1. record the instruction as finished, i.e., set finished to true; and

2. if i is a branch instruction, discard any untaken path of execution. l.e., remove any
(non-finished) instructions that are not reachable by the branch taken in
instruction_tree.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 384

Example: finishing loads and discarding branches

MP-+-fen-+ctrl
’Thread 0‘ ’Thread 1‘
a:WI<=1 97d:Ry=1

fen
/ lct ri

cWy=1 o'fs c:Rx=0

Speculatively executing the load past the conditional branch does not allow finishing
the load until the branch is determined. Finishing the branch discards untaken branches
(rmem web Ul).

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 385

https://is.gd/deg3VT

Instruction life cycle: stores

» fetch and decode

register reads and internal computation

v

» initiate write; when the address is available, constructs a write request without
value (omitted)

» register reads and internal computation

» instantiate write; when the value is available, updates the write request’s value
(omitted)

» commit and propagate

v

complete store; just resumes the Sail execution (omitted)
» finish

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

386

Commit and propagate store

Commit Condition:
For an uncommitted store instruction i in state Pending_mem_writes write_cont, i can
commit if:

(o) i has fully determined data (i.e., the register reads cannot change);

all po-previous conditional branch instructions are finished,

(B0) all po-previous dmb sy instructions are finished;

(co) all po-previous memory access instructions have initiated and have a fully
determined footprint

AN -

Propagate Condition:
For an instruction i in state Pending_mem_writes write_cont with unpropagated write,
w in i.mem_writes, the write can be propagated if:
1. (co) all memory writes of po-previous store instructions to the same address have
already propagated
2. (co) all read requests of po-previous load instructions to the same address have
already been satisfied, and the load instruction is non-restartable.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 387

Commit and propagate write

Commit Action: record i as committed.
Propagate Action:

1. record w as propagated; and

2. update the memory with w; and

3. (CO) restart any speculative instructions which have violated coherence as a result
of this.
l.e., for every non-finished instruction / po-after / with read request /' that was
satisfied from a write W # w to the same address, if W is not from a po-successor
of irestart / and its data-flow dependents.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 388

Commit Action: record i as committed.
Propagate Action:

1. record w as propagated; and

2. update the memory with w; and

3. restart any speculative instructions which have violated coherence as a result
of this.
l.e., for every non-finished instruction / po-after / with read request ' that was
satisfied from a write W # w to the same address, if w is not from a po-successor
of i,restart / and its data-flow dependents.

CoWR
’ Thread 0 ‘ ’ Thread 1 ‘
aWx=1—> h:wx=2

rf 0o » ais about to propagate
X » b was already satisfied by ¢
c:Rx=1

Think

> w=a, r'=b w =c

Forbidden. If b is satisfied from ¢ before a is propagated, a's propagation restarts b.
Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 389

Write forwarding on a speculative branch

PPOCA

’Thread O‘ ’Thread 1‘
a:Wx=1 d:Ry:l

fe”i y ctrl
cWy=1 e:w‘z=1
rf
f:Rz=1

'\[f addr
A\
g:Rx=0

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

390

Write forwarding on a speculative branch

PPOCA

’Thread O‘ ’Thread 1‘
a:Wx=1 d;Ry:l

fe”i y ctrl
N
cWy=1 eWz=1
rf
N
f:Rz=1

.\{f addr
A\
g:Rx=0

Allowed. But with just the previous rules we cannot explain this in the model.

391

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

Satisfy read by forwarding

Condition:

A load instruction instance i in state Pending_mem_reads read_cont with unsatisfied
read request r in i.mem_reads can satisfy r by forwarding an unpropagated write by a
program-order earlier store instruction instance, if the read-request-condition predicate
holds. This is if:

1. (BO) all po-previous dmb sy instructions are finished.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 392

Satisfy read by forwarding
Let w be the most-recent write from a store instruction instance i’ po-before i, to the
address of r, and which is not superseded by an intervening store that has been
propagated or read from by this thread. That last condition requires:

> that there is no store instruction po-between / and 7/ with a same-address
write, and
> that there is no load instruction po-between i and / that was satisfied by a

same-address write from a different thread.
Action: Apply the action of Satisfy read in memory.

N
DDEDDK?D

[] no same-address write or
same-address read from different thread

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 3903

Write forwarding on a speculative branch

PPOCA

’ Thread 0 ‘ ’Thread 1 ‘
a:Wx=1 d:Ry=1

feni y ctrl
N
cWy=1 eWz=1
rf
y
f:Rz=1

.\[f addr
A
g:Rx=0

PPOCA allowed. (rmem web Ul)

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

394

https://is.gd/kE3oap

Write forwarding on a speculative branch

PPOCA PPOAA
’Thread 0 ‘ ’ Thread 1 ‘ ’ Thread 0 ‘ ’ Thread 1 ‘
aWx=1 d:Ry=1 aWx=1 d:Ry=1
fenl V ctrl fenl V addr
A Y
cWy=1 eWz=1 cWy=1 eWz=1
rf rf
v y
fRz=1 f:Rz=1
orf 'addr of ‘addr
g:Rx=0 g:Rx=0

PPOCA allowed. (rmem web Ul)
PPOAA forbidden.

Contents 5.4 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model

395

https://is.gd/kE3oap

onten

ts

Armv8-A/RISC-V axiomatic model

5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

396

For more details, see [19, Pulte, Flur, Deacon, et al.] (especially its supplementary
material https://www.cl.cam.ac.uk/~pe520/armv8—mca/), together with [15, 3].

Together with the vendor manuals:
» Arm: [32, Ch.B2 The AArch64 Application Level Memory Model]

» RISC-V: [34, Ch.8, “A" Standard Extension for Atomic Instructions, Ch.14

RVWMO Memory Consistency Model, App.A RVWMO Explanatory Material,
App.B Formal Memory Model Specifications]

Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 397

https://www.cl.cam.ac.uk/~pes20/armv8-mca/

(Again) By default, instructions can observably execute out-of-order and
speculatively, except as forbidden by coherence, dependencies, barriers.

Axiomatic model already allows “out-of-order” and speculative execution by default —
everything is allowed unless ruled out by the axioms.

We will look at the Arm version of the model.
The RISC-V model is the same, except for model features not covered here.

Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 398

Official axiomatic model

(without weaker barriers, release-/acquire-, and load- /store-exclusive instructions)

Contents

acyclic pos | fr | co | rf (* coherence check x)
let obs = rfe | fre | coe (* Observed-by x)
let dob = addr | data (* Dependency-ordered-before x)
| ctrl; [W]
| addr; po; [W]
| coi (* Think ‘coi’ (globally equivalent) x)
| (addr | data); rfi
let bob = po; [dmb.sy]; po (* Barrier-ordered-before x)

let ob = obs | dob | aob | bob (* Ordered-before x)

acyclic ob (*x external check x)

5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

399

Executable axiomatic models

Axiomatic model executable in:

» Herd [Alglave + Maranget]:
http://diy.inria.fr/doc/herd.html
http://diy.inria.fr/www

» Isla [Armstrong], with integrated Sail semantics:
https://isla-axiomatic.cl.cam.ac.uk/

Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 400

http://diy.inria.fr/doc/herd.html
http://diy.inria.fr/www
https://isla-axiomatic.cl.cam.ac.uk/

Example: address dependencies

MP+4fen+addr
”Thread 0‘ WThread 1‘
a:Wx=1 d:Ry=1

rfe
fenl // laddr

cwWy=1 o fs aRx=0

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data
ctrl; [W]

I

| addr; po; [W]

| (ctrl | data); coi
| (addr | data); rfi
let bob = po; [dmb.sy]; po

let ob = obs | dob | aob | bob

acyclic ob

Forbidden. Each edge of the cycle is included in ob.

Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

401

Example: speculative execution

MP+fen-+ctrl
”Thread 0‘ WThread 1‘
a:Wx=1 d;Ry:]_
rfe
fen 7

////

cWy=1 o5 a:Rx=0

acyclic pos | fr | co | rf

let obs = rfe | fre | coe
let dob = addr | data
ctrl; [W]

I

| addr; po; [W]

| (ctrl | data); coi
| (addr | data); rfi
let bob = po; [dmb.sy]; po

let ob = obs | dob | aob | bob

acyclic ob

Allowed. The edges form a cycle, but ctrl; [R] to read events is not in ob
Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

402

Write forwarding from an unknown-address write

acyclic pos | fr | co | rf

PPOAA
’Thread O‘ ’Thread 1‘ let obs = rfe | fre | coe
aWx=1 d:Ry=1 let dob = addr | data
fen rfe addr | ctrl; [W]
Y | addr; po; [W]
cWy=1 eWz=1 | (ctrl | data); coi
rfi | (addr | data); rfi
A
fRz=1 let bob = po; [dmb.sy]; po
addr
o\[?“ let ob = obs | dob | aob | bob
g:Rx=0

acyclic ob

Forbidden. ob includes addr; rfi: forwarding is only possible when the address is

determined
Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

Write forwarding on a speculative path

PPOCA
”Thread 0‘ WThread 1‘
a:Wx=1 d:Ry=1
fen| rfe lct rl
cWy=1 eWz=1
f:Rz=1
.\[f addr
g:Rx=0

acyclic pos | fr | co | rf

let obs = rfe | fre | coe
let dob = addr | data
ctri; [W]

I

| addr; po; [W]

| (ctrl | data); coi
| (addr | data); rfi
let bob = po; [dmb.sy]; po

let ob = obs | dob | aob | bob

acyclic ob

Allowed. Forwarding is allowed: rfi (and ctrl;rfi and rfi;addr) not in ob

(compare x86-TSO)

Contents 5.5 Arm-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model

404

Contents

Validation

5.6 Arm-A, IBM Power, and RISC-V: Validation

405

lots...

Contents

5.6 Arm-A, IBM Power, and RISC-V: Validation

406

Desirable properties of an architecture specification

Sound with respect to current hardware

Sound with respect to future hardware

Opaque with respect to hardware microarchitecture implementation detail
Complete with respect to hardware?

Strong enough for software

Unambiguous / precise

Executable as a test oracle

Incrementally executable

© 0Nk

Clear
Authoritative?

._.
©

Contents 5.6 Arm-A, IBM Power, and RISC-V: Validation

407

Contents

Programming language concurrency

6 Programming language concurrency:

408

Contents

Introduction

6.1 Programming language concurrency: Introduction

409

For a higher-level programming language that provides some concurrent shared-memory
abstraction, what semantics should (or can) it have?

Contents 6.1 Programming language concurrency: Introduction 410

For a higher-level programming language that provides some concurrent shared-memory
abstraction, what semantics should (or can) it have?

NB: this is an open problem
Despite decades of research, we do not have a good semantics for any
mainstream concurrent programming language that supports high-performance

shared-memory concurrency.

