
Relaxed Memory

Multicore Semantics course notes

Peter Sewell Shaked Flur

Working draft of 2025-02-13

Contents

Acknowledgements 5

Reading guide 6
Readership . 6
Structure . 6
Use as course material . 7

1 Introduction 8
1.1 Memory . 8
1.2 Out-of-order and speculative uniprocessors . 9
1.3 Shared-memory multiprocessors . 9
1.4 Sequential consistency . 10
1.5 Running the example experimentally, on hardware 11
1.6 Architecture specifications . 14
1.7 Programming language compiler effects . 19
1.8 Programming language specifications . 20
1.9 Status of the models . 21

I SC, x86, tools, and approach 23

2 x86 basic phenomena 24
2.1 Litmus tests and candidate executions . 24
2.2 SB: store buffering? . 25
2.3 LB: load request buffering? . 26
2.4 MP: message passing? . 27
2.5 SB+rfi-pos: write buffers with read-back? . 28
2.6 IRIW: independent reads of independent writes? 29
2.7 WRC: write-to-read causality? . 30
2.8 SB+mfences: restoring order with fences . 31
2.9 Read-modify-write instructions . 32
2.10 Synchronising power of locked instructions . 33

3 x86: some vendor documentation history 34
3.1 pre-IWP (before Aug. 2007) . 34
3.2 IWP/AMD3.14/x86-CC . 35
3.3 Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010) 36
3.4 AMD APM version 3.15 (Nov. 2009) . 37
3.5 Intel SDM rev.80 (June 2023) . 37
3.6 AMD APM 4.07 (April 2020) . 39

4 x86-TSO: creating a good de facto standard model 41

2

Contents 3

5 Operational and axiomatic concurrency model definitions 43

6 SC, operationally 45
6.1 An operational SC model . 45

7 x86-TSO, operationally 49
7.1 An operational x86-TSO model . 49
7.2 x86-TSO operational example: SB . 51
7.3 x86-TSO operational example: spinlocks . 53
7.4 Discussion . 60

8 Making operational models executable as a test oracle: RMEM 63

9 SC, axiomatically 70
9.1 Execution graphs, formally . 70
9.2 Coherence . 72
9.3 An axiomatic SC model . 80
9.4 Equivalence of the operational and axiomatic SC models 81

10 x86-TSO, axiomatically 85
10.1 Coherence in x86-TSO . 85
10.2 Local ordering and the external relations . 87
10.3 An x86-TSO axiomatic model, without MFENCE and LOCK’d instructions 87
10.4 x86-TSO axiomatic examples . 88
10.5 Equivalence of the operational and axiomatic x86-TSO models, without MFENCE

and LOCK’d instructions . 88
10.6 Relational algebra Cat notation for axiomatic model definitions 89
10.7 An x86-TSO axiomatic model, with LOCK’d instructions and MFENCE 90
10.8 Equivalence of the operational and axiomatic x86-TSO models 91

11 Making axiomatic models executable: Herd and Isla 92

12 Running tests on hardware: Litmus 97

13 Test families and test generation: Diy 99
13.1 Organising tests . 99
13.2 Generating single tests from cycles . 101
13.3 Generating families of tests . 101

14 Validating the model: why should one believe it? 104
14.1 Sound with respect to existing hardware: experimental validation 104
14.2 Sound with respect to future hardware; loose enough to permit future microar-

chitectural innovation . 106
14.3 Opaque with respect to hardware implementation detail 106
14.4 Complete with respect to hardware . 107
14.5 Strong enough for software . 107
14.6 Precise and unambiguous . 107
14.7 Clear . 107
14.8 Executable as a test oracle . 107
14.9 Incrementally executable . 107
14.10 Mathematically validated . 108
14.11 Authoritative . 108
14.12 Accurately capturing the architectural intent 108

Contents 4

14.13 Consistency with the de facto standard . 108

II Arm-A, IBM Power, and RISC-V 109

15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 110
15.1 Architectures and Implementations . 110

15.1.1 Arm-A . 111
15.1.2 IBM Power . 112
15.1.3 RISC-V . 113

15.2 Relaxed behaviour and abstract microarchitecture, informally 113
15.2.1 Microarchitecture optimisations and relaxed architecture specifications114
15.2.2 The pros and cons of relaxed architecture specifications 115
15.2.3 Abstract microarchitecture – structure 115
15.2.4 Abstract microarchitecture – behaviour 119

15.3 Litmus tests . 121
15.3.1 Candidate executions . 122

16 Arm-A, IBM Power, and RISC-V phenomena 124
16.1 Non-mixed-size Phenomena . 124

16.1.1 Coherence . 124
16.1.2 Out-of-order execution . 127
16.1.3 Dependencies . 131
16.1.4 Speculative execution - branching . 137
16.1.5 Instruction Barrier . 140
16.1.6 Write forwarding . 141
16.1.7 Speculative execution - restarts . 142
16.1.8 Satisfy same address reads out-of-order 145
16.1.9 Write forwarding from a non-speculative write 146
16.1.10 Multi-step read satisfaction . 148
16.1.11 Detour . 151
16.1.12 Write subsumption . 151
16.1.13 Symbolic forwarding . 155
16.1.14 Multi-Copy Atomicity . 156
16.1.15 Atomic Memory Modification . 161
16.1.16 Release/Acquire Memory Accesses . 164

16.2 Mixed-Size Phenomena . 167
16.2.1 Reading from Multiple Writes . 168
16.2.2 Mixed-size Coherence . 169
16.2.3 Single-copy Atomicity . 170
16.2.4 Atomicity of register accesses . 174
16.2.5 Mixed-size Multi-copy Atomicity . 176
16.2.6 Mixed-size write-forwarding . 178

III Systems concurrency 182

IV Reflections, related work, and history 183

References 184

Acknowledgements 5

Acknowledgements

Many thanks are due to all those who have contributed to the research underlying this text, both
in collaboration with the authors and separately, especially (in roughly chronological order)
Susmit Sarkar, Francesco Zappa Nardelli, Jade Alglave, Thomas Braibant, Scott Owens, Tom
Ridge, Magnus Myreen, Luc Maranget, Jaroslav Ševčík, Anthony Fox, Samin Istiaq, Mark Batty,
Kathryn E. Gray, Tjark Weber, Kayvan Memarian, Sela Mador-Haim, Rajeev Alur, Milo M.K.
Martin, Gabriel Kerneis, Dominic Mulligan, Ali Sezgin, Kyndylan Nienhuis, Robert M. Norton,
Jon French, Alasdair Armstrong, Thomas Bauereiss, Prashanth Mundkur, Mark Wassell, Brian
Campbell, Neel Krishnaswami, Ian Stark, Ben Simner, and Thibaut Pérami.

This work would not have been possible without our main industry collaborators: Derek
Williams (IBM); Richard Grisenthwaite, Will Deacon, Alastair Reid, and Graeme Barnes (Arm);
Hans Boehm, Paul McKenney, and other members of the C++ concurrency group; and Daniel
Lustig and other members of the RISC-V concurrency group.

Thanks also to Ori Lahav and Viktor Vafeiadis for discussion of the current models for
C/C++, to Paul Durbaba for his 2021 Part III dissertation mechanising the x86-TSO axiomat-
ic/operational correspondence proof, and to many others for discussions, including: Alan Stern,
Andy Glew, Anthony Williams, Clark Nelson, Dave Dice, David Christie, Doug Lea, Gil Neiger,
Jasmin Blanchette, John Baldwin, John Wickerson, Keir Fraser, Konrad Slind, Lawrence Crowl,
Michael Fetterman, Michael Wong, Mike Gordon, Nathan Chong, Nick Maclaren, Paul Loewen-
stein, Peter Dimov, Raul Silvera, Robert N.M. Watson, Warren Hunt, and William Collier.

This text is partly based on slides for the semantics part of the University of Cambridge
MPhil and Part II/III course Multicore Semantics and Programming, given by Sewell and Pulte
from 2010 to date. Thanks to all the students who have tested the exposition, and to Tim Harris
who has given the Concurrent Algorithms part, which is not covered here.

This work was funded in part by UK Research and Innovation (UKRI) under the UK gov-
ernment’s Horizon Europe funding guarantee (ERC AdG SAFER, EP/Y035976/1, Sewell). This
work has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (ERC AdG ELVER, grant agreement
No 789108, Sewell). This work was partly supported by EPSRC grants EP/K008528/1 (Pro-
gramme Grant REMS: Rigorous Engineering for Mainstream Systems), EP/F036345 (Reasoning
with Relaxed Memory Models), EP/H005633 (Leadership Fellowship, Sewell), and EP/H027351
(Postdoctoral Research Fellowship, Sarkar); the Scottish Funding Council (SICSA Early Career
Industry Fellowship, Sarkar); an ARM iCASE award (Pulte); ANR grant WMC (ANR-11-JS02-
011, Zappa Nardelli, Maranget); EPSRC IAA KTF funding; Arm donation funding; IBM donation
funding; ANR project ParSec (ANR-06-SETIN-010); and INRIA associated team MM. This work
was supported in part by the CIFV project sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8650-18-C-
7809. The views, opinions, and/or findings contained in this paper are those of the authors
and should not be interpreted as representing the official views or policies, either expressed or
implied, of the Department of Defense or the U.S. Government.

Reading guide 6

Reading guide

Readership

Relaxed memory is both technical and pervasive, cutting across many areas and communities.
We aim for this text to be broadly useful to all these groups:

• hardware designers and validation engineers, for building processors that conform to a
specific concurrency model;

• programming language implementers, for building language implementations that con-
form to a specific programming language model, above one or more architecture models;

• concurrent programmers, for writing software that is correct above the underlying archi-
tecture or language-level model;

• hardware architects and programming language designers, for precisely specifying the
allowed behaviour of their hardware architectures and programming languages;

• semantics and verification researchers, for building theory and tools to reason about con-
current hardware and software with respect to these models;

• advanced undergraduate and postgraduate students; and

• those who teach this material.

It cuts across microarchitecture, architecture, programming languages, concurrent algorithms,
concurrent programming, and mathematical semantics. Some background in any of these would
help, but very few readers will have background in all of them, so we have tried to write in a
way that will make sense to anyone.

To precisely define the allowed behaviour of each concurrency model, we use some discrete
mathematics that, although simple, may not be familiar for all readers. We include brief intro-
ductions to the notation as we go, to make this somewhat self-contained, but it’s designed to
still make sense if one skips over the more mathematical parts.

Relaxed memory does involve quite a number of subtle phenomena, and not all readers will
need to know about all of them. This is designed to serve both as a tutorial, introducing the
most important issues first, and as a reference, covering the phenomena and models in detail.
We recommend reading the former chapters first, without going into all of the latter, and then
going back to those as needed.

Structure

Chapter 1 gives a brief and informal introduction to relaxed-memory concurrency, in architec-
tures and programming languages, and to the role of precise models in defining what concurrent
behaviour is allowed by particular abstractions.

We begin the main text in Part I with the simple (but normally unrealistic) sequential con-
sistency model (SC), and the x86 architecture model. x86 has a simpler and stronger model
(less relaxed, closer to SC) than the other main architectures we consider, so it provides a good
context to see some of the basic phenomena and the techniques and tools we use for modelling
and validation, before we get to the complexities of those other architectures.

In Part II we continue with Arm-A, IBM Power, and RISC-V. These are broadly similar to each
other, though not identical; they are much more relaxed than x86.

In both Part I and Part II we start with the relaxed-memory phenomena that the archi-
tecture exhibits, explaining them informally with litmus-test examples, and discussion of how

Reading guide 7

the observable behaviour might arise from microarchitectural design choices. We then de-
scribe how one can express the architectural intent in general, with precise models that define
what behaviour is allowed for arbitrary code. We do this using models in two complementary
styles: abstract-microarchitectural operational models, that let one explain and understand the
behaviour based on intuitions from hardware implementation, and axiomatic models, that more
concisely (but perhaps less intuitively) define the allowed behaviour. Both are expressed math-
ematically, but we explain the small amount of required maths along the way, to make this as
broadly accessible as possible.

In both these parts we focus just on the “user” architecture, including loads, stores, read-
modify-write operations, barriers, and other synchronisation mechanisms, on coherent write-
back memory, sufficient for many concurrent algorithms. This excludes all “systems” aspects:
other memory types and “non-temporal” operations, self-modifying code and instruction/data-
cache maintenance, virtual memory and TLB maintenance, exceptions and interrupts, and de-
vice memory. Some of these are now reasonably well-understood for some architectures, and
we may cover them in a future revision; others remain open research questions.

For now, the text covers only this “user” architecture-level concurrency. Future versions may
also cover programming language concurrency, “systems” architecture-level concurrency, and
the history of the subject.

Use as course material

As mentioned, this text is partly based on the semantics part of the University of Cambridge
Computer Laboratory course Multicore Semantics and Programming. This is both a masters-level
course, in the MPhil in Advanced Computer Science, and a 3rd- or 4th-year undergraduate
course (Part II/Part III in Cambridge terms). The aim of the semantics part is to give the stu-
dents a good understanding of the basic architecture-concurrency phenomena and how they are
captured in operational and axiomatic models, along with the general issues in programming-
language relaxed concurrency and a briefer introduction to the C/C++ model. The slides are
available online. The semantics part of the course is 5 two-hour blocks, divided into 10 one-hour
sessions roughly as below.

1–2 Chapters 1–5: introduction and x86 basic phenomena
3–4 Chapters 6–10: operational and axiomatic models for sequential consistency and x86
5 Chapters 11–14:validating the models
6 Chapter 16: Arm-A, IBM Power, and RISC-V – the basic phenomena
7 Chapter 16: Arm-A, IBM Power, and RISC-V – a sample of further subtleties
8–9 Arm-A, IBM Power, and RISC-V – operational and axiomatic models
10 an introduction to programming-language relaxed concurrency

One could also pull out a briefer treatment, e.g. for a one-hour lecture within a computer archi-
tecture, concurrent programming, and semantics course.

Chapter 1

Introduction

This text addresses a fundamental question for concurrent programming: what is the
programmer-visible behaviour of memory? We look at this for several mainstream processor ar-
chitectures: x86, Arm-A, IBM Power, and RISC-V; and for higher-level programming languages,
especially C and C++. We discuss the main phenomena by example, explaining how they arise
from microarchitecture and compiler implementation optimisations (though this is not a text on
hardware or compiler design); show how one can precisely specify real-world relaxed memory
models, in operational and axiomatic styles, that define the allowed behaviour of concurrent
programs; discuss how models can be validated and implementations tested; and consider the
relationships between models. These models give a solid basis for high-performance concurrent
programming, criteria for hardware and compiler implementation correctness, and a foundation
for semantic reasoning and verification tool building.

This is largely based on a line of research from 2008–2024 by the authors and many others,
including key industry colleagues; it builds also on much earlier research. We mention a few key
points of this context as we go along, but the main narrative describes the current state of the
art, as we understand it, not the historical development. In a future version we aim to include a
more detailed survey of the related work.

1.1 Memory

The abstraction of memory, and the organisation of computing devices into separate memory
and processing components, dates back to the beginning of general-purpose computing. In
1837 Charles Babbage, describing his planned but unrealised Analytical Engine, wrote:

The calculating part of the engine may be divided into two portions

1st The Mill in which all operations are performed

2nd The Store in which all the numbers are originally placed and to which the numbers
computed by the engine are returned.

[On the Mathematical Powers of the Calculating Engine, Charles Babbage [44]]

Here the store was to be able to hold 1000 numbers, each 40 decimal digits, while the mill was to
be able to compute the four arithmetic operations and comparisons, controlled by a program on
punched cards. Alan Turing’s 1936 mathematical model of general-purpose computing [152],
intended to characterise what is in principle computable, had an unbounded tape, divided into
squares each holding one of a finite number of symbols, an m-configuration from a finite set
of states, and a finite table determining the steps of the machine. The late 1940s and early
1950s saw the first general-purpose stored-program electronic computers, including Mauchly
and Eckert’s EDVAC (the design of which is detailed in von Neumann’s First draft of a report

8

Chapter 1 Introduction 9

on the EDVAC [113, 153]), Turing et al’s ACE [151, 159], the Manchester Baby [158], and the
University of Cambridge EDSAC [157]. Each of these executed instructions sequentially in the
order they were given in the program, issuing each required memory access to the memory and
waiting for the memory to complete its operation before continuing.

Semantically, these are all straightforward: one can regard memory as an array or sequence
of values, with the processor taking a step per instruction, in program order, and each step
reading or writing (one location of) memory if necessary. Informally, this can be depicted as
below.

Memory

Processor

W R

(Properly characterising early machines involves many other questions, e.g. whether program
and data memory are distinguished, and whether memory addresses must be static in the pro-
gram or can be dynamically computed, but those are not relevant here.)

1.2 Out-of-order and speculative uniprocessors

Early high-performance machines in the 1950s and 1960s, such as the ILLIAC II, IBM Stretch,
CDC 6600, and IBM System/360 Model 91, introduced a range of sophisticated hardware ex-
ecution optimisations: pipelined execution, to simultaneously execute the successive stages of
instructions, superscalar execution, to simultaneously dispatch multiple instructions to different
execution units, out-of-order execution, to let program-order-later instructions go ahead when
some of their program-order-predecessors are blocked waiting for some resource, such as a
memory read, and speculative execution, to let instructions go ahead before it is known for sure
that they will be reached, with roll-back as needed.

These let the hardware automatically extract some of the instruction-level parallelism (ILP)
implicit in the instruction stream, but, at least in that uniprocessor context, they preserved the
simple sequential programmer’s model shown above: the hardware could do some out-of-order
and speculative execution, but it would prevent or roll back anything that violated that model,
so the programmer could still assume that instructions were executed one at a time in program
order (apart from some imprecise exception cases).

1.3 Shared-memory multiprocessors

Shared-memory multiprocessors, with multiple processors that can interact via a shared memory,
date back at least to the 1962 Burroughs D825, and to the 1972 IBM System 370/158MP. For
many years they remained of relatively niche interest, as continued sequential performance
increases came from smaller transistor sizes, increased clock frequencies, and better extraction
of instruction-level parallelism by advanced processor designs. In the early 2000s those increases
slowed, as they reached power-density, scaling, and ILP limits, and multiprocessors started to
become commonplace, e.g. with the 2005 introduction of the Intel Core 2 Duo. Now they are
ubiquitous.

Shared-memory concurrency has thus long become mainstream — but understanding, de-
signing, and programming concurrent systems remains very hard. We focus here on the shared-
memory abstractions provided by general-purpose processors and programming languages, but

Chapter 1 Introduction 10

similar issues arise in (and similar techniques and models can be used for) the abstractions pro-
vided by GPUs and other accelerators, by supercomputer interconnects, and in datacentre-scale
and internet-scale distributed databases: wherever one needs multiple concurrent computation
over the same shared data, and the need for performance means that everything cannot be
simply synchronised.

Sometimes shared memory is presented in opposition to message-passing models of concur-
rency, but in reality the two are tightly intertwined. Modern high-performance interconnects
provide a programmer-level shared-memory abstraction above message-passing hardware, and
distributed databases provide a shared-memory abstraction above internet message passing.

1.4 Sequential consistency

The most obvious semantics for a shared-memory multiprocessor is sequential consistency, as
articulated in 1979 by Lamport [97]. A machine has a sequentially consistent (SC) shared
memory if:

the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, respecting the order specified by the program

or, in other words, if each processor appears to execute in order, with their effects on memory
interleaved in some arbitrary way. One can informally depict the programmer’s model for such
a machine as below.

Shared Memory

Thread1 Threadn

W R RW

Much previous theory research has assumed this SC model, and probably many programmers
still do. To the best of our knowledge, the Burroughs D825 did behave like that, in the 1960s,
but more recent machines do not. To investigate how modern multiprocessors actually behave,
we start with a very simple example, of a shared-memory program intended to enforce mutual
exclusion between two critical sections:

x=1;
if (y==0) {...critical section...}

Thread 0
y=1;
if (x==0) {...critical section...}

Thread 1

Initial state: x=0; y=0;

For the moment, we’ll use a C-like pseudocode and leave the per-thread semantics implicit,
just regarding each thread as an automoton (a labelled transition system) that performs a se-
quence of memory accesses. This example is already highly simplified with respect to practically
useful algorithms for mutual exclusion: it’s a one-shot algorithm (not supporting repeated use),
it’s for exactly two threads, it’s inline rather than abstracted into a library, and it may have poor
performance and fairness properties – but none of that is relevant right now.

Intuitively, one might think that the algorithm is correct iff the two threads cannot both be
executing their critical sections at the same time. However, that is a very intensional property
– it’s phrased in terms of the internal details of how execution happens, which is not directly
observable, rather than the extensional programmer-visible behaviour – and it refers implicitly
to a notion of global time, which we will see is problematic. We therefore simplify it still further,
replacing the conditionals and their critical-section bodies with just reads of the shared variables:

Chapter 1 Introduction 11

x=1;
r0=y

Thread 0
y=1;
r1=x

Thread 1

Initial state: x=0; y=0;

(writing r0 and r1 for thread-local variables) and ask whether a final state with r0=0 and r1=0

is possible, instead of whether the threads can be executing their critical sections at the same
time. Small concurrency test cases like these are known as litmus tests, as they indicate what
behaviour a model or implementation might allow.

For such a simple example, one can enumerate all the possible interleavings in the SC model,
with the final states of each. There are six possible SC interleavings – the six possible paths
through the transition system below – leading to three distinct final states:

a0:t1:Wy=1
//
a1:t1:Rx=1 // r0=1 r1=0a3:t0:Ry=0

66

a4:t1:Wy=1

''

a5:t1:Rx=1

''minit

a6:t0:Wx=1
66

a7:t1:Wy=1 ((

a8:t0:Ry=1

77

a9:t1:Rx=1

''

r0=1 r1=1

r0=1 r1=1

r0=1 r1=1

r0=1 r1=1a10:t0:Wx=1

77

a11:t1:Rx=0 ((

a12:t0:Ry=1

77

a13:t0:Wx=1//
a14:t0:Ry=1

// r0=0 r1=1

The initial memory state minit has x=0 and y=0, and each memory read or write transition
is labelled with a unique event ID ai, its thread tj , and its address and value. We elide the
details of the intermediate memory states. None of the final states have r0=0 and r1=0, so in the
SC model this code does enforce mutual exclusion. In the SC model one can also reason more
briefly: because in any SC execution there must be a total order over all the operations, and
each thread executes in program order, either the x=1 or y=1 must go first, then because there
are no other writes, the other thread’s read of that must see that value, so one cannot end up
with r0=0 and r1=0.

1.5 Running the example experimentally, on hardware

Now we’ll run the example on some modern multiprocessors, to see experimentally what actu-
ally happens. To focus on the behaviour of the hardware, rather than the combination of the
hardware and some compiler, we’ll first rewrite the test in assembly code, to ensure that we
know exactly what is being tested. Here are x86 and Arm-A (AArch64) versions of the test:

movq $1, (x) //W x=1
movq (y), %rax//R rax=y

Thread 0
movq $1, (y) //W y=1
movq (x), %rax//R rax=x

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;

SB x86

Final: 0:rax=0; 1:rax=0;

STR X0,[X1] //W x=1
LDR X2,[X3] //R R2=y

Thread 0
STR X0,[X1] //W y=1
LDR X2,[X3] //R R2=x

Thread 1

Initial state: 0:X3=y; 0:X1=x; 0:X0=1; 0:X2=0;

1:X3=x; 1:X1=y; 1:X0=1; 1:X2=0; y=0; x=0;

SB AArch64

Final: 0:X2=0; 1:X2=0;

Assembly syntax In these architecture-level litmus tests, there is an assembly language pro-
gram for each hardware thread, which run concurrently. Each per-thread program is a list of
assembly instructions, which map fairly straightforwardly onto the machine-code instructions
that processors actually execute, and labels that identify program points. For x86, two styles of
syntax are in widespread use: Intel syntax (used in the Intel manuals) and AT&T syntax (domi-
nant in Unix environments). These x86 litmus tests use a variant of the latter: the movq $1,(x)

Chapter 1 Introduction 12

is a 64-bit (quad-word) store of constant 1 to location x and movq (y),%rax is a 64-bit load of
location y into 64-bit register rax. Intel syntax and the Arm-A syntax we use have the opposite
argument order to that, destination before source. In the Arm-A test, which uses the Arm-A
AArch64 64-bit instruction set, MOV W0,#1 copies the constant 1 into register R0. The AArch64
general-purpose registers R0...R30 can be referred to either as 64-bit registers, using X0...X30,
or 32-bit registers, using W0...W30. These names determine the sizes of stores and loads: the
STR W0,[X1] stores the low-order 32-bit contents of R0 into the memory location addressed by
R1, while the LDR W2,[X3] loads a 32-bit value from the memory location addressed by R3 into
R2, zero-extending it.

Then we need a test harness, to run the test repeatedly and log the outcomes. We’ll use the
litmus7 tool from the herdtools7 tool suite by Alglave and Maranget [32]. To install litmus7:

1. install the opam package manager for OCaml: https://opam.ocaml.org/

2. opam install herdtools7 (docs at diy.inria.fr)

This uses a common format for tests, shared with the other tools of that suite, diy7 and herd7,
and with the rmem [132] and isla-axiomatic [40] tools by Flur et al. and Armstrong et al.; we’ll
return to all these later. In that format, the x86 version of this test can be written as SB.litmus:

1 X86_64 SB

2 "PodWR Fre PodWR Fre"

3 {

4 uint64_t x=0; uint64_t y=0;

5 uint64_t 0:rax; uint64_t 1:rax;

6 }

7 P0 | P1 ;

8 movq $1,(x) | movq $1,(y) ;

9 movq (y),%rax | movq (x),%rax ;

10 exists (0:rax=0 /\ 1:rax=0)

Here the initial X86_64 specifies the test architecture, lines 3–6 define the initial state of memory
(x and y) and registers (0:rax and 1:rax for the rax register of hardware threads 0 and 1
respectively), and lines 7–9 give a sequence of x86 assembly instructions for two threads, P0
and P1. Line 10 specifies the condition on the final state that we’re interested in.

Running that with litmus7 executes the test in an aggressive test harness: it converts the test
to actual assembly, runs many instances of the test (106 times by default), iterates in randomised
orders over arrays for x and y instead of scalars, roughly synchronises the start times of the
threads in each instance, and so on. The embedded assembly kernel it actually generates for
the x86 version of this test is below – one can see that the accesses to x and y use an indexed
addressing mode to allow convenient iteration over arrays of locations.

[...]

Generated assembler

#START _litmus_P1

movq $1,(%r9,%rcx)

movq (%r8,%rcx),%rax

#START _litmus_P0

movq $1,(%r8,%rcx)

movq (%r9,%rcx),%rax

[...]

It logs a histogram of the observed final values. For a typical x86 processor we might see
something like this, though the exact numbers will vary:

https://opam.ocaml.org/
diy.inria.fr

Chapter 1 Introduction 13

$ litmus7 SB.litmus

[...]

Histogram (4 states)

14 *>0:rax=0; 1:rax=0;

499983:>0:rax=1; 1:rax=0;

499949:>0:rax=0; 1:rax=1;

54 :>0:rax=1; 1:rax=1;

[...]

Observation SB Sometimes 14 999986

[...]

Here we see that in most executions it appears that Thread 0 runs entirely before Thread 1 or
vice versa, and in a few executions (54 out of 106) it appears that the two stores happened
before the two loads. Those are all allowed by the SC model. But in 14 out of 106 executions,
we see the non-SC behaviour in which both threads’ reads see 0. This is a rather common
non-SC behaviour; to see rarer non-SC behaviours one might need to run tests for 109. . .1011

executions, and tune the litmus test harness with its command-line options.
If we run an Arm version of the test we see similar results:

Histogram (4 states)

7136481 *> 0:X2=0; 1:X2=0;

596513783:> 0:X2=0; 1:X2=1;

596513170:> 0:X2=1; 1:X2=0;

36566 :> 0:X2=1; 1:X2=1;

[...]

Observation SB Sometimes 7136481 1193063519

(7e6 in 1.2e9, on an Apple-designed Armv8-A SoC, Apple A10 Fusion, in an iPhone 7).

A priori, there are many possible explanations for the mismatch between these experimental
observations and the SC model:

1. There is an error in the test – i.e., it isn’t testing what we think it is. It is quite easy to
make errors when hand-writing subtle tests, so this needs care, but if there’s a discrepency
between the experimental observations and the model, then that’s an issue exposed by the
test as written irrespective of what we think it’s testing.

2. There is an error in the test harness. This is certainly possible, but litmus7 is reasonably
mature, and mismatches can almost always be traced to another cause. One can also gain
some confidence in the harness from the fact that in extensive use for many tests it does
give the expected results.

3. There is an error in the surrounding OS that is corrupting the test results. This is possible
in principle, but we have not seen it in practice. If this were an issue one would expect to
probably see it even for straightforward tests, which we do not.

4. There is an error in the hardware processor design. This is rare but certainly happens.
Over the years this testing has identified a number of hardware errata, in core designs
from several vendors.

5. There is a manufacturing defect in this particular instance of the processor. One can check
this by contrasting experimental data from different instances of the same processor.

6. There is an error in our calculation of what the model allows for the test. For subtle tests
and models this becomes challenging to do reliably by hand, especially for large numbers
of tests, so one would typically use tools (such as rmem, isla-axiomatic, or herd) to do
this. Of course, one then has to be concerned with the possibility of bugs in those tools.

Chapter 1 Introduction 14

7. There is an error in the model. In this case this is the correct explanation:

Sequential Consistency is not a good model for x86 or Arm processors.

In fact, SC is not a good model for any major multiprocessor architecture, including IBM Power,
RISC-V, SPARC, or Itanium, or for major programming languages, including C, C++, and Java.
Instead, all these have some form of relaxed memory model (or weak memory model), allowing
some non-SC behaviour. In the remainder of this text we’ll explain this, explore what pro-
grammers can actually depend on, and establish good models, for x86, Arm-A, IBM Power, and
RISC-V.

As we shall see, hardware relaxed-memory behaviour arises from microarchitectural optimi-
sations, including out-of-order and speculative execution, and sophisticated storage hierarchies
and cache protocols, and programming-language relaxed-memory behaviour arises from the
combination of this and established compiler optimisations. These hardware and software op-
timisations aim to leave the observable sequential behaviour unchanged from what one would
expect in a straightforward in-order design, but some change the observable behaviour of con-
current code.

1.6 Architecture specifications

To understand what it means to be a “good model”, and how we can conclude that SC is not
a good model for x86 or Arm, we have to understand clearly what processor architectures are,
how they relate to processor implementations, and what properties a good architecture definition
should have.

Each specific processor implementation, such as an Intel i7-7700K, an AMD Ryzen 7 1800X, a
Qualcomm Snapdragon 865, a Samsung Exynos 990, or an IBM Power 9 Nimbus, includes cores
based on a specific microarchitecture and detailed design. We cannot use this internal structure of
an implementation as a programming model: it is far too complex, it is generally commercially
confidential, and it is too specific – most software has to run correctly on a range of similar
implementations, past, present, and future, not just on one specific hardware implementation.

Processor implementations are grouped in families, e.g. the many variants of x86 processors
developed by Intel, AMD, and VIA, and the many variants of Arm-A processors developed by
Arm and its architecture partners (Apple, Qualcomm, Nvidia, Samsung, etc.). An architecture
specification aims to define an envelope of the programmer-observable behaviour of all members
of such a family: the set of all behaviour that a programmer might see by executing multi-
threaded programs on any implementation of that family and examining the results. It thereby
defines the hardware/software interface, serving both:

1. as a criterion for correctness of hardware implementations: any observable behaviour of
any conforming hardware implementation should be within that envelope; and

2. as a specification of what programmers can depend on: they should be able to assume that
any behaviour outside that envelope does not occur.

Architectures have to be loose specifications, to allow runtime variations in behaviour for each
single implementation (e.g. due to differences in timing), and to accomodate the observable
variations arising from different microarchitectural design choices among current, past, and fu-
ture implementations. As we shall see experimentally, these differences can be quite substantial.
For both reasons, they typically constrain only “functional correctness” properties, not timing
and performance behaviour, as those can vary widely within and between implementations
(though this leads also to the possibility of side-channel attacks).

This looseness makes software development challenging: in principle one might think that
programmers should and can “program to the architecture”, but normal software development

Chapter 1 Introduction 15

relies on testing software running on specific processor implementations. The runtime varia-
tions may mean that program bugs are not exposed in some particular test runs, and testing
may be done on a specific implementation which may not exhibit some architecturally allowed
behaviour that other implementations do or will exhibit. This increases the need for models that
one can reason about mathematically, to ensure (at least for critical software) that all cases are
covered.

The main architecture specifications are defined by industry vendors or groups, and pub-
lished as pdf documents. Intel and AMD produce x86 processors, as described in their

• Intel 64 and IA-32 Architectures Software Developer’s Manual [68] and

• AMD64 Architecture Programmer’s Manual [17].

For our purposes these effectively define a single architecture, though the documents differ. VIA
also produce x86 processors.

Arm define three main architectures, A-Profile (for applications), M-profile (for microcon-
trollers), and R-profile (for real-time). We focus on the first, as described in their

• Arm Architecture Reference Manual, for A-profile architecture [15].

Arm design specific cores (e.g. the Cortex-A76), which other vendors licence and integrate into
SoCs (e.g. the Samsung Exynos 990). Arm also licence the architecture itself, allowing other
architecture-partner vendors to design their own conforming cores (e.g. the Qualcomm Kryo).

The IBM Power architecture specification is now maintained by the OpenPOWER Founda-
tion:

• Power ISA Version 3.1C [80].

This is the architecture used for the IBM POWER10 processor.
The RISC-V architecture is defined by the RISC-V International organisation (formerly the

RISC-V Foundation):

• The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [128]

• The RISC-V Instruction Set Manual Volume II: Privileged Architecture [127]

with many vendors and academic groups designing RISC-V implementations.
There are, and have been, many other important multiprocessor architectures, of course.

Some have had interesting or influential relaxed-memory behaviour or specifications, notably
SPARC, Alpha, and Itanium, and we will refer to them along the way, but we focus on the above
currently dominant architectures for application and server-class general-purpose processors.

Each architecture definition is factored into several parts. The largest is typically the def-
inition of the encoding and sequential behaviour of individual instructions, the instruction-set
architecture (ISA), which is typically intricate but semantically relatively straightforward. Then
there is the concurrency architecture, defining how instructions in different hardware threads
interact with each other and with whatever mechanisms are provided for cache management.
The latter is our focus here, along with the interaction between these two. Historically, most ar-
chitectures have defined both parts in prose text, often with informal pseudocode for instruction
behaviour.

Architectures also change over time, of course (each of the above exists in a sequence of
versions) but this tends to happen more slowly than the development of new processor imple-
mentations. It usually aims to ensure backwards compatability, so that code written for one
version, that should run correctly on conforming implementations of it, will also run correctly
on conforming implementations of a newer version. In some cases one is also concerned with
the converse, e.g. where a range of implementation and architecture versions co-exist within the

Chapter 1 Introduction 16

same software ecosystem. Major changes to the concurrency models are relatively rare; we will
discuss a few important cases below.

All this might lead one to think that an architecture specification cannot be “correct” or
“incorrect” – that each is what it is, as defined by the organisation in control of it. In practice,
however, there is a delicate interplay between these specifications and the de facto standard of
the hardware implementations that exist, or that are being designed. There are many properties
that a good architecture specification should have, which we now discuss.

Sound with respect to existing hardware An architecture specification should be sound with
respect to current implementations: it should admit all the behaviour that they can exhibit.
Cases where this is found not to hold, for implementation behaviours that are deemed erro-
neous, are often documented as processor errata, but in some cases the architecture is loosened
to accommodate some important (and impractical to change) implementation. Implementations
often allow some boot-time configuration that allows specific optimisations to be turned off or
simplified, which sometimes allows errata to be worked around.

In principle, soundness with respect to a particular hardware implementation could be estab-
lished by mechanised mathematical proof of the correctness of that implementation, say down to
the RTL level. In practice, that is still infeasible for full-scale architectures and implementations
(though see e.g. [85] for recent work in that direction), and one instead gains partial confidence
by extensive testing. Test results can conclusively demonstrate unsoundness, however – as we
just did for the hypothesised SC model for x86.

Sound with respect to future hardware An architecture should also be loose enough to per-
mit future microarchitectural innovation. That is hard to predict, of course, so this creates an
incentive for the architecture to be as loose as possible, which can be in tension with the need
for it to be strong enough for software and simple enough to understand.

Opaque with respect to hardware implementation detail In general an architecture should
not unnecessarily expose any microarchitectural implementation detail, to keep the program-
mer’s model simple, to avoid over-committing to some specific implementation and thereby
excluding future improvements, to avoid skewing the thinking of hardware implementors, and
to avoid revealing confidential information.