(if you don't need high performance, you wouldn't be writing shared-memory
concurrent code in the first place)

Contents 6.1 Programming language concurrency: Introduction 411

A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

Contents 6.1 Programming language concurrency: Introduction

412

A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

...that is efficiently implementable

Contents 6.1 Programming language concurrency: Introduction

413

A general-purpose high-level language should provide a common abstraction over all
those hardware architectures (and others).

...that is efficiently implementable, w.r.t. both:
> the cost of providing whatever synchronisation the language-level model mandates

above those various hardware models

» the impact of providing the language-level model on existing compiler optimisations

Contents 6.1 Programming language concurrency: Introduction 414

In other words...
At the language level, observable relaxed-memory behaviour arises from the
combination of:
1. the hardware optimisations we saw before, and
2. a diverse collection of compiler optimisations,

both of which have been developed over many decades to optimise while preserving
sequential behaviour, but which have substantial observable consequences for
concurrent behaviour

Contents 6.1 Programming language concurrency: Introduction

415

Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”

accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 | Thread 2
x =1
y =1 if (y == 1)
print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

Contents 6.1 Programming language concurrency: Introduction

416

Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 | Thread 2

x =1 int rl = x

y =1 if (y == 1)
print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there's some other read of x in the context...

Contents 6.1 Programming language concurrency: Introduction

417

Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 | Thread 2

x =1 int rl = x

y =1 if (y == 1)
print x

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there's some other read of x in the context...
then common subexpression elimination can rewrite

print x = print rl

Contents 6.1 Programming language concurrency: Introduction

418

Compiler optimisations routinely reorder, eliminate, introduce, split, and combine “normal”
accesses, and remove or convert dependencies, in ways that vary between compilers,
optimisation levels, and versions.

For example, in SC or x86, message passing should work as expected:

Thread 1 | Thread 2

x =1 int rl = x

y =1 if (y == 1)
print rl

In SC, the program should only print nothing or 1, and an x86 assembly version will too
(ARM/Power/RISC-V are more relaxed). What about Java/C/C++ etc.?

If there's some other read of x in the context...
then common subexpression elimination can rewrite

print x = print rl

So the compiled program can print 0

Contents 6.1 Programming language concurrency: Introduction

419

Here ARM64 gcc 8.2 reorders the threadl loads, even without that control dependency.

<«

Csource #1 X
A~ BSave
7% o

i

i
void

@No s wN R

A~
1
2
3
4
5
6
7
8
9

10
11

rin@D e

armye-a clang 11.00

& Output...

threado:

thread1:

mov
mov
str
str
ret

1dr
ldr
add
ret

amvB-a clang 11.0.0 (Eitor #1, Compiler #4) C X

v © -02

VFilter..~ BLibraries + Add new...~

w8, [x0]
w9, [x1]

w8, [x1]
w9, [x6]
w0, w9, w8, 1s1 #4

G BOutput (0/0) amvB-aclang11.00 § -469ms (169928)

// @threado

// @thread1

Add tool.

c o © & https://godbolt.org o
{- COMERER [aw ~“ More ~ [CppCast,(heﬂrs(podcasliovc¢+devs,byc++devs] [smmsms intel PCtlint &7 }»mva
O X[ARMS4 gec 8.2 (Editor #1, Compier #1) C X O X | x86-64 gec 10.2 (Editor #1, Compiler #2)C X
/Load +Addnew..~ ¥ Vim c v AARMB4 gec 8.2 v © 02 E] x86-64 gec 10.2 v @ -02
:Effgctégz;g;yia;"ijigguzit::g :‘;?:’;f"ts T A~ Souput.~ Vhiter.~ Blbries +Addnew.~ SAddtool.~ A~ @ Y- B8 +- /-
AArch64: x in x0, y in x1 1 threado: 1 1 threade:
X86 X in rdi, y in rsi 2 me w2, 1 2 mov DWORD PTR [rdi], 1
3 str w2, [x6] 3 mov DWORD PTR [rsi], 2
threade(int*x, int'y) { 4 mov w, 2 4 ret
5 str. we, [x1] 5 thread1.
=y=27 6 ret 6 mov eax, DWORD PTR [rsi]
3} 7 xus 7 sal eax, 4
8 dr we, [x0] 8 add eax, DWORD PTR [rdi]
thread1(int*x, int*y) { 9 1dr wi, [x1] 9 ret
int r1 = ty; 10 A AR
int r2 = *x; 11 ret
int r3 = ri*16+r2;
return r3; C BOutput (0/0) ARM64gcc82 § -487ms (72808) G BOutput (0/0) x86-64gcc10.2 § -432ms (s2648)
}

D X[8664 clang 11.0.0 (Edtor #1, Compier #3)C X

x86-64clang 11.00 ~ & -02

> A~ 8- Y- 8
threado

shl
add

1
2
3
4
5 threadi
6
7
8
9 ret

e

dword ptr [rdi], 1
dword ptr [rsi], 2

eax, dword ptr [rsi]
ax, 4

eax, dword ptr [rdi]

C' MOutput (0/0) x86-64clang11.00 § -517ms (15679)

Other ~

Policies ~ J

Compiler Explorer (short link) (full link) NB: these are MP-shaped, but it's not legal C to run these in parallel!

Contents

6.1 Programming language concurrency: Introduction

420

https://godbolt.org/z/5PK3jr
https://godbolt.org/#z:OYLghAFBqd5QCxAYwPYBMCmBRdBLAF1QCcAaPECAM1QDsCBlZAQwBtMQBGAFlICsupVs1qgA%2BhOSkAzpnbICeOpUy10AYVSsArgFtaIXqvQAZPLUwA5PQCNMxEACZSAB1TTCS2pp37Dr9086MwtrXTsHZ1l5RToGAmZiAh89A15ozAUveMSCEKtbeycZBKSUv3TSvPMC8KLHAEoZVG1iZA4AcgB6ACoAajo%2Bqm1aLMHVAmIAT1I%2BggRMWSGRsdo%2BxOA9CekAUgAGAEE%2B48TMPvM%2B4kxgPGkCe2k%2BiGZHqjwAD0x0PpspuYW%2BgcAEIASWkDRAfX2R2OxwOBzaCAAbNxIe9zmt3ntZn0/hd3pxobDju8ABxIyHE9EXYj4WZ4tbEDzQnpdaEAN1QeG%2B8yuzHQewg5gIPXes2FPSmDShAHYgUTYaKdgBmAAihOV8sOxMlKtVjhVWphxx2MtV0Ohwv%2BfPQnCF9FF4odUtlRuJVuInChar6us1CuOHsc3tVvvehoDGIIl2VIcunB6nCRO0cQOIBv92thVwIrUZyojWZNZuhHSarBAHQArB1SAYOnta6hK%2Bo%2BtIWm0zinlZxawRK42Gk0ANYgZWOAB0AE5uKTHDLuEiq6TuHtuI5SUJK9xa/XG6Rmx1a9IQNj%2Bw2y6Q4LAYIgUKhdC48OwyBQIGhH8%2BiixiLoUcA52xN5WHuJlKBsAdaxscxEimSte1ID9dAmAB5WhWDgi9SCwXQRGAdhIOwvAriydlFkIzBPmQbR7ng2thTkQjWDwGxiFgzQsDo0hJjwXQ6KaGh6CYNgOB4fhBGEUQQAkMQpGYmwT0gJpUBcWJaBPDoAFoUMcY85EyNSVDUcoDE4UhjHyMIIkENwPDUkybMCNTLMKBwzIyVYcjKLRUkEDy1K86pQlcvyqgc9yqhcuo3KadtWnaLhy0rGs60Iw8DgAJQAWRRPpgGQZA%2BlJCdgwgXBCBIKFHB7WZNE/F8qp7aV1D7SCh1IBZ%2BSKCARycSdxyRRxHCrKdHCRKc1xlGctw6HdSD4qtsT3JtK2PU9uLaq9bwgJAPyfF9yEoPavwcRJdHZUlNIKyTgE4Tg9iA59QJPCAIKw6DaFgrikNQ9DMP3HC8IIrD8BIxQyI0/dKMyGjOgQhiKyw%2BS2OmDi4b7YheP40hBMYFgCLEgReBu6TJCEFjFJ6g9VK8DTtN0mR9NWIyNB8vwzIsmorKKMzbKCbw2dMgI7K8KLrPcpmArCwW/Ml7JIq5kKItycKSlyMWedijsEs4JLq13NLKzOi7NOYPpkBuvo7onPYbaecqiGIRqzL6Or9vsRruGa1qL3azqsAcKnEbmhalsNo8ZHW89B165UkQnZVRqTJE9lJThlSrGUkTMxHlQNrDDx9wctvga872Og63wr79br2ZxgOe8DCI%2Br6OgQn76DQjDCMB0RgYB4iDLwCGKKo2GuIRpiWJRqY0a4ni%2BLby9ceEgneAEZwSZkuSKfgZSaboOmdL0mIvBZ1XOeC6LHJFuhVb55zFeviXT7iaXfCF/z5fVp/xbV7yP6hR/lfcWWt4qiT1ilZaB5KxkiRJpXK%2BVCr3RKvbfAjtna1QfO7J23ZGiuyLmWJo/tuqx1tkuKcVYRpjTrsqNOY0ZohxAItVKBdVqRzPJtMuO17z1XsIdd82CTooAtnhO6D0cZPQeE3d6MFpjfQfMhTuf0e6YFwn3ToA8wbD3IlhaG1FaJL3IPQRiSNp7sQwOjbimNF69gEnQPGIkuDrzHEIPCpNZLkwUnvamakj4My/soCAxgL5qA1m5YW/N75OVFr/HmjNX60ECqrQJSSFYgPiXcFWMtlZJHCYlZo4CCmIygeHOBCDuDm0ttbW2ew0EVVwdVF2bsTqNWVN7DavtiGYC6oHPWTCWHQMLhwzpMdSCjmVOQkaVDRop2qvQpEM086sP3MM6ORCZoMyGew9Z7UyJMjPtwIAA%3D%3D

LLVM

Analysis passes
-aa-eval: Exhaustive Alias Analysis Precision Evaluator
)

~count-aa: Count Alias Analysis Query Responses

~da: Dependence Analysls

debug-aa: AA use debu

~domfronti minance Frontier Construction

domree: Domimaior Teee Conserichon

~dot-callgraph: Call Graph to "

~dot-cfg: Print CFG of function t

~dot-cfg-only: Print CFG of function to “dot” file (with no function bodies)
fot-dom: Print dominance tree of function to "dot" file

Zdot-dom.only. Print dominance wree of fanction to “dot” file (ith no function bodies)

~dot-postdom: Print postdominance tree of function to “dot” file

~dot-postdom-only: Print postdominance tree of function to “dot” file (with no function

~globalsmodref-aa: Simple mod/ref analysis for globals

stcount; Counts the various types o Instructions

tervals: Interval Partition Constructior

-iv-users: Induction Variable User

Tazy.value info: Lazy Value Information Analysis

ibcall-aa: LibCall Alias Analysis

int: Statically lint-checks LLVM IR

-loops: Namral Locp Infermation,

-mem Dependence Analys

“moduied debugmlﬂ Deroes modute v debu

-postdomfrontier: Post-Dominance Frontier Construction
Post-Dominator Tree C¢ i

Set Printer

e h
-callgraph-sccs: Print SCCs of the Call Graph

—pri Print SCCs of each function CFG

-print-dom-info: Dominator Info Printer

-print-externalfnconstants: Print external fn callsites passed constants

~targetdata: Target Data Layout

Transform passes
< Dead Code Elimi

e In\mer for always_inline functions

o Promote by referanca’ argaments to scalars

o Basic Block Vectorzation

“block-placement. Profile Guided Basic Block Placement

-break-crit-edges: Break al edges in CFG.

Contents

Compiler analysis and transform passes

~codegenprepare: Opf code gens

picate Global Constants

ing
e redundant instructior
Combine expression patterns
ize Global Symbols
o nterprocedura Sparse. Cnndmonz\ Constant Propagation

—jump-threading: Jump Threa
-lessa: Loop-Closed SSA Form Piss

liem: Loop Invariant Code M
loopdeleton: Delete dead loops
-loop-extract: Extract loops into new functions
“loop-extract single: Extract at most one loop into a new function
-loop-reduce: Loop Strength Reduction
“loop-rotate: Rotate Loop:
-loop-simplify: Cinoma\lze natural loops

“loop-unroll: Unroll lool
loop-unrolland jam: Unroll and Jam loops
“Joop-unsutcl, Unsuitch loops
-loweratomic: Lower atomic intrinsics to non-atomic form
ermunks Lower invokes to calls, for unwindless code generators
~lower Lowsr Switchinsts to branches
“mem2reg; Promote Memory to Regiate
-memcpyopt: MemCpy Optimization
-mergefunc: Merge Functions
mergereturn: Unify function exit nodes

iner: Partial Inliner
snused exception handling info

te: Reassociate expres
“egzmam: Demote all values to stack ot
-sroa: Scalar Replacement of Aggregate:
Sceb: Sparse Conditional Constant Prepagation
~simplifycfig: Simplify the CFG

Strip all symbols from a module
dead-debug-info: Strip debug info for unused symbols
-dead-prototypes: Strip Unused Function Prototypes
- debug-declare: Strip all llvm.dbg.declare intrinsics

lebug: Strip all symbols, except dbg symbols, from a module
tailcallelim: Tail Call Elimination

6.1 Programming language concurrency: Introduction

GCC

IPA passe
IPA free fang data
move symbols
oA OpenACC
IPA points-to analysis
IPA OpenACC kernels
Target clone
IPA auto profile
IPA tree profile
IPA free function summary
IPA increase alignment

1PA whole program visibility
1PA profile

1PA wdenu:al code flding
1PA devi

IPA camtant propagation
IPA scalar replacement of aggregates
IPA constructor/destructor merge
1PA funcion summary

1PA inlin

IPA pure)const analysis

1PA free function summary

nts-to analysis

handling control flow

Build the control flow grap!

Find all referenced variables

Enter static single assignment form
Warn for uninitialized variables

Dead code elimination

Dominator optimizations

Forward propagation of single-use variables

Copy Renaming.

PHI node optimizations

May-alias optimization

Profiling.
Static profile estimation
Lower complex arithmetic
Scalar replacement of aggregates
Dead store climinatior

Tail recursion elimination

Forward store motion
Partial redundancy elimination
Full redundancy elimination

Loop optimization
Loop invariant motion.

Canonical induction variable creation.

Induction variable optimizations.

Loop unswitching

ization
if-conversion for vectorizer
Conditional constant propagation
Conditonal copy propagation

Vall propagation
Fuldmg ouicin iun:(mns
Split critical e
Contrel dependence dead code climination
Tail call ation
Warn for function return without value
Leave static single assignment form
Merge PHI nodes that feed into one another
Return value. Dm\m\xa(mn
Return slot
Ootimize e to huttrinobject size
Loop invariant mation
Loop nest optimizations
Removal of empty loops
Unvalling of smllloops

Predictive commoning
vy vetotching
Reassociation
Optimization of stdarg functions
RTL passes
Generation of ¢excepton \anding pads

Control flow
Forward prapagation of 5\"‘\&d!’ values.

imon subexpression elimi

Glabal common subexpression elimination
Loop optimization

Instruction scheduling.
Register allocation
The integrated register allocator (IRA)
Reloading
Basic block reordring
ble tracking
Delayed branch scheduling
Branch shortening
Register-to-stack conversion
Final

421

https://llvm.org/docs/Passes.html
https://gcc.gnu.org/onlinedocs/gccint/Passes.html

Compiler analysis and transform passes

Hard to confidently characterise what all those syntactic transformations might do —
and there are more, e.g. language implementations involving JIT compilation can use
runtime knowledge of values.

But one can usefully view many, abstractly, as reordering, elimination, and introduction
of memory reads and writes [40, Sevcik].

Contents 6.1 Programming language concurrency: Introduction 422

Defining PL Memory Models

Option 1: Don’t. No Concurrency

Tempting... but poor match for current practice

Contents 6.1 Programming language concurrency: Introduction

423

Defining PL Memory Models

Option 2: Don’t. No Shared Memory
A good match for some problems

(c.f. Erlang, MPI, ...)

Contents 6.1 Programming language concurrency: Introduction

424

Defining PL Memory Models

Option 3: sequential consistency (SC) everywhere

It's probably going to be expensive. Naively, one would have to:

» add strong barriers between every memory access, to prevent hardware reordering
(or x86 LOCK'd accesses, Arm RCsc release/acquire pairs, etc.)

» disable all compiler optimisations that reorder, introduce, or eliminate accesses

(smarter: one could do analysis to approximate the thread-local or non-racy accesses, but aliasing always hard)

It's also not clear that SC is really more intuitive for real concurrent code than (e.g.)
release/acquire-based models (c.f. Paul McKenney).

Contents 6.1 Programming language concurrency: Introduction 425

Defining PL Memory Models

Option 4: adopt a hardware-like model for the high-level language
If the aim is to enable implementations of language-level loads and stores with plain
machine loads and stores, without additional synchronisation, the model would have to

be as weak as any of the target hardware models.

But compiler optimisations do much more aggressive optimisations, based on deeper
analysis, than hardware — so this would limit those.

Contents 6.1 Programming language concurrency: Introduction 426

Data races

All these hardware and compiler optimisations don't change the meaning of
single-threaded code (any that do would be implementation bugs)

The interesting non-SC phenomena are only observable by code in which multiple
threads are accessing the same data in conflicting ways (e.g. one writing and the other

reading) without sufficient synchronisation between them — data races

(caution: the exact definition of what counts as a data race varies)

Contents 6.1 Programming language concurrency: Introduction 427

DRF-SC

Option 5: Use Data race freedom as a definition

Previously we had h/w models defining the allowed behaviour for arbitrary programs,
and for x86-TSO had DRF as a theorem about some programs.

For a programming language, we could define a model by:
» programs that are race-free in SC semantics have SC behaviour
» programs that have a race in some execution in SC semantics can behave in any
way at all

Kourosh Gharachorloo et al. [41, 42]; Sarita Adve & Mark Hill [43, 44]

Contents 6.1 Programming language concurrency: Introduction 428

DRF-SC

Option 5: Use Data race freedom as a definition

To implement: choose the high-level language synchronisation mechanisms, e.g. locks:
> prevent the compiler optimising across them
> ensure the implementations of the synchronisation mechanisms insert strong
enough hardware synchronisation to recover SC in between (e.g. fences, x86
LOCK'd instructions, ARM “load-acquire”/"store-release” instructions,...)

Contents 6.1 Programming language concurrency: Introduction 429

DRF-SC

Option 5: Use Data race freedom as a definition

Pro:
> Simple!

» Only have to check race-freedom w.r.t. SC semantics

» Strong guarantees for most code

» Allows lots of freedom for compiler and hardware optimisations

“Programmer-Centric”

Contents 6.1 Programming language concurrency: Introduction

430

DRF-SC

Option 5: Use Data race freedom as a definition

Con:
» programs that have a race in some execution in SC semantics
can behave in any way at all
» Undecidable premise.
» Imagine debugging based on that definition. For any surprising behaviour, you have
a disjunction: either bug is X ... or there is a potential race in some execution
» No guarantees for untrusted code
...impact of that depends on the context
» restrictive. Forbids fancy high-performance concurrent algorithms
» need to define exactly what a race is

what about races in synchronisation and concurrent datastructure libraries?

Contents 6.1 Programming language concurrency: Introduction 431

Contents

Java

6.2 Programming language concurrency: Java

432

Java (as of JSR-133): DRF-SC plus committing semantics
Option 6: Use Data race freedom as a definition, with committing semantics
for safety
Java has integrated multithreading, and it attempts to specify the precise behaviour of
concurrent programs.

By the year 2000, the initial specification was shown:
» to allow unexpected behaviours;
» to prohibit common compiler optimisations,
> to be challenging to implement on top of a weakly-consistent multiprocessor.

Adve]

Superseded around 2004 by the JSR-133 memory model [45, Manson, Pugh,

Contents 6.2 Programming language concurrency: Java 433

Java (as of JSR-133): DRF-SC plus committing semantics

Option 6: Use Data race freedom as a definition, with committing semantics
for safety

» Goal 1: data-race free programs are sequentially consistent;

» Goal 2: all programs satisfy some memory safety and security requirements;
» Goal 3: common compiler optimisations are sound.

Idea: an axiomatic model augmented with a committing semantics to enforce a

causality restriction — there must exist an increasing sequence of subsets of the events
satisfying various conditions. See [45, 46] for details.

Contents 6.2 Programming language concurrency: Java

434

Java (as of JSR-133): DRF-SC plus committing semantics

Option 6: Use Data race freedom as a definition, with committing semantics
for safety

The model is intricate, and fails to meet Goal 3: Some optimisations may generate
code that exhibits more behaviours than those allowed by the un-optimised source.

As an example, JSR-133 allows r2=1 in the optimised code below, but forbids r2=1 in the
source code:

X =y =0 X
HotSpot optimisation
rl=x r2=y — rl=x x=1

y=rl x=(r2==1)7y:1 y=rl r2=y

Il
<

]

(o]

[46, Sevcik & Aspinall]

Contents 6.2 Programming language concurrency: Java 435

Contents

C/C++11

6.3 Programming language concurrency: C/C++11

436

C/C++11: DRF-SC plus low-level atomics

Option 7: Use Data race freedom as a definition, extended with low-level
atomics

C and C++ already require the programmer to avoid various undefined behaviour (UB),
and give/impose no guarantees for programs that don't.