Complete with respect to hardware Architectures do not aim to be complete with respect to
hardware, i.e. to capture all the functional properties of programmer-observable behaviour for
specific implementations, for exactly the reasons above that mean that they have to be loose
specifications.

Strong enough for software In the other direction, an architecture specification should be
strong enough to support the intended corpus of existing software, and all desired programming
idioms. A specification that allowed arbitrary behaviour would be trivially sound but not useful.

Showing rigorously that an architecture is strong enough to be useful is even more challeng-
ing than proving that one is sound with respect to a hardware implementation. One would like
to argue that it is strong enough to support correctness proofs of all the key software that should
run above it, but that is very far from the state of the art – and essentially all software is buggy
in any case. In practice this is generally left to informal argument, or even left entirely implicit.
However, for the concurrency model aspects of an architecture, what one can do is prove that a
particular compilation scheme from a higher-level language (with its own concurrency model,
and therefore its own strong-enough concern) is correct, and tensioning the two against each
other like this has been very important in the design of both. We return to this later.

Chapter 1 Introduction 17

In principle one could experimentally assess whether an archicture is strong enough by test-
ing a substantial body of software above an architecturally aggressive emulator, that pseudo-
randomly chooses executions that exercise the extremes of what the architecture allows. For
example, for x86 one could have an emulator that has very large write buffers, and flushes them
roughly synchronised with data races in the code. Our understanding is that this has been done
to some extent within several vendors, but we are not aware of such work for more relaxed
architectures.

Precise and unambiguous For an architecture to serve its dual purposes, as a correctness
criterion for hardware and a programming model for software, it should be precise: for any
hypothetical programmer-observable behaviour, of any initial machine state, it should unam-
biguously define whether that behaviour is allowed or forbidden. Of course, in some cases this
might depend on a specific architecture version, on some documented implementation-defined
choice, or on some aspect of the architected (programmer-visible) machine state.

Ambiguity and imprecision should not be confused with looseness. On the contrary, the fact
that architectures have to be loose specifications creates even more need for precision: for a
subtle loose specification, it is essential that it precisely defines what is allowed and what is not,
rather than leaving that vague.

The prose and pseudocode of most traditional architecture descriptions are generally rea-
sonably precise about sequential behaviour but much less clear when it comes to concurrent
behaviour and relaxed-memory phenomena — it is very hard to produce prose that unambigu-
ously and completely captures these subtleties. Instead, we will develop models in precise math-
ematics.

Clear Architecture specifications have to be clear. They serve as a principal means of commu-
nication between the hardware and software development communities, and as such have to
be comprehensible to both parties. This creates an incentive for an architecture specification
to be as simple as possible – which is sometimes in tension with the desire to admit particular
hardware optimisations.

One might think that the need for model definitions to be mathematically precise is in con-
flict with the need for them to be comprehensible to a wide audience, but in practice one can
reconcile the two, by transcribing the mathematical definitions into prose (manually or automat-
ically), and by providing tools that compute the allowed behaviour of test cases and let users
explore them.

Another interesting tension relating to clarity is between models that are as concise as possi-
ble, just defining what whole-program behaviour is allowed or not, and models that are explana-
tory, that somehow explain how the allowed behaviour emerges from hardware optimisations.
Several quite different styles of model definition are used – operational, axiomatic, and promis-
ing – which we return to in Chapter 5 and later. Typically (though there can be exceptions),
operational models aim to explain the allowed behaviour in microarchitectural terms, while ax-
iomatic models aim to define the allowed executions more abstractly in terms of the allowed
orderings.

Executable as a test oracle Another major shortcoming of prose specifications is that they
cannot be used directly for testing hardware or software against. Instead, one has to rely on
test suites with manually curated outcomes, and on simulators written based informally on
the prose. In practice, major vendors typically have one or more “golden models”: executable
simulators, written in-house and sometimes confidential, that they use to test against. However,
as we understand it, these have often focussed just on sequential behaviour.

We will instead develop concurrency models that are executable as test oracles, i.e., that,
given some (small) test and a potential observable result, can compute whether or not that

Chapter 1 Introduction 18

result is allowed by the model. In some cases they will have the stronger property that they are
exhaustively executable as a test oracle: given some small test, they can compute the set of all the
model-allowed results, as we did by hand for the sequential consistency model and the simple
test above.

Given a model that is executable as a test oracle, an experimental setup (such as litmus7)
for running tests on actual hardware, and a set of tests, one can automatically compare a model
with the experimentally observable behaviour exhibited by specific hardware implementations,
without having to manually curate the intended outcome for each test.

This is essential to support experimental semantics [54, 53]: the development of models
informed and validated in part by such comparisons with experimentally observed behaviour,
and to support experimental validation of hardware designs against such models. However, it is
important to note that good architecture models cannot be developed solely by fitting to some
experimental data, as they have to be loose specifications that also satisfy all the other properties
in this list.

Having a model that is executable as a test oracle means that one can generate tests, either
randomly or in some directed way, without having to manually curate the intended outcome of
each; we return to this later.

Executable-as-test-oracle models can also be used directly to exhaustively model-check small
concurrent algorithms.

Incrementally executable A different way in which an architecture model might be exe-
cutable is incrementally, computing just single possible executions, e.g. by making pseudo-
random choices at points where the specification is loose. This makes the model directly usable
as an emulator, which may be useful for testing larger bodies of software for which it becomes
infeasible to compute the set of all model-allowed outcomes. Note that such an emulator would
be architecturally complete, in the sense that it can, pseudorandomly, generate any behaviour
allowed by the architecture – in contrast to any specific implementation, and to conventional
emulators such as QEMU.

Mathematically validated One typically cannot prove, mathematically, that an architecture
specification is “correct”, because there is no more authoritative statement of what “correct”
would mean. However, proving results about a specification can be invaluable, both by estab-
lishing specific desired results, and boosting confidence in the detailed definition by exercising
it in quite different ways to testing. Many different kinds of result can be useful, including:

• Equivalences between models in different styles, such as operational and axiomatic, for
the same architecture.

• Refinements between models, showing that for programs that are in some sense well-
behaved, a simpler model accurately captures all the observable behaviour of a more fun-
damental model.

• Correctness of compilation schemes or compilers, from a high-level language model or
semantics down to an architecture-level model.

• Soundness of program logics, model-checking algorithms, and other techniques for rea-
soning about programs.

Authoritative Ideally, a mainstream architecture specification would also be authoritative, de-
fined by the relevant vendor or industry group. Socially, for each of these major architectures,
there is an individual or small group that (perhaps following consultation with architecture part-
ners and software users) has the authority to decide whether some observed behaviour is a bug
or not – this is the ultimate role of an architect, to decide the architectural intent.

Chapter 1 Introduction 19

However, in some cases the vendor or other industry group produces prose specifications
that do not have the above properties, or simply has not yet considered all the issues, and there
one might end up with a model by a third party that aims to capture – and perhaps becomes –
the de facto standard.

Accurately capturing the architectural intent Where there is an architect or group with the
social authority to decide the architectural intent, one would like to confirm that any formal
specification accurately captures that intent, allowing no more and no fewer behaviours than
they intend to be allowed.

That can be challenging, especially when moving for the first time from an architecture
specified only in prose to a formal model in an initially-unfamiliar form, that may be quite
intricate. One can gain significant assurance through walking through the model in detail, and
also by checking it gives the intended allowed behaviour for a set of litmus tests that is small
enough for this to be tractable but which still covers a wide range of behaviour.

However, the consequences of a formal model may not all be obvious, and some of them
may simply never have previously been considered, by the architects or anyone else. Some
of the relaxed phenomena that we discuss later were of this kind: they emerged only from
the process of developing and evaluating a model, and that informed later decisions about the
architectural intent.

In practice, all architecture specifications are subject to change, at least in detail, in the face
of implementation and usage reality – nothing is set in stone forever. However, on the positive
side, when one has an established model, test suite, and intended results for those tests, any
change to the model can be evaluated with respect to all those, which is much more tractable
than establishing an initial formal model.

Consistency with the de facto standard One also has to consider consistency with the de
facto standard. For any architecture with significant hardware implementations and software
usage, the behaviour of those implementations, and the assumptions on hardware implemen-
tation behaviour implicit in the corpus of software, can tightly constrain possible architectural
choices.

1.7 Programming language compiler effects

At the language level, observable relaxed-memory behaviour arises from the combination of any
hardware relaxed-memory effects, for the memory accesses in the generated machine code, and
a diverse collection of compiler optimisations. Just as for hardware implementations, these
have been developed over many decades to optimise performance while preserving sequential
behaviour, but they have substantial observable consequences for concurrent behaviour. Com-
piler optimisations routinely reorder, eliminate, introduce, split, and combine “normal” accesses,
and remove or convert dependencies, in ways that vary between compilers, optimisation levels,
and versions.

For example, in SC, the message passing example below – another very important litmus-test
shape – should work as expected. This shape is a simple version of a common idiom for passing
data between threads, in which Thread 0 writes some data to x (perhaps a large data structure),
before writing a flag value to y to signal to other threads that the data is ready, and Thread 1
busy-waits reading y until it sees the new flag value, and then reads the data from x. In SC, if
the Thread 1 read of y sees the write of y=1 then the program-order-later Thread 1 read of x will
see the write of x=1; the program will either print nothing or 1.

Chapter 1 Introduction 20

Figure 1.1: Compiler reordering

Thread 0 Thread 1
x = 1

y = 1 if (y == 1)

printf("%d", x)

However, if there’s some other read of x in the context, then common subexpression elimination
could replace the second read by a reuse of the value from the first (which could easily be
kept in a register), effectively reordering the Thread 1 reads of y and x to (the result of naively
compiling):

Thread 0 Thread 1
x = 1 int r1 = x

y = 1 if (y == 1)

printf("%d", r1)

Compiler-introduced relaxed memory effects will typically be specific to some compiler ver-
sion, optimisation level, and the details of the code. For example, in Fig. 1.1 ARM64 gcc 8.2
reorders the thread1 loads, but the other compilations shown do not. One can see this in Com-
piler Explorer (short link) (full link).

This makes it harder to experimentally test what high-level language relaxed-memory be-
haviour is in practice, and, as we shall see, the interplay between hardware and compilation
effects makes it harder to define reasonable concurrency models for high-level languages.

A general-purpose high-level language should provide a common abstraction over the com-
mon hardware architectures, that is efficiently implementable with respect to both:

• the cost of providing whatever synchronisation the language-level concurrency model
mandates above those various hardware concurrency models; and

• the impact of providing the language-level model on existing compiler optimisations.

1.8 Programming language specifications

Programming language specifications play a similar role to architecture specifications, serving
as a criterion for correctness of language implementations, and as a specification of what pro-

https://godbolt.org/z/5PK3jr
https://godbolt.org/z/5PK3jr
https://godbolt.org/#z:OYLghAFBqd5QCxAYwPYBMCmBRdBLAF1QCcAaPECAM1QDsCBlZAQwBtMQBGAFlICsupVs1qgA%2BhOSkAzpnbICeOpUy10AYVSsArgFtaIXqvQAZPLUwA5PQCNMxEACZSAB1TTCS2pp37Dr9086MwtrXTsHZ1l5RToGAmZiAh89A15ozAUveMSCEKtbeycZBKSUv3TSvPMC8KLHAEoZVG1iZA4AcgB6ACoAajo%2Bqm1aLMHVAmIAT1I%2BggRMWSGRsdo%2BxOA9CekAUgAGAEE%2B48TMPvM%2B4kxgPGkCe2k%2BiGZHqjwAD0x0PpspuYW%2BgcAEIASWkDRAfX2R2OxwOBzaCAAbNxIe9zmt3ntZn0/hd3pxobDju8ABxIyHE9EXYj4WZ4tbEDzQnpdaEAN1QeG%2B8yuzHQewg5gIPXes2FPSmDShAHYgUTYaKdgBmAAihOV8sOxMlKtVjhVWphxx2MtV0Ohwv%2BfPQnCF9FF4odUtlRuJVuInChar6us1CuOHsc3tVvvehoDGIIl2VIcunB6nCRO0cQOIBv92thVwIrUZyojWZNZuhHSarBAHQArB1SAYOnta6hK%2Bo%2BtIWm0zinlZxawRK42Gk0ANYgZWOAB0AE5uKTHDLuEiq6TuHtuI5SUJK9xa/XG6Rmx1a9IQNj%2Bw2y6Q4LAYIgUKhdC48OwyBQIGhH8%2BiixiLoUcA52xN5WHuJlKBsAdaxscxEimSte1ID9dAmAB5WhWDgi9SCwXQRGAdhIOwvAriydlFkIzBPmQbR7ng2thTkQjWDwGxiFgzQsDo0hJjwXQ6KaGh6CYNgOB4fhBGEUQQAkMQpGYmwT0gJpUBcWJaBPDoAFoUMcY85EyNSVDUcoDE4UhjHyMIIkENwPDUkybMCNTLMKBwzIyVYcjKLRUkEDy1K86pQlcvyqgc9yqhcuo3KadtWnaLhy0rGs60Iw8DgAJQAWRRPpgGQZA%2BlJCdgwgXBCBIKFHB7WZNE/F8qp7aV1D7SCh1IBZ%2BSKCARycSdxyRRxHCrKdHCRKc1xlGctw6HdSD4qtsT3JtK2PU9uLaq9bwgJAPyfF9yEoPavwcRJdHZUlNIKyTgE4Tg9iA59QJPCAIKw6DaFgrikNQ9DMP3HC8IIrD8BIxQyI0/dKMyGjOgQhiKyw%2BS2OmDi4b7YheP40hBMYFgCLEgReBu6TJCEFjFJ6g9VK8DTtN0mR9NWIyNB8vwzIsmorKKMzbKCbw2dMgI7K8KLrPcpmArCwW/Ml7JIq5kKItycKSlyMWedijsEs4JLq13NLKzOi7NOYPpkBuvo7onPYbaecqiGIRqzL6Or9vsRruGa1qL3azqsAcKnEbmhalsNo8ZHW89B165UkQnZVRqTJE9lJThlSrGUkTMxHlQNrDDx9wctvga872Og63wr79br2ZxgOe8DCI%2Br6OgQn76DQjDCMB0RgYB4iDLwCGKKo2GuIRpiWJRqY0a4ni%2BLby9ceEgneAEZwSZkuSKfgZSaboOmdL0mIvBZ1XOeC6LHJFuhVb55zFeviXT7iaXfCF/z5fVp/xbV7yP6hR/lfcWWt4qiT1ilZaB5KxkiRJpXK%2BVCr3RKvbfAjtna1QfO7J23ZGiuyLmWJo/tuqx1tkuKcVYRpjTrsqNOY0ZohxAItVKBdVqRzPJtMuO17z1XsIdd82CTooAtnhO6D0cZPQeE3d6MFpjfQfMhTuf0e6YFwn3ToA8wbD3IlhaG1FaJL3IPQRiSNp7sQwOjbimNF69gEnQPGIkuDrzHEIPCpNZLkwUnvamakj4My/soCAxgL5qA1m5YW/N75OVFr/HmjNX60ECqrQJSSFYgPiXcFWMtlZJHCYlZo4CCmIygeHOBCDuDm0ttbW2ew0EVVwdVF2bsTqNWVN7DavtiGYC6oHPWTCWHQMLhwzpMdSCjmVOQkaVDRop2qvQpEM086sP3MM6ORCZoMyGew9Z7UyJMjPtwIAA%3D%3D

Chapter 1 Introduction 21

grammers in the language should be able to depend on.
Historically, also like architecture specifications, they have been expressed just in prose,

despite many decades of research on more precise and less ambiguous mathematical semantics
of programming languages, and the specification of concurrency behaviour has been particularly
lacking. For example, a specification of concurrency was added to the ISO C and C++ language
specifications only in 2011, following an effort led by Boehm [60, 45, 51].

They often differ from most architecture specifications in having a looser relationship be-
tween the organisation maintaining the specification and those implementing it.

Of particular interest here are the C++ and C standards, maintained by ISO/IEC JTC 1/SC
22/WG 21 and WG 14 respectively, e.g. with recent versions:

• ISO/IEC 14882:2017 Information technology — Programming languages — C++ [92]

• ISO/IEC 9899:2018 Information technology — Programming languages — C [93]

We will also touch briefly on Java, JavaScript, and WebAssembly.

1.9 Status of the models

We discuss the validation of the concurrency models we cover, with varying combinations of
experimental testing, discussion with architects, and proof, as we go. To briefly summarise the
origin and status of the models:

x86 For x86, the x86-TSO model we describe is widely accepted as the de facto standard. It
was developed by Owens, Sarkar, Sewell, Zappa Nardelli, and Myreen, originally published in
[116, 137]. This followed our earlier attempts [129] to interpret the then-confusing Intel and
AMD documentation (the current vendor documentation [68, 17] is improved but still hard to
interpret). It was informed by brief communications with Intel, AMD, and VIA architects. The
operational and axiomatic models have been proved equivalent, first by Owens in HOL4 [116],
and later, for a more modern presentation of the axiomatic model, by Durbaba in Isabelle [74].

IBM Power The IBM Power model we describe is also a good de facto standard to the best of
our knowledge, capturing the architectural intent. It was developed based on detailed discus-
sions with one of the senior IBM designers, Derek Williams, and extensive experimental testing
on Power G5, 5, 6, 7, and 8. The vendor documentation [79] has not been updated to reflect the
model design, however. The examples, discussion, and operational model that we present are
some of the results of an extended line of work, mainly by Alglave, Flur, Maranget, Pulte, Sarkar,
Sewell, and others, variously in collaboration or separately, that developed a series of axiomatic
and operational models for IBM Power [22, 23, 131, 36, 25, 130, 103, 107, 38, 87, 78]. Much
of the discussion text for this, Arm-A, and RISC-V is taken from the forthcoming PhD thesis by
Flur.

Arm-A For Arm-A, we present operational and axiomatic models. The axiomatic model [70]
was developed principally by Deacon, then at Arm, and was incorporated into the Arm doc-
umentation of the time [13]; the operational model was developed principally by Flur, Pulte,
Sarkar, and Sewell. Both build on the above-cited work and [77, 78], and on extensive dis-
cussion between them and with Grisenthwaite (the Arm Chief architect). They incorporate a
substantial simplification to the previous ARMv8-A architectural intent, switching to a “multi-
copy atomic” model (as we describe later). The two models were proved equivalent by Pulte
[121, 120]. Further academic work by Armstrong et al. integrated the axiomatic model with the
full Arm-A instruction semantics [41, 42, 43], and work by Simner et al. developed extensions

Part Chapter 1 Introduction 22

for some systems aspects: instruction fetch [142], virtual memory [141], and exceptions [140],
again in collaboration with Grisenthwaite. Further work within Arm by Alglave (now at Arm)
and colleagues has refined the Arm documentation model in various respects [28].

RISC-V For RISC-V concurrency, the RISC-V Foundation (since reconstituted as RISC-V Inter-
national) established its RISC-V memory model working group in 2017-03, chaired by Daniel
Lustig [14]. Flur, Maranget, Pulte, Sarkar, and Sewell contributed substantially from 2017-
07, together with several others, to what became the RISC-V weak memory ordering model
(RVWMO), which was ratified in 2018-07. This is very similar (though not identical) to the
multi-copy atomic Arm-A model. The RISC-V formal axiomatic and operational models were
incorporated into the RISC-V unprivileged specification [81].

C/C++ For C/C++, the early language standards did not attempt to specify concurrent be-
haviour. There was an extended effort to define a model, from around 2004 onwards, led by
Boehm and recorded in the cpp-threads mailing list [6] and the ISO C++ concurrency subgroup
(which later became the ISO C++ Concurrency Study Group, WG21/SG1) and its working pa-
pers [1]. Boehm and Adve outlined the model under construction in 2008 [60]. From 2009
Batty, Owens, Pichon-Pharabod, Sarkar, Sewell, and Weber worked to formalise the design and
build tools; this uncovered and led to fixes for a number of flaws in the model [45, 56, 49].
The ISO C++11 standard [51] incorporated text in tight correspondence to the mathematical
model of Batty et al., and this was ported to the ISO C11 standard. More recent work by many
authors has continued to improve the model, although the “thin-air problem”, which we return
to later, continues to be a major open problem for this and other high-level language models.
A separate line of work by Alglave, Maranget, McKenney, Parri, and Stern defined a model for
the concurrency primitives used in the Linux kernel [34, 35] (though this too has related open
problems).

Part I

SC, x86, tools, and approach

23

Chapter 2

x86 basic phenomena

Throughout this part we focus on a simple “user” fragment of x86, including loads, stores,
read-modify-write operations, and barriers, but excluding misaligned and mixed-size accesses,
string operations, and all “systems” aspects. We consider just coherent write-back memory, with
no exceptions, “non-temporal” operations, self-modifying code, page-table changes, or device
memory.

To help build a solid intuition, and to introduce some basic concepts and litmus tests that
we’ll elaborate on for other architectures and for programming languages, we’ll approach the
x86 behaviour incrementally: we’ll discover the underlying model bit-by-bit with a few key
examples.

2.1 Litmus tests and candidate executions

We’ve already seen one non-SC x86 behaviour, of the SB test on the left below, typeset from the
SB.litmus file.

movq $1, (x) //a:W x=1
movq (y), %rax //b:R y=0

Thread 0
movq $1, (y) //c:W y=1
movq (x), %rax //d:R x=0

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0; x=0;

SB x86

Final: 0:rax=0; 1:rax=0;

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porfrf

On the right above we draw the candidate execution of this that we are interested in. Each can-
didate execution is a graph with nodes that are memory access events and with edges indicating
various relationships between them. Each memory access, e.g. a:t0:Wx=1, has a unique iden-
tifier (a, b, etc.) and a thread ID (t0, t1, etc.), and is either a write W or read R of a memory
location (x, y, etc.) with a specific value (here 0 or 1). Usually the thread IDs are clear from the
context and we elide them.

The edges are program order (po, in black) and reads-from (rf, in red), together with other
relations that we introduce later. Program order relates each event to its successors (if any) in
some control-flow unfolding of the program. Here, there are no conditional branches, so there
is only one possible control-flow unfolding, and program order just follows the program source
text. Program order is transitive, but we normally draw only its transitive reduction – just the
edges between adjacent events. Note that these graphs are quite different to the SC labelled
transition system we saw in Section 1.4: that was a diagram of all possible SC interleaving
executions, with nodes representing global states and arrows the transitions between them;
while this shows the events of one particular (not necessarily SC) execution, as the nodes, with
arrows indicating various relations between those.

24

Part I Chapter 2 x86 basic phenomena 25

The reads-from relation relates each write event to all the read events that read from it in
the execution. In this execution, both reads read from the initial state, indicated with arrows
from a red dot. To de-clutter the diagrams, we usually draw such a dot for each read from the
initial state, as below, but they all represent the single shared initial state.

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf

Each litmus test has a condition on the final state, e.g. the Final: 0:rax=0; 1:rax=0; con-
dition of this test. The final condition usually uniquely determines a single non-SC candidate
execution of interest (under minimal assumptions on the model): for this test, the interesting
execution is the only one in which both reads read 0 from the initial state (and the internal se-
mantics of each instruction is respected). This execution is the one shown in the diagram. Note
that the final condition only identifies some final state(s) of interest; it doesn’t imply whether
that state is observed or not experimentally on specific hardware implementations, or whether
it is allowed or not in any specific model.

Litmus tests can be interesting for many different reasons: some capture the pattern of some
important concurrent programming idiom, some may not arise in normal programming but are
useful to explore exactly what is observed or allowed in implementations or models, and some
arise from automatically and/or systematically generated families. Litmus tests can also be
useful for identifying errors in hardware implementations, though most of those we shall see
are not tuned for that (e.g. by stressing particular hardware resources); they are mostly aimed
at concisely capturing some semantic choice, of what behaviour is or is not allowed.

2.2 SB: store buffering?

We saw in §1.5 that the non-SC final state of SB, 0:rax=0; 1:rax=0, is experimentally observable
on at least some x86 processor implementations, and in fact it’s easily observable on all that we
have tested, which include a number from both Intel and AMD.

As we saw in §1.4, this is not an SC-allowed final state. To understand how it might arise, one
can consider the microarchitectural hardware-implementation optimisations that would permit
it. There are two obvious possibilities:

1. Hardware often buffers writes, decoupling the execution of program-order-later instruc-
tions from the propagation of the write down to memory. That propagation can take a
long time, and it is often not necessary (for the correct execution of a program) for the
program-order-later instructions to wait for it, so this can provide a big performance gain.

2. Hardware often executes instructions out of order, subject to checks on their dependen-
cies. This allows, for example, later instructions to go ahead while earlier instructions are
waiting for read values to come back from memory.

Either could explain the experimental data for this test. For 1, in a processor implementation
with write buffers for each hardware thread, as in the cartoon microarchitecture below (which
we will later see is not quite right), the writes to x and y might still be in the Thread 0 and
Thread 1 store buffers, respectively, when the reads of y and x get satisfied from memory.

Part I Chapter 2 x86 basic phenomena 26

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread

For 2, because the load instructions are to different locations to the program-order-preceding
store instructions, and have no register dependencies on them, they might be executed first.

With what we know so far, we can’t tell whether either one of these, or both, or something
else, is the true explanation for the experimental observations.

To understand the architectural intent – to know whether the experimental observation is
intended by the vendors to be allowed – we can turn to the vendor documentation. In this case
that is clear. The Intel SDM [68, Vol.3A, §8.2.2] says

Reads may be reordered with older writes to different locations but not with older writes
to the same location

and their Example 8-3 is essentially identical to this litmus test, with the final state given as
allowed, while the AMD APM [17, Vol.2, §7.2] says

Non-overlapping Loads may pass stores

again with an example essentially identical to this test.
One should be cautious about the “reordered with” phrasing of the Intel documentation: it

suggests that relaxed-memory effects can be explained with a mental model in which instruc-
tions are each executed atomically but in a reordered instruction stream. That is sometimes
true, but it is not true in general, and it’s not the most useful way of viewing the observable x86
behaviour.

To fix terminology: we usually speak of load and store instructions, giving rise to read and
write memory events, though the literature and test names are not always consistent with this
(otherwise this test would be WB, not SB).

2.3 LB: load request buffering?

We turn now to the dual of SB: the “LB” litmus test below, in which Thread 0 reads x and then
writes y while Thread 1 reads y and then writes x. The interesting execution is that in which
both reads read from the other thread’s write, rather than from the initial state, as shown on the
right below.

movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0;

x=0;

LB x86

Final: 0:rax=1; 1:rax=1;

Observation: 0/0

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

Part I Chapter 2 x86 basic phenomena 27

Experimentally, this is not observed on any x86 processor implementation we have tested.
To see why it is a non-SC execution, one of a and c must do its read first. Suppose without

loss of generality that it is a, then as Thread 1 executes in program order (in SC) a is before d,
so a must read 0.

Microarchitecturally, the non-SC final state might arise from out-of-order execution, e.g. if
the store instructions can be executed out-of-order entirely before the program-order-preceding
load instructions, or if the writes can be propagated to memory after the read requests have
been created but while they are still buffered (hence the “load buffering” name of the test).

The documented Intel architectural intent for this can be confusing at first sight: the Intel
SDM lists a number of “principles” [68, Vol.3A, §8.2.2 Memory Ordering in P6 and More Recent
Processor Families], including that quoted above, but those do not speak to this case of a read
followed by a write to a different address. However, [68, Vol.3A, §8.2.3 Examples Illustrating the
Memory-Ordering Principles] includes (§8.2.3.3) the statement “The Intel-64 memory-ordering
model ensures that a store by a processor may not occur before a previous load by the same
processor” and a version of the LB example, unambiguously stating that it is not allowed. The
AMD APM states explicitly

Stores do not pass loads

again with an example essentially identical to this test.
We can infer, both from the experimental data and the documented intent, that general out-

of-order execution is not observable for x86, and the observed and intended behaviour is so far
still consistent with the cartoon microarchitecture in §2.2 above.

2.4 MP: message passing?

Now consider the MP test below. This is a simple form of a very common concurrent program-
ming idiom, in which one thread writes some data (possibly a large data structure) and then
writes a flag value indicating that it is ready to be consumed, while another thread reads that
flag in a loop until it sees that flag value, before reading the data.

x=1;// write data
y=1;// write flag

Thread 0
while (y!=1);// spin until the flag value is visible
r1=x;// read data

Thread 1

Initial state: x=0; y=0;

To make the litmus-test version as simple as possible, it has just a single read of the flag y, rather
than a loop, with the final condition picking out executions in which that read does see the new
flag value – as if the loop terminated on its first iteration. The test is also simplified in several
other ways compared to what a real software library would have to handle: it doesn’t deal with
repeated message passing, or with message passing between more than two threads, or with
any performance concerns. The interesting execution is that in which the Thread 1 read of y
sees the new flag value but its program-order-later read of x sees the “stale” initial-state data
rather than that written by Thread 0. For the message-passing software idiom to work reliably,
this should be forbidden.

movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0;

x=0;

MP x86

Final: 1:rax=1; 1:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

Part I Chapter 2 x86 basic phenomena 28

Experimentally, this is again not observed on any x86 processor implementation we have
tested – though we’ll see later that it is observable on Arm-A and IBM Power processor imple-
mentations, so such code needs additional synchronisation on those platforms.

Microarchitecturally, this too could arise from out-of-order execution, either of the two stores
on Thread 0 or the two loads on Thread 1, or it could arise even with in-order execution if the
two writes can propagate from Thread 0 to memory (or just to Thread 1) out-of-order, e.g. with
non-FIFO write buffers, or from some more complex interconnect that has multiple parallel
channels.

In the documented vendor architectural intent, it is clearly forbidden. The Intel princi-
ples [68, §8.2.2] include:

• Reads are not reordered with other reads

• Writes to memory are not reordered with other writes, with the following excep-
tions:

– streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

– string operations (see Section 8.2.4.1).

and the AMD documentation states

• Loads do not pass previous loads (loads are not reordered). Stores do not pass
previous stores (stores are not reordered)

which are clear at least about the thread-local behaviour (it’s arguably unclear whether this
“not reordered with” is supposed to exclude out-of-order write propagation), and [68, Vol.3A,
§8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations] and [17, Vol.2, §7.2] have
versions of MP with an unambigous statement that it is forbidden.

x86 processor implementations typically will use out-of-order execution internally, but this
experimental data and documented intent again say that that is not observable – hence, when-
ever such an implementation would result in the forbidden MP final state, it must abort and
redo enough of the execution.

The fact that this behaviour is not observed or allowed is what one would expect from a
version of the cartoon microarchitecture in §2.2 in which the write buffers are first-in-first-out
(FIFO), which previously we left unspecified.

2.5 SB+rfi-pos: write buffers with read-back?

Returning to SB, consider now a variant in which each thread writes to location x or y, reads
from that location, and then reads from the other location. The interesting execution is the one
in which the first reads see the just-written values while the second reads read from the initial
state rather than the value written by the other thread. (We’ll explain the name of the test later.)

movq $1, (x) //a
movq (x), %rax //b
movq (y), %rbx //c

Thread 0
movq $1, (y) //d
movq (y), %rax //e
movq (x), %rbx //f

Thread 1

Initial state: 0:rax=0; 0:rbx=0;

1:rax=0; 1:rbx=0; y=0; x=0;

SB+rfi-pos x86

Final: 0:rax=1; 0:rbx=0; 1:rax=1;

1:rbx=0;

Observation: 320/100000000

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rf rf

rf rf

Part I Chapter 2 x86 basic phenomena 29

Experimentally, this is observable, but it is not consistent with the cartoon microarchitecture we
have so far, in which writes are buffered and reads read directly from memory. In that, for the
first reads to see the just-written values, those writes must have propagated to memory, but then
because we believe from the vendor documentation that pairs of reads are not reordered, the
Thread 0 reads of x=1 then y=0 tell us that the writes x=1 and y=1 must reach memory strictly in
that order, while the Thread 1 reads of y=1 then x=0 tell us that the writes must reach memory
in the opposite order. That would be a contradiction, so the second reads couldn’t both read
from the initial state in the same execution.

This suggests a refined cartoon microarchitecture in which threads can read directly from
the write buffer, if it contains a write to the location being read, or directly from memory:

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread

More specifically, each thread should read the most recent write in the buffer to the location
being read, if there is one, or otherwise read directly from memory, otherwise the behaviour of
a single thread in isolation would no longer follow the expected sequential semantics.

In the vendor documentation, the Intel “principles” [68, Vol.3A, §8.2.2] don’t speak to this
except for a remark that “The only enhancements in the Pentium 4, Intel Xeon, and P6 family
processors are: [...] Store-buffer forwarding, when a read passes a write to the same memory
location”, but [68, Vol.3A, §8.2.3.5 Intra-Processor Forwarding is Allowed] says “The memory-
ordering model allows concurrent stores by two processors to be seen in different orders by those
two processors; specifically, each processor may perceive its own store occurring before that of the
other.”, while the AMD [17, Vol.2, §7.2] says “The local visibility (within a processor) for a memory
operation may differ from the global visibility (from another processor). Using a data bypass, a local
load can read the result of a local store in a store buffer, before the store becomes globally visible.
Program order is still maintained when using such bypasses.”; both have a version of this test that
is explicitly allowed.

2.6 IRIW: independent reads of independent writes?

We now consider tests with more than two hardware threads, which introduces some interesting
questions. First, consider a variant of the above SB+rfi-pos test in which the writes are “pulled
out” to separate threads. In this Independent reads of independent writes (IRIW) test, Threads 0
and 2 write to x and y respectively, while Thread 1 reads x then y and Thread 3 reads y then
x. The interesting execution is that in which the Thread 1 and 3 first reads (b and e) see the
corresponding write, while their second reads (c and f) do not (they read from the initial state):

movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (y), %rbx //c

Thread 1
movq $1, (y) //d

Thread 2
movq (y), %rax //e
movq (x), %rbx //f

Thread 3

Initial state: 1:rax=0; 1:rbx=0; 3:rax=0; 3:rbx=0; y=0; x=0;

IRIW x86

Final: 1:rax=1; 1:rbx=0; 3:rax=1; 3:rbx=0;

Observation: 0/100000000

Part I Chapter 2 x86 basic phenomena 30

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

For some time it was debated whether any natural code idioms relied on the absence of IRIW,
though it was certainly important when implementing higher-level language models, but in
2020 Osterlund drew attention to an instance in the HotSpot implementation [58].

Experimentally, IRIW is not observed on x86.
Microarchitecturally, would it be allowed in the refined cartoon microarchitecture we just

saw in §2.5? No, for essentially the same reason: if the reads are (as far as the programmer
can tell) satisfied in order, and (as in the cartoon) they are satisfied from a single memory, then
there would be a cycle in the order in which the writes are propagated to that memory, but that
is a contradiction.

Is it microarchitecturally plausible? Yes, in various ways. For example, one might have store
buffers that are shared between some hardware threads:

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread 2 Thread 3Thread 0 Thread 1

In this, Thread 1 could read from Thread 0’s write to x, from their shared buffer, before it is
propagated to the shared memory that would allow Thread 3 to read it, and symmetrically in
the same execution for y. (Of course, one might still have such shared buffers, but tag entries
with the hardware thread that created them, and allow reading just from those; then the shared
buffers would not be directly observable.) Alternatively, one might have a cache protocol in
which invalidates are propagated sufficiently lazily to make this observable even without shared
store buffers.

The current x86 vendor documentation unambiguously forbids IRIW, though historically it
did not; we’ll return to that later. The Intel SDM principles [68, Vol.3A, §8.2.2] include

• Any two stores are seen in a consistent order by processors other than those per-
forming the stores

with a version of IRIW [68, Vol.3A, §8.2.3.7 Stores Are Seen in a Consistent Order by Other
Processors], while the AMD APM [17, Vol.2, §7.2] says:

• Stores to different locations in memory observed from two (or more) other proces-
sors will appear in the same order to all observers.

also with a version of IRIW, stated to be forbidden.

2.7 WRC: write-to-read causality?

In a similar vein, consider now the following version of MP in which the first write is “pulled
out” to another thread. Here Thread 0 writes to x; Thread 1 reads from that write and then

Part I Chapter 2 x86 basic phenomena 31

writes y; and Thread 2 reads from that write of y and then reads x. The interesting execution is
that in which those first two reads see the writes but the last Thread 2 read of x reads from the
initial state, not from the Thread 0 write of x.

movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $1, (y) //c

Thread 1
movq (y), %rax //d
movq (x), %rbx //e

Thread 2

Initial state: 1:rax=0; 2:rax=0; 2:rbx=0; y=0; x=0;

WRC x86

Final: 1:rax=1; 2:rax=1; 2:rbx=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

This is a simple form of message passing across more than two threads, though with the Thread 0
write of x serving as both the first data and flag writes.

Experimentally, this is not observed on x86.
Microarchitecturally, in the refined cartoon microarchitecture of §2.5 (or in the first one, of

§2.2), this would be forbidden: for Thread 1 to read x=1, it must have propagated to memory;
the Thread 1 write will be observably in order w.r.t. the Thread 1 read (from the vendor docu-
mentation); for Thread 2 to read y=1, that must have propagated to memory; and the Thread 2
reads will be observably in order (from the vendor documentation); so by transitivity (in cartoon
microarchitecture execution time) by the time Thread 2 reads x, the Thread 0 write of x=1 must
have propagated to memory and so (as Thread 2 can have no writes to x in its buffer) must be
read from.

Just like IRIW, however, WRC would be observable in other plausible microarchitectures,
including a version of the §2.6 cartoon in which Threads 0 and 1 share a non-FIFO write buffer
that is not also shared by Thread 2.

The vendor documentation is clear that this specific test behaviour is forbidden – both Intel
and AMD include an essentially identical test – but it less clear what is allowed in general. The
Intel principles [68, Vol.3A, §8.2.2] include:

• Memory ordering obeys causality (memory ordering respects transitive visibility).

and [68, Vol.3A, §8.2.3.6 Stores Are Transitively Visible] says “The memory-ordering model ensures
transitive visibility of stores; stores that are causally related appear to all processors to occur in an
order consistent with the causality relation.” while the AMD [17, Vol.2, §7.2] says

• “Dependent stores between different processors appear to occur in program order”.

However, “transitive visibility”, “the causality relation”, and “dependent stores” are not precisely
defined. The essence of relaxed memory models is that some relations that one might naively
think were respected are in fact not, so this is an unfortunate omission.

Architectures that require each write to become visible to other threads (or, in some usages,
to all threads) at the same time are known as multi-copy atomic (MCA) [63], as discussed in §??,
while others are non-multi-copy-atomic (non-MCA). SC and x86 are MCA, while Arm-A, RISC-V,
and IBM Power are non-MCA.

2.8 SB+mfences: restoring order with fences

Any relaxed architecture or programming language needs mechanisms to let the programmer
enforce stronger ordering where necessary. The details and names vary widely, but basically
there are fences or memory barriers, which are additional instructions that enforce additional
ordering between the instructions before and after them, and variants memory instructions that
are annotated with various extra strengths. Stronger ordering can also sometimes be determined
by page-table attributes or processor modes.

Part I Chapter 2 x86 basic phenomena 32

For x86, the simplest is the mfence memory barrier instruction. Adding an mfence to each
thread of SB, between the store and load, gives the SB+mfences test below.

movq $1, (x) //a
mfence //b
movq (y), %rax //c

Thread 0
movq $1, (y) //d
mfence //e
movq (x), %rax //f

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0;

x=0;

SB+mfences x86

Final: 0:rax=0; 1:rax=0;

Observation: 0/100000000

movq $1, (x)Wx=1a:mfencemovq (y), %rax

Ry=0c:

Thread 0

mfence

movq $1, (y)Wy=1d:mfencemovq (x), %rax

Rx=0f:

Thread 1

mfencerf rf

In the candidate execution, we draw an mfence edge between each pair of memory events sepa-
rated by an mfence in program order, and we usually suppress the parallel po edge for clarity.

Experimentally, adding mfences makes the non-SC final state of SB unobserved, and the
vendor architectural intent is clear that it is forbidden. The Intel principles [68, Vol.3A, §8.2.2]
include:

• Reads cannot pass earlier LFENCE and MFENCE instructions

• Writes and executions of CLFLUSH and CLFLUSHOPT cannot pass earlier LFENCE,
SFENCE, and MFENCE instructions.

• MFENCE instructions cannot pass earlier reads, writes, or executions of CLFLUSH
and CLFLUSHOPT.

and [68, Vol.3A, §8.2.5 Strengthening or Weakening the Memory-Ordering Model] adds “MFENCE
– Serializes all store and load operations that occurred prior to the MFENCE instruction in the
program instruction stream”. The intent here is reasonably clear, though again the terminology
is less so than it might be, with this “cannot pass” in addition to the earlier “are not reordered
with”, and the microarchitectural “serializes”. The AMD documentation states

• Where sequential consistency is needed (for example in Dekker’s algorithm for
mutual exclusion), an MFENCE instruction should be used between the store and
the subsequent load, or a locked access, such as XCHG, should be used for the store.

and includes a test essentially identical to SB+fences.
Microarchitecturally, a simple implementation of mfence might just pause the execution of

program-order-later instructions on its thread until all writes from previous instructions have
drained from the thread’s write buffer to memory, though one can imagine many more sophisti-
cated implementations.

Note that mfence does not itself synchronise between threads – the two mfences in the test
do not synchronise with each other; they just ensure that each threads’ write has propagated
before the program-order-later read is satisfied.

2.9 Read-modify-write instructions

x86 is not a RISC or load-store architecture, in which the basic instructions are partitioned into
instructions that operate on registers and instructions that do a single load or store – in x86 there
are many read-modify-write (RMW) instructions that read and write memory, e.g. the increment
INC. On x86 most of these are by default not atomic: they give rise to multiple memory accesses,
and other threads can interact with memory between them. For example, the test below just has
two parallel increments of x:

Part I Chapter 2 x86 basic phenomena 33

incq (x) //a0,a1

Thread 0
incq (x) //b0,b1

Thread 1

Initial state: x=0;
INC x86

Final: x=1;

Observation: 1441/1000000

incq (x)Rx=0a0:
Wx=1a1:

Thread 0
incq (x)Rx=0b0:
Wx=1b1:

Thread 1

co
rf rf

In the candidate execution, we see that each INC instruction gives rise to a read and a write
event, which we name a0/a1 and b0/b1 to indicate that they came from the same instruction.
The candidate execution also has a coherence edge co between the two writes; we’ll return to
that later. The interesting final state is that in which both reads read (the same 0 value) from
the initial state, then both increment that and write 1. Note that this is allowed even in an
SC semantics, from an interleaving in which the two reads go first, so long as the instruction
semantics for INC generates distinct read and write events.

Experimentally, this observable on x86, and microarchitecturally, this might happen on al-
most any implementation.

To force an x86 RMW instruction to be atomic, one can add the LOCK prefix (which is literally
a one-byte opcode prefix), e.g. as below.

lock incq (x) //a0,a1

Thread 0
lock incq (x) //b0,b1

Thread 1

Initial state: x=0;
LOCKINC x86

Final: x=1;

Observation: 0/1000000

lock incq (x)Rlck x=0a0:
Wlck x=1a1:

Thread 0
lock incq (x)Rlck x=0b0:
Wlck x=1b1:

Thread 1

co
rf rf

The candidate execution now shows those accesses as LOCK’d.
Experimentally, this makes the specified final state unobserved.
All this is reasonably clear in the vendor documented intent, in [68, Vol.3A, §8.1.1 Guaran-

teed Atomic Operations], [68, Vol.3A, §8.1.2.2 Software Controlled Bus Locking], and [17, Vol. 2,
§7.3.2 Access Atomicity].

The LOCK prefix is also supported for various other instructions [68, Vol.3A, §8.1.2.2 Software
Controlled Bus Locking]: bit test and modify BTS, BTR, and BTC; exchange instructions XADD,
CMPXCHG, and CMPXCHG8B (it is implicit for XCHG); and arithmetic and logical instructions INC, DEC,
NOT, NEG, ADD, ADC, SUB, SBB, AND, OR, and XOR.

2.10 Synchronising power of locked instructions

These LOCK’d instructions have additional synchronisation force. For brevity, we’ll omit the
tests and experimental data, and just recall the vendor intent. The Intel principles [68, §8.2.2]
include:

• Reads or writes cannot be reordered with I/O instructions, locked instructions, or
serializing instructions.

• In a multiple-processor system, the following ordering principles apply: [...]
Locked instructions have a total order.

and has examples in [68, Vol.3A, §8.2.3.9 Loads and Stores Are Not Reordered with Locked In-
structions] and [68, Vol.3A, §8.2.3.8 Locked instructions have a total order] while the AMD APM
[17, Vol 2., §7.1.3] says:

• Serializing instructions, I/O instructions, and locked instructions (including the
implicitly locked XCHG instruction) can also be used as read/write barriers

Chapter 3

x86: some vendor documentation
history

In the previous chapter we saw some excerpts of the Intel and AMD specifications of their con-
currency behaviour, expressed in a combination of informal prose and examples. In some cases
this prose was hard to interpret, and this is a common and intrinsic problem: informal prose is
a poor medium for loose specification of subtle properties. It’s very hard to make prose specifi-
cations unambiguous; they are not machine-readable or executable, so one cannot compute the
behaviour of test programs that a prose specification allows; and one cannot cannot use them
directly as criteria for testing processor implementations.

In the next chapters we show how one can do better, with mathematically precise models
for x86 concurrency. To give more context for that, we first recall some of the history of the x86
documented models, as we saw them. The reader who just wants to know what x86 is now can
safely skip this.

3.1 pre-IWP (before Aug. 2007)

Early revisions of the Intel SDM (e.g. rev. 22, Nov. 2006) gave an informal-prose model called
‘processor ordering’, unsupported by any examples. It is hard to see precisely what this prose
means, especially without additional knowledge or assumptions about the microarchitecture of
particular implementations.

The uncertainty about x86 behaviour that at least some systems programmers had about
earlier IA-32 processors can be gauged from an extensive Linux kernel mailing list discussion in
1999 about the correctness of a proposed optimisation to a Linux spinlock implementation [5].
In brief, the spin_unlock code initially used a bit-test-and-reset instruction with the LOCK pre-
fix. Manfred Spraul thought this could be improved from around 22 ticks for the "lock; btrl

$0,%0", to 1 tick for a simple "movl $0,%0" instruction, a huge gain. Linus Torvalds asserted that
this should not work in general, because of potential CPU reordering of instructions around the
spin_unlock code. There followed a lengthy discussion of the behaviour of different x86 gener-
ations, eventually resolved only by Erich Boleyn, an Architect in an IA32 development group at
Intel, who wrote:

You don’t need "spin_unlock()" to be serializing. The only thing you need is to make
sure there is a store in "spin_unlock()", and that is kind of true by the fact that you’re
changing something to be observable on other processors. The reason for this is that
stores can only possibly be observed when all prior instructions have retired (i.e. the
store is not sent outside of the processor until it is committed state, and the earlier
instructions are already committed by that time), so the any loads, stores, etc absolutely
have to have completed first, cache-miss or not.

34

Part I Chapter 3 x86: some vendor documentation history 35

Since the instructions for the store in the spin_unlock have to have been externally
observed for spin_lock to be aquired (presuming a correctly functioning spinlock, of
course), then the earlier instructions to set "b" to the value of "a" have to have completed
first. In general, IA32 is Processor Ordered for cacheable accesses. Speculation doesn’t
affect this. Also, stores are not observed speculatively on other processors.

It’s notable that this is largely in microarchitectural terms, not just in terms of the specified
architecture. We return to this optimisation later, where we can explain why it is sound with
respect to our models.

3.2 IWP/AMD3.14/x86-CC

In August 2007, an Intel White Paper [9] (IWP) gave a somewhat more precise model, with 8
informal-prose principles P1–P8 supported by 10 litmus-test examples. This was incorporated,
essentially unchanged, into later revisions of the Intel SDM (including rev. 26–28), and AMD
gave similar, though not identical, prose and tests in rev. 3.14 of their manual [8, Vol. 2,§7.2]
(AMD3.14).

These two were a substantial improvement in clarity but still suffered from several issues.
First, AMD3.14 explicitly allowed the §2.6 IRIW example, in which different hardware

threads can see writes to independent locations in different orders, while IWP allowed it im-
plicitly, as IRIW is not ruled out by the stated principles1. IRIW was not observable in practice
in our experimental testing, but a lack of observation is never definitive: testing can never be
exhaustive; it covered only some of many x86 processor implementations; and it says nothing
about possible planned future x86 implementations. Allowing IRIW gave a rather weak model
for programmers. In particular, under reasonable assumptions on the strongest x86 memory
barrier, mfence, adding mfences between pairs of instructions would not suffice to recover se-
quential consistency, and that is challenging for implementations of high-level languages that
aim to provide stronger models. It appeared that some JVM implementations depended on
mfence sufficing for that, and would not be correct if one assumed only the IWP/AMD3.14 ar-
chitecture [72]. Instead, one would have to make liberal use of x86 LOCK’d instructions [129,
§2.12], with a big performance cost.

Both IWP and AMD3.14 required that causality is respected, in some sense, as in the IWP
principle P5 (still in the current documentation [68, Vol.3A, §8.2.2]):

P5. In a multiprocessor system, memory ordering obeys causality (memory ordering
respects transitive visibility)

We used these informal specifications as the basis for a formal model, x86-CC [129], for which
a key issue was giving a reasonable interpretation to this “causality”, which is not defined in
IWP or AMD3.14. We interpreted causality as the union of a preserved program order within
each thread (capturing e.g. the “P1 loads are not reordered with other loads”), a per-location to-
tal coherence order over writes (capturing the “P6 In a multiprocessor system, stores to the same
location have a total order”), a total order over LOCK’d instructions (capturing the “P7. In a

1This reasoning was later questioned by Intel staff, who wrote [148]:

We do not believe that there was any statement in the white paper that allows IRIW or that could be inferred
to do so (i.e., there was no statement that the examples given include all limitations on the model). The
IRIW example was discussed [...] within Intel before the white paper was published. While there was
consensus that it was not allowed by the model, there was no consensus to publish that fact. A decision was
made to omit any mention of IRIW in the white paper and to craft the writing so that no inference about
IRIW could be drawn.

However, given such a specification, any reasonable programmer would surely be unable to assume that IRIW cannot
occur.

Part I Chapter 3 x86: some vendor documentation history 36

multiprocessor system, locked instructions have a total order”), and the reads-from relation (cap-
turing P5). Roughly speaking, we were interpreting all uses of “order” in the prose principles as
referring to the same causality order, which is arguably natural, though naive in hindsight. The
model had a linear view order for each hardware thread, over all its events and the memory
write events of other threads, and we required that each of those is consistent with the global
causality relation. This gave the correct behaviour for the vendor litmus tests, and was con-
sistent with some limited experimental testing for those; it was also provably equivalent to an
operational abstract machine model.

However, as noted by Paul Loewenstein [129, App.A], the model is not sound with respect
to observable x86 implementation behaviour, e.g. for the test below:

movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq $2, (y) //c
movq (y), %rax //d
movq (x), %rbx //e

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0;

x=0;

R+po+rfi-po (n6) x86

Final: 1:rax=2; 1:rbx=0; y=2;

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq (y), %rax

Ry=2d:movq (x), %rbx

Rx=0e:

Thread 1

po

po

co rf

rf

This is allowed by implementations with FIFO store buffers, as in the §2.5 cartoon microar-
chitecture, but not by x86-CC, or by any interpretation we could make of IWP principles P1,2,4
and 6 [118, A.5].

3.3 Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010)

A later substantial change to the Intel memory model specification was in revision 29 of the
Intel SDM (revisions 29–34 were essentially identical except for the LFENCE text). This was in
a similar informal-prose style to previous versions, but significantly different to IWP. First, IRIW
is forbidden [11, Example 8-7, vol. 3A], and the previous coherence condition:

P6. In a multiprocessor system, stores to the same location have a total order

was been replaced by:

Any two stores are seen in a consistent order by processors other than those performing
the stores

Second, the memory barrier instructions are now included. It was stated that reads and
writes cannot pass mfence instructions, together with more refined properties for sfence and
lfence.

Third, same-processor writes were explicitly ordered:

P10. Writes by a single processor are observed in the same order by all processors

(we previously regarded this as implicit in the IWP “P2. Stores are not reordered with other
stores”).

How to interpret “causality” in P5 remained unclear, and the new P9 says nothing about
observations of two stores by those two processors themselves (or by one of those processors
and one other). The following examples illustrate potentially surprising behaviour that arguably
violates coherence. Their final states are not allowed in x86-CC, are not allowed in a pure store-
buffer implementation or in x86-TSO, and we have not observed them on actual processors.
However, the principles stated in revisions 29–34 of the Intel SDM appear, presumably uninten-
tionally, to allow them. The AMD3.14 Vol. 2, §7.2 text taken alone would allow them, but the
implied coherence from elsewhere in the AMD manual would forbid them.

Part I Chapter 3 x86: some vendor documentation history 37

movq $1, (x) //a
movq (x), %rax //b

Thread 0
movq $2, (x) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; x=0;

SB+poss (n5) x86

Final: 0:rax=2; 1:rax=1; x=2;

movq $1, (x)Wx=1a:movq (x), %rax

Rx=2b:

Thread 0

po

movq $2, (x)Wx=2c:movq (x), %rax

Rx=1d:

Thread 1

po

co

rf
rf

movq (x), %rax //a
movq $1, (x) //b

Thread 0
movq (x), %rax //c
movq $2, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; x=0;

LB+poss (n4b) x86

Final: 0:rax=2; 1:rax=1; x=2;

movq (x), %raxRx=2a:movq $1, (x)

Wx=1b:

Thread 0

po

movq (x), %raxRx=1c:movq $2, (x)

Wx=2d:

Thread 1

po

co

rf
rf

All this illustrates once again the difficulty of writing unambiguous and correct loose specifi-
cations in informal prose.

3.4 AMD APM version 3.15 (Nov. 2009)

In November 2009, AMD produced a new revision, 3.15, of their manuals. The main difference
in the memory model specification was that IRIW was now explicitly forbidden.

3.5 Intel SDM rev.80 (June 2023)

The Intel SDM at the time of writing (revision 80, from June 2023) [68, Vol.3A] describes its
memory ordering model as below.

8.2.2 Memory Ordering in P6 and More Recent Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further defined
as “write ordered with store-buffer forwarding.” This model can be characterized as
follows.

In a single-processor system for memory regions defined as write-back cacheable, the
memory-ordering model respects the following principles (Note the memory-ordering
principles for single-processor and multiple-processor systems are written from the per-
spective of software executing on the processor, where the term “processor” refers to a
logical processor. For example, a physical processor supporting multiple cores and/or
Intel Hyper-Threading Technology is treated as a multi-processor systems.):

• Reads are not reordered with other reads.

• Writes are not reordered with older reads.

• Writes to memory are not reordered with other writes, with the following excep-
tions:

– streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

– string operations (see Section 8.2.4.1).

• No write to memory may be reordered with an execution of the CLFLUSH in-
struction; a write may be reordered with an execution of the CLFLUSHOPT in-
struction that flushes a cache line other than the one being written. Executions
of the CLFLUSH instruction are not reordered with each other. Executions of
CLFLUSHOPT that access different cache lines may be reordered with each other.

Part I Chapter 3 x86: some vendor documentation history 38

An execution of CLFLUSHOPT may be reordered with an execution of CLFLUSH
that accesses a different cache line.

• Reads may be reordered with older writes to different locations but not with older
writes to the same location.

• Reads or writes cannot be reordered with I/O instructions, locked instructions, or
serializing instructions.

• Reads cannot pass earlier LFENCE and MFENCE instructions.

• Writes and executions of CLFLUSH and CLFLUSHOPT cannot pass earlier LFENCE,
SFENCE, and MFENCE instructions.

• LFENCE instructions cannot pass earlier reads.

• SFENCE instructions cannot pass earlier writes or executions of CLFLUSH and
CLFLUSHOPT.

• MFENCE instructions cannot pass earlier reads, writes, or executions of CLFLUSH
and CLFLUSHOPT.

In a multiple-processor system, the following ordering principles apply:

• Individual processors use the same ordering principles as in a single-processor sys-
tem.

• Writes by a single processor are observed in the same order by all processors.

• Writes from an individual processor are NOT ordered with respect to the writes
from other processors.

• Memory ordering obeys causality (memory ordering respects transitive visibility).

• Any two stores are seen in a consistent order by processors other than those per-
forming the stores

• Locked instructions have a total order.

[...]

The processor-ordering model described in this section is virtually identical to that used
by the Pentium and Intel486 processors. The only enhancements in the Pentium 4, Intel
Xeon, and P6 family processors are:

• Added support for speculative reads, while still adhering to the ordering principles
above.

• Store-buffer forwarding, when a read passes a write to the same memory location.

• Out of order store from long string store and string move operations (see Section
8.2.4, “Fast-String Operation and Out-of-Order Stores,” below).

together with 8.2.3 Examples Illustrating the Memory-Ordering Principles.
It still contains much of the previous text and a priori is not obvious how to interpret as a

precise model, especially for the mixed “not reordered with”, “cannot pass”, “not ordered with
respect to”, “obeys causality”, and “have a total order” terminology.

The introductory that can be further defined as “write ordered with store-buffer forwarding”
does add welcome clarification, however.

Part I Chapter 3 x86: some vendor documentation history 39

3.6 AMD APM 4.07 (April 2020)

The AMD APM at the time of writing (version 4.07 from April 2020) describes their memory
ordering model as below (abbreviating the examples that we have already seen) [17, Vol.2].

§7.2 Multiprocessor Memory Access Ordering

To improve performance of applications, AMD64 processors can speculatively execute
instructions out of program order and temporarily hold out-of-order results. However,
certain rules are followed with regard to normal cacheable accesses on naturally aligned
boundaries to WB memory. In the examples below, all memory values are initialized to
zero.

From the point of view of a program, in ascending order of priority:

• All loads, stores and I/O operations from a single processor appear to occur in
program order to the code running on that processor and all instructions appear
to execute in program order.

• Successive stores from a single processor are committed to system memory and
visible to other processors in program order. A store by a processor cannot be
committed to memory before a read appearing earlier in the program has captured
its targeted data from memory. In other words, stores from a processor cannot be
reordered to occur prior to a load preceding it in program order. In this context:

– Loads do not pass previous loads (loads are not reordered). Stores do not pass
previous stores (stores are not reordered) [MP]

– Stores do not pass loads [LB]

• Stores from a processor appear to be committed to the memory system in program
order; however, stores can be delayed arbitrarily by store buffering while the pro-
cessor continues operation. Therefore, stores from a processor may not appear to
be sequentially consistent.

• Non-overlapping Loads may pass stores. [SB] Where sequential consistency is
needed (for example in Dekker’s algorithm for mutual exclusion), an MFENCE
instruction should be used between the store and the subsequent load, or a locked
access, such as XCHG, should be used for the store. [SB+mfences]

• Loads that partially overlap prior stores may return the modified part of the load
operand from the store buffer, combining globally visible bytes with bytes that are
only locally visible. To ensure that such loads return only a globally visible value,
an MFENCE or locked access must be used between the store and the dependent
load, or the store or load must be performed with a locked operation such as
XCHG.

• Stores to different locations in memory observed from two (or more) other proces-
sors will appear in the same order to all observers. [IRIW]

• Dependent stores between different processors appear to occur in program order,
as shown in the code example below. [WRC]

• The local visibility (within a processor) for a memory operation may differ from
the global visibility (from another processor). Using a data bypass, a local load can
read the result of a local store in a store buffer, before the store becomes globally
visible. Program order is still maintained when using such bypasses. [SB+rfi-pos]
There are no constraints on the relative order of when the Store A of processor
0 is visible to processor 1 relative to when the Store B of processor 1 is visible to
processor 0.

Part I Chapter 3 x86: some vendor documentation history 40

If a very strong memory ordering model is required that does not allow local
store-load bypasses, an MFENCE instruction or a synchronizing instruction such
as XCHG or a locked Read-modify- write should be used between the store and
the subsequent load. This enforces a memory ordering stronger than total store
ordering. [SB+rfi-mfence-po]

Chapter 4

x86-TSO: creating a good de facto
standard model

Given the lack of clarity in the vendor prose specifications of 2007–2009, as described in the
previous two chapters, we concluded that one could not produce a useful rigorous model, to
clarify the allowed behaviour for programmers and to support verification, solely by formalising
the “principles” from the prose specifications (as we attempted with x86-CC [129]). Instead,
we had to build a reasonable model that was consistent with the given litmus tests, with ob-
served processor behaviour, and with what we knew of the needs of programmers, the vendors’
intentions, and the folklore in the area.

To summarise some key facts from the previous two chapters:

• Store buffering (with forwarding) is observable, and explicitly allowed by the prose speci-
fications

• These store buffers appear to be FIFO

• We don’t see observable buffering of read requests

• We don’t see other observable out-of-order or speculative execution, and other pairwise
reorderings are explicitly forbidden by the prose

• IRIW and WRC not observable, and (since the Intel SDM rev.29 in Nov. 2008 and AMD
APM 3.15 in Nov. 2009) are forbidden by the prose

• mfence appears to wait for the local store buffer to drain

• LOCK’d instructions also appear to wait for the local store buffer to drain, before they
execute

These strongly suggested that, apart from store buffering, all processors share the same view
of memory. Moreover, different processors or hardware threads do not observably share store
buffers. To the best of our knowledge, for the usual write-back memory (and excluding non-
temporal and string instructions), no other aspects of the microarchitecture (the out-of-order
execution, cache hierarchies and protocols, interconnect topology, and so on) are observable to
the programmer, except in so far as they affect performance. The obvious conclusion was that
x86 is, in practice, much like the SPARC Total Store Ordering (TSO) memory model [143, 2]:
the observable effects of store buffers are the only observable relaxed-memory behaviour.

We therefore designed a TSO-like model for x86, x86-TSO by Owens, Sarkar, Sewell, Myreen,
and Zappa Nardelli [116, 118, 137]. This is extensionally very similar to the SPARC TSO model,
essentially codifying the cartoon microarchitecture of §2.5:

41

Part I Chapter 4 x86-TSO: creating a good de facto standard model 42

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread

except that it covers the x86 LOCK’d instructions.

Chapter 5

Operational and axiomatic
concurrency model definitions

To define a relaxed memory model precisely, there are two main styles of definition one can use,
operational and axiomatic:

• An operational model is expressed as an abstract machine, with a set of possible state,
transitions between them, and an initial state.

• An axiomatic model is expressed as a predicate (the “axioms” of the model) on some
notion of candidate complete execution graph, defining the set of candidate executions
that are allowed.

There are many pros and cons of both styles, which have been much discussed in the literature
(which we return to in Part ??).

Operational models are often, though not necessarily, designed to capture some microarchi-
tectural intuition of how real hardware implementations work, though still abstracting from as
many of their details as they can while still defining the intended envelope of behaviour; we call
these abstract microarchitectural operational models. This can be useful to explain relaxed be-
haviour, if one can arrange for behaviours to arise in the model for essentially the same reasons
that they do in hardware implementations, and it can guide model design and testing. The fact
that one has to define the model behaviour in any model state helps identify previously uncon-
sidered subtleties. Of course, an actual hardware implementation that extensionally conforms to
such a model could be less aggressive than the model, or it could be more aggressive internally,
as many are, so long as it does not extensionally allow more programmer-visible behaviours.

Axiomatic models are typically, though again not necessarily, designed to define the allowed
complete executions as concisely as possible. Many do so in terms of a notion of candidate
execution that has just a single event for each memory read and write, with a single reads-from
relation, and other relations, over them – exactly as we have seen in the example execution
graphs. Some axiomatic models are more intricate and more microarchitectural, e.g. with events
recording when each write propagates to each other thread, and/or orders for each hardware
thread, but we do not discuss any models of that kind here. Axiomatic models in this relaxed-
concurrency sense should not be confused with the (now largely historical) “axiomatic seman-
tics” approach to programming language definition, originating with Floyd [75] and Hoare [90],
in which one defines the meaning of language constructs by giving program-logic proof rules for
them.

The main advantage of axiomatic models is usually their brevity: the key part can often be
expressed as a page or so of definitions, whereas operational models tend to have a relatively
complex state, and execution of a single instruction may involve many transitions. Axiomatic
models are also typically mathematically simpler, expressed just in terms of various relation def-

43

Part I Chapter 5 Operational and axiomatic concurrency model definitions 44

initions (albeit sometimes inductive), but at the cost of the clearer operational and microarchi-
tectural intuition of operational models. That said, one potential concern with abstract microar-
chitectural models is that they could be mistakenly taken by hardware designers as prescribing
the intensional internal structure of implementations, rather than just the intended extensional
envelope of programmer-visible behaviour, and some operational model designs involve choices
that do not affect the set of programmer-visible behaviour. Moreover, the architectural intent
does not necessarily have a natural operational characterisation – e.g., hypothetically, if it is
intended to cover two quite different microarchitectural implementation techniques for which
there is not a good operational characterisation of the union of their behaviours.

Operational models support incremental construction of allowed executions. That means
one can build tools for interactive or single-random-trace exploration of the allowed behaviour,
and to compute all allowed behaviours one can compute an exhaustive exploration of the tran-
sition system. That has proved feasible for litmus tests, with some optimisations, but exhaus-
tive exploration quickly becomes prohibitive for larger examples. Axiomatic models do not di-
rectly support incremental construction of partial executions; they only characterise the allowed
complete executions. For small litmus-test examples, one can calculate the set of all allowed
outcomes, or whether some final state is allowed, using constraint-solving approaches (which
historically have been faster than the operational tools, though scaling is still a concern), but
interactive or single-random-trace exploration is harder.

The fact that operational models construct candidate executions incrementally means that
they can execute the intra-instruction semantics of each instruction instance on concrete values,
without requiring symbolic execution of that semantics (sometimes modulo calculation of some
register and memory footprint information), which axiomatic tools often do.

Each style has advantages for certain kinds of proof: operational models supports induc-
tion on model-execution traces, while axiomatic models directly give one explicit properties of
complete executions.

The ideal is to have models expressed in both styles, with a proof of equivalence between
them, or, failing that, with experimental testing of their equivalence on a substantial body of
litmus tests. In the following chapters, we’ll describe such pairs of models, with equivalence
proofs, for SC, x86-TSO, and a user fragment of Arm-A; in other cases, we’ll just give an op-
erational model (for larger fragments of Arm-A and for IBM Power), or a pair of models with
testing rather than proof of their equivalence (for RISC-V).

Chapter 6

SC, operationally

To express relaxed memory models precisely, we use standard simple discrete mathematics.
Fig. 6.1 recalls the usual basic terminology and notation, for sets, tuples, records, lists, functions,
relations, and formulas, and we’ll introduce more as needed. Previous familiarity with this
shouldn’t be necessary to read the text.

Before describing x86-TSO, we first give a precise operational model for SC, to introduce the
notation we’ll be using.

For now, this will model just the memory of an SC machine – the dashed box of the cartoon
microarchitecture below – leaving the hardware thread behaviour informal. We’ll return later
to how the thread behaviour can also be made precise. For SC and x86-TSO, we will later
codify that each hardware thread executes in order, generating writes and reads in the obvious
way (and mfences and RMWs for x86), but here we are only defining the memory behaviour in
isolation.

Shared Memory

Thread

W W RR

Thread

6.1 An operational SC model

Interface The interface between the hardware threads and the memory is codified with write
and read events:

Events e ::= a:t:W x=v a write of value v to address x by thread t, ID a
| a:t:Rx=v a read of v from x by t, ID a

These are defined with a grammar: the above just says that event e is either a write event, of the
form a:t:W x=v, or a read event, of the form a:t:Rx=v. We write events for the set of all these.
Here:

• a is a unique event ID, from a set eid

• t is a hardware thread ID, from a set tid

45

Part I Chapter 6 SC, operationally 46

Sets are unordered collections of distinct elements. {a1, . . . an} is the finite set with elements
a1, . . . , an, and {} is the empty set, with no elements. A ∪ B is the union of A and B, containing
all the elements of either. A ∩ B is the intersection of A and B, containing the elements that
are in both. A×B is the product of A and B, containing all pairs (a, b) where a is an element
of A and b is an element of B. A → B is the set of all (total) mathematical functions from A
to B. For a variable x and formula P , {x | P} is the set of all a for which P with x instantiated
to a is true.

Tuples are fixed-length ordered sequences of elements. (a1 . . . an) is an n-tuple of a1, . . . , an
(where n ≥ 2), and (a1, a2) is the pair of a1 and a2. Parentheses (·) are also used for grouping
expressions and formulas, as usual.

Records are like tuples except with named fields. ⟨FieldName1 := a1; . . . ; FieldNamen := an⟩
is the record with those fields and values. r.FieldName is the value of the FieldName field of
record r. r⊕ ⟨FieldName := a⟩ is the record obtained by updating the FieldName field of r to a.

Lists are arbitrary-length ordered sequences of elements. [a1, . . . , an] is the list of elements
a1, . . . , an (where n ≥ 0), so [] is the empty list and [a] is the singleton list with a single
element a. l1@ l2 is the concatentation of lists l1 and l2.

Functions f from a set A to a set B map each element of A to some element f a of B. These
are pure total mathematical functions; they have no side-effects. {a1 7→ b1, . . . , an 7→ bn} is
the function that maps each of those ai (which must be distinct, and be all the elements of A)
to the corresponding bi (which need not be distinct or include all the elements of B). f a is the
result of applying function f to argument a. f ⊕ (a 7→ b) is the mathematical function that is
like f except that it maps a to b

A binary relation −→ over a set A is a set of pairs (a, a′) of elements of A, or in other words a
subset −→ ⊆ A×A.

Formulas (or Predicates) P express properties that might be true or false.

a ∈ A is true iff a is an element of A
A ⊆ B is true iff A is a subset of B, i.e., if all elements of A are elements of B
¬P is true iff P is false
P ∧ P ′ is true iff P and P ′ are both true
P ∨ P ′ is true iff P is true or P ′ is true
P =⇒ P ′ is true iff P implies P ′, i.e., if P is true then P ′ is true

(if P is false, then P =⇒ P ′ is vacuously true irrespective of P ′)
∀x ∈ A. P is true iff for all elements a ∈ A, P with x instantiated to a is true

(if A is empty, this is vacuously true)
∃x ∈ A. P is true iff there exists some a ∈ A, such that P with x instantiated to a is true

Normally one would drop all of those “is true”s, of course, but they may be helpful on a first
reading. If the ranges of the quantifiers are clear from the context, they can be omitted, writing
just ∀x. P and ∃x. P . One often uses infix notation for binary relations, e.g. for a relation −→,
writing a −→ a′ for (a, a′) ∈ −→.

Figure 6.1: Discrete maths notation and terminology: sets, tuples, records, lists, functions,
relations, and formulas

Part I Chapter 6 SC, operationally 47

• x is a memory address, from a set addr, and

• v is a memory value, from a set value

These are exactly like the events we’ve seen in candidate execution diagrams except that their
thread ID is explicit, rather than implicit in the diagrams. Note that these are atomic: read
events include both the address and the result value of the read; they are not split into separate
read-request and read-result events (later we will sometimes use finer-grain events, but for SC
and x86-TSO it is not necessary). Exactly what the sets of memory addresses and values are is
not important now, as we are deferring mixed-size accesses and virtual memory to later. One
could imagine, for example, a set of byte addresses and byte values, or a set of 8-byte (64-bit)
aligned addresses and 8-byte values.

We use the following auxiliary functions to deconstruct events:

• id(e), thread(e), addr(e), value(e) extract the respective components of event e, and

• isread(e), iswrite(e), isdequeue(e), ismfence(e) identify the corresponding kinds of event.

States The states m of the operational SC model are complete memory states, giving a value
for each address.

m : addr → value

This just states that m has the type addr → value, of all (mathematical) functions from addr to
value.

Behaviour The behaviour of the model is expressed as a transition system m
e−→ m′, meaning

that state m can participate in event e and transition to state m′; here e is the label of the
transition. Formally, −→ is a ternary relation, a subset of the set of triples (m, e,m′) of a
memory, label, and memory (addr → value)× events× (addr → value). It’s defined by two rules:

WM: Write to memory

m
a:t:W x=v−−−−−−−−→ m ⊕ (x 7→ v)

RM: Read from memory

m(x) = v

m
a:t:Rx=v−−−−−−−→ m

The WM write rule says that any memory state m can participate in a write transition with label
a:t:W x=v, with the new state m ⊕ (x 7→ v) being m updated with address x holding value v. In
other words, any thread t can always write any value v to memory at any address x .

The RM read rule says that for any memory state m, if m contains v at address x (the
precondition above the line), can participate in a read transition with label a:t:Rx=v, with the
new state being m unchanged. In other words, any thread t can read v from memory at address
x if the memory does contain v at x .

Note that neither rule constrains the event ID or, more interestingly, the thread ID: the SC
memory doesn’t care which thread is doing a write or read.

Initial State We take the initial state of the model to be minit, the memory m in which every
address is mapped to value 0.