So DRF-SC is arguably a reasonable starting point
circa 2004 — 2011: effort by Boehm et al. in ISO WG21 C++ concurrency subgroup,
adopted in C++11 and C11, to define a model based on DRF-SC but with low-level

atomics to support high-performance concurrency

[47, Boehm & Adve]; https://hboehm.info/c++mm/; many ISO WG21 working papers
Boehm, Adve, Sutter, Lea, McKenney, Saha, Manson, Pugh, Crowl, Nelson,

Contents 6.3 Programming language concurrency: C/C++11 437

https://hboehm.info/c++mm/

C/C++11 low-level atomics

Normal C/C++ accesses are deemed non-atomic, and any race on such (in any
execution) gives rise to UB (NB: the whole program has UB, not just that execution)

Atomic accesses are labelled with a “memory order” (really a strength), and races are

allowed.
stronger
memory_order_seq-cst
memory_order_release/memory_order_acquire
memory_order_release/memory_order_consume(depreca tsd)
memory_order_relaxed
weaker

Contents 6.3 Programming language concurrency: C/C++11

SC semantics among themselves
release/acquire semantics for message-passing
was supposed to expose dependency guarantees in C/C++

implementable with plain machine loads and stores

438

C/C++11 low-level atomics

Normal C/C++ accesses are deemed non-atomic, and any race on such (in any
execution) gives rise to UB (NB: the whole program has UB, not just that execution)

Atomic accesses are labelled with a “memory order” (really a strength), and races are
allowed.

C concrete syntax — either:

» annotate the type, then all accesses default to SC atomics:
_Atomic(Node x) top;

» or annotate the accesses with a memory order:
t = atomic_load_explicit(&st->top, memory_order_acquire);

C++ concrete syntax — either:
» annotate the type and default to SC atomics, or

» annotate the accesses:
x.store(v, memory_order_release)
r = x.load(memory_order_acquire)

Contents 6.3 Programming language concurrency: C/C++11 439

C/C++11 formalisation
WG21 worked initially just with prose definitions, and paper maths for a fragment

In 2009-2011 we worked with them to formalise the proposal:
» theorem-prover definitions in HOL4 and Isabelle/HOL

P executable-as-test-oracle versions that let us compute the behaviour of examples,
in the cppmem tool http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
(now mostly superseded by Cerberus BMC [21, Lau et al.] http://cerberus.cl.cam.ac.uk/bmc.html)
» found and fixed various errors in the informal version
(but not all — see later, and the web-page errata)
» achieved tight correspondence between eventual C++11 standard prose and our
mathematical definitions

[7, 24, 11, 12, Batty et al.]

Contents 6.3 Programming language concurrency: C/C++11

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://cerberus.cl.cam.ac.uk/bmc.html
http://cerberus.cl.cam.ac.uk/bmc.html
http://www.cl.cam.ac.uk/~pes20/cppppc/errata.html

C/C++11 formalisation: Candidate executions

In an axiomatic style, broadly similar to axiomatic hardware models

Candidate pre-execution has events E and relations:
» sb sequenced-before (like po program order, but can be partial)

» asw additional synchronizes with (synchronisation from thread creation etc.)

Candidate execution witness:
» rf — reads-from
» mo — modification order (like co coherence, but over atomic writes only)

» sc — SC order (total order over all SC accesses)

Contents 6.3 Programming language concurrency: C/C++11

441

C/C++11 formalisation: structure

For any program P, compute the set of candidate pre-executions that are consistent
with the thread-local semantics (but with unconstrained memory read values)

For each, enumerate all candidate execution witnesses, and take all of those that satisfy
a consistent execution predicate

Check whether any consistent execution has a race. If so, P has undefined behaviour;

otherwise, its semantics is the set of all those consistent executions.

Thanks to Mark Batty for the following slides

Contents 6.3 Programming language concurrency: C/C++11 442

A single threaded program

int main() {

int x = 2;
int y = 0;

return O; }

A single threaded program

int main() { rf b:Whay=0 rf
int x = 2; 'ﬂb b
int y = 0;
y = (X==X); C:Rna X=2 d:R aX:2
return O; } \fb /sb

A data race

int y, x = 2;

a:W,, x=2
asw W,I’f
b:W,;x=3 c:R,;x=2
sb

d:W,,y=0

A data race

int y, x = 2;

a:W,, x=2
asw W,I’f
b:W,;x=3"c:R,;x=2
sb

d:W,,y=0

Simple concurrency: Decker's example and SC

atomic_int x = 0O;
atomic_int y = O;

x.store(l, seq_cst); |y.store(l, seq_cst);
y.load(seq_cst); x.load(seq_cst);

Simple concurrency: Decker's example and SC

atomic_int x = 0O;
atomic_int y = 0;

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
W, y=1 e:W,. x=1
sb sb

d:Rs. x=0 f:Rsc y=0

Simple concurrency: Decker's example and SC

atomic_int x
atomic_int y

0;
0;

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
c:We y=1 e:W x=1
FORBIDDEN
sb sb

d:Rs. x=0 f:Rsc y=0

Simple concurrency: Decker's example and SC

atomic_int x = 0O;

atomic_int y = O;

x.store(l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
W, y=1 e:W,.x=1

d:Rsc x=0 f:Rcy=1

Expert concurrency: The release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = X;
aW,,x=1
sb I
b:Wie y=1
rf
cRaqy=1
sb I

d:R,;x=1

Expert concurrency: The release-acquire idiom

// receiver
while (0 == y.load(acquire));
r = X;

// sender
X = ...
y.store(l, release);

aW,,x=1

sbI
b:VVmIX:;i\\\\~

SW

sb
d:R,;x=1

c:RacI y=1

Expert concurrency: The release-acquire idiom

// receiver
while (0 == y.load(acquire));
r = X;

// sender
X = ...
y.store(l, release);

aW,,x=1

y

bVVm|::1

c:RacI y=1

d:R,;x=1

Expert concurrency: The release-acquire idiom

// receiver
while (0 == y.load(acquire));
r = X;

// sender
X = ...
y.store(l, release);

aW,,x=1

y

bZWre|

d:R,;x=1

simple-happens-before

(sequenced—before\ U synchronizes-with) +

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock(Q); m.lock();
X = ... r = X;

m.unlock();

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(Q); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb sb
d:W,,x=1 i:Rpa x=1

sb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(Q); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb sb
d:W,,x=1 i:Rpa x=1

sb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(Q); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb sb
d:W,,x=1 i:Rpa x=1
sb SW

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(Q); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb sb
d:W,,x=1 i:Rpa x=1
sb hb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(Q); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb sb
d:W,,x=1 i:Rpa x=1
sb

f:U mutex

Happens before is key to the model

Non-atomic loads read the most recent write in happens
before. (This is unique in DRF programs)

The story is more complex for atomics, as we shall see.

Data races are defined as an absence of happens before.

A data race

int y, x = 2;

a:W,, x=2
asw W,I’f
b:W,;x=3"c:R,;x=2
sb

d:W,,y=0

Data race definition

let data_races actions hb =
{ (a, b) | V a€actions beactions |
same_location a b A
(is_write a V is_write b) A
- (same_thread a b) A
- (is_atomic_action a A is_atomic_action b) A

~((a, b) € hb v (b, a) € hb) }

A program with a data race has undefined behaviour.

Relaxed writes: load buffering

x.load(relaxed);
y.store(1l, relaxed);

y.load(relaxed) ;
x.store(1l, relaxed);

c:Rrlx x=1 e:Rrlx y=1

i g

d:Wrlx y=1 f:Wrlx x=1

No synchronisation cost, but weakly ordered.

Relaxed writes: independent reads, independent writes

atomic_int x = 0;
atomic_int y = 0;
x.load(relaxed);
y.load(relaxed);

y.load(relaxed);
x.load(relaxed) ;

c:Wrlx x=1 d:Wrlx y=1 Rrlx x=1 g:Rrlx y=1
_/
- \m) @ ¢

f:Rrlx y=0 h:Rrlx x=0

x.store(1, relaxed);| y.store(2, relaxed);

Expert concurrency: fences avoid excess synchronisation

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = x;

Expert concurrency: fences avoid excess synchronisation

// sender
X = ...
y.store(1l, release);

// sender
X = ...
y.store(l, release);

// receiver
while (0 == y.load(acquire));
r = X;

// receiver

while (0 == y.load(relaxed));
fence(acquire);

r = x;

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1, release); fence(acquire);

r = x;

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1, release); fence(acquire);
r = x;
cW,,x=1 e:Ry y=1
rf
sb sb
d:W,q y=1 f:Facq
sb

g:Rn.x=1

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1, release); fence(acquire);
r = x;
W, x=1 e:Ry y=1
rf
sb sb
d:W,gy=1 —» f:Facq
SW
sb

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1, release); fence(acquire);
r = X;
cW,,x=1 e:Ry y=1
rf
sb b sb
d:W,q y=1 f:Facq
S
sb

g:Rn.x=1

Expert concurrency: modification order

Modlfication order is a per-location total order over
atomic writes of any memory order.

x.store(l, relaxed); x.load(relaxed) ;
x.store(2, relaxed); x.load(relaxed) ;

Expert concurrency: modification order

Modlfication order is a per-location total order over
atomic writes of any memory order.

x.load(relaxed) ;
x.load(relaxed);

x.store(l, relaxed);
x.store(2, relaxed);

b:W, i x=1 T d:Ryx=1
r

sb sb
W, x=2 T e: Ry x=2
r

Expert concurrency: modification order

Modlfication order is a per-location total order over
atomic writes of any memory order.

x.load(relaxed) ;
x.load(relaxed);

x.store(l, relaxed);
x.store(2, relaxed);

b:W, i x=1 T d:Ryx=1
r
mo sb

W, x=2 T e: Ry x=2
r

Coherence and atomic reads

All forbidden!
aWx=1 4}(' cRx=1 bW x=2 ——> W x=1
b:W x=2 4f> d:Rx=2 d R x=2
r
CoWR

CoRR o
aWx=1 a:Wx=1 —F T c:Rx=1
hb mo mo hb¢
b:W x=2 d:Wx=2
CoWW CoRW

Atomics cannot read from later writes in happens before.

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed); | compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

aW,,x=1 d:RMW,,x=2/3
sb

b:W,, x=2
sb

W x=4

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

aW,,x=1 d:RMW,,x=2/3
mo
mo
b:W,, x=2
sb

W x=4

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

aW,, x=1, d:RMW,, x=2/3
rf,mo

f,

mo
b:W,, x=2

sb
W x=4

mo

Very expert concurrency: consume

Weaker than acquire

Stronger than relaxed

Non-transitive happens before! (only fully transitive
through data dependence, dd)

Consume

It turned out to be impractical to ensure that compilers preserve such data
dependencies (which might go via compilation units that don't even use atomics)

Contents 6.3 Programming language concurrency: C/C++11

481

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential

e concurrent with locks

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential
e concurrent with locks

o with seq_cst atomics

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential
e concurrent with locks
o with seq_cst atomics

o with release and acquire

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential

concurrent with locks

(7

with seq_cst atomics

(]

o with release and acquire

with relaxed, fences and the rest

©

The model as a whole

Clx and C4+11 support many modes of programming:

e sequential

e concurrent with locks

o with seq_cst atomics

o with release and acquire

o with relaxed, fences and the rest

o with all of the above plus consume

Contents

C/C++11 models and tooling

6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling

488

The original formal model of [7, Batty et al.] is in executable typed higher-order logic,
in Isabelle/HOL, from which we generated OCaml code to use in a checking tool.

This was later re-expressed in Lem [?], a typed specification language which can be
translated into OCaml and multiple provers.

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling 489

The full model

CppMem

CppMem: makes C/C+11 executable as a test oracle, and with a web interface for
exploring candidate executions [Batty, Owens, Pichon-Pharabod, Sarkar, Sewell]

Enumerates candidate pre-executions for a small C-like language and applies the
consistent-execution and race predicates to them.

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling 491

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

< C o

CppMem: Interactive C/C++ memory model

Model
standard - preferred release_acquire tot relaxed_only
Program
examples/MP_message_passing ¥ || MP+na_rel+acq nac v
* C ' Execution
// WPtna_rel+acq na
/1 Message Passing, of data held in non-atomic x,
/7 with release/acquire synchronisation on

/#/ Guestion: is the read of x required to see the new data value 1
// rather than the initial state value 07

int main()
int x=0; atomic_int y=0;
{1 ;
y.store(1,nenory_order_release); }
111 { rl=y.load{nenory_order_acquire). readsvalue(1);
r2-x; }
return ©;

run | reset help 4 executions; 1 consistent, race free

Computed executions

Display Relations
@sb asw [dd [cd
@rf @mo @sc @lo
hb “vse "'ithb @sw "Irs ['hrs @dob [cad
unsequenced_races @data_races

Display Layout
dot ~neato_par © neato_par_Init ~neato_downwards
tex
edit display options

© | Z svr-pes20-cppmem.cl.cam.ac.uk/cppmem/ 8l

previous consistent

Execution candidate no. 3 of 4

[RN N<NE<N NN NCNCECNCRC)

Model Predicates

consistent_race free execution = true

consistent_execution = true
assumptions
well_forned_threads
well_forned rf
Tocks_only_consistent locks
locks_only consistent Lo
consistent_mo
sc_accesses_consistent_sc
sc_fenced_sc_fences_heeded
consistent_hb
consistent_rf
det_read
consistent_non_atomic_rf
consistent_atomic_rf
coherent_memory_use
rmw_atomicity
- accesses_sc_reads_restricted
unsequenced_races are absent

data_races are absent
indeferninate reads are absent
Tocks_only_bad_nutexes are absent
aWnax=0
sb
biWna y=0
sw
W
™ e:Racq y=1
5w
sb sb)
d:Wrel y=1 tRnax-1

Files: out.exc, out.dot, out.dsp, out.tex

6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling

previous candidate | next candidate | next consistent |3

C/C++11 and variants in .cat

Rephrased in relational algebra, in .cat, and improved in various ways:
» Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48].
Supplementary material: http://multicore.doc.ic.ac.uk/overhauling/

Usable in herd, for examples in a small C-like language

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling 493

http://multicore.doc.ic.ac.uk/overhauling/

C11 cat from [48, Batty, Donaldson, Wickerson], adapted by Lau for [49]

/7 Modified from:

/7 https://github. con/he 7
/7 C11.cat w/o locks, consune

output addr

output data

let sb=po | I+ (M\T)
let mo = co

let cacq = [ACQ | (SC & (R | F)) | ACQREL]
let crel = [REL | (SC & (W | F)) | ACOREL]
Tet fr = rfinv ; mo

Tet fsb = [F] ; sb
let sbf = sb ; [F]

/1(+ release acquire fenced_synchronizes with,
/7 hypothetical release sequence set,
/1 release sequence set +)

let rs_prine = int | (U + (R & W)
let rs = mo & (rs_prime \ ((n0 \ rs_prine) ; mo))

let swra head = crel ; fsb 7 ; [A & W]

let swramid = [A& W) ; rs 7 ; rf ; [R&A]

let swra tail = [R & A] ; sbf 7 ; cacq

let swra = (swra head ; swra mid ; swra tail) & ext

let pp_asw = asw \ (asw ; sb)
Tet su = pp_asw | swra

//(+ happens_before,

/' inter_thread happens_before,
/1 consistent_hb «)

Wl (sw; sb)
let ithb_prime = (ithbr | (sb ; ithbr))
let ithb = ithb prime+

let hb = sb | ithb

acyclic hb as hb acyclic

//(+ coherent_memory use =)
let hbl = hb & loc

tet coh_prine_head = rf_inv? ; mo
let coh_prine_tail = rf 7 ; hb
Tet coh_prine = coh_prine_head ; coh_prime_tail

irreflexive coh prime as coh irreflexive

//(+ visible side effect_set x)
Tet vis = ([W] ; hbL 5 [R1) \ (hbL; [W; hbl)

/c11/popl2016

/(= consistent_atomic_rf)
let rf prime = rf ; hi
irreflexive rf prime as rf irreflexive

J1(+ consistent_non_atomic_rf +)

let narf_prime = (rf ; nonatomicloc) \ vis
empty narf_prine as nrf_empty

et rmaprine = rf | (mo ; mo ; rf_inv) | (mo ; rf)
irreflexive rma_prime as rmu_irreflexive

//(+ data_races *)
let enf = ((W+U) | (U=W)
Tet dr = ext & (((cnf \ hb) \ (hb‘ 1)\ (A s A)

//(+ unsequenced.races *)
Tet ur = (((((W = M) | (M +W) &int & loc) \ sb) \ sb™-1) \ id

Tet sc_clkimn = [SC] ; (scclk \ (mo ; sc_clk))

Tet sLprine = [SC1; sc_clk_imn ; hb
irreflexive sl prime as s1

let s2_prime_head = [SC]; sc_clk ; fsb?
Tet s2 prine tail = mo ; sbf?
let s2_prime = [SC]; s2_prime_head ; s2_prime tail
irreflexive s2 prine as 52

let s3_prine_head = [SC]; sc_clk ; rf_inv ; [SC]
Tet s3_prime_tail = [SC] ; m

let s3_prine = [SC]; s3_prime_head ; s3_prime tail
irreflexive s3.prime as s3

let s4_prine = [SCI; sc.clk_imm ; rf_inv ; hbL ; (W]
irreflexive sd prine as s4

Tet s5 prime = [SC1; scclk ; fsb ; fr
irreflexive s5_prime as s5

let s6_prime = [SC); sc.clk ; fr ; sbf
irreflexive s6 prime as s6

let s7_prine_head = [SCI; sc_clk ; fsb
let s7_prime_tail = fr ; sbf

let s7_prine = [SC); s7_prime head ; s7_prime tail
irreflexive s7_prine as 7

et __bmc hb =

undefined_unless empty dr as dr_ub
undefined_unless empty ur as unsequenced-race

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling

494

Cerberus BMC

» Cerberus-BMC: a Principled Reference Semantics and Exploration Tool for
Concurrent and Sequential C. Lau, Gomes, Memarian, Pichon-Pharabod, Sewell.
[49]
Integrates the Cerberus semantics for a substantial part of C [?, 50, Memarian et al.]
with arbitrary concurrency semantics expressed in .cat relational style.

Translates both the C semantics and the concurrency model into SMT constraints.

https://cerberus.cl.cam.ac.uk/bmc.html

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling 495

https://cerberus.cl.cam.ac.uk/bmc.html

<

Cerberus BMC ~ | MP+na-rel+acq-na.c ¥ | File ~ Model ~

[

MP+na-rel+acq-na.c

1
2

5 #include <stdatomic.h>
6 int main() {
7 int x = 0;
8 _Atomic(int) y = 0;
o int rl, r2;
10 {-{{
11 x=1
12 atomic_store explicit(&y, 1, memory order release);
B3I A
14 rl = atomic_load_explicit(&y, memory order_acquire);
15 if (r1 1)
16 r2 = x;
17 else
18 r2 =2;
9)k
20 assert(!(rl ==1 & r2
21 return rl + 2 * r2;
22 }
23
24
Contents

// MP+na-rel+acq-na

© | @ https://cerberus.cl.cam.ac.uk/bmc.html##

Views ¥

// Message Passing, of data held in non-atomic x, with

release/acquire synchronisation on y.

Model Checker

o

// If the value of rl is 1, then the value of r2 should also

be 1.

// An exhaustive execution of this program should therefore

return the value 1 and 2, but not 0.