Traces are just sequences of events e1, . . . , en with distinct event IDs, and the traces of the
model are traces for which there are states m1, . . . ,mn and transitions starting with the initial
state:

minit
e1−→ m1 . . .

en−−→ mn

Part I Chapter 6 SC, operationally 48

This includes the traces through the graph we saw in Chapter 1:

a0:t1:Wy=1
//
a1:t1:Rx=1 //

a3:t0:Ry=0
66

a4:t1:Wy=1

''

a5:t1:Rx=1

''minit

a6:t0:Wx=1
66

a7:t1:Wy=1 ((

a8:t0:Ry=1

77

a9:t1:Rx=1

''a10:t0:Wx=1

77

a11:t1:Rx=0 ((

a12:t0:Ry=1

77

a13:t0:Wx=1//
a14:t0:Ry=1

//

though because this is just the semantics of memory, independent of the threads, it also
allows many others, e.g.

minit
a1:t0:Wx=42−−−−−−−−→ a2:t0:Rx=42−−−−−−−−→

in which a thread writes 42 to x then reads it back. The model does not allow traces like:

minit
a1:t0:Wx=42−−−−−−−−→ a2:t0:Rx=43−−−−−−−−→

in which a thread writes 42 to x then (without any other intervening write) reads a distinct value
back.

Note how the model captures the essence of SC: reads read from the most recent write to
the same address, in some interleaving of whatever the threads do.

Chapter 7

x86-TSO, operationally

The x86-TSO operational model essentially formalises the cartoon microarchitecture of §2.5,
with per-thread FIFO write buffers and forwarding paths, and the addition of a lock to the
abstract machine state to capture the atomicity of x86 LOCK’d RMW instructions:

W
rite

 B
u
ffe

r

R

D

W F

W
rite

 B
u
ffe

r

R

D

W FL/U

Shared MemoryLock

L/U

ThreadThread

As for SC, for now we will formalise just the x86-TSO memory behaviour – the dashed box of
the cartoon microarchitecture above – leaving the hardware thread behaviour informal. The
hardware threads each execute in order, generating writes, reads, mfences, and RMWs in the
obvous way.

7.1 An operational x86-TSO model

Interface The interface between the hardware threads and the memory includes write and
read events as in SC, together with new events a:t:F for a mfence memory barrier, a:t:L for
the start of a LOCK’d instruction, and a:t:U for the end of a LOCK’d instruction. The latter
two let us define the instruction semantics of LOCK’d instructions in terms of the semantics of
their un-LOCK’d counterparts, by wrapping them in a a:t:L/a:t:U pair. The events also include
dequeue events a:t:Dw x=v, where w is some write event a′:t:W x=v. These are not part of the
thread/memory interface, but they are useful in reasoning; they instrument the point at which
the abstract machine dequeues a write from its write buffer to the shared memory.

Events e ::= a:t:W x=v a write of value v to address x by thread t, ID a
| a:t:Rx=v a read of v from x by t
| a:t:Dw x=v an internal action of the abstract machine, dequeuing

w = (a′:t:W x=v) from thread t’s write buffer
to shared memory

| a:t:F an MFENCE memory barrier by t
| a:t:L start of an instruction with LOCK prefix by t
| a:t:U end of an instruction with LOCK prefix by t

49

Part I Chapter 7 x86-TSO, operationally 50

States An x86-TSO abstract-machine memory state m is a record with fields M , B, and L:

m : ⟨M : addr → value;
B : tid → write event list;
L : tid option ⟩

Here:

• m.M is the shared memory, mapping addresses to values

• m.B gives the store buffer for each thread, a list of write events, most recent first
(we use a list of write events for simplicity in proofs, but the event and thread IDs are
erasable)

• m.L is the global machine lock, indicating when some thread has exclusive access to mem-
ory. It is a tid option, either NONE, or SOME t for some thread ID t

The initial state minit has minit.M zero for each address, minit.B empty for all threads, and
minit.L = NONE (lock not taken).

Behaviour To define the behaviour, two auxiliary functions are useful. Say there are no
pending writes in t’s buffer m.B(t) for address x if there are no write events w in m.B(t) with
addr(w) = x.

Say t is blocked in machine state m if some other thread holds the lock (m.L = SOME t′ for
some t′ ̸= t) and not blocked otherwise, i.e., if either it holds the lock (m.L = SOME t) or the
lock is not held (m.L = NONE).

The behaviour of the model is again expressed as a transition system m
e−→ m′, defined by

the following seven rules. For each, we give a prose transcription of the rule underneath.

RM: Read from memory

not blocked(m, t)
m.M (x) = v
no pending(m.B(t), x)

m
a:t:Rx=v−−−−−−−→ m

Thread t can read v from memory at address x if t is not blocked, the memory does contain v at
x , and there are no writes to x in t ’s store buffer. (Note that the event ID a is left unconstrained
by the rule.)

RB: Read from write buffer
not blocked(m, t)
∃a′ b1 b2. m.B(t) = b1@ [a′:t:W x=v] @ b2
no pending(b1, x)

m
a:t:Rx=v−−−−−−−→ m

Thread t can read v from its store buffer for address x if t is not blocked and has v as the value
of the most recent write to x in its buffer. We express the latter mathematically by saying that
there exists some decomposition of the buffer m.B(t) into the concatentation of three lists: b1,
a singleton list [a′:t:W x=v], and b2, where b1 has no writes to x .

WB: Write to write buffer

m
a:t:W x=v−−−−−−−−→ m ⊕ ⟨B :=m.B ⊕ (t 7→ ([a:t:W x=v] @m.B(t)))⟩

Thread t can write v to its store buffer for address x at any time.

Part I Chapter 7 x86-TSO, operationally 51

DM: Dequeue write from write buffer to memory

not blocked(m, t)
m.B(t) = b@ [a′:t:W x=v]

m
a:t:Da′:t:W x=v x=v−−−−−−−−−−−−−−→ m ⊕ ⟨M :=m.M ⊕ (x 7→ v)⟩ ⊕ ⟨B :=m.B ⊕ (t 7→ b)⟩

If Thread t is not blocked, it can silently dequeue the oldest write from its store buffer and
update memory at that address with the new value, without coordinating with any hardware
thread. (we record the write in the dequeue event just to simplify proofs.)

M: MFENCE
m.B(t) = []

m
a:t:F−−−−→ m

If Thread t ’s store buffer is empty, it can execute an MFENCE (otherwise the MFENCE blocks until
that becomes true).

We define the instruction semantics for locked instructions to bracket the transitions of their
unlocked variant with a:t:L and a′:t:U. For example, a lock inc x, in thread t , will do

1. a1:t:L

2. a2:t:Rx=v for an arbitrary v

3. a3:t:W x=(v + 1)

4. a4:t:U

This lets us reuse the inc semantics for lock inc, and to do so uniformly for all RMWs.

L: Lock
m.L = NONE

m.B(t) = []

m
a:t:L−−−−→ m ⊕ ⟨L := SOME(t)⟩

If the lock is not held and its buffer is empty, thread t can begin a LOCK’d instruction.
Note that if a hardware thread t comes to a LOCK’d instruction when its store buffer is

not empty, the machine can take one or more a:t:Dw x=v steps to empty the buffer and then
proceed.

U: Unlock
m.L = SOME(t)
m.B(t) = []

m
a:t:U−−−−→ m ⊕ ⟨L :=NONE⟩

If t holds the lock, and its store buffer is empty, it can end a LOCK’d instruction, resetting the
lock.

7.2 x86-TSO operational example: SB

Now that we finally have a mathematically rigorous model, we can go back to the first Chapter 1
SB example and see precisely why the model allows it. We continue to gloss over the instruction
semantics – we just assume that store and load instructions generate single write and read events
and have the obvious effects on registers, which is fine for simple tests like this one.

Part I Chapter 7 x86-TSO, operationally 52

As in Chapter 6, a final state is allowed in the model if there is some trace of transitions from
the initial state. We give such a trace in detail below, illustrating the different memory model
states it goes through. For this example, we assume addr = {x, y} and tid = {t0, t1}.

minit =
⟨M :={x 7→ 0, y 7→ 0};
B :={t0 7→ [], t1 7→ []};
L :=NONE ⟩

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r
Shared Memory

Thread Thread

y= 0x=0

a1:t0:W x=1−−−−−−−−−→
⟨M :={x 7→ 0, y 7→ 0};
B :={t0 7→ [a1:t0:W x=1], t1 7→ []};
L :=NONE ⟩

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread

y= 0

a1:t0:W x=1

x= 0

a2:t1:W y=1−−−−−−−−−→
⟨M :={x 7→ 0, y 7→ 0};
B :={t0 7→ [a1:t0:W x=1], t1 7→ [a2:t1:W y=1]};
L :=NONE ⟩

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread

y= 0

a2:t1:W y=1a1:t0:W x=1

x= 0

a3:t0:R y=0−−−−−−−−−→ ...the same x86-TSO memory model state
a4:t1:Rx=0−−−−−−−−−→ ...the same x86-TSO memory model state

Part I Chapter 7 x86-TSO, operationally 53

a5:t0:Da1:t0:W x=1 x=1
−−−−−−−−−−−−−−−−→

⟨M :={x 7→ 1, y 7→ 0};
B :={t0 7→ [], t1 7→ [a2:t1:W y=1]};
L :=NONE ⟩

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread

y= 0

a2:t1:W x=1

x= 1

a6:t1:Da2:t1:W y=1 y=1
−−−−−−−−−−−−−−−−→

⟨M :={x 7→ 1, y 7→ 1};
B :={t0 7→ [], t1 7→ []};
L :=NONE ⟩

Lock

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread Thread

y= 1x= 1

Putting those together, we have a complete trace:

a1:t0:W x=1−−−−−−−−−→ a2:t1:W y=1−−−−−−−−−→ a3:t0:R y=0−−−−−−−−−→ a4:t1:Rx=0−−−−−−−−−→
a5:t0:Da1:t0:W x=1 x=1
−−−−−−−−−−−−−−−−−→

a6:t1:Da2:t1:W y=1 y=1
−−−−−−−−−−−−−−−−−→

in which both threads read 0, as required.
This example, and the x86-TSO model, are small and simple enough that this is viable, but

it quickly becomes error-prone and tedious. Manual exploration of these models usually isn’t
viable: one needs tools to reliably compute the allowed transitions of the model. An even more
detailed view would explain why each premise of each of the operational rules holds, at each
step – showing the derivation of each transition.

Reasoning directly why the model does not allow some behaviour for a litmus test requires
one to enumerate all of the executions that the memory model allows and that are consistent
with the instruction semantics of the test, not just exhibit the single execution of interest. The
combinatorial explosion of the number of different interleavings makes that much worse, as we
already saw for SC in §1.4; it needs tool support or more sophisticated reasoning.

7.3 x86-TSO operational example: spinlocks

For a simple real-world example, we look at the implementation of spinlocks from an old version
of Linux.

If one has multiple threads concurrently operating on the same data, the simplest way to
avoid confusion is to enforce mutual exclusion between the operations using some kind of lock-
ing. For example if one has one thread trying to add 1 to x in parallel with another trying to add
7 to x:

int x=0;

Part I Chapter 7 x86-TSO, operationally 54

r0 = x;

x = r0 + 1;

r1 = x;

x = r1 + 7;

then in an SC language, or a naive compilation of C to an SC or x86-TSO machine, the two might
concurrently read the initial value of x and then write 1 and 7 (in one or the other order), with
an unintended 1 or 7 final result instead of the intended 8. In ISO C, this program is illegal as-is:
it has undefined behaviour because of the potential for concurrent accesses to the “non-atomic”
location x, as we’ll explain in Part ??.

One can prevent these problems by protecting the potentially concurrent accesses to x with
a lock, something like this:

int x = 0;

lock_t l = LOCK_UNLOCKED;

lock(&l);

r0 = x;

x = r0 + 1;

unlock(&l);

lock(&l);

r1 = x;

x = r1 + 7;

unlock(&l);

In an SC semantics the lock()s and unlock()s would eliminate most of the otherwise-possible
interleavings of the two threads: there would be just two possible executions, in which one or
other thread successfully takes the lock first, and then the other thread would be blocked in its
lock() call until the first executes its unlock().

To implement those lock() and unlock() functions, there are many possible locking algo-
rithms, with different properties (performance under different workloads, fairness, interaction
with an ambient software-thread scheduler, etc.). The simplest is a spinlock, in which lock() re-
peatedly checks the lock value and, if it is the LOCK_UNLOCKED value, sets it to some LOCK_LOCKED

value indicating that the lock is taken, while the unlock() resets the lock value to LOCK_UNLOCKED.
Even in SC, the lock() clearly has to check and set the value atomically, otherwise multiple

threads could all read an LOCK_UNLOCKED, write LOCK_LOCKED, and continue into their critical
section of code that should have been protected.

A real-world spinlock implementation is more complicated. We’ll look at one from the Linux
kernel, version 2.6.241. This is now an old version, released in 2008, but it’s instructive and
fairly simple. One might now usually use different lock algorithms, or phrase the implementa-
tion differently.

The representation First there is the representation: these spinlocks use a raw_spinlock_t

struct with an unsigned int member slock, though the code only actually uses the low-order
byte of that, considered as a signed one-byte value. The lock is deemed to be free if that holds 1
(__RAW_SPIN_UNLOCKED), and taken if it holds a zero or negative value; it’s an implicit invariant
that it never holds a positive value more than 1.

typedef struct {

unsigned int slock;

} raw_spinlock_t;

#define __RAW_SPIN_LOCK_UNLOCKED { 1 }

1The original source is in https://elixir.bootlin.com/linux/v2.6.24.7/source/include/asm-x86/spinlock_

types.h and https://elixir.bootlin.com/linux/v2.6.24.7/source/include/asm-x86/spinlock_32.h.

https://elixir.bootlin.com/linux/v2.6.24.7/source/include/asm-x86/spinlock_types.h
https://elixir.bootlin.com/linux/v2.6.24.7/source/include/asm-x86/spinlock_types.h
https://elixir.bootlin.com/linux/v2.6.24.7/source/include/asm-x86/spinlock_32.h

Part I Chapter 7 x86-TSO, operationally 55

The lock implementation The lock() implementation is __raw_spin_lock() below. This is a
C function taking a pointer lock to a raw_spinlock_t, but the body of the function is embedded
x86 assembly, with our comments added. In all this, one has to take care not to confuse the x86
LOCK’d instructions and this implementation of language-level spinlocks.

Line 4 does a LOCK’d decrement of (one byte of) the function argument lock->slock (the
%0): an atomic read of the lock value and write of that minus one. If the result of the decrement
is non-negative, then the lock must have held 1, which means this thread has now success-
fully acquired the lock and can proceed into its critical section; Line 5 jumps to label 3 and
__raw_spin_lock() returns. Otherwise, the lock must have held 0 or less, which means some
other thread holds the lock and this one has to spin. It first runs an inner loop, reading the lock
on line 8 and jumping back to label 2 if it is still 0 or negative. Otherwise, it jumps back to label
1, the start of the outer loop, to retry the LOCK’d decrement.

1 static inline void __raw_spin_lock(raw_spinlock_t *lock)

2 {

3 asm volatile("\n1:\t" // label 1 - outer spin

4 LOCK_PREFIX " ; decb %0\n\t" // LOCK’d decrement of lock->slock

5 "jns 3f\n" // if non-negative, jump to 3

6 "2:\t" // label 2 - inner spin

7 "rep;nop\n\t" // performance optimisation

8 "cmpb $0,%0\n\t" // read lock->slock and compare with 0

9 "jle 2b\n\t" // if less than or equal 0, jump to 2

10 "jmp 1b\n" // jump to 1

11 "3:\n\t" // label 3 - enter critical section

12 : "+m" (lock->slock) : : "memory");

13 }

This nested loop structure is a performance optimisation: microarchitecturally, the LOCK’d
decrement needs to get exclusive read/write access to the cache line holding the lock, so if
multiple threads are contending for the lock, that will be continually passed between them.
The inner loop, on the other hand, just needs read access, and cache protocols typically allow
multiple hardware threads to simultaneously have that.

The Line 7 rep;nop is another performance optimisation: a PAUSE instruction which is a hint
to the hardware that this is a spin-wait loop2.

The x86-TSO model only covers the architected functional behaviour, so one cannot see or
reason about these performance effects in terms of the model. As we noted in §1.6, architectures
typically have to be loose specifications, to accommodate differences in performance from one
hardware implementation to another, and to avoid the complexity that a performance model for
even a single implementation would involve, so this is essentially forced. Whether one can build
intermediate-level models, that allow some generic reasoning about performance effects, is an
especially interesting question given the current importance of side-channel attacks, but we do
not consider it here.

2The Intel documenentation [68, Vol.2B 4-235 Pause—Spin loop Hint] says:

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” processors will suffer a
severe performance penalty when exiting the loop because it detects a possible memory order violation. The
PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor
uses this hint to avoid the memory order violation in most situations, which greatly improves processor
performance. For this reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.
An additional function of the PAUSE instruction is to reduce the power consumed by a processor while
executing a spin loop. A processor can execute a spin-wait loop extremely quickly, causing the processor to
consume a lot of power while it waits for the resource it is spinning on to become available. Inserting a
pause instruction in a spin-wait loop greatly reduces the processor’s power consumption.

Part I Chapter 7 x86-TSO, operationally 56

The unlock implementation The unlock implementation has two versions: the first just writes
1 to (the low order byte of) lock->slock, while the second uses an xchgb to do the same (recall
that xchg is implicitly LOCK’d).

/*

* __raw_spin_unlock based on writing $1 to the low byte.

* This method works. Despite all the confusion.

* (except on PPro SMP or if we are using OOSTORE, so we use xchgb there)

* (PPro errata 66, 92)

*/

#if !defined(CONFIG_X86_OOSTORE) && !defined(CONFIG_X86_PPRO_FENCE)

static inline void __raw_spin_unlock(raw_spinlock_t *lock)

{

asm volatile("movb $1,%0" : "+m" (lock->slock) :: "memory");

// write (byte) lock->slock = 1

}

#else

static inline void __raw_spin_unlock(raw_spinlock_t *lock)

{

char oldval = 1;

asm volatile("xchgb %b0, %1"

: "=q" (oldval), "+m" (lock->slock)

: "0" (oldval) : "memory");

// XCHG (byte) lock->slock = 1

}

#endif

This difference is essentially the same as that debated in the Linux kernel mailing list discussion
we mentioned in §3.1 – but now we can try to understand whether (and why) each is correct
with respect to the x86-TSO operational model. We’ll focus on an example, a version of our
above example with the first __raw_spin_unlock() implementation:

int x=0;

raw_spinlock_t l;

l.slock = __RAW_SPIN_LOCK_UNLOCKED;

__raw_spin_lock(&l);

r0 = x;

x = r0 + 1;
__raw_spin_unlock(&l);

__raw_spin_lock(&l);

r1 = x;

x = r1 + 7;
__raw_spin_unlock(&l);

Fig. 7.1 sketches one execution of this with the x86-TSO operational model, showing the mem-
ory model state and events for the spinlock (writing l for the address of l.slock). The accesses
to x are indicated schematically, while all other accesses, e.g. for the function calls, are omit-
ted altogether (they should all be to thread-local locations, so are not very interesting). The
comments indicate what’s going on in the code of the two threads.

Part I Chapter 7 x86-TSO, operationally 57

x86-TSO memory model state Thread transitions
Memory Write buffers Lock

M B t0 B t1 L Thread 0 Thread 1
1 {l 7→ 1} [] [] NONE

2 __raw_spin_lock __raw_spin_lock

3 lock decb L
4 {l 7→ 1} [] [] SOME t0 t1 blocked
5 R l=1;W l=0
6 {l 7→ 1} [W l=0] [] SOME t0
7 D l=0
8 {l 7→ 0} [] [] SOME t0
9 U

10 {l 7→ 0} [] [] NONE return t1 not blocked
11 critical section
12 ...read and write x lock decb L
13 {l 7→ 0} [] [] SOME t1 t0 blocked
14 R l=0;W l=−1
15 {l 7→ 0} [] [W l=−1]SOME t1
16 D l=−1
17 {l 7→ −1} [] [] SOME t1
18 U
19 {l 7→ −1} [] [] NONE t0 not blocked spin inner loop
20 ...read and write x

21 ...read and write x cmpb R l=−1
22 ...read and write x cmpb R l=−1
23 ...read and write x cmpb R l=−1
24 end of critical section
25 __raw_spin_unlock

26 movb W l=1
27 {l 7→ −1}[W l=1] [] NONE cmpb R l=−1
28 return
29 {l 7→ −1}[W l=1] [] NONE ...subsequent code cmpb R l=−1
30 D l=1
31 {l 7→ 1} [] [] NONE ...subsequent code
32 ...subsequent code cmpb R l=1
33 ...subsequent code spin outer loop
34 ...subsequent code lock decb L
35 {l 7→ 1} [] [] SOME t1 t0 blocked
36 R l=1;W l=0
37 {l 7→ 1} [] [W l=0] SOME t1
38 D l=0
39 {l 7→ 0} [] [] SOME t1
40 U
41 {l 7→ 0} [] [] NONE t0 not blocked return
42 {l 7→ 0} [] [] NONE ...subsequent code critical section
43 ...subsequent code ...read and write x

Figure 7.1: Example spinlock execution

Part I Chapter 7 x86-TSO, operationally 58

In this execution, at a high level, Thread 0 tries and succeeds to take the spinlock l first,
and enters its critical section to read and write x, then Thread 1 tries to take the spinlock but
fails, and hence spins, re-reading l repeatedly until Thread 0 releases the spinlock. Thread 0
then continues with whatever the subsequent code is, while Thread 1 enters its critical section
to read and write x. Looking more closely, there are several interesting things to note, about this
algorithm, the x86-TSO model, and operational modelling in general.

At the start, both threads enter the __raw_spin_lock function and are ready to begin their
lock decb instructions. In this execution, Thread 0 does the initial L transition first, so Thread 1
cannot begin its lock decb until Thread 1 gets to its U transition (by the premise m.L = NONE

of the L: Lock rule); it is blocked (in the sense defined as part of the model).
As part of its lock decb, Thread reads the initial spinlock value, at Line 5. In principle any

read might be either from memory or the local write buffer. In the initial state of this example,
the write buffers are all empty and there is no preceding code, so this has to be the l = 1 from
the initial-state memory – but even if there was some write to l previously in the local buffer, the
L: Lock rule requires the local buffer to have drained to memory before the rest of the LOCK’d
instruction can execute, in its m.B(t) = [] precondition.

At Line 5 Thread 0 writes l = 0 to indicate that the spinlock is now taken; that goes into
its write buffer. The U: Unlock rule requires that any thread t’s write buffer has drained before
it can do a U transition (m.B(t) = []), so this cannot happen until the D l=0 transition of the
DM: Dequeue write from write buffer to memory rule – so memory is guaranteed to contain
the 0 value before Thread 1 is unblocked.

Thread 0 then returns from __raw_spin_lock (in an optimised compilation, that might well
have been inlined, but that affects only thread-local accesses; it doesn’t affect anything we’re
discussing here), and enters its critical section, ready to read and write x.

Meanwhile, at Line 12 Thread 1 begins its lock decb (it can do this because the x86-TSO
memory model machine lock is not held, even though at a higher level of abstraction the spinlock
is). It reads the lock value l = 0, decrements it, and writes l = −1; again that has to be written
to memory (with the Line 16 dequeue event D l=−1) before the U at the end of this instruction.
Because the result of the decrement was negative, Thread 1 enters its inner spin loop (the
instruction semantics for the jns 3f on Line 5 of __raw_spin_lock will just fall through to the
next instruction).

Between the Thread 1 L and U, Thread 0 was blocked, so it couldn’t read from memory
(RM) or its write buffer (RB), dequeue writes from its write buffer (DM), or start another
LOCK’d instruction (L). It could do any register-only instructions, write to its write buffer (WB),
or (if its write buffer is empty) mfences (M), as those rules don’t have a not blocked(m, t) or
m.L = NONE precondition, but none of those would be observable to other threads. This
illustrates an interesting point about the design of operational models: there are often some
minor choices between variants which don’t affect the set of extensional observable behaviour
that the model allows, but might be more or less intuitive or convenient to work with. Here,
we could have required that all those rules have a not blocked precondition. That would have
slightly simplified reasoning about examples like this one, as one would know that nothing
else could happen during a LOCK’s instruction, but it would have been slightly further from
microarchitectural intuition and the vendor documentation. It would change the set of allowed
traces of events, but we conjecture that it would not change the set of allowed final states. In
some cases, one might want to define multiple variants of a model and prove such equivalence
results.

Thread 1 might then repeatedly read the lock value, with its cmpb instruction, but for the
moment each time it will read the −1. The cmpb will thus set flags which will make the subse-
quent jle 2b jump back to the start of the inner spin loop, to read the lock value again. The
pause instruction (the rep;nop) has no effect in the x86-TSO machine.

Eventually Thread 0 reaches the end of its critical section (Line 24) and calls

Part I Chapter 7 x86-TSO, operationally 59

__raw_spin_unlock. This just does a write of l = 1, which of course initially just goes into
the Thread 0 write buffer. Thread 1 thus might continue to spin, reading l = −1 from memory
(Lines 27 and 29) while Thread 0 continues with its subsequent code. The effect of this buffer-
ing of the unlock write is thus effectively just to extend the time that Thread 0 holds the lock, as
far as Thread 1 is concerned.

At this point the earlier Thread 0 write to x (not shown) might have been dequeued to
memory or might still be in Thread 0’s buffer, below the write of l – recall that these buffers are
FIFO. The Thread 0 subsequent code might involve writes to other locations, which again will
initially just go into its buffer, but above the write of l.

At Line 30 the unlock write of l = 1 is finally dequeued. Nothing in the x86-TSO definition
requires transitions to be taken as soon as they are enabled – indeed, one couldn’t require
that, as there are often multiple enabled transitions. For non-terminating executions there are
questions of fairness, i.e., whether an enabled transition must eventually be taken, but we will
not consider those here.

For that Line 30 dequeue to happen, Thread 0’s buffer must first have drained to memory, so
the Thread 0 write to x must now be in memory.

Note that at Line 27 the Thread 0 write of l and Thread 1 read of l are both enabled (and
at 30 the Thread 1 dequeue of that write and a Thread 1 read of l are): the implementation
of the spinlock, like that of other synchronisation primitives, necessarily involves some kind of
data race, even though correct code using them might not. We’ll return to data races in detail in
Part ??.

The dequeue of l = 1 means that the next Thread 1 inner-loop cmpb read of l will see l = 1,
and will thus fall through its jle and jmp 1b back to its outer loop, to attempt again to take the
lock with its lock decb. This time that succeeds (temporarily blocking t0 between the L and U),
whereupon Thread 1 returns from __raw_spin_lock and enters its critical section, to read and
write x. One might wonder why the algorithm, following a successful read of a positive value
from l in the inner spin loop, has to re-read l in the outer-loop lock decb. That’s because nothing
prevents another thread taking the lock between that successful read. The time window for that
is small, but it could (and eventually would) happen – and one obviously needs such algorithms
to be correct in general, not just most of the time, as otherwise there will be unpredictable (and
hard to debug) errors in all the higher-level software using them.

As a result of all this, at least in this execution, Thread 1 will correctly read the result of
Thread 0’s write to x.

Underflow One should ask whether the decrements of the lock decb can underflow, below
−128. With only two threads, it cannot, basically as each thread can only decrement l once,
before spinning. If, while the lock is taken and Thread 1 is in its inner spin loop, additional
threads were to try to take the lock, each would decrement l again on their first outer-loop
lock decb, so if there are more than 128 hardware threads, this algorithm is wrong. When the
code was first written, that might legitimately have seemed far in the future, but at the time of
writing of this text (2023), x86 processors with 256 hardware threads are available. It would be
quite unlikely to run such an old version of Linux on modern hardware, but in general it is hard
to predict how long software will continue to be used, and how future hardware might evolve.

Proof of correctness This example shows some interesting cases, but it is far from a proof, or
even a statement, that this spinlock implementation works in general above x86-TSO. It is just
a single allowed trace of a single example usage of the spinlock implementation, and moreover
just one-shot (without repeated use of the lock by each thread) and just on two threads. How-
ever, one can state and prove correctness above x86-TSO, as done by Owens [117]. There are
some interesting subtleties involved that we won’t go into here, but at a high level, his [117,
Theorem 2] says that, if an x86 program uses spinlocks correctly with respect to an SC semantics

Part I Chapter 7 x86-TSO, operationally 60

– i.e., if in every such execution, every pair of competing non-spinlock events are separated by
the release and acquire of a spinlock – then any x86-TSO execution of the program has an SC
execution with the same subsequence of writes, and with reads reading from the corresponding
write. The proof uses a generally useful notion of triangular race freedom [117, §2]. This is
our first example of proving the soundness of a higher-level (and in this case simpler) memory
model above an architectural memory model.

Returning to the Linux mailing list discussion We can now return to the Linux kernel mailing
list discussion mentioned in §3.1, which was about a similar (though not identical) spinlock
implementation. The initial concern was about potential CPU reordering of instructions around
the spin_unlock code. With respect to the x86-TSO operational model (and thus also with
respect to any hardware implementations for which it is a sound model), one can see informally
from the example that this is not a problem. The only observable reordering in the model arises
from store buffering (the instructions of each thread execute in-order), and the store buffers
are FIFO. The unlock write might be buffered, but that FIFO buffering means that Thread 0’s
writes to x within its critical section will be visible to Thread 1 before the unlock write is, even
though the buffering means that the unlock might be delayed (in abstract-machine execution
time) w.r.t. when one might think it occurs. To make a fully rigorous argument, one also needs
to consider various other cases – which is what the proof by Owens effectively does.

The variant implementation of __raw_spin_unlock uses an implicitly LOCK’d xchgb. Thread 1
would therefore be blocked between the L and U of that, but that would just delay some of
the Thread 1 inner-loop reads (e.g. Lines 27, 29). More interestingly, it would require the
Thread 0 buffer to have drained before the L and before the U. That would mean the spinlock is
guaranteed to be available to Thread 1 before the Thread 0 subsequent code executes, but that
doesn’t really affect anything.

However, the original comment for the variant implementation says that this was necessary
on some particular (Pentium Pro) x86 implementation, due to processor errata 66 and 92. Pro-
cessor vendors typically document errata that arise in specific hardware implementations, some-
times with workarounds, and it is not very uncommon (though unfortunate) for there to be some
that involve their relaxed memory model behaviour. The Pentium Pro is now only of historical
interest, but one can see in the 1999 Pentium Pro Processor Specification Update [91] that these
errata are Delayed line invalidation issue during 2-way MP data ownership transfer and Potential
loss of data coherency during MP data ownership transfer, with a documented workaround for the
latter: “Deterministic barriers beyond which program variables will not be modified can be achieved
via the usage of locked semaphore operations. These should effectively prevent the occurrence of this
erratum”.

Another question is whether there might be compiler reordering of accesses around the
__raw_spin_lock and __raw_spin_unlock implementations. The volatile and the memory clob-
ber of the GCC inline assembly prevent this [82].

7.4 Discussion

Restoring SC In §3.2 we noted in connection with the IRIW test that some JVM implemen-
tations historically relied on mfence recovering SC, for their implementation of the intended
higher-level memory model to be correct. For x86-TSO, adding an mfence between every pair of
memory accesses does restore SC. More precisely, if the program executed by the thread seman-
tics has an mfence between every pair of memory accesses, then any execution in x86-TSO will
have essentially identical behaviour to the same program with nops in place of mfences in SC.
Here “essentially identical” means that they have the same set of interface traces except with the
F and Dw x=v events erased. This would not normally be a sensible implementation, of course,
as it would perform very badly, but it is an important first property of the model.

Part I Chapter 7 x86-TSO, operationally 61

Hardware and software threads The threads of the x86-TSO model are hardware threads,
not cores or software threads. Many processor implementations have some form of simultaneous
multithreading (SMT) or hyperthreading, in which multiple hardware threads execute on a single
core, sharing some hardware resources. As far as the functional behaviour of user code is
concerned, these behave as independent hardware threads, each with their own x86-TSO write
buffer, though they may well have different performance (and side-channel) properties.

Most software is written above some software thread abstraction, with an operating system
or hypervisor multiplexing many software threads onto fewer hardware threads, and context
switching between them as required (only the implementation of critical parts of an operating
system or hypervisor will typically be “bare metal” for x86 processors). For this to be correct,
the context switching code has to ensure that the hardware-thread write buffer that has been
used by one software thread is drained before switching that hardware thread to run another
software thread. Given that, x86-TSO is also a sound model for software threads: the model the
OS and hardware together provide to the application binary code.

x86-TSO is an abstract machine We reiterate that this x86-TSO operational model is an ab-
stract machine: it is a conceptual tool to specify the envelope of architecturally intended pro-
grammer visible behaviour of any x86 processor. It is based on some hardware intuition, but
it is not a description of real hardware implementation internals. Those are now exceedingly
complex, with many sophisticated internal optimisations that include out-of-order execution.
The force of the model is really that, of those, only per-thread FIFO write buffers are (ignoring
timing and performance effects) visible to programmers.

Note also that the model is intentionally a rather loose specification, in several ways:

• The write buffers of the model are unbounded, while specific hardware implementations
will have particular sizes. Those might or might not be documented, and other microar-
chitectural optimisations might have also the observable effect of write buffering, and
software should be written to be correct for any size. The model allows the behaviour
of implementations with any specific size, and so any software that is correct above the
model is correct above any such implementation that conforms to it.

• The model allows an arbitrary interleaving of any enabled transitions; it doesn’t give any
progress or fairness property. Again, this allows the wide variation that might occur in
implementations, and software should be written to be correct irrespective of potential
delays of specific hardware threads. In particular, the dequeue transitions of the model
can be taken – or not – whenever they are enabled. In some cases one might need to know
whether write-buffer entries are guaranteed to eventually drain. The original definition of
x86-TSO [116, 118] did include such a condition, but we won’t cover it here; we’ll only
consider finite executions.

x86-TSO and SPARC TSO x86-TSO is based on, and very similar to, the SPARC Total Store
Order model from the early 1990s [3, App.K], [4, Ch.8 and App.D], [144]. SPARC defined three
models:

• TSO (Total Store Order)

• PSO (Partial Store Order)

• RMO (Relaxed Memory Order)

though to the best of our knowledge, only TSO was used in practice (implementations were
either not as weak as PSO or RMO, or configuration registers were used by software to disable
those weaknesses).

Part I Chapter 7 x86-TSO, operationally 62

Those definitions were in an axiomatic style, but SPARC TSO is essentially an axiomatic
characterisation of the behaviour arising from per-thread FIFO write buffers. x86-TSO is ex-
tensionally very similar except that it covers the x86 CISC instructions with multiple memory
accesses, not the SPARC RISC instructions, and covers the x86 mfence barrier and LOCK’d in-
structions rather than the specific RMW operations of SPARC.

Chapter 8

Making the operational models
executable as a test oracle: the RMEM
tool

As we have seen, computing the allowed executions of a concurrency model, even for small
examples, quickly becomes challenging and error prone. The RMEM tool [132] (https:
//github.com/rems-project/rmem) lets one interactively or exhaustively explore the behaviour
of various operational models for x86, Arm-A, IBM Power, and RISC-V. RMEM (originally
‘ppcmem’) has been developed from 2010 onwards, for operational models for IBM Power [131],
Power load-reserve/store-conditional synchronisation [130], integration with medium-scale in-
struction semantics using the first version of Sail [87], the “Flowing” and “POP” models for non-
multicopy-atomic Arm-A, including integration with medium-scale instruction semantics [77],
mixed-size accesses for Power and Arm-A [78], the “Flat” model for multicopy-atomic Arm-
A [121], integration with full-scale Sail instruction semantics for Arm-A and RISC-V [41], the
Promising-Arm model [122], and Arm-A instruction-fetch and instruction/data cache mainte-
nance [142]. RMEM has been developed mainly by Susmit Sarkar, Peter Sewell, Luc Maranget,
Shaked Flur, Christopher Pulte, Jon French, and Ben Simner, with contributions from Scott
Owens, Pankaj Pawan, Francesco Zappa Nardelli, Sela Mador-Haim, Dominic Mulligan, Ohad
Kammar, Jean Pichon-Pharabod, Gabriel Kerneis, Alasdair Armstrong, Thomas Bauereiss, and
Jeehoon Kang (all in roughly chronological order).

RMEM has two user interfaces: it can either be run in-browser, with the web interface, or
one can install it locally and use the command-line interface (CLI). The two have essentially the
same functionality; the web interface is easier to get started with and more convenient, but the
command-line version has much better performance, which is essential for larger tests. There is
a rich collection of features – we return later to more of those, and to its internals, but for now
just introduce some basic usage.