Execution 2 of 2 Prev

iRacq y=1

gWna x=1

T et

jWna r1=1

ey
S

a
. y
> kmnan=1
e
iy 1 7 1Rna x=1
// sy
// }!Z’///mm .
w //
N
4 ~
~
parz=it e
b / e
q.nnar1=/
st
rRna r2=1
Console x o
1 # consistent executions:
2 # executions with races: 0
3 Return values: (specified Int 3), (specified

4

LN @D e

150%

Custom herd file

~N

EFEoomvousw

// Modified from:

// https://github.com/herd/herdtools
/tree/master/cats/c11/popl2016

// Cll.cat w/o locks, consume

output addr

output data

let sb=po | I * (M\ I)

let mo = co

// no consume

let cacq = [ACQ | (SC & (R | F)) |
ACQ_REL]

let crel = [REL | (SC & (W | F)) |
ACQ_REL]

let fr = rf_inv ; mo

let fsb = [F] ; sb
let sbf = sb ; [F]

let rs_prime = int | (U * (R & W))
let rs = mo & (rs_prime \ ((mo \
rs_prime) ; mo))

let swra_head = crel ; fsb 7 ; [A &
W]

let swramid = [A & W] ; rs ? ; rf ;
[R & A]

let swra tail = [R & A]
cacq

let swra = (swra_head ; swra_mid ;
swra_tail) & ext

;osbf 7 ;

let pp_asw = asw \ (asw ; sb)
let sw = pp asw | swra

6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling

496

RC11 .cat adapted for C++420 changes [51, 52] by Lahav, Vafeiadis (untested)

// RC11 .cat file without fences irreflexive (hb ; eco) as coh

// adpated for the changes that were approved for C++20

output addr irreflexive eco as atomicl

output data irreflexive (fr ; mo) as atomic2

let sb=po | I % (M\ I) let fhb = [F & SC] ; hb?

let rfstar = rfx let hbf = hb? ; [F & SC]

let rs = [W & ~NA] ; rfstar let scb= sb | sb; hb ; sb | hb & loc | mo | fr
let psc_base = ([SC] | fhb) ; scb ; ([SC] | hbf)

//let sw = [REL | ACQ-REL | SC] ; ([F] ; sb)? ; rs ; rf ; [R & ~NA] ; (sb ; [F])? ; [ACQ | ACQ-REL | SC] let psc.f = [F & SC] ; (hb | hb; eco; hb) ; [F & SC]
let psc = psc_base | psc_f

let sw_prime = [REL | ACQREL | SC] ; rs ; rf ; [R & ~NA & (ACQ | ACQ_REL | SC)] acyclic psc as sc

let sw = sw_prime | asw

let let conflict = (((W * U) | (U * W)) & loc)
let race = ext & (((conflict \ hb) \ (hb~-1)) \ (A * A))

let mo = co
let __bmc_hb = hb

let fr = (rf_inv ; mo) \ id

let eco = rf | mo | fr | mo ; rf | fr ; rf undefined_unless empty race as racy

Contents 6.3.1 Programming language concurrency: C/C++11: C/C++11 models and tooling 497

onten

ts

Mappings from C/C+4++11 to hardware

6.3.2 Programming language concurrency: C/C++11: Mappings from C/C++11 to hardware

498

Implementability

Can we compile to x867

Operation x86 Implementation
load(non-seq_cst) mov

load(seq-cst) lock xadd(0)
store(non-seq_cst) mov

store(seq_cst) lock xchg
fence(non-seq_cst) no-op

x86-TSO is stronger and simpler.

Theorem

consistent_execution
Eopsem ~ Xwitness
er—ComPl evt_comp ™1
Ess Xis6

valid_execution

We have a mechanised proof that C1x/C++11 behaviour
is preserved.

Can we compile to Power? To ARMv7? To Armv8-A?

Mappings from C/C++11 operations to x86, Power, ARMv7, Itanium originally
developed by C++11 contributors

Supposed paper proof for Power [11], but flawed — see errata (thanks to Lahav et al.
and Manerkar et al.)

More recent mechanised proofs for fragments of C11 and variants by [53, Podkopaev,
Lahav, Vafeiadis]

Contents 6.3.2 Programming language concurrency: C/C++11: Mappings from C/C++11 to hardware 501

https://www.cl.cam.ac.uk/~pes20/cppppc/errata.html

Mappings

Compilation from C/C++11 involves mapping each synchronisation operation to hardware and
restricting compiler optimisations across these.

C/C++11 operation | x86 Armv8-A AArch64 | Power RISC-V
Load Relaxed mov ldr d

Store Relaxed mov str st

Load Acquire mov 1dar? 1d; cmp;bc;isync

Store Release mov stlr lwsync;st

Load Seq_Cst mov ldar® sync; ld;cmp;bc;isync?
Store Seq_Cst xchg? stird sync;st?

Acquire fence nothing | dmb 1d lwsync

Release fence nothing | dmb lwsync

Acq_Rel fence nothing | dmb lwsync

Seq_Cst fence mfence | dmb hwsync

! xchg is implicitly LOCK'd

2 or ldarp for Armv8.3 or later?
3 note that Armv8-A store-release and load-acquire are strong enough for SC atomics (developed for those)
* for Power this is the leading sync mapping. Note how it puts a sync between each pair of SC accesses
Note that the mapping has to be part of the ABI: e.g. one can't mix (by linking) a leading and trailing

sync mapping

Contents 6.3.2 Programming language concurrency: C/C++11: Mappings from C/C++11 to hardware

502

C/C++11 operational model

proved equivalent to that axiomatic model, in Isabelle [?, Nienhuis et al.]

Contents 6.3.2 Programming language concurrency: C/C++11: Mappings from C/C++11 to hardware

503

C/C++11 after 2011

» Clarifying and Compiling C/C++ Concurrency: from C++11 to POWER. Batty, Memarian, Owens, Sarkar, Sewell. [11]

» Synchronising C/C++ and POWER. Sarkar, Memarian, Owens, Batty, Sewell, Maranget, Alglave, Williams. [12]

» Compiler testing via a theory of sound optimisations in the C11/C++11 memory model. Morisset, Pawan, Zappa Nardelli. [?]

» Outlawing ghosts: avoiding out-of-thin-air results. Boehm, Demsky. [54]

» The Problem of Programming Language Concurrency Semantics. Batty, Memarian, Nienhuis, Pichon-Pharabod, Sewell. [?]

» Common Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. Vafeiadis, Balabonski,
Chakraborty, Morisset, Zappa Nardelli. [?]

» Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48]

» An operational semantics for C/C++11 concurrency. Nienhuis, Memarian, Sewell. [?]

» Counterexamples and Proof Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings. Manerkar,
Trippel, Lustig, Pellauer, Martonosi. [55]

» Repairing sequential consistency in C/C++11. Lahav, Vafeiadis, Kang, Hur, Dreyer. [?]

» Mixed-size Concurrency: ARM, POWER, C/C++11, and SC. Flur, Sarkar, Pulte, Nienhuis, Maranget, Gray, Sezgin, Batty,
Sewell. [18]

» Bridging the gap between programming languages and hardware weak memory models. Podkopaev, Lahav, Vafeiadis. [53]

» Cerberus-BMC: a Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C. Lau, Gomes,
Memarian, Pichon-Pharabod, Sewell. [49]

> P0668R5: Revising the C++ memory model. Boehm, Giroux, Vafeiadis. [51]
P0982R1: Weaken Release Sequences. Boehm, Giroux, Vafeiadis. [52]

...and more

vy

...the last two in C4+420

Contents 6.3.2 Programming language concurrency: C/C++11: Mappings from C/C++11 to hardware 504

Contents

The thin-air problem

6.4 Programming language concurrency: The thin-air problem

505

The thin-air problem

The C/C++11 concurrency model (with later modifications) is, as far as is known, sound
w.r.t. existing compiler and hardware optimisations

But... for relaxed atomics, it admits undesirable executions where values seem to appear out of
thin air, as noted at the time [?, 23.9p9]:

[Note: The requirements do allow r1 == r2 == 42 in the following example, with x and y
initially zero: LB+ctrldata+ctrl-single
rl = loadrx(x); r2 = loadrix(y); a:Rux = 42 . b:Ruxy = 42
if (rl==42) | if (r2 = 42) sbwcd,dbrf< sb{ycd
storenx(y,rl) storerix(x,42) Wiy = 42 r dW.px — 42

However, implementations should not allow such behavior. — end note]

Using condensed syntax for brevity, not actual C+411. On the right cd and dd indicate control and data dependencies.

Contents 6.4 Programming language concurrency: The thin-air problem 506

The thin-air problem

[Note: The requirements do allow r1 == r2 == 42 in the following example, with x and y
initially zero: LB+ctrldata+ctrl-single
rl = loadx(x); || r2 = loadmx(y); a:Rpux = 42 . b:Riy = 42
if (rl == 42) if (r2 == 42) sb¢¢cd,d§< sy cd
storeqx(y, rl) storerix(x,42) CWoy = 42 rf dWox — 42

However, implementations should not allow such behavior. — end note]

There is no precise definition of what thin-air behaviour is—if there were, it could simply be
forbidden by fiat, and the problem would be solved. Rather, there are a few known litmus tests
(like the one above) where certain outcomes are undesirable and do not appear in practice (as
the result of hardware and compiler optimisations). The problem is to draw a fine line between
those undesirable outcomes and other very similar litmus tests which important optimisations
do exhibit and which therefore must be admitted.

Contents 6.4 Programming language concurrency: The thin-air problem 507

The thin-air problem
Batty et al. [?] observe that this cannot be solved with any per-candidate-execution model that
uses the C/C++11 notion of candidate execution. Consider:

LB+-ctrldata+ctrl-double
= load,14x(x); r2 = loadpx(y);

if (rl == 42) if (r2 == 42)
storeqx(y,rl) storeqix(x,42)
else

storeqx(x,42)

Compilers will optimise the second thread'’s conditional, removing the control dependency, to:

rl = loadrk(x); || r2 = loadm(y); a:Rpux = 42 b:Rixy = 42
if (rl == 42) storeric(x,42) sbyycd, db< sby cd
storerx(y,rl) Wy = 42 d:Wpx = 42

then compiler or hardware reordering of the second thread will make this observable in practice,
so it has to be allowed.

But this is exactly the same candidate execution as that of LB+ctrldata+ctrl-single, which we
want to forbid.

Contents 6.4 Programming language concurrency: The thin-air problem 508

The thin-air problem

Basic issue: compiler analysis and optimisation passes examine and act on the program text,
incorporating information from multiple executions

Contents 6.4 Programming language concurrency: The thin-air problem

509

The thin-air problem

Possible approaches

» Option 8a: A concurrency semantics for relaxed atomics that permits optimisation and
avoids thin-air executions. Pichon-Pharabod, Sewell. [?]

» Option 8b: Explaining Relaxed Memory Models with Program Transformations. Lahav,
Vafeiadis. [56]

» Option 8c: forbid load-to-store reordering, making rf U sb acyclic [57, 54, 7, ?]

» Option 8d: Promising 2.0: global optimizations in relaxed memory concurrency. Lee,
Cho, Podkopaev, Chakraborty, Hur, Lahav, Vafeiadis [58]

» Option 8e: Modular Relaxed Dependencies in Weak Memory Concurrency. Paviotti,
Cooksey, Paradis, Wright, Owens, Batty. [59]

» Option 8f: Pomsets with Preconditions: A Simple Model of Relaxed Memory.
Jagadeesan, Jeffrey, Riely [60]

» .7 See talk by Boehm and McKenney

Contents 6.4 Programming language concurrency: The thin-air problem 510

https://github.com/CppCon/CppCon2020/blob/main/Presentations/a_relaxed_guide_to_memory_order_relaxed/a_relaxed_guide_to_memory_order_relaxed__paul_e_mckenney___cppcon_2020.pdf

Contents

Other languages

6.5 Programming language concurrency: Other languages

511

Defining PL Memory Models

Option 9: DRF-SC, but exclude races statically
By typing? Rust.

But not expressive enough for high-performance concurrent code, which needs unsafe
blocks.

See RustBelt https://plv.mpi-sws.org/rustbelt/#project (Dreyer, Jung, et al.)
for ongoing research on how to verify those

Contents 6.5 Programming language concurrency: Other languages

512

https://plv.mpi-sws.org/rustbelt/#project

Linux kernel C

Option 10: Axiomatic model for Linux kernel concurrency primitives

Linux uses its own primitives, not C11: READ_ONCE, WRITE_ONCE, smp_load_acquire(),
smp_mb (), ...

Axiomatic model for these:

» Frightening Small Children and Disconcerting Grown-ups: Concurrency in the
Linux Kernel. Alglave, Maranget, McKenney, Parri, Stern. [61]
aiming to capture the intent (including RCU) — but it relies on dependencies. Those in
use are believed /hoped to be preserved by compilers, but in general they are not, so this
is not sound in general w.rt. compiler optimisations

Contents 6.5 Programming language concurrency: Other languages 513

GPU concurrency

» GPU Concurrency: Weak Behaviours and Programming Assumptions. Alglave,
Batty, Donaldson, Gopalakrishnan, Ketema, Poetzl, Sorensen, Wickerson. [62]

» Remote-scope promotion: clarified, rectified, and verified. Wickerson, Batty,
Beckmann, Donaldson. [63]

» Overhauling SC atomics in C11 and OpenCL. Batty, Donaldson, Wickerson. [48].

> Exposing errors related to weak memory in GPU applications. Sorensen,
Donaldson. [?]

» Portable inter-workgroup barrier synchronisation for GPUs. Sorensen, Donaldson,
Batty, Gopalakrishnan, Rakamaric. [64]

Contents 6.5 Programming language concurrency: Other languages 514

JavaScript and WebAssembly

Option 11: broadly follow C/C++11
aim: DRF-SC model, with defined semantics for data-races (no thin-air), in a
per-candidate-execution model, with the same compilation scheme as C/C++...

...tricky. And other issues, as discussed in:

» Repairing and mechanising the JavaScript relaxed memory model. Watt, Pulte,
Podkopaev, Barbier, Dolan, Flur, Pichon-Pharabod, Guo. [65]

» Weakening WebAssembly. Watt, Rossberg, Pichon-Pharabod. [66]

Contents 6.5 Programming language concurrency: Other languages 515

Multicore OCaml

“local data race freedom”

» Bounding data races in space and time. Dolan, Sivaramakrishnan, Madhavapeddy.
[67]

Contents 6.5 Programming language concurrency: Other languages 516

ontents

7 Conclusion:

Conclusion

517

Taking stock

In 2008, all this was pretty mysterious. Now:

Hardware models

> ‘“user’ fragment — what you need for concurrent algorithms. In pretty good shape, for all these
major architectures (albeit still some gaps, and we don't yet have full integration of
ISA+concurrrency in theorem provers)

> ‘“system” fragment — what you need in addition for OS kernels and hypervisors: instruction fetch,
exceptions, virtual memory. Ongoing — e.g. [22, Simner et al.] for Armv8-A self-modifying code
and cache maintenance.

Programming language models

> remains an open problem: C/C++ not bad, but thin-air is a big problem for reasoning about
code that uses relaxed atomics in arbitrary ways

Verification techniques

» |ots of ongoing work on proof-based verification and model-checking above the models, that
we've not had time to cover

Overall: a big success for rigorous semantics inspired by, applied to, and impacting mainstream systems

Contents 7 Conclusion: 518

onten

ts

Appendix: Selected Experimental Results

8 Appendix: Selected Experimental Results:

519

x86 Experimental Results

Contents 8 Appendix: Selected Experimental Results:

520

AArch64 Experimental Results

Contents 8 Appendix: Selected Experimental Results:

521

Power Experimental Results

Contents 8 Appendix: Selected Experimental Results:

522

RISC-V Experimental Results

Contents 8 Appendix: Selected Experimental Results:

523

ontents

9 References

References

524

NB: this is by no means a complete bibliography of all the relevant work — it’s just the material
that the course is most closely based on, and doesn't cover all the previous related work that
that built on, or other parallel and recent developments.

Contents 9 References: 525

[1]

[2]

E]

[4]

5]

o]

[7]

(8l

[9]

The Semantics of x86-CC Multiprocessor Machine Code.
S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and J. Alglave.
In Proc. POPL 2009.

The Semantics of Power and ARM Multiprocessor Machine Code.
J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli.
In Proc. DAMP 2009.

Fences in Weak Memory Models.
J. Alglave, L. Maranget, S. Sarkar, and P. Sewell.
In Proc. CAV.

A better x86 memory model: x86-TSO.
S. Owens, S. Sarkar, and P. Sewell.
In Proc. TPHOLs.

x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors.
P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen.
Communications of the ACM, 53(7):89-97, July 2010.

Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.

Scott Owens.

In ECOOP 2010: Proceedings of the 24th European Conference on Object-Oriented Programming.
[url].

Mathematizing C++ Concurrency.
M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
In Proc. POPL.

Understanding POWER Multiprocessors.
Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
In Proc. PLDI.

Litmus: running tests against hardware.
Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell.

Contents 9 References: 526

https://doi.org/10.1007/978-3-642-14107-2_23

[10]

[11]

[12]

[13]

[14]

[15]

[16]

In Proc. TACAS: the 17th international conference on Tools and Algorithms for the Construction and Analysis of Systems, LNCS
6605.
[url].

Nitpicking C4++ Concurrency.

Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and Susmit Sarkar.

In PPDP 2011: Proceedings of the 13th International ACM SIGPLAN Symposium on Principles and Practices of Declarative
Programming.

[pdf].

Clarifying and Compiling C/C++ Concurrency: from C++411 to POWER.

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell.

In Proceedings of POPL 2012: The 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Philadelphia).

Synchronising C/C++ and POWER.
Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams.
In Proceedings of PLDI, the 33rd ACM SIGPLAN conference on Programming Language Design and Implementation (Beijing).

An Axiomatic Memory Model for POWER Multiprocessors.

Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin,
Peter Sewell, and Derek Williams.

In Proc. CAV, 24th International Conference on Computer Aided Verification, LNCS 7358.

A Tutorial Introduction to the ARM and POWER Relaxed Memory Models, Luc Maranget, Susmit Sarkar, and Peter Sewell.,
October 2012.
[pdf], Draft.

Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory.
Jade Alglave, Luc Maranget, and Michael Tautschnig.

ACM Trans. Program. Lang. Syst., 36(2):7:1-7:74, 2014.

[url].

An integrated concurrency and core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors.
Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit Sarkar, and Peter Sewell.

Contents 9 References: 527

http://dl.acm.org/citation.cfm?id=1987389.1987395
http://www.cl.cam.ac.uk/~pes20/weakmemory/ppdp11.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.1145/2627752

[17]

[18]

[19]

[20]

[21]

In MICRO 2015: Proceedings of the 48th International Symposium on Microarchitecture (Waikiki).
[pdf].

Modelling the ARMv8 architecture, operationally: concurrency and ISA.

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.
In POPL 2016: Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.
Petersburg, FL, USA).

[project page].

[pdf].

Mixed-size Concurrency: ARM, POWER, C/C++11, and SC.

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty, and
Peter Sewell.

In POPL 2017: Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Paris).
[project page].

[pdf].

Simplifying ARM Concurrency: Multicopy-atomic Axiomatic and Operational Models for ARMv8.

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.

In POPL 2018: Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Programming Languages.
[project page].

[pdf

ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur,
Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, lan Stark, Neel Krishnaswami, and Peter Sewell.

In POPL 2019: Proceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming Languages.

Proc. ACM Program. Lang. 3, POPL, Article 71.

[project page].

[pdf].

Cerberus-BMC tool for exploring the behaviour of small concurrent C test programs with respect to an arbitrary axiomatic
concurrency model, Stella Lau, Kayvan Memarian, Victor B. F. Gomes, Kyndylan Nienhuis, Justus Matthiesen, James Lingard,
and Peter Sewell, 2019.

[project page].

Contents 9 References: 528

http://www.cl.cam.ac.uk/~pes20/micro-48-2015.pdf
http://www.cl.cam.ac.uk/~sf502/popl16/index.html
http://www.cl.cam.ac.uk/~pes20/popl16-armv8/top.pdf
http://www.cl.cam.ac.uk/users/pes20/popl17/
http://www.cl.cam.ac.uk/~pes20/popl17/mixed-size.pdf
http://www.cl.cam.ac.uk/~pes20/armv8-mca/
http://www.cl.cam.ac.uk/~pes20/armv8-mca/armv8-mca-draft.pdf
http://www.cl.cam.ac.uk/~pes20/sail/
http://www.cl.cam.ac.uk/users/pes20/sail/sail-popl2019.pdf
http://www.cl.cam.ac.uk/~pes20/cerberus

[github], [web interface].

[22] ARMV8-A system semantics: instruction fetch in relaxed architectures.
Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell.
In ESOP 2020: Proceedings of the 29th European Symposium on Programming.
[project page].
[pdf].

[23] A Shared Memory Poetics.
Jade Alglave.
PhD thesis, |I'Université Paris 7 — Denis Diderot, 2010.
http://www0.cs.ucl.ac.uk/staff/J.Alglave/these.pdf.

[24] The C11 and C++11 Concurrency Model.
Mark John Batty.
PhD thesis, University of Cambridge, 2014.
2015 SIGPLAN John C. Reynolds Doctoral Dissertation award and 2015 CPHC/BCS Distinguished Dissertation Competition
winner.

[pdf].

[25] The Semantics of Multicopy Atomic ARMv8 and RISC-V.
Christopher Pulte.
PhD thesis, University of Cambridge, 2018.
https://www.repository.cam.ac.uk/handle/1810/292229.

[26] A no-thin-air memory model for programming languages.
Jean Pichon-Pharabod.
PhD thesis, University of Cambridge, 2018.
https://www.repository.cam.ac.uk/handle/1810/274465.

[27] The herdtools7 tool suite, Jade Alglave and Luc Maranget.

diy.inria.fr, https://github.com/herd/herdtools7/.
Accessed 2023-08-30.

Contents 9 References: 529

https://github.com/rems-project/cerberus
http://cerberus.cl.cam.ac.uk/bmc.html
http://www.cl.cam.ac.uk/~pes20/iflat
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf
http://www0.cs.ucl.ac.uk/staff/J.Alglave/these.pdf
https://www.cs.kent.ac.uk/people/staff/mjb211/docs/toc.pdf
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/274465
diy.inria.fr
https://github.com/herd/herdtools7/

[28] RMEM: Executable operational concurrency model exploration tool for ARMv8, RISC-V, Power, and x86, Susmit Sarkar, Peter
Sewell, Luc Maranget, Shaked Flur, Christopher Pulte, Jon French, Ben Simner, Scott Owens, Pankaj Pawan, Francesco Zappa
Nardelli, Sela Mador-Haim, Dominic Mulligan, Ohad Kammar, Jean Pichon-Pharabod, Gabriel Kerneis, Alasdair Armstrong,
Thomas Bauereiss, and Jeehoon Kang, 2010-2023.