Installing RMEM locally To install RMEM locally, to use the command-line interface:

1. install the opam package manager for OCaml, following https://opam.ocaml.org/

2. opam repository add rems https://github.com/rems-project/opam-repository.git#

opam2

3. opam install rmem

Documentation is at https://github.com/rems-project/rmem. One can then explore a test like
SB in the x86-TSO model by:

$ rmem -eager true -model tso SB.litmus

63

https://github.com/rems-project/rmem
https://github.com/rems-project/rmem
https://opam.ocaml.org/
https://github.com/rems-project/opam-repository.git#opam2
https://github.com/rems-project/opam-repository.git#opam2
https://github.com/rems-project/rmem

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 64

Figure 8.1: RMEM command-line interface

In this default interactive model, it prints the current model state and its possible transitions at
each step, as shown in the Fig. 8.1 screenshot (this is the same data as the web interface console
pane). There are many useful commands, including:

help list commands

set always_print true print the current state after every command

set always_graph true generate a pdf graph in out.pdf after every step

<N> take transition labelled <N>, and eager successors

b step back one transition

search exhaustive exhaustive search from the current state

[...]

For non-interactive exhaustive search:

$ rmem -interactive false -eager true -model tso SB.litmus

which shows the allowed final states and paths to them:

Test SB Allowed

Memory-writes=

States 4

2 *>0:RAX=0; 1:RAX=0; via "0;0;1;0;2;1"

2 :>0:RAX=0; 1:RAX=1; via "0;0;1;2;0;1"

2 :>0:RAX=1; 1:RAX=0; via "0;1;1;2;3;0"

2 :>0:RAX=1; 1:RAX=1; via "0;1;2;1;3;0"

Unhandled exceptions 0

Ok

Condition exists (0:RAX=0 /\ 1:RAX=0)

Hash=90079b984f817530bfea20c1d9c55431

Observation SB Sometimes 1 3

Runtime: 0.171546 sec

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 65

One can then step through a selected trace interactively using -follow "0;0;1;0;2;1".

The candidate execution diagrams in this text are mostly produced automatically by RMEM
and Flur’s litmus-latex package [76], with commands such as:

rmem -interactive false -eager true -hash_prune true -pp_hex false -dot_final_ok true \

-graph_backend tikz -model relaxed -dot_dir litmus-tikz-figures/ MP.litmus

that produces MP.tikz for the execution diagram and MP.states; litmus tests are typeset with
the \litmusassem command.

The RMEM web interface To use the web interface, go to http://www.cl.cam.ac.uk/users/

pes20/rmem, load an x86 litmus test such as SB with the “Load litmus” menu, clicking “Load from
library”, “x86”, and “SB”, then set “All eager” in the Execution menu. There are several possible
pane contents: State shows the current model state; Graph shows the candidate execution built
up so far; Sources shows the litmus source of the test; Console shows messages and lets one type
commands; Trace show the trace of transitions so far; and Help shows the documentation. One
can split panes horizontally or vertically, remove them, resize them, or change their contents.

One can then explore the allowed x86-TSO transitions interactively. At each step, the enabled
transitions are listed at the end of the State pane and highlighted in the Graph, and one can
choose them either by clicking on those or typing their index number from the list into the
Console (RMEM doesn’t use exactly the same rule names or event names as those we have seen,
but the correspondence should be clear). Buttons at the top let one go back, next, or restart. The
RMEM version of the model includes semantics for a fragment of the x86 instruction set, which
adds some complexity to the display and options – for example, without “All eager”, one can
step through the individual steps within each instruction. The “Link to this state” menu at the
top gives one a link to share. Figures 8.2–8.5 show screenshots from an interactive execution
of SB. Often, one wants to interactively search for an execution which satisfies the final state
constraint from the test, to see why it is allowed. Interactive exploration is not so good for
understanding why some final state is not allowed, both because that involves quantifying over
all possible executions, and because the interface only shows which transitions are allowed in
the current state; it doesn’t show which transitions are not allowed, or the reasons why not, as
that would be overwhelming.

One can also automatically explore what the model allows – normally from the initial state
for a test. The “Search” menu at the top lets one explore all the allowed behaviours, either just a
single random trace or exhaustively (though for larger examples this sometimes hits a resource
limit or takes too long in the web interface, whereupon one should use the command-line in-
terface instead). The latter does an exhaustive enumeration of the entire transition system for
a test, with the default “hash prune” optimisation to prevent duplicate exploration of the same
state. This is essential for reasonable performance, as there are many uninteresting interleav-
ings, e.g. where two independent events could happen in either order. For SB the web-interface
exhaustive exploration works, printing

States 4

2 *>0:RCX=0x0; 1:RCX=0x0; via "0;0;1;0;2;1"

2 :>0:RCX=0x0; 1:RCX=0x1; via "0;0;1;2;0;1"

2 :>0:RCX=0x1; 1:RCX=0x0; via "0;1;1;2;3;0"

2 :>0:RCX=0x1; 1:RCX=0x1; via "0;1;2;1;3;0"

to the console. This shows the four reachable final states (considering just the values of the
registers used in the test’s final condition), with a * for the state satisfying the final condition.
For each it shows a “follow list”: a sequence of transition indices that reaches such a state (this
is just one of potentially many such sequences). One can click on those to set a sequence of
default transitions and then step through those just by pressing return.

http://www.cl.cam.ac.uk/users/pes20/rmem
http://www.cl.cam.ac.uk/users/pes20/rmem

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 66

Figure 8.2: RMEM web interface: SB (1 of 4)

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 67

Figure 8.3: RMEM web interface: SB (2 of 4)

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 68

Figure 8.4: RMEM web interface: SB (3 of 4)

Part I Chapter 8 Making operational models executable as a test oracle: RMEM 69

Figure 8.5: RMEM web interface: SB (4 of 4)

Chapter 9

SC, axiomatically

The SC and x86-TSO operational models define the allowed behaviour as the observable be-
haviour of abstract machines: one can construct allowed executions incrementally, by picking
from among the enabled transitions at each state, and a final state is allowed iff there is some
execution of the machine leading to it. In contrast, axiomatic models typically aim to charac-
terise the allowed behaviour more explicitly, with a predicate that defines whether an arbitrary
complete candidate execution graph is allowed or not.

In this chapter we’ll describe an axiomatic model for SC. We’ll first discuss coherence, which
semantically is essentially per-location sequential consistency, then give an axiomatic model for
SC and prove it equivalent to the operational SC model of Chapter 6. In the next chapter we’ll
give an axiomatic model for x86-TSO. This has been proved equivalent to the operational model,
in a mechanised proof in Isabelle [?] by Paul Durbaba [74]; we’ll sketch that proof.

Many styles of axiomatic model have been used over the years. The first axiomatic model
for x86-TSO, by Owens, Sarkar, and Sewell [116, 118, 137], was based on the SPARCv8 TSO
specification [3]; it was formalised in HOL4 [?] and proved equivalent to the operational model,
with a partly mechanised and partly hand proof [116, 118]. The axiomatic models we describe
here are in the “herd” style of Alglave and Maranget [38], including their TSO model [33], to
set the scene for the later axiomatic models of Arm-A and RISC-V in that style. We’ll return to
the differences in styles in the Part ?? related work.

9.1 Execution graphs, formally

An axiomatic concurrency model defines, for any candidate execution graph, whether that is al-
lowed or not. Up to now, we’ve drawn execution graphs informally, e.g. this candidate execution
for MP:

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

To define axiomatic models, we first have to make precise what an execution graph is, as a
mathematical object. It’s convenient to split this into two pieces. A candidate execution graph
comprises:

• a candidate pre-execution, which is a pair (E, po−→) of a set E of events and a program-order
relation po−→, and

• a candidate execution witness X, which is a pair (rf−→, co−→) of a reads-from relation rf−→ and
a coherence relation co−→ (introduced in the next section),

70

Part I Chapter 9 SC, axiomatically 71

that satisfy the well-formedness properties detailed below. These rule out nonsense graphs, prior
to any specific memory model requirements. For example, the reads-from relation must be from
writes to reads; graphs in which there is a reads-from rf−→ edge from a write to a write are not
well-formed.

Intuitively, the pre-execution arises from some control-flow unfolding of the program for
each hardware thread, while the execution witness gives the interactions between threads.

The events E are some subset of the memory write, read, and barrier events defined by the
grammers of Chapters 6 and 7. For x86-TSO, the internal dequeue events are not used in the
x86-TSO axiomatic model, which abstracts from that operational mechanism. For the moment
we will ignore x86 LOCK’d instructions; later the information from the LOCK/UNLOCK events
will be represented as a relation rather than with events.

The relations are all binary relations over E, i.e. sets of pairs (e, e′), where e ∈ E and e′ ∈ E
are elements of E (said another way, they are subsets of the set of all such pairs: po−→ ⊆ E ×E).
We use some standard properties and operations on binary relations, recalled in Figs. ?? and ??
on pages ?? and ??.

The well-formedness properties are:

• E is a finite set of events, with unique IDs:
∀e, e′. e ̸= e′ =⇒ id(e) ̸= id(e′)
We restrict E to a finite set for simplicity, to avoid technical issues that arise for infinite
executions. Where E is clear from context, we let e range over all events of E, and r and
w range over the read and write events of E.

• program order po−→ is an irreflexive transitive relation over E, that only relates pairs of
events from the same thread and that is total among those:

1. po−→ is irreflexive, i.e., no event is related to itself:
∀e. ¬(e po−→ e)

2. po−→ is transitive, i.e., if e po−→ e′ and e′ po−→ e′′ then e po−→ e′′:
∀e, e′, e′′. (e po−→ e′ ∧ e′ po−→ e′′) =⇒ e po−→ e′′

3. po−→ only relates events from the same thread:
∀e, e′. e po−→ e′ =⇒ thread(e) = thread(e′)

4. po−→ relates all pairs of distinct events from the same thread one way or the other:
∀e, e′. (thread(e) = thread(e′) ∧ e ̸= e′) =⇒ e po−→ e′ ∨ e′ po−→ e
(when one deals with instructions that make multiple memory accesses, this last does
not always hold, but we assume it for now)

• reads-from rf−→ is a binary relation over E, that only relates write/read pairs with the same
address and value, with at most one write per read, and with other reads reading the
values of the initial state:

1. for any reads-from edge, it must be from a write to a read, and they must have the
same address and value:
∀e, e′. e rf−→ e′ =⇒ iswrite(e) ∧ isread(e′) ∧ addr(e) = addr(e′) ∧ value(e) = value(e′)

2. for any e′′, there is at most one source of a reads-from edge to it:
∀e, e′, e′′. (e rf−→ e′′ ∧ e′ rf−→ e′′) =⇒ e = e′

3. for any read, if there is no reads-from edge to it, its value must be that of the initial
state:
∀e. (isread(e) ∧ ¬∃e′.e′ rf−→ e) =⇒ value(e) = minit(addr(e))

As a minor technical choice, reads from the initial state are represented by the absence of
any rf−→ edge to the read event, and the first write in the coherence order for each location

Part I Chapter 9 SC, axiomatically 72

is implicitly coherence after the initial state, without an explicit edge. One could instead
model the initial state as normal writes subject to additional conditions; there are pros and
cons of each approach.

• We introduce coherence in the next section, but give its well-formedness conditions here
for ease of reference later; one might want to skip over this on a first reading. A coherence
relation co−→ is an irreflexive transitive binary relation over E, that only relates write/write
pairs with the same address, and that is an irreflexive total order when restricted to the
writes of each address separately:

1. co−→ is irreflexive, i.e., no write is related to itself:
∀e. ¬(e co−→ e)

2. co−→ is transitive, i.e., if e co−→ e′ and e′ co−→ e′′ then e co−→ e′′:
∀e, e′, e′′. (e co−→ e′ ∧ e′ co−→ e′′) =⇒ e co−→ e′′

3. co−→ only relates writes, and only writes to the same address:
∀e, e′. e co−→ e′ =⇒ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)

4. co−→ relates all pairs of distinct writes to the same address one way or the other:
∀e, e′. (e ̸= e′ ∧ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)) =⇒ e co−→ e′ ∨ e′ co−→ e

There are further minor technical choices here that make things more convenient: (a) co-
herence is in principle a family of disjoint relations, comprising one order per location, but
it’s more convenient to work with their union as a single relation; and (b) by defining co-
herence to be an irreflexive total order per location, rather than a reflexive total order per
location, we have more convenient definitions of the coherence predecessor and successor
of each write.

For example, the above candidate execution graph:

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rf

comprises the candidate pre-execution (E, po−→) and candidate execution witness (rf−→, co−→)
where:

E = {a:t0:Wx=1, b:t0:Wy=1, c:t1:Ry=1, d:t1:Rx=0}
po−→ = {(a:t0:Wx=1, b:t0:Wy=1), (c:t1:Ry=1, d:t1:Rx=0)}
rf−→ = {(b:t0:Wy=1, c:t1:Ry=1)}
co−→ = {}

and these do satisfy the above well-formedness conditions.
Spelling this execution out in detail (which one wouldn’t normally do on paper) highlights

a final minor technical choice: one could take the relations to be over events, as we do here,
or over event IDs. One often conflates events, metavariables over events, and event IDs in
non-mechanised maths.

9.2 Coherence

As we noted in Chapter 6, in SC, viewed operationally, each read reads from the most recent
write to memory to the same location, in some interleaving of what the threads do (each exe-
cuting in program order). In other words, for any SC execution there is a single total order – the

Part I Chapter 9 SC, axiomatically 73

Recall that a binary relation −→ over a set A is a set of pairs (a, a′) of elements of A, or in other
words a subset −→ ⊆ A×A. One often works with binary relations that have some combination
of standard properties.

−→ is reflexive if, for all elements a of A, a is related to itself: ∀a. a −→ a. Here we assume a,
a′, a′′ etc. range over the elements of A, otherwise we would have to write explicit bounds on
the quantifier, e.g. ∀a ∈ A. a −→ a. We will usually be using relations over the events E of
some execution graph, and leave the bounds implicit. For example, fixing A = {1, 2, 3}, then
−→ = {(1, 1), (2, 2), (3, 3)} is the smallest reflexive relation over A:

1 ee 2 ee 3 ee

−→ is irreflexive if it is not reflexive, i.e. if no element of e is related to itself ¬∃a. a −→ a.

−→ is transitive if, whenever a −→ a′ and a′ −→ a′′ then a −→ a′′: ∀a, a′, a′′. (a −→ a′∧a′ −→ a′′) =⇒
a −→ a′′. For example, −→ = {(1, 2), (2, 3), (1, 3)} is transitive, but without the 1 −→ 3 edge it
wouldn’t be. When one draws relations which are known to be transitive, one typically omits
all the edges which are implied by transitivity.

2

��

1 //

@@

3

−→ is symmetric if, whenever a −→ a′, then a′ −→ a: ∀a, a′. a −→ a′ =⇒ a′ −→ a. For example,
−→ = {(1, 2), (2, 1), (3, 3)} is symmetric, but without the 1 −→ 2 edge it wouldn’t be.

1 // 2oo 3 ee

−→ is antisymmetric if there are no distinct elements related both ways, or, equivalently, if a −→ a′

and a′ −→ a then a and a′ must be the same element: ∀a, a′. a −→ a′ =⇒ a′ −→ a. Note that
this not just the negation of “symmetric”. For example, the above is not antisymmetric, but
−→ = {(1, 2), (2, 3), (3, 3)} is antisymmetric.

1 // 2 // 3 ee

−→ is acyclic if there are no cycles: ¬∃n ≥ 1, a1, . . . an. a1 −→ . . . −→ an −→ a1. Any transitive
relation is acyclic iff it is irreflexive.

A transitive relation −→ is total if, for any two distinct elements, they are related one way or the
other: ∀a, a′. (a ̸= a′) =⇒ (a −→ a′ ∨ a′ −→ a).

It’s common to use relations that are preorders, i.e. reflexive and transitive, or partial orders,
i.e. reflexive, transitive, and antisymmetric (preorders can contain cycles, while partial orders
have no loops except the reflexive cycles for each element). For axiomatic models it’s often
more convenient to work with irreflexive relations.

One often uses relation symbols such as ≤ or ⊑ for binary relations that are orders of one
kind or another. In axiomatic relaxed memory models we’ll use several different relations
over events, including the po−→ and rf−→ that we’ve already seen. Some are transitive while
others are not, but we use arrows −→ for all of them, orienting the arrows to be “forwards” (in
whatever sense is appropriate) to ease intuition. These relations shouldn’t be confused with
the transition relations of the operational models, also written with arrows.

Figure 9.1: Discrete maths notation and terminology: properties of binary relations

Part I Chapter 9 SC, axiomatically 74

All the standard set-theoretic operations, union ∪, intersection ∩, etc., can be used for relations,
viewing them as sets of pairs.

The identity relation id−→ on a set A, also written [A] in the axiomatic memory model literature,
is the set of all pairs a id−→ a for the elements a ∈ A.

Given two binary relations r−→ and s−→ over A, their composition r−→ s−→ has a r−→ s−→ a′′ iff there
exists some a′ such that a r−→ a′ and a′ s−→ a′′.

Given two binary relations r−→ and s−→ over A, the relation r−→ \ s−→ has a (r−→ \ s−→) a′ iff a r−→ a′

and not a s−→ a′.

The transitive closure −→+ of a relation −→ is the union of all the self-compositions −→, −→−→,
−→−→−→, etc.

The reflexive transitive closure −→∗ of a relation −→ is the union of the identity and all those
self-compositions.

The inverse −→−1 of a relation −→ has a −→−1 a′ iff a′ −→ a.

Two relations r−→ and s−→ are consistent if there are no a, a′ such that a r−→ a′ and a′ s−→ a, or
equivalently if r−→ ∩ s−→−1= {}.

Figure 9.2: Discrete maths notation and terminology: constructing binary relations

order of some SC operational-model trace (including events by all threads and to all locations),
with each read reading from the most recent write to the same location in that order.

In more relaxed models, including x86-TSO, that is no longer the case, but architectures typ-
ically do guarantee a similar property for normal memory accesses if we consider each location
in isolation. This coherence property can be stated in several equivalent ways, which we first
give in prose and then make precise.

1. in any execution, for each location, there is a total order over all the writes and reads to
that location, which is consistent with each thread’s program order, and in which each
read reads from the most recent write; or,

2. in any execution, for each location, the execution restricted to just the writes and reads to
that location is SC; or,

3. in any execution, for each location, there is a total order over all the writes to that location,
the coherence order, and for each thread, the order is consistent with the thread’s program-
order for its writes and reads to that location, and with reads reading from the most recent
write.

Microarchitecturally, processor implementations use elaborate hierarchies of caches, to pro-
vide fast access to frequently used memory, while still letting code refer to that with ad-
dresses from the common large address space of the underlying shared memory. They use
elaborate cache protocols to propagate information between parts of these cache hierarchies.
The internal details of these are largely not our concern here, as we are trying to charac-
terise the architecturally allowed behaviour, not the microarchitectural implementations (see
computer architecture texts such as Hennessy and Patterson [89] and Handy [88], and high-
level descriptions of the storage hierarchy in successive generations of IBM Power processors
in [114, 150, 146, 100, 94, 149]. However, it is useful to know that cache hierarchies typically
work with cache line sized and aligned chunks of memory, perhaps 64 or 128 bytes (these sizes
may or may not be architecturally defined or architecturally exposed, and they might not be
common across all caches in a system). In a simple cache hierarchy and cache protocol, say with

Part I Chapter 9 SC, axiomatically 75

just one cache per hardware thread, for any cache line, at most one hardware thread should
have exclusive write access to it at any one time, otherwise writes might be lost. For example,
if two threads act on disjoint locations within a cache line, they might write to those simulta-
neously, then either one or other copy of the cache line would get written back last to memory,
overwriting the other.

In a simple hardware implementation, the coherence order over writes to a location is thus
just the order in which the hardware threads gain write access to the cache line containing it.
For example, one can imagine the cache line ownership changes giving rise to the execution
below.

movq $1, (x) //a

Thread 0
movq $2, (x) //b
movq $4, (x) //c
movq $5, (x) //d

Thread 1
movq $3, (x) //e
movq $6, (x) //f

Thread 2

Initial state: x=0;
nW x86

Final: x=6;

movq $1, (x)Wx=1a:
Thread 0

movq $2, (x)Wx=2b:movq $4, (x)

Wx=4c:movq $5, (x)

Wx=5d:

Thread 1

po

po,co

movq $3, (x)Wx=3e:movq $6, (x)

Wx=6f:

Thread 2

po

co co

co

co

In a more sophisticated implementation, the cache protocol may be more complex, and the
choice of coherence order between two writes by different threads might sometimes be resolved
at different points in the microarchitecture, e.g. according to which reaches some shared store
buffer first. Moreover, in speculative and out-of-order designs, some computation may be done
which is later found (by hardware hazard checking) to violate coherence, requiring roll-back
and restart: coherence must be enforced at several places in the overall hardware design, not
just in the cache protocol.

One way or another, for architectures that guarantee coherence, all hardware implementa-
tions have to provide the illusion of (1)–(3). Without this architectural guarantee, one wouldn’t
even have correct sequential behaviour for independent threads: for memory that is not co-
herent, software would have to use extra synchronisation for every access to potentially shared
cache lines. (That said, mainstream architectures often do include special memory types or
special kinds of access that are not coherent without such extra synchronisation, e.g. the x86
“non-temporal” instructions.)

The coherence order is part of the data of an execution graph. For example, a litmus test
with just two writes a and b to the same location, potentially has two execution graphs, one
with a co−→ b and one with b co−→ a (graphs with no coherence edge, or with an edge both ways,
are ruled out by the well-formedness conditions):

movq $1, (x) //a

Thread 0
movq $2, (x) //b

Thread 1

Initial state: x=0;
1+1W x86

Final: x=2;

movq $1, (x)Wx=1a:
Thread 0

movq $2, (x)Wx=2b:
Thread 1

co
movq $1, (x)Wx=1a:

Thread 0
movq $2, (x)Wx=2b:

Thread 1
co

When writing litmus tests, it’s usually best to have a final condition that identifies a unique
execution of interest. This test has a final condition x=2, so only the left execution is consistent
with that (as coherence is from a to b, the final memory state must have the Wx=2 overriding the
Wx=1). Usually one wants the values of writes to each location distinct from each other and from
the initial-state value; for ease of reading, we normally choose them in increasing order along
the intended coherence order. For tests with at most two writes to each location, with values
distinct from each other and from the initial state, the coherence order is determined by the
final memory state. Otherwise one might have to add “observer” threads to the test, that read
each location multiple times, with final assertions about the values they read, to make the final
condition identify a unique execution.

Part I Chapter 9 SC, axiomatically 76

The coherence relation, formally Formally, a coherence relation co−→ for a candidate pre-
execution (E, po−→) is an irreflexive transitive binary relation over E, that only relates write/write
pairs with the same address, and that is an irreflexive total order when restricted to the writes
of each address separately – as spelt out in previous section.

The from-reads relation We’ve defined the coherence order as a relation just over writes, not
writes and reads, as in (3) above:

3. in any execution, for each location, there is a total order over all the writes to that location,
the coherence order, and for each thread, the order is consistent with the thread’s program-
order for its writes and reads to that location, and with reads reading from the most recent
write

How do we express that it is consistent with program order, and that reads read from the most
recent write? It’s useful to first define an auxiliary relation. In a coherent memory model, given
the reads-from and coherence relations of an execution graph, any read is in some sense “before”
all the coherence successors of the write that it reads from. For example, consider a version of
the above nW with a read f of x added to Thread 2. A priori, in an execution with the coherence
order shown above, that might read from e, c, or d. If it actually reads from c, as shown below,
we say there is a from-reads edge fr−→ from the read f to each of d and g – all the coherence
successors of c.

movq $1, (x) //a

Thread 0
movq $2, (x) //b
movq $4, (x) //c
movq $5, (x) //d

Thread 1
movq $3, (x) //e
movq (x), %rax //f
movq $6, (x) //g

Thread 2

Initial state: x=0;
nWR x86

Final: 2:rax=4; x=6;

movq $1, (x)Wx=1a:
Thread 0

movq $2, (x)Wx=2b:movq $4, (x)

Wx=4c:movq $5, (x)

Wx=5d:

Thread 1

po

po,co

movq $3, (x)Wx=3e:movq (x), %rax

Rx=4f:movq $6, (x)

Wx=6g:

Thread 2

po

po,fr

co co

co

co
rf

fr

co

co

co

fr

Redrawing the coherence, reads-from, and from-reads edges of that candidate execution to
emphasise how the read fits into the coherence order:

t0:W x=1a:

Thread 0

t1:W x=2b:

Thread 1

t2:W x=3e:

Thread 2

t1:W x=4c:

Thread 3
t2:R x=4f:

Thread 4

t1:W x=5d:

Thread 5

t2:W x=6g:

Thread 6

co co co co co

rf fr fr

This fr−→ is a derived relation, computed from the other relations of an execution graph rather
than part of the data thereof. The idea dates back at least to Ahamad et al. [21]: given the rf−→
and co−→ relations of an execution graph, one defines the from-reads relation fr−→ to relate each
read to all co−→-successors of the write it reads from (or to all writes to its address if it reads from
the initial state).

r fr−→ w iff (∃w0. w0
co−→ w ∧ w0

rf−→ r) ∨
(iswrite(w) ∧ addr(w) = addr(r) ∧ ¬∃w0. w0

rf−→ r)

w0

w

Thread 0

r

Thread 1

co

rf

fr w

Thread 0

r

Thread 1

(co)

(rf)

fr

or in other words

fr−→ = (rf−→−1 co−→) ∪ {(r, w) | iswrite(w) ∧ addr(w) = addr(r) ∧ ¬∃w0. w0
rf−→ r}

This is useful to lift co−→, which defines an order just over writes, to properties of read/write and
read/read pairs. First, it defines a sense in which any read is either after or before any write to

Part I Chapter 9 SC, axiomatically 77

the same address: the read either reads from the write or some proper coherence successor of
it, or it is from-reads before the write.

Lemma 1 For any same-address read r and write w, either w(co−→ ∪ id−→) rf−→ r, or r fr−→ w.

Proof. The proof is a simple case analysis using the well-formedness conditions and the defini-
tion of fr−→.

1. Suppose there exists some w′ such that w′ rf−→ r. As the well-formedness conditions require
that co−→ is total over same-address writes, one of the following holds

(a) Case w′ = w. Then w id−→ w′ rf−→ r.

(b) Case w co−→ w′. Then w co−→ w′ rf−→ r.

(c) Case w′ co−→ w. Then r fr−→ w, by the first clause of the definition of fr−→.

2. Otherwise, there is no such w′. Then r fr−→ w, by the second clause of the definition of fr−→.

□
Second, it lifts the coherence relation over writes to a useful relation over pairs of reads that
read from them, for reads that do not read from the same source.

Lemma 2 For any two same-address reads r and r′, either they read from the same write (or both
from the initial state), or r

(fr−→ rf−→
)
r′, or r′

(fr−→ rf−→
)
r.

Proof. Suppose they read from two distinct writes w and w′ respectively. Then by the well-
formedness conditions, either w co−→ w′ or w′ co−→ w, respectively, and in each case the conclusion
follows from the definition of fr−→. One also has to consider the case in which one reads from the
initial state; then again the conclusion follows from the definition of fr−→.

w

co
��

rf // r

fr~~

w′ rf // r′

□
Combining these two lemmas, and writing r ↔−→ r′ iff r and r′ are two distinct reads with
the same address that either both read from the same write or both from the initial state (an
irreflexive, symmetric, and transitive relation), we have:

Lemma 3 For any two distinct same-address events (reads or writes) e and e′, then they are related
one way or the other by at least one of rf−→, co−→, fr−→, (co−→ rf−→), (fr−→ rf−→), and ↔−→.

It’s useful when reading this to keep the “types” of the relations rf−→, co−→, fr−→, and ↔−→ in mind, as
they respectively only relate write/read, write/write, read/write, and read/read pairs:

Wco
((rf

))
R

fr

jj ↔
ff

The coherence property We can now express the coherence property axiomatically, as a pred-
icate on candidate executions. So far, there is nothing constraining the reads-from, coherence,
and from-reads relations with respect to program order. The coherence order of a candidate ex-
ecution specifies a total order over writes, and the reads-from and from-reads relations situate
reads within that, but nothing yet prevents (for example) a read reading from a program-order-
future write on the same thread. The coherence property (3) can be expressed as a property of
candidate execution graphs by forbidding certain cycles, requiring:

acyclic
(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→

)

Part I Chapter 9 SC, axiomatically 78

where pos−−→ (“po-same”) is the subset of the program-order relation po−→ that only relates pairs of
events which are to the same location. Each of pos−−→, rf−→, co−→, and fr−→ only relate pairs of events
which are to the same location, so this is equivalent to a check for each location, that the union
of those relations, each restricted to events of that location, is acyclic. (Recall that a relation
−→ is acyclic if there is no path e1 −→ . . . −→ en −→ e1 (for n ≥ 1), or, equivalently, if −→+ is
irreflexive.)

Our prose above said “each read reads from the most recent write”, but it was vague about
the order with respect to which that “most recent” was supposed to be. The acyclicity condition
checks that each read reads from the most recent write with respect to the transitive closure of
that union of relations, (pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→

)+. To see this, first note that the rf−→ relation is
included in the union, so no reads-from edge can go from a later write to an earlier read. On
the other side, suppose (for a contradiction) that some read reads from an earlier write w that
is not the most recent, i.e. there is some distinct intervening w′:

w′
(
pos−−→∪ rf−→∪ co−→∪ fr−→

)+

w

(
pos−−→∪ rf−→∪ co−→∪ fr−→

)+ >>

rf // r

The writes w and w′ must be to the same address (because all these relations only relate same-
address pairs), and so must be related by co−→ one way or the other (by the well-formedness
requirements on co−→), but then because that union is acyclic, we must have w co−→ w′. The read
r thus reads from a coherence predecessor of w′, so (by the definition of fr−→) we have r fr−→ w′.

w′
(
pos−−→∪ rf−→∪ co−→∪ fr−→

)+

w

co
>>

rf // r
fr

``

But that contradicts the acyclicity of that union.
Note also that, because the well-formedness conditions require that co−→ is total, the most

recent write for any read is unique (or it reads from the initial state): for any read r there
cannot be two distinct writes w, w′ that both precede r without any intervening writes and
which are unrelated to each other (all with respect to the transitive closure of the union of those
relations). This is why we can speak of the most recent write.

For any finite acyclic relation, there exists some total order that is consistent with that re-
lation (any topological sort of the relation), and any total order is acyclic, so this acyclicity
condition is equivalent to requiring there to be a per-location total order over all reads and
writes that is consistent with all those relations, which formalises coherence property (1).

The small-shape characterisation of coherence The coherence property forbids cycles in
(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→

)
. Such cycles might a priori be of any length, and span any number of

threads, but in fact the property is equivalent to ruling out the following five specific one- and
two-thread coherence shapes, as noted by Alglave [38, §4.2],[25, A.3, p.18].

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

porf

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poco

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

po

rf

fr

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

po

rf

rf
fr

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poco

rf

CoRW1 prevents reading from a program-order-later write. CoWW prevents a write being
coherence-after a program-order-later write. CoWR0 prevents a read reading from a coherence-
predecessor of a program-order-earlier write (which should hide that coherence-predecessor as

Part I Chapter 9 SC, axiomatically 79

far as this read is concerned). CoRR prevents two program-order-related reads reading from
distinct writes in the opposite order to their coherence order. CoRW2 prevents a write being
coherence-before the write that a program-order predecessor read from.

Theorem 1 For any candidate execution, acyclic
(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→

)
iff each of rf−→, co−→, fr−→,

co−→ rf−→, and fr−→ rf−→ are consistent with pos−−→.

Proof. The left-to-right implication is immediate from the fact that, for any binary relation
R, R ⊆ R′ and acyclic(R′) implies acyclic(R). For the right-to-left implication, suppose on the
contrary that there is a cycle in

(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→
)
. By Lemma 3, any edge e pos−−→ e′ in that

cycle must be in one of rf−→, co−→, fr−→, (co−→ rf−→), (fr−→ rf−→), and ↔−→ or their inverses. In the first five
cases, the former (those pos−−→-forwards paths) are included in (rf−→ ∪ co−→ ∪ fr−→)+, and the latter
(those pos−−→-backwards paths) are ruled out by the theorem premise, which forbids exactly those
shapes. Hence, there must be a cycle in

(
(↔−→∩ pos−−→) ∪ rf−→ ∪ co−→ ∪ fr−→

)
. This cannot be a cycle

in (↔−→ ∩ pos−−→) alone, as pos−−→ is acyclic. Hence by the relation types

Wco
((rf

))
R

fr

jj ↔
ff

there must be some write event in the cycle, and the cycle from that event must be in(
co−→∪

(rf−→ (↔−→∗) fr−→
)+)+

But (rf−→ (↔−→∗) fr−→) ⊆ co−→: the ↔−→ relation is transitive, and if w rf−→ r ↔−→ r′ co−→ w′ then by the
definition of ↔−→, read r′ also reads from w, and by the definition of fr−→, write w is coherence-
before w′.

w
rf

!!
rf

��
co

��

r

↔
��

r′

fr��

w′

Then, because co−→ is transitive, there must be some cycle in co−→. But that contradicts the well-
formedness conditions.

□
The diagrammatic version is at first sight slightly weaker than this theorem statement, as its
CoRR and CoRW2 have their fr−→ rf−→ and co−→ rf−→ paths via a distinct thread, but if either of those
paths go against pos−−→ within a single thread, then at least one of rf−→, co−→, and fr−→ individually
must go against pos−−→, and those are all ruled out in either case.

Same-thread (internal) and other-thread (external) relations It’s often useful to split the
reads-from, coherence, and from-reads relations into their same-thread and other-thread parts
(recall that in the x86-TSO operational model, reads from same-thread writes and reads from
other-thread writes have quite different ordering properties). Following Alglave et al. [23, 38],
these are the internal and external parts, respectively. We define derived relations:

e rfi−→ e′ iff e rf−→ e′ ∧ thread(e) = thread(e′)
e rfe−→ e′ iff e rf−→ e′ ∧ thread(e) ̸= thread(e′)

Part I Chapter 9 SC, axiomatically 80

and similarly for coi−→, coe−−→, fri−→, and fre−→. The small-shape characterisation of coherence can
then be expressed as the combination of checking that each of the three intra-thread (internal)
relations are consistent with same-address program order:

• acyclic
(pos−−→ ∪ rfi−→

)
• acyclic

(pos−−→ ∪ coi−→
)

• acyclic
(pos−−→ ∪ fri−→

)
and checking that the two inter-thread (external) relation compositions are consistent with
same-address program order:

• acyclic
(pos−−→ ∪ (coe−−→ rfe−→)

)
• acyclic

(pos−−→ ∪ (fre−→ rfe−→)
)

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

posrfi

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poscoi

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

pos

rf

fri

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

pos

rfe

rf
fre

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poscoe

rfe

9.3 An axiomatic SC model

Coherence alone is a rather weak property. For example, the candidate executions of SB and MP
that we have seen before:

SB

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

porf rf
fr

fr

MP

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

porf
rffr

are forbidden in SC, and that MP execution is also forbidden in x86-TSO, but neither violate
coherence. Drawing the derived fr−→ edges in the diagrams, each diagram does has a cycle in the
union of po−→, rf−→, and fr−→, but those po−→ edges are between events to different locations, so these
candidates do satisfy the coherence property acyclic

(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→
)
.

However, with the infrastructure of candidate executions and the coherence and from-reads
relations in place, we can characterise SC (and later other models) in the same style. Define the
executions of the SC axiomatic model to be all candidate executions, i.e. all pairs of

• a candidate pre-execution ⟨E, po−→⟩, and

• a candidate execution witness X = ⟨ rf−→, co−→⟩ for it,

that satisfy the well-formedness properties, that also satisfy

acyclic(po−→∪ rf−→∪ co−→∪ fr−→)

This is like the coherence property except that it includes all of program order po−→, not just the
same-address part of program order pos−−→. The above example candidate executions are therefore
forbidden by the SC axiomatic model, as desired.

Part I Chapter 9 SC, axiomatically 81

This acyclicity check for SC can be restated as a combination of the single-thread coherence
checks on the internal relations and an inter-thread check that is purely on the external relations:

Theorem 2 For any candidate execution, acyclic(po−→∪ rf−→∪ co−→∪ fr−→) iff

• acyclic
(pos−−→ ∪ rfi−→

)
,

• acyclic
(pos−−→ ∪ coi−→

)
,

• acyclic
(pos−−→ ∪ fri−→

)
, and

• acyclic(po−→∪ rfe−→∪ coe−−→∪ fre−→).

Proof. The left-to-right direction is trivial. For the right-to-left direction, assume the right-
hand-side and (for a contradiction) that there is a cycle in (po−→ ∪ rf−→ ∪ co−→ ∪ fr−→). Any rfi−→, coi−→,
and fri−→ edges in that cycle are included in pos−−→ (they each have to be same-address relations,
by the well-formedness properties; they have to be same-thread relations, by definition of the
internal relations; they have to be either forwards or backwards in po−→, by the well-formedness
properties; and backwards would contradict the right-hand-side). So there is a cycle in
(po−→∪ rfe−→∪ coe−−→∪ fre−→). □

This gives a tighter characterisation of the way in which SC is (much) stronger than coher-
ence, by including all of po−→ in that inter-thread check

acyclic(po−→∪ rfe−→∪ coe−−→∪ fre−→)

rather than the same-address pos−−→ of the inter-thread clause of the analogous characterisation
for coherence

acyclic(pos−−→∪ rfe−→∪ coe−−→∪ fre−→)

(which can be shown by similar reasoning to the above), or the CoRR and CoRW2 of the small-
shape characterisation of coherence

acyclic
(pos−−→ ∪ (coe−−→ rfe−→)

)
∧ acyclic

(pos−−→ ∪ (fre−→ rfe−→)
)

9.4 Equivalence of the operational and axiomatic SC models

Sections 6.1 and 9.3 define operational and axiomatic models for SC, but do they allow the
same behaviour?1 They define different shapes of behaviour, so one first has to relate those: the
operational model defines a set of allowed traces, while the axiomatic model defines a set of
allowed candidate executions. Both models are factored out from the thread-local instruction
semantics, so we want to state that the two models allow the same behaviour whatever that is.
For a candidate execution, this is just about the pre-execution (the events and program order
relation), not about the execution witness (the reads-from and coherence relations).

Say a trace T = [e1, . . . , en] and a candidate pre-execution ⟨E, po−→⟩ have the same thread-
local behaviour if

• they have the same events

{e1, . . . , en} = E

1One can think of relaxed memory models extensionally, as just the set of behaviours allowed, or intensionally, as
their detailed mathematical definitions (taking care not to confuse the intension of a model – its internal structure
– with the intention of its designers – what they intend). The operational and axiomatic SC models of §6.1, 9.3 are,
intensionally, two different models, but they should define the same extensional model.

Part I Chapter 9 SC, axiomatically 82

• the order among same-thread events within the trace and the program-order relation of
the pre-execution coincide, i.e.

{(ei, ej) | i < j ∧ thread(ei) = thread(ej) ∧ i, j ∈ 1, . . . , n} = po−→

Then the statement that the two models have the same extensional behaviour is:

Theorem 3 For any trace T and candidate pre-execution ⟨E, po−→⟩ that have the same thread-local
behaviour, the following are equivalent:

1. T is a trace of the SC abstract-machine memory

2. there exists an execution witness X = ⟨ rf−→, co−→⟩ for ⟨E, po−→⟩ such that

acyclic(po−→ ∪ rf−→ ∪ co−→ ∪ fr−→)

Proof. For the left-to-right direction, given a trace of the operational model, we construct
the execution-witness relations of a candidate execution from it, and check the well-formedness
conditions and the acyclicity condition of the axiomatic model. For the right-to-left direction,
given a candidate execution satisfying the acyclicity condition, we construct a candidate trace
as an arbitrary linearisation of the union of those relations, construct a candidate sequence
of operational-model states along that trace, and check that each candidate transition is an
instance of one of the WM: Write to memory and RM: Read from memory rules of the opera-
tional model.

Define the trace order e < e′ iff e is before e′ in the trace, i.e.

e < e′ iff ∃i, j. e = ei ∧ e′ = ej ∧ i < j

The same-thread part of that, < ∩ {(e, e′) | thread(e) = thread(e′)}, satisfies the program-
order well-formedness properties 1–4 by construction, and it is equal to the po−→ relation of
the candidate pre-execution (which also satisfies those properties) by the same-thread-local-
behaviour assumption.

For the left-to-right direction, given a trace, we construct an execution witness by taking the
reads-from and coherence orders from the trace order, with each read reading from the most
recent write to the same address in the trace order.

e rf−→ e′ ⇔ iswrite(e) ∧ isread(e′) ∧ addr(e) = addr(e′) ∧ e < e′∧
∀e′′. (e < e′′ ∧ e′′ < e′) =⇒ ¬(iswrite(e′′) ∧ addr(e′′) = addr(e′))

e co−→ e′ ⇔ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′) ∧ e < e′

We first have to check that these satisfy the remaining well-formedness properties of a candidate
execution. For rf−→:

1. for any reads-from edge, it must be from a write to a read, and they must have the same
address and value:
∀e, e′. e rf−→ e′ =⇒ iswrite(e) ∧ isread(e′) ∧ addr(e) = addr(e′) ∧ value(e) = value(e′)

The first three conjuncts are immediate from the construction of rf−→. To show that e and e′

have the same value, by the definition of SC operational model traces, there are SC model
states and transitions

. . .
e−→ m0

e1−→ m1 . . .
en−−→ mn

e′−→ . . .

By the WM: Write to memory rule of the SC model, the state m0 after the write e must
have the value of that write at its address, m0(addr(e)) = value(v). Then we need to

Part I Chapter 9 SC, axiomatically 83

know that in the SC model transitions intervening between e and e′, because there are no
intervening writes to the same address, the SC memory at addr(e) remains constant.

Lemma 4 If m0
e1−→ m1 . . .

en−−→ mn then for all addresses a distinct from those of the
writes in e1, . . . , en, mn(a) = m0(a).
Proof. By induction on n, at each step reasoning from the fact that each transition
must be an instance of one of the SC operational rules WM: Write to memory and
RM: Read from memory. □

Finally, by the RM: Read from memory rule, value(e′) is that same value.

2. for any e′′, there is at most one source of a reads-from edge to it:
∀e, e′, e′′. (e rf−→ e′′ ∧ e′ rf−→ e′′) =⇒ e = e′

Suppose e rf−→ e′′ and e′ rf−→ e′′ for distinct e and e′. By the construction of rf−→, they all have
the same address, e and e′ are writes, and e < e′′ and e′ < e′′ in the trace. All distinct
events of the trace are related one way or the other by <, either e < e′ or e′ < e. The
former contradicts the no-intervening-writes clause of the definition of rf−→ for e rf−→ e′′, and
the latter contradicts that for e′ rf−→ e′′.

3. for any read, if there is no reads-from edge to it, its value must be that of the initial state:
∀e. (isread(e) ∧ ¬∃e′.e′ rf−→ e) =⇒ value(e) = minit(addr(e))

By the construction of rf−→, if there is is no rf−→ edge to e then there is no write to the address
of e preceding e in the trace (if there were such a write, there would be a <-maximal one
without any intervening writes). By Lemma 4, the value in the SC memory for this address
is unchanged from the initial state. Finally, by the RM: Read from memory rule, value(e′)
is that same value.

For co−→:

1. co−→ is irreflexive, i.e., no write is related to itself:
∀e. ¬(e co−→ e)

By the definition of traces, the events of a trace have distinct IDs, so there is cannot be
distinct indices i and j for which e = ei and e = ej , and < on indices is irreflexive.

2. co−→ is transitive, i.e., if e co−→ e′ and e′ co−→ e′′ then e co−→ e′′:
∀e, e′, e′′. (e co−→ e′ ∧ e′ co−→ e′′) =⇒ e co−→ e′′

If e co−→ e′ and e′ co−→ e′′ then by the construction of co−→ they are all writes and have the
same address, and by the transitivity of < on indices e < e′′.

3. co−→ only relates writes, and only writes to the same address:
∀e, e′. e co−→ e′ =⇒ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)

By the construction of co−→.

4. co−→ relates all pairs of distinct writes to the same address one way or the other:
∀e, e′. (e ̸= e′ ∧ iswrite(e) ∧ iswrite(e′) ∧ addr(e) = addr(e′)) =⇒ e co−→ e′ ∨ e′ co−→ e

If e ̸= e′ then either e < e′ or e′ < e (by the definitions of traces and < again), and in
either case the construction of co−→ gives a co−→ edge as required.

Now we check that each of po−→, rf−→, co−→, and fr−→ go forwards in the trace, i.e. that they are
each subsets of <. This is just about the construction; it doesn’t involve the SC operational
model. For po−→, rf−→, and co−→ this is immediate from the construction. For fr−→, suppose r fr−→ w.
In case 1 of the definition of fr−→, for some w0, w0

co−→ w and w0
rf−→ r. If r < w we are done, so

Part I Chapter 9 SC, axiomatically 84

suppose for a contradiction that w < r. By the constructions of co−→ and rf−→, w0 is a write, w0 and
w and r have the same address, w0 < w, and w0 < r. But then w0 < w < r, contradicting the
no-intervening-write clause of the construction of rf−→.

In case 2 of the definition of fr−→, iswrite(w) and addr(w) = addr(r) and ¬∃w0. w0
rf−→ r.

Suppose for a contradiction that w < r. Then there is at least one write (namely w) with the
same address as r before it in <. Take the last such write, w′, then by the construction of rf−→, we
have w′ rf−→ r.

Finally, as po−→, rf−→, co−→, and fr−→ are all contained in <, which by construction is acyclic, their
union must be acyclic.

For the right-to-left direction of the theorem, given an execution witness E = ⟨ rf−→, co−→⟩ such
that acyclic(ob−→), where ob−→ = (po−→ ∪ rf−→ ∪ co−→ ∪ fr−→), we construct a candidate trace [e1, . . . , en]
(just a list of events) as an arbitrary linearisation of ob−→. The events in the candidate trace have
unique IDs by the well-formedness properties of the execution witness.

By acyclic(ob−→), we know if ei
ob−→ ej then i < j (but not the converse).

Construct memory states m1, . . . ,mn along that candidate trace by leaving the memory un-
changed for each read event and mutating the memory appropriately for each write event,
starting with m0 = minit, and defining

mi+1 =

{
mi if isread(ei)
mi ⊕ (addr(ei) 7→ value(ei)) if iswrite(ei)

Now we check that the candidate trace actually is a trace of the SC operational model, i.e that
there is a sequence of transitions

minit
e1−→ m1 . . .

en−−→ mn

For the write events, each transition is an instance of the WM: Write to memory rule by con-
struction. For the read events, say rj at index j, for that transition to be an instance of the RM:
Read from memory rule, we need mj−1(addr(rj)) = value(rj).

By the construction of the mi,

mj−1(addr(rj)) =

value(ei) where i is the largest i < j such that iswrite(ei)

and addr(ei) = addr(rj), if there is one, or
m0(addr(rj)) otherwise

In the first case, write wi for ei. We know by the well-formedness of the candidate execution
and Lemma 1 that either wi

co−→ wk
rf−→ rj for some k, wi

rf−→ rj , or rj
fr−→ wi. If wi

co−→ wk
rf−→ rj ,

then i < k < j, which would contradict the “largest”. If rj
fr−→ wi, because fr−→ is included in the

acyclic ob−→ relation, we have j<i, contradicting i<j. Hence wi
rf−→ rj , so by well-formedness they

have the same value.
In the second case, there is no i < j such that iswrite(ei) and addr(ei) = addr(rj), so because

the trace is a linearisation of ob−→, there is no w ob−→ rj such that addr(w) = addr(rj), so there is
no w rf−→ rj , so by the candidate-execution rf−→ well-formedness, value(rj) = m0(addr(rj)). □

Chapter 10

x86-TSO, axiomatically

In the x86-TSO operational model (unlike SC):

• each write has two events, a w = (W x=v) when it is enqueued into the local write buffer,
and a Dw x=v when it is dequeued to memory

• each read has one event, but it can arise in two ways, either reading from the local write
buffer or, if there is no write to the same address in that, reading from memory

These distinctions are not explicit in the candidate executions we’ve used. We could conceivably:

1. add some or all of that data to candidate executions, and give an axiomatic characterisa-
tion of the abstract-machine execution, or

2. keep one-event-per-access candidate executions, expressing the conditions that define al-
lowed behaviour just on those.

Perhaps surprisingly, (2) turns out to be possible
As previously mentioned, the first axiomatic model for x86-TSO, by Owens, Sarkar, and

Sewell [116, 118, 137], was based on the SPARCv8 TSO specification [3]. The axiomatic model
we describe here is the TSO model [33] in the “herd” style of Alglave and Maranget [38].
Both use just a single event per access. We initially ignore LOCK’d instructions and MFENCEs,
returning to them later in the chapter. As before, we start with coherence.

10.1 Coherence in x86-TSO

The ultimate coherence order over writes to the same address in an x86-TSO operational model
execution is the order in which they reach memory: the trace order of their Dw x=v dequeue
events. Note that this might not match the enqueue order: two threads could enqueue writes to
the same address in one order, and then they could be dequeued from their write buffers in the
opposite order.

Reads that read from memory are in the right place in the operational-model trace w.r.t. those
dequeue events, after the dequeue of their rf−→-predecessor and before the dequeues of their fr−→-
successors. For any such read, one knows there is no write to the same address in the local
buffer (which would become an fr−→-successor), by the buffer-empty condition in the x86-TSO
RM rule. Without that condition, such a write would end up coherence-after all writes that have
already reached memory, including the one the read reads from – a coherence violation.

Read events that read from buffers will be before the corresponding dequeue event (of the
write that they read from) in the trace, but, for each thread, the write enqueue events and reads
from buffers are done in program order, and each read from a buffer will be after the W x=v
enqueue event they read from, and before any po−→-later enqueue event. The ordering among

85

Part I Chapter 10 x86-TSO, axiomatically 86

same-thread write enqueues ends up included in the coherence order by the FIFO nature of the
buffer: two po−→-related writes are dequeued in the same order.

As far as the coherence check

acyclic(pos−−→∪ rf−→∪ co−→∪ fr−→)

goes, therefore, one can think of the reads that read from each buffered write as located in
coherence order immediately after the dequeue event of that write, rather than at their positions
in the operational trace.

It’s useful to see how the x86-TSO operational model forbids each of the small coherence
shapes of Theorem 1.

CoRW1

movq (x), %raxRx=1a:movq $1, (x)

Wx=1b:

Thread 0

posrfi

CoWW

movq $1, (x)Wx=1a:movq $2, (x)

Wx=2b:

Thread 0

poscoi

CoWR0

movq $1, (x)Wx=1a:movq (x), %rax

Rx=0b:

Thread 0

pos

rf

fri

CoRR

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (x), %rbx

Rx=0c:

Thread 1

pos

rfe

rf
fre

CoRW2

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $2, (x)

Wx=2c:

Thread 1

poscoe

rfe

CoRW1: In the operational model, a read can only see a same-thread write that is pos−−→-before
it, either in the thread’s buffer or in memory.

CoWW: The buffers are FIFO, so two pos−−→ writes are dequeued in pos−−→-order.

CoWR0: The b reads from a coherence-predecessor ::Wx=0 (which could be on any thread) of
a.

• Case c is on the same thread as b. c must be po−→-before a, as writes are enqueued in po−→
and, because the buffers are FIFO, dequeued (establishing their coherence order) in the
same order.

– Case b reads from memory, by RM. Then c must have been dequeued.

* Case a has been dequeued before the read. Then that must have been after c

was, so b would have read from a.

* Case a is still buffered at the read. That violates the no pending(m.B(t0), x)
condition of RM.

– Case b reads from buffer, by RB. Then a must still precede c in the buffer. This violates
the no pending(b1, x) condition of RB.

• Case c is on a different thread to b. Then b reads from memory, by RM.

– Case c was dequeued before a. Then b would have read from a.

– Case c was dequeued after a. Then a must still be in the buffer, violating the
no pending(m.B(t0), x) condition of RM.

CoRR: The dequeue of a must be before b reads, and b reads before c does. The c reads from
a coherence-predecessor ::Wx=0 (which could be on any thread) of a, so d must be dequeued
before a. But then c would have read from a.

CoRW2: The dequeue of a must be before b reads, and b reads before c is enqueued, which is
before c is dequeued. Then c is coherence-before a, so c must be dequeued before a is. But this
would be a cycle in machine execution time.

Part I Chapter 10 x86-TSO, axiomatically 87

10.2 Local ordering and the external relations

Recall that the axiomatic model for SC could be factored into intra-thread coherence conditions
and an inter-thread condition that only involved the external relations (though among accesses
to potentially different locations).

x86-TSO has an analogous characterisation. First, say a machine trace T is complete if it has
no non-dequeued write, and for any write enqueue event w in such, write D(w) for the unique
corresponding dequeue event.

For same-thread events in a complete operational machine trace, with trace order <:

• If w po−→ w′ then w is dequeued before w′ (so D(w) < D(w′)).

• If r po−→ r′ then r reads before r′ reads (so r < r′).

• If r po−→ w then r reads before w is enqueued, and hence before w is dequeued (so r <
D(w)).

• If w po−→ r, then w is enqueued before r reads, but the dequeue of w and the read are
unordered.

So, as far as external observations go (i.e. via rfe−→, coe−−→, and fre−→), all of program order po−→ except
the write-to-read edges is preserved. We can express this by requiring

acyclic
((po−→ \(W × R)

)
∪ rfe−→∪ coe−−→∪ fre−→

)
where W and R are the sets of all write and read events respectively, or equivalently

acyclic
((po−→ \

(
[W](po−→)[R]

))
∪ rfe−→∪ coe−−→∪ fre−→

)
(recalling that [A] is another notation for the identity relation on a set A).

10.3 An x86-TSO axiomatic model, without MFENCE and LOCK’d in-
structions

Define the executions of the x86-TSO axiomatic model (still ignoring read-modify-write instruc-
tions and MFENCEs) to be all candidate executions over the write and read events of the x86-TSO
machine grammar (not including its dequeue events), i.e. all pairs of

• a candidate pre-execution ⟨E, po−→⟩, and

• a candidate execution witness X = ⟨ rf−→, co−→⟩ for it,

that satisfy the well-formedness properties, that also satisfy the coherence check:

acyclic(pos−−→∪ rf−→∪ co−→∪ fr−→)

and the above external check:

acyclic
((po−→ \

(
[W](po−→)[R]

))
∪ rfe−→∪ coe−−→∪ fre−→

)

Part I Chapter 10 x86-TSO, axiomatically 88

10.4 x86-TSO axiomatic examples

The small coherence shapes, single-address examples, are all forbidden by the coherence check,
exactly as before.

For multiple-address examples (leaving aside those involving fences and LOCK’d instruc-
tions for the moment), we can draw the candidate executions and highlight the edges that are
included in the above external check, showing the others dashed and lightened, e.g. for some of
the key examples from previous chapters:

SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

LB Forbidden

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

MP Forbidden

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

SB+rfi-pos Allowed

movq $1, (x)Wx=1a:movq (x), %rax

Rx=1b:movq (y), %rbx

Ry=0c:

Thread 0

po

movq $1, (y)Wy=1d:movq (y), %rax

Ry=1e:movq (x), %rbx

Rx=0f:

Thread 1

po

rfi rfi

rf rf

frefre

po po

WRC Forbidden

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

fr

2+2W Forbidden

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe

IRIW Forbidden

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf
fr

fr

For each of these, there is a cycle in those edges iff it is forbidden in the x86-TSO operational
model.

10.5 Equivalence of the operational and axiomatic x86-TSO mod-
els, without MFENCE and LOCK’d instructions

The statement of the equivalence of the x86-TSO operational and axiomatic models is similar
to that for SC, except that in relating the two notions of execution – operational traces and ax-
iomatic candidate pre-executions – we have to account for the fact that the former has dequeue
events and the latter does not.

Say an x86-TSO trace T = [e1, . . . , en] (with trace order <) and an x86-TSO candidate pre-
execution ⟨E, po−→⟩ have the same thread-local behaviour if

• they have the same thread-interface access events (no dequeue or fence events)
E = {e | e ∈ {e1, . . . , en} ∧ (iswrite(e) ∨ isread(e))}

• they have the same program-order relations over those, i.e.
po−→ = {(e, e′) | e ∈ E ∧ e′ ∈ E ∧ e < e′ ∧ thread(e) = thread(e′)}

Part I Chapter 10 x86-TSO, axiomatically 89

Then:

Theorem 4 For any candidate pre-execution ⟨E, po−→⟩, the following are equivalent:

1. there exists a complete trace T of the x86-TSO abstract-machine memory with the same
thread-local behaviour as that candidate pre-execution

2. there exists an x86-TSO execution witness X = ⟨ rf−→, co−→⟩ for ⟨E, po−→⟩ such that acyclic(pos−−→∪
rf−→∪ co−→∪ fr−→) and acyclic

((po−→ \
(
[W](po−→)[R]

))
∪ rfe−→∪ coe−−→∪ fre−→

)
.

This has been proved by Durbaba in the Isabelle mechanised theorem prover [74]. We won’t
give a full proof here, but the basic idea is:

1. Given an operational execution, construct an axiomatic candidate in roughly the same way
as we did for SC, mapping dequeue transitions to write events, then check the acyclicity
properties.

2. Given an axiomatic execution, construct an operational trace by sequentialising ob−→, map-
ping write events onto dequeue transitions and adding write enqueue transitions as early
as possible, then check the operational machine admits it.

10.6 Relational algebra Cat notation for axiomatic model defini-
tions

In general, axiomatic models could be defined using arbitrary discrete mathematics, but models
in the “herd” style of Alglave and Maranget [38] can be expressed just as the conjunction of
checks that various derived relations are acyclic or empty, and those derived relations can be
defined using standard relational-algebra operations on binary relations, rather than pointwise
definitions involving their elements. The “Cat” language [38] provides a concise concrete syntax
for such relational algebra, and is used by various software tools, including herd7 and (in a
variant) isla-axiomatic.

The Cat notation for relations is very similar to what we have used so far (which is conven-
tional discrete maths notation except that we have used arrows for all relations, to get a tight
correspondence between the maths and diagrams), except (a) one omits the arrows for rela-
tions, e.g. writing just po for the program-order relation instead of po−→, and (b) the operations
on relations are written as below.

math cat
r−→ s−→ {(e, e′′) | ∃e′. e r−→ e′ s−→ e′′} r ; s the composition of r and s
r−→∪ s−→ {(e, e′) | e r−→ e′ ∨ e s−→ e′} r | s the union of r and s
r−→∩ s−→ {(e, e′) | e r−→ e′ ∧ e s−→ e′} r & s the intersection of r and s
r−→ \ s−→ {(e, e′) | e r−→ e′ ∧ ¬(e s−→ e′)} r \ s r minus s
[A] {(e, e) | e ∈ A} [A] the identity on some set A of events
A×A′ {(e, e′) | e ∈ A ∧ e′ ∈ A′} A*A’ the product of sets A and A’

{(e, e′) | addr(e) = addr(e′)} loc same-location, events at the same address
{(e, e′) | thread(e) = thread(e′)} int internal, events of the same thread
{(e, e′) | thread(e) ̸= thread(e′)} ext external, events of different threads

Then a Cat file can contain a sequence of definitions of derived relations, e.g.

let pos = po & loc

defining pos to be the intersection of the program order relation po with the same-location
relation loc, and acyclicity and emptiness checks, e.g.

Part I Chapter 10 x86-TSO, axiomatically 90

acyclic pos | rf | co | fr as internal (* coherence check *)

checking acyclic
(pos−−→ ∪ rf−→ ∪ co−→ ∪ fr−→

)
, and also naming this check internal.

With this, the x86-TSO axiomatic we have so far could be expressed as follows, introducing
new names obs, lob, and ob for some of the derived relations.

let pos = po & loc (* same-address part of po (aka po-loc)*)

acyclic pos | rf | co | fr (* coherence check *)

let obs = rfe | coe | fre (* observed-by *)

let lob = po \ ([W];po;[R]) (* locally-ordered-before *)

let ob = obs | lob (* ordered-before *)

(* expanding the above, ob = po \ ([W];po;[R]) | rfe | coe | fre *)

acyclic ob (* ‘external’ check *)

10.7 An x86-TSO axiomatic model, with LOCK’d instructions and
MFENCE

Our operational x86-TSO model covered the x86 MFENCE barrier and LOCK’d read-modify-write
instructions. To extend the above axiomatic model correspondingly, we have to add three things.

For MFENCE, operationally this restores order between writes and reads by waiting for the
thread-local write buffer to drain before allowing subsequent instructions to go ahead. Axiomat-
ically, that can be captured by including MFENCE events in candidate executions, and adding all
write/read pairs separated in program order by an MFENCE to the locally-ordered-before relation:

(* Locally-ordered-before *)

let lob = po \ ([W]; po; [R])

| [W]; po; [MFENCE]; po; [R] (* W/R pairs separated by an MFENCE *)

| ...

where [MFENCE] is the identity relation on the set of all MFENCE events.
For atomic read-modify-write instructions, the LOCK’d instructions, operationally these were

modelled with L and U transitions at the start and end of each such instruction. They have
two effects: those transitions each require the local write buffer to be empty, thereby restoring
order to write/read pairs around (or involving) the LOCK’d instruction; and while one thread is
executing a LOCK’d instruction, any RB: Read from buffer, RM: Read from memory, and DM:
Dequeue write from write buffer to memory by other threads are blocked.

The first of those can be captured axiomatically by adding additional write/read pairs to
locally-ordered-before, where at least one of each pair comes from such a LOCK’d instruction
(writing X for the set of all such events):

(* Locally-ordered-before *)

let lob = po \ ([W]; po; [R])

| [W]; po; [MFENCE]; po; [R] (* W/R pairs separated by an MFENCE *)

| [W]; po; [R & X] (* W/R pairs with at least one from an *)

| [W & X]; po; [R] (* atomic RMW, where X identifies such *)

The second effect can be captured by ruling out all writes which are coherence intervening
between the read and write of the LOCK’d instruction, requiring:

(* Atomicity requirement *)

empty rmw & (fre;coe) (* nothing between the R and W of atomic RMWs *)

Part I Chapter 10 x86-TSO, axiomatically 91

where rmw is a relation that relates the read and write of each LOCK’d read-modify-write instruc-
tion.

That completes this x86-TSO axiomatic model, lightly adapted for presentation from [33]:

include "x86fences.cat"

include "cos.cat"

let pos = po & loc (* same-address part of po, aka po-loc *)

(* Observed-by *)

let obs = rfe | fre | coe

(* Locally-ordered-before *)

let lob = po \ ([W]; po; [R])

| [W]; po; [MFENCE]; po; [R] (* W/R pairs separated by an MFENCE *)

| [W]; po; [R & X] (* W/R pairs with at least one from an *)

| [W & X]; po; [R] (* atomic RMW, where X identifies such *)

(* Ordered-before *)

let ob = obs | lob

(* Coherence check *)

acyclic pos | rf | co | fr

(* Atomicity requirement *)

empty rmw & (fre;coe) (* nothing between the R and W of atomic RMWs *)

(* External check *)

acyclic ob

10.8 Equivalence of the operational and axiomatic x86-TSO models

Durbaba’s mechanised proof [74] of the equivalence of x86-TSO operational and axiomatic
models, described in §10.5, also covers MFENCE and LOCK’d instructions. The definition of same
thread-local behaviour has to be extended, to require:

• Events: The set of events of the pre-execution must be the same as the set of events of the
trace when restricted to Read, Write and Barrier events only (excluding Propagates, Locks
and Unlocks, but including MFENCEs).

• Program-Order: Two events in the same thread must appear in the same order in the
trace as they appear in the pre-execution’s po relation.

• Read-modify-write: Each RMW Read/Write pair r rmw w must be inside a pair of Lock and
Unlock events, and every Read/Write pair inside a pair of Lock and Unlock events must be
a RMW pair.

• RMW Locks only: Each Lock event in the trace must be followed by a Read, then a Write,
and then a Propagate of that Write and finally an Unlock event.

then the theorem statement is essentially the same: that for any trace and any candidate execu-
tion with the same thread-local behaviour, the trace is allowed by the operational model iff the
candidate execution is allowed by the axiomatic model.

Chapter 11

Making the axiomatic models
executable as a test oracle: the Herd
and Isla-axiomatic tools

Historically, most formal semantic models, including much (though not all) previous work on
relaxed memory models, have been expressed as pen-and-paper or LaTeX mathematics, not
executable in any way. That makes it hard and error-prone to explore what behaviours they
allow on examples, to compare that against the behaviour of real-world implementations, and
to compare variant models against each other. Building on our previous experience developing
semantics for real-world network protocols [133, 154, 54, 55, 52, 126, 53], we therefore em-
phasised from our first work in this area the need for tool support that makes relaxed-memory
models executable as test oracles. Chapter 8 already briefly described the RMEM tool that lets
one explore various operational models. Those models are expressed as nondeterministic tran-
sition systems, so for small examples one can compute the set of all model-allowed behaviour
by an exhaustive backtracking search, computing allowed executions incrementally.

For axiomatic models, the problem is rather different: these models are expressed as predi-
cates over candidate execution graphs: the memory events (and relations over them) of candi-
date complete executions; one can’t easily incrementally build the allowed executions. Instead,
the obvious strategy is to first enumerate all the candidate pre-executions (the E and po) that are
consistent with the instruction semantics for each thread in isolation, then for each enumerate
all the candidate execution witnesses (pairs of rf and co relations over those events that satisfy
the well-formedness properties), then filter those by the consistency predicate of the model (e.g.
the coherence and external acyclicity checks of the x86-TSO axiomatic model), to give the set
of allowed candidate executions. This strategy scales badly in the size of the test1, but because
most litmus tests are very small, it often remains viable, and the close correspondence between
the tool implementation and the intended mathematical semantics helps provide confidence in
the tool.

A priori, any memory read in the thread-local semantics could read an arbitrary value (e.g.
from {0, . . . , 264 − 1}), so to make this practical, even for small litmus-test examples, one either
has to restrict the value domain to a very small set (e.g. just {0, 1}, or treat the thread-local
instruction behaviour symbolically. For example, for a dynamic instance of an x86 quad-word
64-bit movq (y),%rax instruction, reading the memory value at location y into register rax, a
thread-local symbolic semantics creates a fresh symbolic variable, say v, records that after this
instruction rax contains v, and adds a read event R y=v to the candidate pre-execution, po-after
all previous events by this thread. For an x86 incq (y) instruction, such a semantics creates a
fresh symbolic variable, say v′, and adds a read event R y=v′ and a write event W y=v′ + 1,

1For example, for tests with no control-flow choices, if there are L locations, each with W write events, and a total
of R read events, there are a priori (W !L) · (R(L·W)+1) choices of the coherence orders and reads-from relations.

92

Part I Chapter 11 Making axiomatic models executable: Herd and Isla 93

involving the symbolic expression v′ + 1. For each candidate reads-from relation one adds
symbolic constraints, for each rf edge, that the values of the writes and reads are equal. The
tool then has to check for each candidate execution whether these constraints are all satisfiable,
and also check the acyclicity conditions of the axiomatic model.

Several tools along these lines have been developed. We focus here on those we use in this
text, deferring discussion of other related work to Part ??. There are many interesting design
decisions and differences between such tools, including:

• the range of architectures they support;

• the range of features they support (e.g. mixed-size, instruction-fetch, virtual memory, etc.);

• the range and completeness of the instruction-set semantics they support, e.g. just enough
for simple litmus tests, or for typical concurrent algorithms, or a complete ISA;

• what format of litmus tests they support (it’s highly desirable for all tools to support the
same format, or have automated translators, so that tools and models can be experimen-
tally compared);

• whether the instruction-set semantics has to be custom-written for this tool or can be
re-used from an established and validated definition;

• the tension between a naive rendering of the mathematics into executable code, which is
desirable for confidence that the tool does what is intended, and optimisations that may
be necessary for sufficient performance;

• the relationship between the tool implementation and any mechanised mathematics ver-
sion of the intended semantics;

• the choice of whether to use an ad hoc constraint solver or an external SMT solver;

• whether the axiomatic model is specified in code in the tool source, or in some external
logical language, or in some external Cat or Cat-like relational algebra definition; and

• the user interface design, including command-line and/or web versions, preferably with
good graph drawing for candidate executions.

The memevents tool, used first in development of the x86-CC and x86-TSO axiomatic mod-
els [129, 22, 116, 137] was developed from 2007 to 2014, initially by Susmit Sarkar and Peter
Sewell, following discussions with Francesco Zappa Nardelli, and then also by Jade Alglave (in
joint development of prototype IBM Power axiomatic models), and by Luc Maranget. Gabriel
Kerneis contributed work on Power ISA semantics.

A 2013 re-engineering of memevents by Luc Maranget evolved into the herd tool [31] by
Alglave et al. [38], and used initially for axiomatic models for SC, TSO, release-acquire C++,
and IBM Power. This introduced the Cat language [27], for defining axiomatic models with
conditions on derived relations defined using relational algebra (rather than the pointwise set-
theoretic definitions used earlier), that we briefly described in §10.6.

Herd was extended by various authors for GPU concurrency [26], C11 and OpenCL [46], the
Linux kernel memory model [34], and x86 non-writeback memory, non-temporal instructions,
and persistent memory [123].

Later development led to the current (at the time of writing) herdtools7 version of herd [32]
by Alglave and Maranget. This is used by Alglave et al. within Arm for their axiomatic concur-
rency model specification [29]. Herd has a web interface at http://diy.inria.fr/www/.

The isla-axiomatic tool [40, 42, 43] has been developed since 2019, principally by Alasdair
Armstrong, Brian Cambell, Ben Simner, and Thibaut Pérami. This uses the complete Arm-A

http://diy.inria.fr/www/

Part I Chapter 11 Making axiomatic models executable: Herd and Isla 94

and RISC-V instruction semantics, expressed in the Sail ISA definition language of Armstrong
et al. [41]. These are, respectively, automatically translated from the authoritative definition in
their ASL language, and hand-written and adopted by RISC-V International as their reference
formal model. Isla-axiomatic thus escapes the previous reliance on custom hand-crafted ISA
models for relaxed-memory axiomatic exploration tools. To make these large definitions us-
able (the Arm-A ISA specification is several hundred thousand lines), isla-axiomatic uses the isla
symbolic evaluation engine for Sail, and the Z3 SMT solver [69]. It combines the constraints
from this intra-instruction execution with those of the axiomatic memory model, in a similar
strategy to that of Alglave et al. [30]. It includes the litmus-test final condition constraints;
isla-axiomatic checks whether there exists some execution that satisfies those, rather than com-
puting the set of all allowed executions – in other words, it makes models executable as a test
oracle, but not exhaustively executable. Isla-axiomatic has been used in the development of ax-
iomatic models for Arm-A instruction-fetch and virtual memory, by Ben Simner et al. [142, 141],
exploiting the fact that the Arm-A ISA specification includes all the details of the virtual mem-
ory configuration and address translation page-table walks. Isla-axiomatic has a web interface
at https://isla-axiomatic.cl.cam.ac.uk/. However, it does not currently support x86. We’ll
describe it briefly here and return in more detail for the more relaxed Arm-A and RISC-V models
later.

For completeness we mention here also two analogous tools for axiomatic models for
programming-language concurrency. The early cppmem tool [48, 45] was developed around
2010–2012 by Mark Batty, Scott Owens, Jean Pichon-Pharabod, Susmit Sarkar, and Peter Sewell.
It supports the C++11 relaxed memory model as formalised by Batty et al. [45], expressed in
the Lem higher-order logic specification language [112, 111], together with an ad hoc symbolic
semantics for a small fragment of C. It has a web interface at http://svr-pes20-cppmem.cl.

cam.ac.uk/cppmem/.
The 2019 Cerberus BMC [98, 99] tool, by Stella Lau, Victor Gomes, Kayvan Memarian, Jean

Pichon-Pharabod, and Peter Sewell, adapts the Cerberus semantics by Memarian [108, 110], for
a large fragment of C, to generate SMT constraints – analogous to, though actually preceding,
the isla-axiomatic switch to full ISA semantics, but at the C level. Cerberus BMC combines those
thread-local constraints with various relaxed models (substantial fragments of the C11, RC11,
and Linux Kernel models) specified in a Cat-like relational algebra language, using an external
SMT solver. It has a web interface at http://cerberus.cl.cam.ac.uk/bmc.html.

x86 Litmus tests The web interfaces for RMEM, herd, and isla-axiomatic each provide a library
of litmus tests. These are not necessarily identical, though the individual tests largely follow a
common naming scheme, and same-named tests should be essentially equivalent.

There’s also a useful set of x86 litmus tests at https://github.com/litmus-tests/

litmus-tests-x86, produced by Shaked Flur and Luc Maranget. For example, tests such as
SB, SB+mfences, and MP can be found in the tests/non-mixed-size/BASIC_2_THREAD directory
there, and various coherence tests in tests/non-mixed-size/CO.