[github], [web interface].

[29] The isla-axiomatic tool, Alasdair Armstrong.
https://isla-axiomatic.cl.cam.ac.uk/.
Accessed 2020-10-10.

[30] Intel 64 and IA-32 Architectures Software Developer's Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4,
Intel Corporation.
https://software.intel.com/content/www/us/en/develop/download/
intel-64-and-ia-32-architectures-sdm- combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html, May 2020.
Accessed 2020-09-23. 5052 pages.

[31] AMDG64 Architecture Programmer’s Manual Volumes 1-5, Advanced Micro Devices, Inc.
https://developer.amd.com/resources/developer-guides-manuals/, April 2020.
Accessed 2020-09-23. 3165 pages.

[32] Arm Architecture Reference Manual: Armv8, for Armv8-A architecture profile, Arm.
https://developer.arm.com/documentation/ddi0487/fc, July 2020.
Accessed 2020-09-23. 8248 pages.

[33] Power ISA Version 3.0B, IBM.
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0, March 2017.
Accessed 2020-09-23. 1258 pages.

[34] The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Version 20191213, RISC-V Foundation.
https://riscv.org/technical/specifications/, December 2019.
Contributors: Arvind, Krste Asanovi¢, Rimas Avizienis, Jacob Bachmeyer, Christopher F. Batten, Allen J. Baum, Alex Bradbury,
Scott Beamer, Preston Briggs, Christopher Celio, Chuanhua Chang, David Chisnall, Paul Clayton, Palmer Dabbelt, Ken Dockser,
Roger Espasa, Shaked Flur, Stefan Freudenberger, Marc Gauthier, Andy Glew, Jan Gray, Michael Hamburg, John Hauser, David
Horner, Bruce Hoult, Bill Huffman, Alexandre Joannou, Olof Johansson, Ben Keller, David Kruckemyer, Yunsup Lee, Paul
Loewenstein, Daniel Lustig, Yatin Manerkar, Luc Maranget, Margaret Martonosi, Joseph Myers, Vijayanand Nagarajan, Rishiyur

Contents 9 References: 530

https://github.com/rems-project/rmem
http://www.cl.cam.ac.uk/users/pes20/rmem
https://isla-axiomatic.cl.cam.ac.uk/
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.arm.com/documentation/ddi0487/fc
https://openpowerfoundation.org/?resource_lib=power-isa-version-3-0
https://riscv.org/technical/specifications/

[35]

[36]

[37]

[38]

[39]

[40]

Nikhil, Jonas Oberhauser, Stefan O'Rear, Albert Ou, John Ousterhout, David Patterson, Christopher Pulte, Jose Renau, Josh
Scheid, Colin Schmidt, Peter Sewell, Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Caroline
Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs, Andrew Waterman, Robert Watson, Derek Williams,
Andrew Wright, Reinoud Zandijk, Sizhuo Zhang. 238 pages. Accessed 2023-08-30.

The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20211203.
https://riscv.org/technical/specifications/, December 2021.
Accessed 2023-08-30. 155 pages.

The Power of Processor Consistency.

Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger.

In Lawrence Snyder, editor, Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA '93,
Velen, Germany, June 30 - July 2, 1993.

[url].

Efficient and correct execution of parallel programs that share memory.
Dennis Shasha and Marc Snir.
ACM Trans. Program.Lang. Syst., 10(2):282-312, 1988.

Trustworthy specifications of ARM(®) v8-A and v8-M system level architecture.

Alastair Reid.

In Ruzica Piskac and Muralidhar Talupur, editors, 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016.

[url].

Who guards the guards? formal validation of the Arm v8-m architecture specification.
Alastair Reid.

Proc. ACM Program. Lang., 1(OOPSLA):88:1-88:24, 2017.

[url].

Safe optimisations for shared-memory concurrent programs.

Jaroslav Sevcik.

In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011.

[url].

Contents 9 References: 531

https://riscv.org/technical/specifications/
https://doi.org/10.1145/165231.165264
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1145/3133912
https://doi.org/10.1145/1993498.1993534

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Memory Consistency Models for Shared-Memory Multiprocessors.
Kourosh Gharachorloo.
PhD thesis, Stanford University, 1995.

Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop Gupta, and John L. Hennessy.

In Jean-Loup Baer, Larry Snyder, and James R. Goodman, editors, Proceedings of the 17th Annual International Symposium on
Computer Architecture, Seattle, WA, USA, June 1990.

[url].

Designing Memory Consistency Models for Shared-Memory Multiprocessors.
S. V. Adve.
PhD thesis, University of Wisconsin-Madison, 1993.

Weak Ordering - A New Definition.

Sarita V. Adve and Mark D. Hill.

In Jean-Loup Baer, Larry Snyder, and James R. Goodman, editors, Proceedings of the 17th Annual International Symposium on
Computer Architecture, Seattle, WA, USA, June 1990.

[url].

The Java memory model.

Jeremy Manson, William Pugh, and Sarita V. Adve.

In Jens Palsberg and Martin Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005.

[url].

On Validity of Program Transformations in the Java Memory Model.

Jaroslav Sevcik and David Aspinall.

In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 7-11, 2008,
Proceedings.

[url].

Foundations of the C++ concurrency memory model.
Hans-Juergen Boehm and Sarita V. Adve.

Contents 9 References: 532

https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1007/978-3-540-70592-5_3

In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.
[url].

[48] Overhauling SC atomics in C11 and OpenCL.
Mark Batty, Alastair F. Donaldson, and John Wickerson.
In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016.

[url].

[49] Cerberus-BMC: a Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C.
Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and Peter Sewell.
In CAV 2019: Proc. 31st International Conference on Computer-Aided Verification.
[project page].
[pd].

[50] Exploring C Semantics and Pointer Provenance.
Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and Peter
Sewell.
In POPL 2019: Proceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming Languages.
Proc. ACM Program. Lang. 3, POPL, Article 67. Also available as ISO/IEC JTC1/SC22/WG14 N2311.
[project page].
[pdf].

[51] PO0668R5: Revising the C++ memory model, Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiadis.
WG21 wg21.1link/p0668, November 2018.

[52] PO0982R1: Weaken Release Sequences, Hans-J. Boehm, Olivier Giroux, and Viktor Vafeiadis.
WG21 wg21.1ink/p0982, November 2018.

[563] Bridging the gap between programming languages and hardware weak memory models.
Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis.
Proc. ACM Program. Lang., 3(POPL):69:1-69:31, 2019.
[url].

Contents 9 References: 533

https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/2837614.2837637
http://www.cl.cam.ac.uk/~pes20/cerberus
http://www.cl.cam.ac.uk/users/pes20/cerberus/bmc-cerberus.pdf
http://www.cl.cam.ac.uk/~pes20/cerberus
http://www.cl.cam.ac.uk/users/pes20/cerberus/cerberus-popl2019.pdf
wg21.link/p0668
wg21.link/p0982
https://doi.org/10.1145/3290382

[54]

[55]

[56]

[57]

[58]

[59]

Outlawing ghosts: avoiding out-of-thin-air results.

Hans-Juergen Boehm and Brian Demsky.

In Jeremy Singer, Milind Kulkarni, and Tim Harris, editors, Proceedings of the workshop on Memory Systems Performance and
Correctness, MSPC 14, Edinburgh, United Kingdom, June 13, 2014.

[url].

Counterexamples and Proof Loophole for the C/C++ to POWER and ARMv7 Trailing-Sync Compiler Mappings.
Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.

CoRR, abs/1611.01507, 2016.

[url].

Explaining Relaxed Memory Models with Program Transformations.

Ori Lahav and Viktor Vafeiadis.

In John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou, editors, FM 2016: Formal Methods - 21st
International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings.

[url].

Relaxed Separation Logic: A Program Logic for C11 Concurrency.

Viktor Vafeiadis and Chinmay Narayan.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &
Applications.

[url].

Promising 2.0: global optimizations in relaxed memory concurrency.

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020.

[url].

Modular Relaxed Dependencies in Weak Memory Concurrency.

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty.

In Peter Miiller, editor, Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings.

[url].

Contents 9 References: 534

https://doi.org/10.1145/2618128.2618134
http://arxiv.org/abs/1611.01507
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1007/978-3-030-44914-8_22

[60]

[61]

[62]

[63]

[64]

[65]

Pomsets with Preconditions: A Simple Model of Relaxed Memory.
Radha Jagadeesan, Alan Jeffrey, and James Riely.
In Proceedings of OOPSLA.

Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel.

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern.

In Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018.

[url].

GPU Concurrency: Weak Behaviours and Programming Assumptions.

Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and
John Wickerson.

In Ozcan Ozturk, Kemal Ebcioglu, and Sandhya Dwarkadas, editors, Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS '15, Istanbul, Turkey, March 14-18, 2015.
[url].

Remote-scope promotion: clarified, rectified, and verified.

John Wickerson, Mark Batty, Bradford M. Beckmann, and Alastair F. Donaldson.

In Jonathan Aldrich and Patrick Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA,
USA, October 25-30, 2015.

[url].

Portable inter-workgroup barrier synchronisation for GPUs.

Tyler Sorensen, Alastair F. Donaldson, Mark Batty, Ganesh Gopalakrishnan, and Zvonimir Rakamaric.

In Eelco Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016.

[url].

Repairing and mechanising the JavaScript relaxed memory model.
Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod, and
Shu-yu Guo.

Contents 9 References: 535

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2814270.2814283
https://doi.org/10.1145/2983990.2984032

[66]

[67]

In Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020.
[url].

Weakening WebAssembly.
Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod.
Proc. ACM Program. Lang., 3(OOPSLA):133:1-133:28, 2019.

[url].

Bounding data races in space and time.

Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy.

In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.

[url].

Contents 9 References: 536

https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3360559
https://doi.org/10.1145/3192366.3192421

	Introduction
	Memory
	Multiprocessors
	Sequential consistency
	Architecture specification
	Litmus tests and candidate executions
	Why?

	x86
	x86 basic phenomena
	Creating a usable model
	x86-TSO operational model
	x86-TSO spinlock example and TRF
	Axiomatic models
	x86-TSO axiomatic model

	Validating models
	Arm-A, IBM Power, and RISC-V
	Phenomena
	More features
	ISA semantics
	Armv8-A/RISC-V operational model
	Armv8-A/RISC-V axiomatic model
	Validation

	Programming language concurrency
	Introduction
	Java
	C/C++11
	The thin-air problem
	Other languages

	Conclusion
	Appendix
	Appendix: Selected Experimental Results
	References