We’ll discuss how tests can be automatically generated in the following chapters.

The herd web interface To use the herd web interface, go to http://diy.inria.fr/www/,
select x86 from the central blue drop-down menu, and either select one of the basic x86 tests
from the test-name drop-down menu on the right, or paste in some other test. The default x86-
TSO Cat model is shown below in the interface – this is phrased slightly differently to the one
we saw in §10.7, but it should be equivalent to that. Then one can run the tool by pressing the
right-triangle at the bottom. This shows the textual output of herd, e.g.:

Test SB Allowed

States 4

https://isla-axiomatic.cl.cam.ac.uk/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://cerberus.cl.cam.ac.uk/bmc.html
https://github.com/litmus-tests/litmus-tests-x86
https://github.com/litmus-tests/litmus-tests-x86
http://diy.inria.fr/www/

Part I Chapter 11 Making axiomatic models executable: Herd and Isla 95

0:EAX=0; 1:EAX=0;

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 1 Negative: 3

Condition exists (0:EAX=0 / 1:EAX=0)

Observation SB Sometimes 1 3

Time SB 0.10

Hash=edd4722437d708675ed921e7607e77f0

This shows the list of final states allowed by the model, with the Positive: 1 indicating that
one of those satisfies the final condition of the test. Herd also renders the allowed candidate
executions (there called “event structures”), e.g.

The herd command-line interface If you’ve installed herdtools7 as in §1.5, cloned the above
litmus-tests-x86 repository into a directory REPO_DIRECTORY, and have the x86-TSO Cat file
from §10.7 in a filex86-tso.cat, then:

herd7 -cat x86-tso.cat \

$(REPO_DIRECTORY)/litmus-tests-x86/tests/non-mixed-size/BASIC_2_THREAD/SB.litmus

runs herd with that model on the basic SB test, producing a similar histogram and result. It
differs slightly as this is a 64-bit version of the SB test.

herd7 -cat x86-tso.cat \

$(REPO_DIRECTORY)/litmus-tests-x86/tests/non-mixed-size/BASIC_2_THREAD/SB.litmus

Test SB Allowed

States 4

0:rax=0; 1:rax=0;

0:rax=0; 1:rax=1;

0:rax=1; 1:rax=0;

0:rax=1; 1:rax=1;

Ok

Witnesses

Positive: 1 Negative: 3

Condition exists (0:rax=0 /\ 1:rax=0)

Observation SB Sometimes 1 3

Time SB 0.01

Hash=ac0b1f983ea53dfb4bc1a5cf3e493028

The isla-axiomatic web interface To use the isla-axiomatic web interface (for Arm-A and
RISC-V), shown in Fig. 11.1, go to https://isla-axiomatic.cl.cam.ac.uk/. The upper left
pane shows a litmus test; the middle pane shows the axiomatic model in use, in a mild variant

https://isla-axiomatic.cl.cam.ac.uk/

Part I Chapter 11 Making axiomatic models executable: Herd and Isla 96

Figure 11.1: Isla-axiomatic web interface

of the Cat syntax used by herd; and the right pane shows candidate executions. One can select a
new litmus test from the library in the “Litmus file” drop-down and select from a list of axiomatic
models in the “Memory model” drop-down; both can be hand-edited. One can also choose from
a range of ISA models in the “Sail architecture” drop-down. Isla-axiomatic uses a different
concrete syntax for litmus tests, in a TOML format (suffix .toml) rather than the original ad hoc
.litmus format, but old tests can be translated to the new format with a standalone tool in the
repository. Because it uses complete ISA definitions, including decoding, Isla-axiomatic actually
checks machine-code litmus tests rather than the assembly-like syntax used by RMEM and herd;
it uses a conventional assembler to translate the assembly instructions of the test source into
machine code before checking that. Clicking on “Run test” checks whether there are candidate
executions satisfying the axiomatic model, the instruction semantics, and the final constraint of
the test. If there are, it shows them in the right-hand pane; the “Relations” drop-down lets one
toggle display of various relations.

The isla-axiomatic command-line interface To install and run isla-axiomatic locally (which
will be necessary for larger examples), follow the repository instructions at https://github.

com/rems-project/isla.

https://github.com/rems-project/isla
https://github.com/rems-project/isla

Chapter 12

Running tests on hardware: Litmus

In §1.5 we introduced the litmus tool, for experimentally running tests on hardware processor
implementations, and Chapter 2 built on experimental results for various x86 tests. Much early
work on relaxed memory models was based on discussions of microarchitecture or on vendor
documentation, and the experimentally observable behaviour of hardware has not always been
clear. Notable work that took a more empirical approach include among others that of Col-
lier [63, 65], with his 1993 ARCHTEST [64], and Adir et al. [16]; other related work will be
described in Part ??.

The litmus tool was inspired in part by these and (as for model evaluation tooling) by the
experimental semantics approach we used in modelling network protocols [53]. ARCHTEST com-
prises a small number of hard-coded experiments to probe specific aspects, e.g. with one thread
writing an increasing sequence of values to a location while another reads them and checks
they are non-decreasing, to probe one aspect of coherence. In contrast to this, we wanted a
generic tool that would support testing of any litmus test. The challenge here is one of (more-
or-less) black-box testing of a complex system: the observable behaviour of a multiprocessor
for a concurrent example depends on many aspects of its microarchitectural design and of its
dynamic internal state, including e.g. the exact timing between execution of different hardware
threads, the states of the cache protocol, store buffers, and pipelines for each hardware thread,
contention for specific execution units, and so on. In white-box testing of a specific hardware
design during its development, one might have knowledge of the design for all those, and vis-
ibility of them during simulation, though it may still be challenging to drive the system into a
good range of its internal states. For external testing of production processors, one does not
have that visibility.

Our basic approach, dating back to initial experiments by Sarkar and Sewell in 2007, is to
transform a litmus test, say that operates over memory locations x and y, into an indexed ver-
sion, accessing elements of an array for x and an array for y. Executing many copies of the test,
iterating over the array indices in a randomised order, randomising over choices of the assign-
ment of threads of the test to hardware threads, and varying the precise synchronisation of the
thread starts of each instance, usefully stresses the hardware implementation. The first version
of the litmus tool was developed principally by Thomas Braibant and Francesco Zappa Nardelli
from 2007–2008, with contributions from Alglave, Sarkar, and Sewell. This took arbitrary litmus
tests as input, in a format much like those we present here, rather than the hard-coded litmus
tests of our initial experiments.

Luc Maranget contributed from late 2008 onwards with substantial re-engineering, initially
to harmonise the front-end with the memevents tool, and with another refactoring from 2013
onwards leading eventually to the current herdtools7 version [32]. This long development has
tuned the test harness and added many options, and it has been used in many papers and in
both IBM and Arm. An early version was described in [24], but one should consult the current
documentation https://diy.inria.fr/doc/litmus.html for up-to-date details.

97

https://diy.inria.fr/doc/litmus.html

Part I Chapter 12 Running tests on hardware: Litmus 98

Experimental testing might be done for several subtly-different reasons:

• investigation of the behaviour of existing hardware implementations, to inform the con-
struction of models;

• checking that a model is sound, with respect to the behaviour of existing hardware imple-
mentations; and

• checking that a hardware implementation is correct with respect to a model.

However, one always has to be aware of the limitations. Experimental testing can demonstrate
that a specific hardware implementation can exhibit some particular behaviour (modulo any
bugs in the test harness, of course), but it cannot demonstrate conclusively that a hardware
implementation cannot exhibit a behaviour: if a behaviour isn’t observed, it could just be that the
test harness does not drive the implementation into an internal state that would exhibit it. Some
interesting behaviours occur only very rarely, even when using carefully tuned configurations of
the litmus test harness, so one might need to run tests for many iterations to observe them
reliably – even up to 1012 iterations – and this can be time-consuming, especially for large
batches of tests. Most fundamentally, experimental testing alone cannot distinguish between an
intentionally allowed behaviour or a hardware bug: it does not tell one what the architectural
intent is – though it can and does inform discussion of what the archtiectural intent should be.

Running a batch of tests on hardware using litmus In a simple usage one might run litmus

on a single test, as we showed in §1.5, but typically one wants to run it on a batch of tests,
and to tune the options to increase the likelihood of observing interesting results. For example,
the directories of the https://github.com/litmus-tests/litmus-tests-x86/tree/main/tests/

non-mixed-size repository of x86 litmus tests include @all files that list (hierarchically) all the
tests they contain. One can run all of those in (for example) BASIC_2_THREAD with:

litmus7 -r 100 BASIC_2_THREAD/@all > run-hw.log

This runs each of those tests 107 times, logging to run-hw.log. For serious testing, one should
increase that by 10–1000 and tune the parameters to the hardware at hand, and typically will
be using many more tests. The generated log contains, for each test, the histogram of observed
final states. It also records whether the identified final-state condition was observed or not. For
example:

Test SB Allowed

Histogram (4 states)

95 *>0:rax=0; 1:rax=0;

4999871:>0:rax=1; 1:rax=0;

4999876:>0:rax=0; 1:rax=1;

158 :>0:rax=1; 1:rax=1;

[...]

Observation SB Sometimes 95 9999905

The Allowed on the first line and the Oks in the output should be ignored – what matters is the
histogram, showing how often each final state was observed, and the Observation line, showing
whether (and how often) a final state satisfying the final condition of the test was observed. The
* in the histogram identifies those states.

https://github.com/litmus-tests/litmus-tests-x86/tree/main/tests/non-mixed-size
https://github.com/litmus-tests/litmus-tests-x86/tree/main/tests/non-mixed-size

Chapter 13

Test families and test generation: Diy

The early literature on relaxed memory sometimes illustrates specific points with a few small
examples, like those we have seen. Collier recalls [62] that early engineers “made up all the
test cases they could think of and then they ran those cases past their designs”, without general
theory, although there “were a lot of people, in industry and in academia, who produced such
tests”, e.g. what we know as SB by R. M. Smith.

As mentioned already, the tests in the early literature are typically paper examples only, to
illustrate some proposed microarchitecture or formal model, without discussion of testing on
hardware or execution in model evaluation tools. To the best of our knowledge, such tests were
first referred to as litmus tests in the 1992 Alpha Architecture Reference Manual [147], which
included 11 tests. Other architecture manuals also include small numbers of tests. For example,
the IBM Power manual historically included two [10, Book II, §1.7.1]. Intel added 10 tests to its
x86 manual around 2008 [67], including some of those we saw in Chapter 2 (they were not in
the Nov. 2006 version [66]). Arm produced a note containing around 10 user-concurrency tests
(and more for cache and TLB maintenance) in 2008 [39].

Adir et al. [16] speak of a larger set of “about 40 litmus tests that cover all rules of the
[PowerPC] model” (8 included in that paper), which they also used in the verification of a
processor design. Our early work was in the same vein, taking existing tests from the literature
and adding a few more, e.g. the 24 tests used for x86-TSO validation [116, 118, 137].

However, all these are ad hoc collections, of a relatively small number of hand-written in-
teresting tests. Can one organise tests more systematically, and/or generate them automatically,
and ideally so so in a way that is in some sense complete? The axiomatic model structure
suggests ways to do these.

13.1 Organising tests

Tests can be useful in two overlapping ways: for exploring the allowed behaviour of models,
and for experimentally investigating what behaviour a hardware implementation exhibits. For
both, one is especially interested in tests with some non-SC execution, as the SC executions are
allowed in any reasonable model. The axiomatic-model characterisation of SC (§9) thus suggests
a way to organise tests systematically: one can look at tests with a cycle in (po∪rf∪co∪fr), and
especially at tests with a minimal such cycle, in which (for example) there are no adjacent po
edges. The small-shape characterisation of coherence of §9.2 (Page 78) gives such cycles with
two or three edges (all such cycles can involve only one location). For cycles with four edges,
there are just six shapes that have a pair of different-location accesses on each of two threads.

99

Part I Chapter 13 Test families and test generation: Diy 100

SB

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

MP

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq (x), %rbx

Rx=0d:

Thread 1

po
rfe

rf

fre

LB

movq (x), %raxRx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

porfrf

R

movq $1, (x)Wx=1a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq (x), %rax

Rx=0d:

Thread 1

po
coe

rf

fre

S

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq (y), %raxRy=1c:movq $1, (x)

Wx=1d:

Thread 1

po
coerfe

2+2W

movq $2, (x)Wx=2a:movq $1, (y)

Wy=1b:

Thread 0

po

movq $2, (y)Wy=2c:movq $1, (x)

Wx=1d:

Thread 1

po
coecoe

We have already seen SB, MP, and LB. Tests R and S can be thought of as variants of SB and MP

respectively, but with a coherence edge from a write to a write in place of a from-reads edge
from a read to a write (which means there is coherence edge from the write that that read
reads from to the latter write). These are similar in some ways: on weaker architectures, each
pair of variants needs the same additional synchronisation to restore SC. Test 2+2W involves
just coherence and program order. Naming tests consistently and concisely turns out to be
challenging, especially as more are used over time, involving more features. Several of those
test names are rather arbitrary, but they are now well-enough established that it is best to keep
using them.

For each test shape, one can then systematically consider the family of all tests that have
the same shape but with some additional synchronisation. For example, tests MP+mfence+po and
MP+po+mfence are strengthenings of MP with an x86 mfence between the two Thread 0 access or
Thread 1 accesses respectively (and just program order on the other thread), and MP+mfences is
the strengthening with an mfence on both. Many more kinds of strengthening will be used later,
especially for more relaxed architectures.

For each of those 4-edge tests, one can consider possible 5-edge extensions in which a first
write on one or both threads is moved to a new thread and replaced by a read from it. These are
also similar to their base tests in that, on weaker architectures, each needs the same additional
synchronisation to restore SC. For MP, this gives the WRC test (§2.7):

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq $1, (y)

Wy=1c:

Thread 1

po

movq (y), %raxRy=1d:movq (x), %rbx

Rx=0e:

Thread 2

po

rf

rf
rf

For SB, doing this for one write gives the RWC test [60], while doing it for both gives IRIW (§2.6):

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:movq (x), %rax

Rx=0e:

Thread 2

po

rf

rf rf
fr

fr

movq $1, (x)Wx=1a:
Thread 0

movq (x), %raxRx=1b:movq (y), %rbx

Ry=0c:

Thread 1

po

movq $1, (y)Wy=1d:
Thread 2

movq (y), %raxRy=1e:movq (x), %rbx

Rx=0f:

Thread 3

po

rf rf

rf rf

Tests S, R, and 2+2W can be extended similarly (R in two distinct ways), but we do not detail them
here.

Moving to tests with three threads, three shared locations, and two reads or writes in each
thread, there are 11 families, of which several are interesting for more relaxed architectures.

All this suggests grouping tests in a way loosely reminiscent of the periodic table, which we’ll
come back to later.

Part I Chapter 13 Test families and test generation: Diy 101

13.2 Generating single tests from cycles

Hand-writing tests is sometimes necessary, but if they are simple non-SC cycles, it is conve-
nient and less error-prone to automatically generate them. The diyone7 tool from Alglave and
Maranget’s herdtools7 tool suite [32] can do this, for multiple architectures. For example, SB:

SB Allowed

movq $1, (x)Wx=1a:movq (y), %rax

Ry=0b:

Thread 0

po

movq $1, (y)Wy=1c:movq (x), %rax

Rx=0d:

Thread 1

po

rf rf

frefre

is essentially the cycle a po b fr c po d fr a. Annotating those fr edges to indicate that they are
inter-thread (external, e), and annotating those po edges with additional data to indicate that
they are between events to different locations (d) and from a write to a read event (WR), one has
the cycle Fre PodWR Fre PodWR in the input language of the tool. Then:

diyone7 -arch X86_64 -type uint64_t -name SB "Fre PodWR Fre PodWR"

generates the syntactic litmus test, including the assembly for each thread and a final condition
that identifies the (unique here) candidate execution that contains that cycle:

X86_64 SB

"Fre PodWR Fre PodWR"

Generator=diyone7 (version 7.56)

Prefetch=0:x=F,0:y=T,1:y=F,1:x=T

Com=Fr Fr

Orig=Fre PodWR Fre PodWR

Align=

{

uint64_t y; uint64_t x; uint64_t 1:rax; uint64_t 0:rax;

}

P0 | P1 ;

movq $1,(x) | movq $1,(y) ;

movq (y),%rax | movq (x),%rax ;

exists (0:rax=0 /\ 1:rax=0)

For more details, see the documentation: http://diy.inria.fr/doc/gen.html, and [23, 37,
36]. In brief, program order edges have the syntax Po(s|d)(R|W)(R|W), where s or d indicates
that the two events are to the same or different location(s), and R or W indicates an event is a
read or a write. For a program order edge separated by an x86 mfence, one can write MFenceRR,
MfenceRW, etc. Reads-from, coherence, and from-reads edges must specify whether they are
internal or external, e.g. Rfi and Rfe, and Fri and Fre. For historical reasons coherence edges
are written Wsi and Wse here (for “write serialisation”).

13.3 Generating families of tests

Inspired by the critical cycles (minimal non-SC cycles) of Shasha and Snir [138], and by their
work on axiomatic models expressed using acyclicity conditions, Alglave and Maranget devel-
oped the diy tool [23, 37, 36] (and the diyone above), to generate families of tests with interest-
ing relaxations. To use diy, one specifies a number of processors, a maximum cycle length, a set
of edge kinds that are assumed “safe”, i.e., expected to be respected by hardware, or included
in the main acyclicity condition of a model, and a set (possibly empty) of “relaxed” edges that

http://diy.inria.fr/doc/gen.html

Part I Chapter 13 Test families and test generation: Diy 102

might not be. The tool then generates (roughly) all the cycles up to that length, each of which
contains just one “relaxed” edge (or none if that set was empty), and then generates a concrete
litmus test for each such cycle.

For example, using a configuration file X86_64-basic-4-edge.conf:

diy7 configuration file for basic x86 tests with four pod or rf/co/fr external edges

-arch X86_64

-nprocs 2

-size 4

-num false

-safe Pod**,Pos**,Fre,Rfe,Wse

-mode critical

-type uint64_t

Running diy:

diy7 -conf X86_64-basic-4-edge.conf

generates the six 2-thread 2-location critical-cycle tests above. Again, see the documentation:
http://diy.inria.fr/doc/gen.html, and [23, 37, 36] for more details.

To try to observe some putative relaxation (some edge that we think should not be in ob),
remove it from the -safe list and add it to -relax, then diy7 will by default generate cycles
of exactly one relaxed edge and some safe edges (from http://diy.inria.fr/doc/gen.html#

sec52):

x86-rfi.conf

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencesWR FencedWR

-relax Rfi

x86-podwr.conf

#podrw x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

This test generation approach, combined with the modelling, model evaluation, and ex-
perimental testing infrastructure of the previous chapters, has been very effective for model
development. It has identified a number of previously-unexpected but not erroneous hardware
behaviours, and some bugs in, or differences between, models. It has also identified a number
of errata in production processor implementations.

It lets one quickly generate substantial collections of interesting tests, and also to do so
more-or-less uniformly for multiple architectures (modulo the inescapable differences between
their fence instructions and suchlike). However, one should note that the generated tests are
of a particular character. They cover interesting cycles of edges, but the assembly instructions
of each test are uniformly generated from the given edges, rather than designed to thoroughly
exercise the microarchitectural features of hardware processor implementations. For example,
an important edge for more relaxed models is a data dependency via registers, from one memory
read to the value of a later memory write. The generator will produce essentially identical
assembly for every data dependency edge, without attempting (e.g.) to create contention for
pipeline arithmetic units. There is surely scope for more refined test generation that does that,
along the lines of hardware test generators.

That said, there is a trade-off. For model development, one wants to establish a library of
reusable tests, that can be run on multiple hardware implementations, and in multiple models.
But as one adds more synchronisation features, more threads, and more events per thread,
the number of tests quickly explodes, and running each test on hardware for a sufficiently large

http://diy.inria.fr/doc/gen.html
http://diy.inria.fr/doc/gen.html#sec52
http://diy.inria.fr/doc/gen.html#sec52

Part I Chapter 13 Test families and test generation: Diy 103

number of iterations becomes time-consuming. It’s thus important to generate only “good” tests,
as far as possible.

Chapter 14

Validating the model: why should one
believe it?

The x86-TSO model1 aims to be a good specification, for the concurrency aspects within its
scope, of an existing abstraction at the heart of computing, the x86 architecture. The model
is thus interesting and important to the extent that it does capture that contingent but central
reality, rather than as a purely theoretical definition. Hence, one has to ask: why (and to what
extent) should one believe it?

We described the properties a good architecture specification should have in §1.6. To es-
tablish reasonable confidence that x86-TSO has them, we have to validate the model in various
ways. It is not possible, even in principle, to attain complete certainty for all these: some are
mathematical facts, but several are not, or are in principle but not practically so. This perspective
is similar to that adopted in our earlier work on network protocols [53], which was similarly an
attempt to develop a good post facto specification for an existing pervasive abstraction, though
the technical and social context for architectural relaxed memory are interestingly different to
that for network protocols; we’ll discuss that later.

14.1 Sound with respect to existing hardware: experimental vali-
dation

One can gain a useful level of confidence that a model is sound with respect to existing hardware
processor implementations, i.e. that the model admits all the behaviour that those implementa-
tions exhibit, by experimental testing. This relies on:

1. making the model executable as a test oracle, e.g. with the RMEM tool for operational
models (§8) and the herd and isla-axiomatic tools for axiomatic models (§11);

2. a test harness such as litmus for running tests on hardware implementations (§12), and

3. a good suite of tests, typically some hand-written and some automatically generated, e.g.
by the diy tool (§13), that exercise the model and (with the test harness) exercise hardware
implementations.

For example (on a small scale) one might generate the basic x86 4-edge tests with the diy
configuration of §13:

diy7 -conf X86_64-basic-4-edge.conf

1Given the proof of equivalence between the operational and axiomatic models, we can now speak of the x86-TSO
model as the extensional model that they both define.

104

Part I Chapter 14 Validating the model: why should one believe it? 105

run them on hardware from the command line of an x86 machine:

litmus7 -r 100 src-X86_64-basic-4-edge/@all > run-hw.log

compute the allowed behaviour in the operational model for them, running RMEM in exhaustive
mode (and also fix up the case of register names in the log file to match herd):

rmem -model tso -interactive false -eager true -q src-X86_64-basic-4-edge/@all \

> run-rmem.log.tmp

cat run-rmem.log.tmp | sed ’s/RAX/rax/g’ | sed ’s/RBX/rbx/g’ > run-rmem.log

and compute the allowed behaviour in the axiomatic model for them, using herd:

herd7 -cat x86-tso.cat src-X86_64-basic-4-edge/@all > run-herd.log

One can then compare the resulting hardware and model log files uing the mcompare tool of the
herdtools7 suite:

$ mcompare7 -nohash run-hw.log run-rmem.log run-herd.log

Diffs
|Kind | run-hw.log run-rmem.log run-herd.log

2+2W|Allow| [x=1; y=1;] == ==

|No | [x=1; y=2;]

| | [x=2; y=1;]

LB |Allow| [0:rax=0; 1:rax=0;] == ==

|No | [0:rax=0; 1:rax=1;]

| | [0:rax=1; 1:rax=0;]

MP |Allow| [1:rax=0; 1:rbx=0;] == ==

|No | [1:rax=0; 1:rbx=1;]

| | [1:rax=1; 1:rbx=1;]

[...]

SB |Allow| [0:rax=0; 1:rax=0;] == ==

|Ok | [0:rax=0; 1:rax=1;]

| | [0:rax=1; 1:rax=0;]

| | [0:rax=1; 1:rax=1;]

The == entries show that, for these tests, the operational and axiomatic models both allow
exactly the same behaviour as the hardware exhibits (in this case, the specific x86 processor
used for that run of litmus), and allow the same as each other. The mcompare7 tool also
has options -pos <file> and -neg <file> to output just the positive and negative differences.
Normally we would check test hashes for safety, without the -nohash option, but at present they
have temporarily diverged between the tools.

For each litmus test, any final state might be observed or not observed in experimental testing
of some specific hardware implementation, and allowed or forbidden by some specific model.

In comparing models and implementations, one always has to be aware that experimental
testing of implementations is not exhaustive: if one observes some particular final state, that
provides definite evidence (assuming the test harness is correct), but if a state is not observed,
that might be just because the test harness is not aggressive enough, or that it did not happen to

Part I Chapter 14 Validating the model: why should one believe it? 106

generate the right conditions to observe that state in the executed runs. For the models, on the
other hand, the RMEM and herd tools compute the set of all model-allowed behaviours of each
litmus test, and isla-axiomatic computing whether the specified interesting final state is allowed
or not.

In comparing a model and a hardware implementation, one thus has four cases (for each
litmus test and each final state):

model experiment conclusion
allowed observed ok
allowed not observed ok, but model is looser than this hardware, or testing is not aggressive

forbidden observed model is not sound w.r.t. this hardware, or the hardware has a bug
forbidden not observed ok

One can compare models and implementations either by looking at the sets of all allowed/ob-
served behaviours for each test, or just whether the identified final state is allowed/observed. In
general, the former is more discriminating, but some tools conveniently support only the latter,
and the two almost always coincide.

The same approach can also be used to experimentally compare models against each other.

Experimental testing and validation are very important in model development and in model
validation (developing confidence), but experiment is not enough by itself:

• the architectural intent is typically looser than any specific hardware design, so there is a
danger of over-fitting;

• one can’t always determine whether a strange observed behaviour is a hardware bug or
not without asking the relevant architects – ultimately, that is their call; and

• it is hard to know whether there might be undiscovered phenomena that are not covered
by any of one’s current set of tests, especially if those (either automatically generated or
hand-written) share some specific properties.

As mentioned in §1.6, in principle one would like to establish soundness of an architectural
model with respect to current hardware mathematically, by proving that it is a sound implemen-
tation of the relevant hardware implementations (at the RTL level of abstraction). That is still
out of reach.

14.2 Sound with respect to future hardware; loose enough to per-
mit future microarchitectural innovation

These are hard in principle to assess, especially without discussion with leading processor de-
sign teams for the architecture in question. For x86, our understanding is that the existing
body of code that implicitly relies on TSO-like behaviour effectively constraints future architec-
tural change to be no more relaxed: that the de facto standards of the code assumptions and
observable hardware behaviour are essentially tight against each other.

14.3 Opaque with respect to hardware implementation detail

Modern x86 processors are highly sophisticated designs with out-of-order and speculative exe-
cution, but the x86-TSO programmers model exposes very little of this – just the existence of
store buffers.

Part I Chapter 14 Validating the model: why should one believe it? 107

14.4 Complete with respect to hardware

As noted in §1.6, this is not a goal for real architecture specifications. The x86-TSO model is not
complete with respect to hardware in many ways, notably that it allows unbounded-size write
buffers and unbounded differences in execution speed between hardware threads, while any
specific hardware implementation will have some concrete bounds. This looseness is desirable
for an architecture specification: one would not want software to be written on the assumption
that the write buffers are (say) of size 16, as that would not be helpful for normal concurrent
idioms, it could inspire exotic coding, and it would not be robust in the face of likely future
microarchitectural change.

14.5 Strong enough for software

As we noted, this is hard to assess as one would like, against the corpus of software. For x86-
TSO, there are theoretical results that give confidence of particular kinds. Owens [117] showed
a generalised data-race freedom result, that for any program that does not exhibit certain kinds
of races (“triangular races”) in SC executions, every x86-TSO execution gives the same result
as some SC execution. Building on this, he showed the correctness of an x86 spinlock and that
any properly-locked program using it has the mutual exclusion property and SC behaviour with
locks that one would expect.

Batty et al. [45] proved the correctness of the proposed compilation scheme from the
C/C++11 programming language concurrency model down to x86-TSO.

Ševčík et al. [136] proved correctness of a compiler, extending CompCert [101], from a
dialect of C with TSO-like concurrency to x86-TSO.

14.6 Precise and unambiguous

The original definitions of x86-TSO [116] were mechanised in a proof assistant (in HOL4 [?]),
which is as precise and unambigous as a definition can be. The definitions presented here are
in paper maths, backed up by (but without a precise connection to) executable operational
definitions in RMEM and axiomatic definitions in the Cat language of Herd. The axiomatic
model here is in a somewhat different style to the original.

14.7 Clear

Whether the x86-TSO operational and axiomatic models are clear is perhaps best for the reader
to decide. We believe that the operational model, with its per-hardware-thread TSO write
buffers, provides a decent mental model for thinking about program execution, and the ax-
iomatic model a more concise definition of the allowed behaviour.

14.8 Executable as a test oracle

The RMEM and Herd tools make the model executable as a test oracle for small litmus tests.

14.9 Incrementally executable

The operational version of the model is incrementally executable. For testing larger software,
one would want better tooling, such as a more efficient architecturally complete emulator.

Part I Chapter 14 Validating the model: why should one believe it? 108

14.10 Mathematically validated

The original x86-TSO paper [116, 118] exercised the definitions mathematically by proving,
largely in the HOL4 mechanised proof assistant, the equivalence of operational and axiomatic
versions of the model. That gives substantial assurance in the details of both. The paper used
a separate OCaml implementation of the axiomatic model in the memevents tool to check the
allowed behaviour of litmus tests, but it also defined an algorithmic version of the axiomatic-
model consistent execution predicate in HOL4, proved that equivalent to the primary definition,
and extracted code that could also run in memevents to check, for positive tests, that any exe-
cution that the OCaml implementation permits is really permitted.

As mentioned above, Ownes [117] showed a generalised data-race freedom result, Batty
et al. [45] proved the correctness of the proposed compilation scheme from the C/C++11
programming language concurrency model down to x86-TSO, and Ševčík et al. [136] proved
correctness of a compiler with x86-TSO concurrency. There has been much other work about
or above the model, including for example a rely-guarantee proof system by Ridge [125], and a
separation logic by Sieczkowski et al. [139]. However, different usages often require rephrasing
or transcribing the model into another form, e.g. into a different proof assistant, so there is no
single definitive version which all of these boost assurance of. Durbaba [74] proved in Isabelle
the equivalence of operational and axiomatic models based on the paper maths versions we
describe here.

14.11 Authoritative

x86-TSO is in a particular position here. It was developed by an academic group without de-
tailed interaction with the industry vendors of x86 processors (Intel, AMD, and VIA), but it
provided a clear specification of the allowed concurrency behaviour at a time when the vendor
documentation did not (and, to a lesser extent still does not). Of course one can and should
compare in detail with what the vendor documentation does say, as described in Chapter 3.
x86-TSO has not been incorporated into any vendor documentation, but it nonetheless does, to
our understanding, capture the de facto standard.

Each other model we’ll describe has it’s own particular (and sometimes peculiar) status, in
different ways.

14.12 Accurately capturing the architectural intent

Without detailed discussion with the architects, this is difficult to assess. The authors of [116,
118] attempted to establish such discussion at that time, with only limited success.

14.13 Consistency with the de facto standard

Our experimental testing, discussion in the community, and the limited discussion we had with
x86 vendors, all strongly suggest that x86-TSO does accurately capture the de facto standard.

Part II

Arm-A, IBM Power, and RISC-V

109

Chapter 15

Introducing Arm-A, IBM Power, and
RISC-V relaxed concurrency

The Arm-A, IBM Power, and RISC-V architectures are all substantially more relaxed than x86.
They are broadly similar to each other in their relaxed-concurrency behaviour, though not iden-
tical. They are also more complex than that of x86, with a more delicate boundary between
the behaviours that the architectures allow and forbid, and with additional mechanisms to
strengthen the default relaxed behaviour where necessary. In this Part II, we describe the relaxed
phenomena they exhibit and the operational and axiomatic models that have been developed
to precisely specify them. As before, we focus just on the “user” architecture: normal loads
and stores, and the synchronisation mechanisms provided to manage them, as used in concur-
rent algorithms (in either user or systems code). We defer discussion of the relaxed “systems”
behaviour, such as instruction fetch, virtual memory, and exceptions.

We begin in this first chapter with context on the three architectures and an informal discus-
sion of how their relaxed behaviour arises from microarchitectural optimisations, sketching an
abstract microarchitectural view that will be useful for understanding the detailed phenomena.
We also describe the litmus tests and candidate executions that we’ll use.

Chapter 16 discusses the relaxed phenomena in detail, and the following chapters introduce
and define the models that capture this.

15.1 Architectures and Implementations

For context, we start with some general background on these three architectures, their imple-
mentations as hardware processors, and their roles in the industry.

Each architecture specification exists in many versions, evolving over time as features are
added and the specification is refined. Many of these changes are unrelated to the relaxed
concurrency behaviour of the aspects we discuss, but sometimes there are new features that are
specific to concurrency, e.g. the addition of new atomic instructions, or changes to the specified
concurrency behaviour that are important here, e.g. the 2017 major shift by Arm to multicopy-
atomic behaviour for Arm-A, and other more minor changes since.

Each architecture specification version may also have various optional features, such as the
Arm-A FEAT xxx features, and the RISC-V extensions. Subsets of these may be required in
particular architecture versions (for Arm) or for particular profiles (for RISC-V). Sometimes the
status of an optional feature can be discovered introspectively, e.g. by code querying a special
register.

Each processor design should conform to some particular architecture version, with some
particular set of optional features. The long timeline, of architecture development, processor
and system-on-chip design, product design, and product lifespan, means that many processor
designs and many architecture versions co-exist at any one time.

110

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 111

15.1.1 Arm-A

Arm develop architecture specifications and processor designs. They do not manufacture and sell
processors themselves; instead, they license the specifications and designs to a large ecosystem
of other vendors. These Arm partners either license specific Arm-designed processor cores to
integrate into their own system-on-chips, or, for architecture licensees, design their own Arm-
architecture cores to build into their own system-on-chips. Arm-architecture processors are
dominant in mobile devices, and increasingly important in servers.

Architecture versions Arm define three main families of architectures. The application-profile
(A-profile) architectures, which we focus on here, target high-performance systems such as
phone main processors and datacentre servers. Arm also define microcontroller-profile (M-
profile) and real-time profile (R-profile) architectures, along with the Morello research program
architecture that adds hardware-capability security, but we do not cover any of those.

The A-profile architecture is defined in a pdf document, updated around twice per year:

Date Document version Architecture version(s)
2013 A.a Armv8.0-A (first non-confidential beta)
...
2016 A.k Armv8.0-A (early-access release, EAC)
2017 B.a [13] Armv8.1-A (EAC), Armv8.2-A (Beta) (simplification to MCA)
...
2022 H.a Armv8.8-A and Armv9.3-A (incorporating SVE)
...
2024 K.a Armv8.9-A and Armv9.4-A (incorporating MPAM and SME)
2024 L.a [15] Armv9.5-A

Armv8-A introduced Arm’s A64 64-bit instruction set (executing in its AArch64 execution state).
ARMv7 and earlier versions are still in use. For brevity, we write Arm-A to refer to all Armv8-A
and Armv9-A architecture versions. We consider only the AArch64 execution state, not AArch32.

Processor implementations There are many Arm-A architecture processor implementations.
Some are based on core designs by Arm, licensed to other vendors to incorporate into system-
on-chips (SoCs) that they design and build. For example, the Arm-designed Cortex-A78 core,
which implements the Armv8.2-A architecture and some extensions, has been used in the Sam-
sung Exynos 2100 SoC, the MediaTek Dimensity 1200 and 8000 series, the NVIDIA DPU, and
the HiSilicon Kirin 9000s1. Others are designed by Arm architecture partners, for example
the Armv9.2-A architecture core, designed by Apple, of the Apple M4 SoC. The Wikipedia
pages https://en.wikipedia.org/wiki/List_of_ARM_processors and https://en.wikipedia.

org/wiki/Comparison_of_ARMv8-A_cores maintain lists of Arm-A cores of various architecture
versions.

Documented instruction-set architecture The Arm-A instruction semantics is defined in their
ASL specification language, made machine-readable by Reid et al. [124]. The ASL definitions of
instruction behaviour are included in the Arm architecture manual and are also available in XML.
The Arm-A ASL can be automatically translated into Sail [41, 50], which supports translation
into theorem provers and other tools.

1https://en.wikipedia.org/wiki/ARM_Cortex-A78

https://en.wikipedia.org/wiki/List_of_ARM_processors
https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores
https://en.wikipedia.org/wiki/Comparison_of_ARMv8-A_cores
https://en.wikipedia.org/wiki/ARM_Cortex-A78

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 112

Documented relaxed concurrency architecture Early versions of the Arm specification in-
cluded prose memory model descriptions, broadly similar to those of IBM Power, that did not
clearly define what behaviour was allowed. From March 2017 [13] (version B.a of the doc-
umentation, for versions Armv8.1-A and Armv8.2-A of the architecture), this was replaced by
a prose version of an axiomatic model [70]. This was developed principally by Deacon, then
at Arm, expressed in the Cat stye of Alglave et al.’s herd tool [38, 31]. It was co-developed
with a corresponding operational model, principally by Flur, Pulte, Sarkar, and Sewell, that was
proved equivalent by Pulte [121, 120]. Recent versions of the Arm specification include a prose
description [15, B.2] automatically generated from a successor to this axiomatic model, by Al-
glave, Nikoleris, and Khyzha [28, 71, 102]. All of this has been in discussion with Grisenthwaite,
Arm Chief Architect.

Further academic work by Armstrong et al. integrated a version axiomatic model with the
full Arm-A instruction semantics [41, 42, 43], and work by Simner et al. developed extensions
for some systems aspects: instruction fetch [142], virtual memory [141], and exceptions [140],
again in collaboration with Grisenthwaite.

15.1.2 IBM Power

IBM Power is the architecture of a line of high-end IBM server and supercomputer processors,
descending from the 1990s IBM RS/6000, IBM POWER and Apple/IBM/Motorola PowerPC ar-
chitectures. In contrast to the Arm-A architecture and multi-partner ecosystem, Power proces-
sors have historically been developed by IBM, with corresponding architecture specifications in
lock-step, to fabricate and incorporate into IBM server products. The Power architecture is now
managed by the OpenPOWER Foundation2, part of the Linux Foundation.

Power is especially interesting from the relaxed-memory point of view because these have
long been aggressive high-performance implementations, supporting many hardware threads
with coherent shared memory.

Architecture versions and processor implementations

Date Architecture version Processor
2004 Power ISA 2.03 POWER5
2007 Power ISA 2.03 [7] POWER6
2010 Power ISA 2.06 POWER7
2014 Power ISA 2.07 POWER8
2017 Power ISA 3.08B POWER9
2021 Power ISA 3.1 POWER10
2021 Power ISA 3.1B
2024 Power ISA 3.1C [80]

For example, POWER8 supported up to 192 cores, each with up to 8 hardware threads, POWER9
supported 96 hardware threads per die, and POWER10 supports 240 hardware threads per
socket. High-level descriptions of the processor implementations are in published papers,
e.g. [114, 150, 146, 100, 94]. There are now some open-source Power processor designs, in
addition to these IBM servers.

Documented instruction-set architecture The Power instruction-set behaviour is described
in an informal (non-mechanised) pseudocode in the architecture manual. Part of this was semi-
automatically translated into a previous version of Sail [87].

2https://en.wikipedia.org/wiki/OpenPOWER_Foundation

https://en.wikipedia.org/wiki/OpenPOWER_Foundation

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 113

Documented relaxed concurrency architecture The Power architecture specification in-
cludes a prose description of its relaxed concurrency architecture [80, Book II, Chapter 1]. This
prose has been lightly extended but never substantially revised – much dates back to at least
the 2.03 version of the mid-2000s [7] – and it does not clearly define what relaxed behaviour
is allowed. The examples, discussion, and operational model that we present are some of the
results of an extended line of work, mainly by Alglave, Flur, Maranget, Pulte, Sarkar, Sewell, and
others, variously in collaboration or separately, that developed a series of axiomatic and opera-
tional models for IBM Power [22, 23, 131, 36, 25, 130, 103, 107, 38, 87, 78]. Much of this was
in collaboration or close discussion with Derek Williams, one of the senior IBM designers. Based
on that, and on extensive experimental testing of various POWER machines, we are reasonably
confident that what we describe is a good de facto standard model for Power.

15.1.3 RISC-V

The RISC-V architecture is an open standard architecture specification, available under royalty-
free open-source licenses. Originating as a 2010 academic project by Asanović, Waterman, and
Lee, the architecture is now managed by the non-profit RISC-V International (formerly the RISC-
V Foundation), a consortium with many members.

Architecture versions The RISC-V architecture is structured as a base integer instruction set
(in variants for 32 and 64 bits, and non-embedded/embedded) with many extensions. These
are from time to time collected into new versions of the unprivileged and privileged architecture
documents:

• The RISC-V Instruction Set Manual Volume I: Unprivileged ISA [128]

• The RISC-V Instruction Set Manual Volume II: Privileged Architecture [127]

Newly ratified extensions are typically documented stand-alone, and later incorporated into
those.

Processor implementations RISC-V International does not itself design or build processors –
that is done by its many members, and we will not attempt to describe them here.

Documented instruction-set architecture The RISC-V instruction behaviour is described in
prose in their architecture manuals and formally in their Sail reference model [41, 20].

Documented relaxed concurrency architecture The RISC-V Foundation established its RISC-
V memory model working group in 2017-03, chaired by Daniel Lustig [14]. Flur, Maranget,
Pulte, Sarkar, and Sewell contributed substantially from 2017-07, together with several others,
to what became the RISC-V weak memory ordering model (RVWMO), which was ratified in
2018-07. This is very similar (though not identical) to the multi-copy atomic Arm-A model.
The RISC-V formal axiomatic and operational models were incorporated into the RISC-V un-
privileged specification [81, 128, Chapter 17, Appendix A, Appendix B]. There is also a Ztso
extension which strengthens the model to a version of TSO [128, Chapter 18].

15.2 Relaxed behaviour and abstract microarchitecture, informally

The first stored-program electronic computers, such as the EDVAC, EDSAC, and Manchester
Baby, executed one machine instruction at a time, in program order, and did so relatively slowly.
For example, the EDSAC operated at about 650 instructions per second, with a memory initially

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 114

of 512 17-bit words. The 75+ years between then and now have seen many orders of mag-
nitude improvement in performance and capacity. Much of this has been driven by advances
in the underlying devices and their fabrication: for many years up to the mid-2000s, shrinking
transistor sizes meant that more could be used and that they could be switched faster, at the
same power density (Dennard scaling).

Other performance gains have come from a range of microarchitectural innovations, also en-
abled by increased transistor counts, and it is some of these that give rise to observable relaxed-
memory behaviour.

15.2.1 Microarchitecture optimisations and relaxed architecture specifications

The architectural interface has remained basically unchanged over these 75+ years: programs
are still expressed as sequences of machine instructions stored at consecutive addresses, with
occasional branches to other addresses. Many microarchitectural optimisations exploit the
instruction-level parallelism and locality that is implicit in such a program. The basic ideas in-
clude:

• pipelining: splitting each instruction into steps, e.g. the instruction fetch, decode, arith-
metic, memory accesses, and register writes, each of which can be done in parallel for
different instructions.

• superscalar execution: executing multiple instructions simultaneously by dispatching to
multiple decode and execution units.

• out-of-order execution: allowing execution of (parts of) instructions before program-
order-earlier instructions, e.g. if the latter are awaiting results from memory, or if there is
contention on some arithmetic unit.

• speculative execution: predicting (for example) whether a conditional branch will be
taken or not, and speculatively executing the following instructions based on that – rolling
back and discarding those parts of the execution if it turns out that the predication was
wrong.

• hierarchical memory: sophisticated buffering and cache hierarchies, with some memory
close to the processor execution units (and hence fast, but necessarily small), backed up
by larger but slower memory further away.

For all of these, the hardware designers’ goal has been to increase performance (initially fo-
cussed on speed, but more recently on power efficiency) while preserving an illusion of in-order
sequential execution, at least for execution within a single thread. That is sometimes achieved
by blocking some operation until it will definitely not violate the sequential model, and some-
times by letting operations go ahead speculatively, but detecting and restarting the relevant part
of the instruction stream execution, if that speculative execution is later found to violate the
model.

Since the mid-2000s, transistor counts continued to increase (albeit more slowly), but the
limits of Dennard scaling and power density, and the increasing challenge of extracting more
implicit parallelism from sequential instruction streams, lead to an increased focus on explicit
parallelism. This takes several forms, including multicore designs, vector extensions in the in-
struction set of conventional CPUs, and distinct GPUs and machine-learning accelerators (which
have somewhat different programmers’ models). Our focus here is on the former, and we do
not discuss the latter two further, though there is a body of recent research on their relaxed
concurrency models.

In multicore designs, the hardware directly supports multiple hardware threads of execution:
with multiple independent cores on the same chip (multicore in a strict sense); and/or on mul-
tiple chips (multiprocessor systems); and/or with simultaneous multithreading (SMT), in which

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 115

the execution units of a core are shared between multiple threads. The distinctions between
these are not very important for the programmers’ view that we consider here: in each case,
each hardware thread has its own architectural register state, but all appear to be executing
above a common shared memory. Software threads are typically mapped onto these hardware
threads by an operating system, which at any one time uses the available hardware threads to
run that number of software threads, with a scheduler to manage context switches between
them every so often. Multicore designs are now ubiquitous, except for small microcontrollers.

Multicore hardware implementations give programmers more ways to observe the effects
of the above optimisations than one has in the single-core case, as multiple hardware threads
can be attempting to access the same memory locations. That creates important choices for
the design of the architecture specification – the intended programmers model – as one has
to decide which of these effects are allowed to be programmer-observable, and which will be
hidden from the programmer (modulo performance effects) by appropriate blocking or restarts.
All modern high-performance processor implementations include all the above optimisations,
and many more, but the different architectures have made different choices about what relaxed
behaviour is exposed like this.

For normal memory accesses, the Intel and AMD x86 architectures choose to expose only the
TSO effects of FIFO store buffering, while Arm-A, IBM Power, and RISC-V all choose to expose
much more relaxed behaviour.

15.2.2 The pros and cons of relaxed architecture specifications

Intuitively, a relaxed architecture specification should permit hardware designs with less
hardware-design complexity, improved performance, and improved scalability to many-core sys-
tems. However, assessing these quantitatively is a challenge, as each family of processor designs,
architecture specification, and software corpus has now been co-developed and tuned for many
years – it is hard to isolate the effects of the choices of how much relaxed behaviour to expose.

The downside of a more relaxed architecture is that it makes the programmers’ model more
complex, though this too is debatable – it is also arguable that the more relaxed models encour-
age programmers to more explicitly express the synchronisation that they actually need, rather
than (perhaps accidentally) relying on the strength of TSO.

However, for our purposes here, we do not need to come to a conclusion on any of those
questions: we are not aiming to prescribe or advocate whether architectures should in general
be relaxed or not, but rather, given that much of the world’s software has to execute above archi-
tectures that are relaxed, to show how they can be made precisely defined and well-understood.

That said, for specific architecture design choices this work does sometimes provide good
arguments one way or another, e.g. if a proposed architectural relaxation can be shown to be
hard to implement higher-level language concurrency models above, or an architecture is found
to be stronger than hardware implementations that it is intended to cover, or an architecture
requires excessively complex models to precisely define.

15.2.3 Abstract microarchitecture – structure

Relaxed behaviour of hardware emerges from microarchitectural optimisations, and could in
principle be understood and characterised by looking at them in detail, but that is not what
we do, or what we should do, here. Microarchitecture design and hardware implementation
is a whole field in itself, that of Computer Architecture, as described for example in the well-
known textbooks of Hennessy and Paterson [89, 119] (note that this is a different sense of
“architecture” to the architecture specification we focus on here). As noted in §1.6, the internal
structure of processor implementations does not serve as a usable programming model: it is far
too complex, it is generally commercially confidential, and it is too specific to each particular
implementation.

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 116

To define a good architecture specification, in contrast, we want to understand and capture as
little as possible about the underlying microarchitectural implementations – just the aspects that
give rise to observable relaxed behaviour, while abstracting from all the other details. It’s useful
to do this first entirely informally, with cartoon microarchitecture that conveys high-level ideas
of what’s going on in real implementations, and how programmers might think of those – just as
we did with the cartoon diagrams of possible store-buffer configurations in Chapter 2. These can
then be made precise, as architectural specifications in an abstract-microarchitectural style, e.g.
with explicit speculative execution, but abstracting from all the details of any concrete pipeline
design. That has typically been done by defining abstract-microarchitectural operational models,
as we did for x86-TSO in Chapter 5, and as we’ll do for Arm-A, RISC-V, and Power later in
this Part. One could also define abstract-microarchitectural axiomatic models, but that is less
common.

We factor our cartoon microarchitectures into a component for each hardware thread, exe-
cuting instruction instances, above a common storage subsystem:

Storage Subsystem

Thread 1 Thread n. . .

. . .

The interface between them consists roughly of the memory reads and writes done by each
thread.

Thread semantics Many observable relaxed phenomena arise from out-of-order and spec-
ulative execution. Each hardware thread might have many instructions in flight, executing
out-of-order, and this may be speculative: executing even though there are unresolved program-
order-predecessor branches, or program-order-predecessor instructions that are not yet known
not to raise an exception, or program-order-predecessor instructions that might access the same
address in a way that would violate coherence. We can think of such executions in terms of
per-thread trees of instruction instances:

Thread

The diagram illustrates a snapshot of the history and current state of a single hardware thread,
in which each rectangle represents a single instruction instance. The arrows show the program-
order successor relation between instruction instances. The leftmost instruction instance is that
at the start of the machine execution, with no predecessors. Some instruction instances have
a single possible successor, while as-yet-unresolved conditional branches have two, and unre-
solved computed branches would have many. When a conditional branch is fully resolved, any
not-taken subtree can be discarded. The rightmost instruction instances are those for which
their successors have not yet been fetched.

Each instruction instance might have completed more or less of its intra-instruction be-
haviour, as shown by the shading. Some are finished, in solid dark green. These are not
subject to roll-back or restart; they correspond in microarchitectural terms to retired instruc-
tions. Others are in flight, with light green shading indicating their progress through their
intra-instruction behaviour. An out-of-order and speculative processor might execute parts of
any of the in-flight instructions in any order, constrained in various ways that we will discuss.
Such hardware will check, and block, roll back, or restart as needed, to ensure that this does not

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 117

violate the architected guarantees about observable sequential per-thread execution, coherence,
or synchronisation.

This abstract view of out-of-order and speculative execution, in terms of the per-thread trees
of instruction instances, will let us capture aspects of the underlying hardware optimisations
that are relevant for the programmers’ model of their behaviour, while abstracting from a mass
of hardware-implementation detail – that is important for the underyling hardware implemen-
tations but not relevant for the programmers’ model.

Instruction semantics To a first approximation, one can think of the intra-instruction be-
haviour of each instruction instance as a sequence of the register and memory actions that it
does. Later, we will see that this is not always true – intra-instruction concurrency is required in
some cases to give a good architectural specification.

The intra-instruction behaviour is defined relatively precisely by the vendors for each of
the three architectures we consider, in broadly similar pseudocode languages. Arm provide
definitions in their ASL specification language [124], RISC-V in Sail [41], and Power in a non-
mechanised pseudocode. The Arm-A ASL can be automatically translated into Sail [41, 50],
and part of the Power definition was semi-automatically translated into a previous version of
Sail [87].

For example, a simplifed version of the Arm-A Load Register (register) instruction
LDR Xt, [Xn,Xm], where t, n and m are general purpose register IDs between 0 and 30, reads 8
bytes from the memory location that is the sum of the values in registers Xn and Xm, and writes
that value to register Xt. Its intra-instruction semantics can be described with the following Sail
definition:

function clause execute (LDR((t, n, m))) = {

/* Register read: ask for the value of register Xm and record it in local variable offset */

offset : bits(64) = rX(m);

/* Register read: ask for the value of register Xn and record it in local variable base_addr */

base_addr : bits(64) = rX(n);

/* Compute the address */

addr : bits(64) = base_addr + offset;

/* Memory read: ask for the eight-byte value in memory starting from location addr and record

* it in local variable data */

data : bits(64) = rMem(addr);

/* Register write: ask for the value of data to be written to register Xt */

wX(t) = data;

}

This defines the intra-instruction execution behaviour of this LDR instruction with sequential
code, that uses Sail functions rX() and wX() to read and write registers, and rMem() to read memory.
In a relaxed architecture, register and memory reads do not simply read from some global state
– instead, the possible return values of those functions are provided by the thread and storage
subsystem semantics.

Storage subsystem semantics Observable relaxed phenomena also arise from the hierarchy
of store buffers and caches, and the interconnect and cache protocol connecting them. We’ve

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 118

already seen the effects of a FIFO store buffer, in x86-TSO:

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

ThreadThread

One can also have observably hierarchical buffering, as we discussed for IRIW in §2.6:

W
rite

 B
u
ffe

r

W
rite

 B
u
ffe

r

Shared Memory

Thread 2 Thread 3Thread 0 Thread 1

or non-FIFO buffers, or buffering of read requests in addition to writes, either together with
writes or separately. High-performance interconnects might have separate paths for different
groups of addresses; high-performance cache protocols might lazily invalidate cache lines; and
certain atomic RMW operations might be done “in the interconnect” rather than in the core.
One can capture all of these with various abstract storage subsystems.

For example, the Power architecture can be described abstractly in terms of a model in which
writes and barriers can be propagated separately to a notional copy of memory for each hard-
ware thread, and in which coherence choices are made incrementally [131], with an abstract
microarchitecture as below. Note that in this model all the threads are symmetric, abstracting
from the typically asymmetric hardware implementation. The hierarchical structure of the latter
leads to non-uniform memory access time (NUMA) effects, and for performance optimisations

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 119

programmers may need to be aware of it, but for correctness, they should not need to.

RW

W

W

W

W
R

R

R

R W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Mem
ory

4

M
em

or
y 5

T
hread

2

Thread3Thre
ad

4

T
hr

ea
d 5

Interestingly, some programmer-observable phenomena can be seen as arising either from
thread or storage effects – then we can choose whether to include one, the other, or both. For
Arm-A and RISC-V, it turns out that one can view all the storage subsystem relaxed effects as
subsumed by thread relaxed effects, leading to a combined cartoon microarchitecture as below,
and the “Flat” operational models, in which the storage subsystem is just a flat memory holding
the most recent write to each address.

Thread states

partially and tentatively executed instruction

completely executed and committed instruction

Storage state

a:W 0x0000 = 0x17

b:W 0x0010 = 0x78

c:W 0xc058 = 0x76
. . .

reads/writes

responses

15.2.4 Abstract microarchitecture – behaviour

Having sketched the possible static structures of an abstract microarchitectural view, we now
turn to the dynamic behaviour. The execution of an instruction in a concrete hardware imple-
mentation might involve many different steps, which we can abstract to the following. One
doesn’t always have to think about all of these, some are specific to particular architectures or
particular models, and sometimes model design is informed by lower-level things – but these
are usually a detailed enough view to understand the behaviour.

All instructions involve most of the following:

• Fetch instruction This represents the fetch and decode of a new instruction instance, as a
program-order successor of a previously fetched instruction instance, or at the initial fetch
address for a thread. In user models, that leave aside the systems issues of self-modifying
code and address translation, we assume that instructions are fetched from a fixed pro-
gram. Later work on instruction-fetch semantics generalises this to fetch instructions from
the mutable shared memory.

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 120

◦ Register read A read of a register value from a register write by the most recent program-
order preceding instruction instance that writes to that register. In an out-of-order ma-
chine, that preceeding instruction might not yet have reached that register write, in which
case this will normally be blocked until it does.

◦ Register write A register write makes the value available for program-order succeeding
instruction instances to read from.

◦ Internal step This covers internal computation of the intra-instruction semantics: arith-
metic, auxiliary function calls, etc.

◦ Finish instruction At this point the instruction semantics execution is completed, the
instruction cannot be restarted or discarded, and all memory effects have propagated to
the storage subsystem. For a conditional branch, any non-taken subtrees of the instruction
tree are discarded. This abstracts the microarchitectural notion of retiring an instruction.

Load instructions will also do the following:

◦ Initiate memory reads of load instruction At this point the memory footprint of the load
is provisionally known – “provisionally” because some earlier instruction that feeds into
the register reads determining that footprint might need to be restarted. The memory
access is split to multiple single-copy atomic writes as required. There might be more than
one memory read per load instruction if the address is misaligned, or for instructions such
as the Arm Load-Pair. The individual reads can then start being satisfied.

• Issue a memory read request This abstracts the issuing of a memory read request by the
thread to the storage subsystem.

• Satisfy memory read from memory Partially or entirely satisfy a single read from writes
that have previously been propagated to memory.

• Satisfy memory read by forwarding from writes Partially or entirely satisfy a single read
by forwarding writes from program-order preceding store instructions.

◦ Complete load instruction (when all its reads are entirely satisfied) At this point all the
reads of the load have been entirely satisfied and the instruction semantics can continue
execution.

All of these might be discarded and restarted, so the read(s) of a load instruction could be
satisfied multiple times, with just the last ending up in the resolved execution.
Store instructions will also do the following:

◦ Initiate memory writes of store instruction, with their footprints At this point the mem-
ory footprint of the store is provisionally known. The memory access is split to multiple
single-copy atomic writes as required. Note that the values for the writes may not be not
available yet.

◦ Instantiate memory write values of store instruction At this point the store’s writes
have known values, and program-order succeeding reads can be satisfied by forwarding
from them.

◦ Commit store instruction At this point the store is guaranteed to happen (it cannot be
restarted or discarded), and its writes can start being propagated to the storage subsystem.

• Propagate a memory write to another thread Propagates a single write to the abstract
copy of memory seen by another thread (this is used only for the Power architecture).

• Propagate a memory write to storage Propagates a single write to memory.
◦ Complete store instruction At this point all writes have been propagated to the storage

subsystem, and the instruction semantics can continue execution.
• Partial coherence commitment (For the Power architecture only) The storage subsystem

can internally commit to a more constrained coherence order for a particular address,
adding an arbitrary edge, between a pair of writes to that address that have been seen
already that are not yet related by coherence.

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 121

Barrier instructions will also do the following:

◦ Commit barrier At this point all the operations of instructions that precede the barrier
and are relevant to the barrier have been performed.

• Propagate barrier to another thread (For the Power architecture only).

With address translation, each of the above memory accesses may need one or two stages of
address translation, each of which might involve several more memory accesses, and involves
further ordering constraints – all of which we ignore in this Part.

15.3 Litmus tests

The Arm-A, IBM Power, and RISC-V architectures are not identical, but they share much be-
haviour. Many questions and litmus tests make sense for all three, though obviously the tests
have to be expressed in the instructions of each architecture. We will typically show the com-
mon candidate execution together with the assembly-syntax litmus test for each architecture.
For example, Fig. 16.3 presents the SB litmus test that we first discussed for x86.

STR X0,[X1]Wx=1a:LDR X2,[X3]

Ry=0b:

Thread 0

po

STR X0,[X1]Wy=1c:LDR X2,[X3]

Rx=0d:

Thread 1

porf rf
frfr

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0;

x=0;

SB x86

Final: 0:rax=0; 1:rax=0;

H/W: Y

std r1,0(r2)//a
ld r3,0(r4) //b

Thread 0
std r1,0(r2)//c
ld r3,0(r4) //d

Thread 1

Initial state: 0:r4=y; 0:r2=x;

0:r1=1; 0:r3=0; 1:r4=x; 1:r2=y;

1:r1=1; 1:r3=0; y=0; x=0;

SB Power

Final: 0:r3=0; 1:r3=0;

H/W: Y

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x; 1:X1=y;

1:X0=1; 1:X2=0; y=0; x=0;

SB AArch64

Final: 0:X2=0; 1:X2=0;

H/W: YYYYYYYYYYYYYYYNY

sd t0, 0(t1) //a
ld t2, 0(fp) //b

Thread 0
sd t0, 0(t1) //c
ld t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x6=x;

0:x5=1; 0:x7=0; 1:x8=x; 1:x6=y;

1:x5=1; 1:x7=0; y=0; x=0;

SB RISC-V

Final: 0:x7=0; 1:x7=0;

H/W: N

Figure 15.1: Litmus test SB

This shows a single candidate execution diagram and a sub-figure for each architecture,
showing the architecture name in the top right of the sub-figure, the assembly code for that
architecture, and more information that will be explained below. Some figures will not include
all the architectures, as some are not relevant for particular litmus tests.

The litmus test name can be slightly different for each architecture when the test includes fea-
tures that are named differently by the architectures. For example, each architecture has barrier
instructions of different strengths with different names, hence the name for SB with strong bar-
riers in Arm’s AArch64 is SB+dmb.sys, in Power it is SB+syncs, in RISC-V it is SB+fence.rw.rws,
and in x86 it is SB+mfences. We use a generic name fen (fence), for the architecture-specific
strong barrier, naming this generic litmus test SB+fens. The generic name also appears in the
figure’s caption.

The top box in the architecture sub-figure, under the architecture and litmus name, presents
the assembly code for each thread. The comment at the end of some lines (all comments start
with //), includes a single letter that is used in the execution diagram to identify memory
accesses that are associated with the assembly instruction in that line.

The bottom box in the architecture sub-figure presents the initial state for the test, and a
constraint on the final state’s register and memory values, which might be allowed or forbidden
by the architecture. In Fig. 16.3, in the initial state of the AArch64 sub-figure, 0:X3=y means
that register X3 of Thread 0 is initialised with the address of a shared memory variable y. Shared
memory variables are assumed to be distinct, and have 8 bytes of allocated memory each, start-
ing from a properly aligned address. The final state constraint in the sub-figure is prefixed with

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 122

“Allowed”, and coloured in green, when the architecture model allows hardware implemen-
tations to exhibit a final state satisfying the constraint, and is prefixed with“Forbidden”, and
coloured in red, otherwise. Below each architecture sub-figure appears a sequence of Y, N, and
- characters, labelled “HW observations”. Each character represent experimental results from
running the litmus test on a specific machine. The order of the characters corresponds to the
order of the machines in ??. The letters Y and N in the position corresponding to a machine,
indicates that the litmus test was ran on the machine and the final state was exhibited, or not
exhibited, respectively, by the machine. The - character indicates that this document was built
without data from running the litmus test on the corresponding machine.

If the litmus test is forbidden by the architecture model but it was exhibited by the ma-
chine the letter Y will appear in red. This indicates that the hardware is incompatible with the
architecture model. This could mean that the architecture model needs to be refined, or that
the hardware has a bug. If the litmus test is allowed by the architecture model but it was not
exhibited by the machine, the letter N will appear in blue. This may happen when a hardware
implementation is stricter than the architecture, or when the litmus tool, that runs the tests on
the machine, is not sufficient to elicit the interesting behaviour. In any case, this typically does
not indicate anything wrong in either the hardware or the model. To summarise:

model experimental observation conclusion
Allowed Y ok
Allowed N ok, but model is looser than hardware, or testing not aggressive

Forbidden Y model not sound w.r.t. hardware, or hardware bug
Forbidden N ok

15.3.1 Candidate executions

The execution diagram above represents a possible complete execution of the litmus test, that
starts from the initial state and ends in the final state. The diagram is a directed graph where
the nodes are (single-copy atomic, see §16.2.3) memory access events (W for a memory write,
and R for a memory read), and the edges are relations over the memory accesses as detailed
below.

For example, the node a:Wx=1 in Fig. 16.3, represents the memory write event that is as-
sociated with the store instruction of Thread 0 (commented //a in the assembly). The x=1
indicates that the value 1 is written to the memory location associated with the shared variable
x. Similarly, the node d:Rx=0 represent the memory read event that is associated with the load
instruction of Thread 1 (commented //d). Here, the x=0 indicates that the value 0 is read from
the memory location associated with the shared variable x.

In addition to the memory accesses that emerge from the instructions in the litmus test,
and appear in the diagram, there are implicit memory writes that initialise all the memory
locations. Those will appear in the diagram as a red dot, if some read is reading from them. If
a specific value is assigned to a shared variable in the initial state part of the litmus test (in the
architecture sub-figures) the memory location of the shared variable will be initialised with that
value, otherwise it will be initialised with 0. Those implicit memory writes are assumed to be
visible to all threads when the litmus test start executing. This can be seen in Fig. 16.3 as the
two red dots above the events b, and d, with the red rf edges linking them to b, and d.

To determine the final memory state, additional implicit memory reads must be issued. Those
are assumed to be executed after all the memory accesses of the test have taken their full effect.
These implicit memory reads do not appear in the execution diagram.

Candidate executions now include more relations than for x86-TSO, to express various de-
pendency relations and fences between memory access events. In the explanation below, r will
denote memory read events, w will denote memory write events, and m will denote events that
could be either memory read or write.

Part II Chapter 15 Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency 123

po (program-order): A po edge from m1 to m2 indicates that the instruction that generated
m1 precedes the instruction that generated m2 in program order. Program order is the unfold-
ing of the program instructions: regular instructions are program-order-before the following
instruction memory location, and branch instructions are program-order before all their poten-
tial branch targets. The events of each thread in the diagram are always ordered from top to
bottom according to program order, omitting some po edges to reduce clutter.

ctrl (control dependency): A ctrl edge from r to m indicates that the execution of the instruc-
tion that generated m is conditional and depends (through registers) on the value returned by r.
In most cases r is a memory read (it can also be a potential memory write of a store-exclusive)
that feeds (through registers) into a conditional or indirect branch instruction, b, and the in-
struction that generated m succeeds b in program-order. In the diagram we only draw the ctrl
edge to the first such instruction, to prevent clutter.

In architectures that support delay slots, such as MIPS and SPARC, a conditional or indirect
branch instruction can be succeeded by some instructions that will be executed irregardless of
which branch target is taken (i.e. the delay slots). The architectures that we discuss in detail
do not have delay slots, and the execution of every instruction that succeeds a conditional or
indirect branch, in program-order, is conditional.

data (data dependency): A data edge from r to w indicates that the value returned by r feeds
(through registers) into the value w writes to memory. In most cases r is a memory read (it can
also be a potential memory write of a store-exclusive), and w is always a memory write.

addr (address dependency): An addr edge from r to m indicates that the value returned by
r feeds (through registers) into the memory location m accesses. In most cases r is a memory
read (it can also be a potential memory write of a store-exclusive).

fen (fence/barrier): A fen edge from m1 to m2 indicates that there is a strong fence/barrier
instruction (dmb sy/sync/fence rw,rw/mfence) that succeeds m1 and precedes m2 in program-
order. To prevent clutter we will only include such edges between the nearest m1 and m2, for
every fence/barrier instruction (there are various kinds of fences, as we shall see). In addition,
an instruction fence/barrier (isb/isync) is denoted ifen.

The edges po, ctrl, data, addr, and fen can only appear between instructions from the same
thread. The following edges can appear between instructions either from the same or from
different threads.

rf (read from): An rf edge from a write w to a read r indicates that r reads its value from
w. Note that in order to make the litmus tests easier to understand, in all the tests used in this
text, two store instructions that write to the same location will never write the same value. This
makes pairing a read with the write it reads from simple.

co (coherence): A co edge from a write w1 to a write w2 indicates that w1 appears before w2
in the coherence-order of the execution (see §9.2 and §16.1.1).

fr (from read): An fr edge from a read r to a write w indicates that w succeeds the write
from which r reads from, in the coherence-order of the execution [?]. In relational algebra
fr = rf−1 ◦ co, where −1 and ◦ are the converse and composition operations respectively.

Chapter 16

Arm-A, IBM Power, and RISC-V
phenomena

16.1 Non-mixed-size Phenomena

16.1.1 Coherence

In relaxed architectures like those we consider, many of the effects of out-of-order execution
and hardware optimisations are programmer visible, but to provide a reasonable programmers’
model, architecture specifications must provide some guarantees, which constrain the hardware
design and behaviour in various ways. The most fundamental of these is coherence, as introduced
in §9.2. All the architectures we consider guarantee coherence for normal memory accesses.
Coherence constrains the accesses to each memory location independently. In architecture-
specification terms, it means:

1. in any execution, for each location, there is a total order over all the writes and reads to
that location, which is consistent with each thread’s program order, and in which each
read reads from the most recent write.

For any execution and each location, the coherence order, co, is the restriction of that total order
to the write events. Coherence prohibits the behaviours in Fig. 16.1 and Fig. 16.2, which show
Arm-A, RISC-V, and IBM Power versions of the coherence litmus tests we saw in §9.2:

CoRW1 a read reading from a program-order-later write;

CoWW a write coherence-after a program-order-later write;

CoWR0 a read reading from a coherence-predecessor of a program-order-earlier write (which
should hide that coherence-predecessor as far as this read is concerned);

CoRR two program-order-related reads reading from distinct writes in the opposite order to
their coherence order; and

CoRW2 a write coherence-before the write that a program-order predecessor read from.

As we saw, forbidding these shapes is equivalent to the general characterisation of coherence
above, and to the other formulations in §9.2. Importantly, coherence does not constrain memory
accesses to disjoint locations in any way, as in each execution there is a separate order over
the accesses to that location, with no constraints between them. This definition thus allows the
relaxations that we’ll see in the rest of this chapter. We discuss what happens for overlapping but
distinct locations in §16.2, where we consider mixed-size effects. Note also that coherence does
not constrain the ordering of two reads on the same thread which read from the same write. As

124

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 125

LDR X0,[X1]Rx=1a:STR X2,[X1]

Wx=1b:

porf

STR X0,[X1]Wx=1a:LDR X2,[X1]

Rx=0b:

porffr
STR X0,[X1]Wx=1a:STR X2,[X1]

Wx=2b:

poco

LDR X0,[X1] //a
STR X2,[X1] //b

Initial state: 0:X2=1;
0:X1=x; 0:X0=0; x=0;

CoRW1 AArch64

Final: 0:X0=1;
H/W: NNNNNN-NNNNNNNNNN

STR X0,[X1] //a
LDR X2,[X1] //b

Initial state: 0:X1=x;
0:X0=1; 0:X2=0; x=0;

CoWR0 AArch64

Final: 0:X2=0;
H/W: NNNNNN-NNNNNNNNNN

STR X0,[X1] //a
STR X2,[X1] //b

Initial state: 0:X2=2;
0:X1=x; 0:X0=1; x=0;

CoWW AArch64

Final: x=1;
H/W: NNNNNN-NNNNNNNNNN

ld t0, 0(t1) //a
sd t2, 0(t1) //b

Initial state: 0:x7=1;
0:x6=x; 0:x5=0; x=0;

CoRW1 RISC-V

Final: 0:x5=1;
H/W: N

sd t0, 0(t1) //a
ld t2, 0(t1) //b

Initial state: 0:x6=x;
0:x5=1; 0:x7=0; x=0;

CoWR0 RISC-V

Final: 0:x7=0;
H/W: N

sd t0, 0(t1) //a
sd t2, 0(t1) //b

Initial state: 0:x7=2;
0:x6=x; 0:x5=1; x=0;

CoWW RISC-V

Final: x=1;
H/W: N

ld r1,0(r2) //a
std r3,0(r2) //b

Initial state: 0:r3=1;
0:r2=x; 0:r1=0; x=0;

CoRW1 Power

Final: 0:r1=1
H/W: -

std r1,0(r2) //a
ld r3,0(r2) //b

Initial state: 0:r2=x;
0:r1=1; 0:r3=0; x=0;

CoWR0 Power

Final: 0:r3=0
H/W: -

std r1,0(r2) //a
std r3,0(r2) //b

Initial state: 0:r3=2;
0:r2=x; 0:r1=1; x=0;

CoWW Power

Final: x=1
H/W: Y

movq (x), %rax //a
movq $1, (x) //b

Initial state: 0:rax=0;
x=0;

CoRW1 x86

Final: 0:rax=1; x=1;

H/W: -

movq $1, (x) //a
movq (x), %rax //b

Initial state: 0:rax=0;
x=0;

CoWR0 x86

Final: 0:rax=0; x=1;

H/W: -

movq $1, (x) //a
movq $2, (x) //b

Initial state: x=0;
CoWW x86

Final: x=1;
H/W: -

Figure 16.1: Single-threaded coherence litmus tests

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 126

STR X0,[X1]Wx=1a:
Thread 0

LDR X0,[X1]Rx=1b:STR X2,[X1]

Wx=2c:

Thread 1

poco

rf
STR X0,[X1]Wx=1a:

Thread 0
LDR X0,[X1]Rx=1b:LDR X2,[X1]

Rx=0c:

Thread 1

po

rf

rf
fr

STR X0,[X1] //a

Thread 0
LDR X0,[X1] //b
STR X2,[X1] //c

Thread 1

Initial state: 0:X1=x; 0:X0=1; 1:X2=2;

1:X1=x; 1:X0=0; x=0;

CoRW2 AArch64

Final: 1:X0=1; x=1;

H/W: NNNNNN-NNNNNNNNNN

STR X0,[X1] //a

Thread 0
LDR X0,[X1] //b
LDR X2,[X1] //c

Thread 1

Initial state: 0:X1=x; 0:X0=1; 1:X1=x;

1:X0=0; 1:X2=0; x=0;

CoRR AArch64

Final: 1:X0=1; 1:X2=0; x=1;

H/W: NNNNNN-NNNNNNNNNY

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
sd t2, 0(t1) //c

Thread 1

Initial state: 0:x6=x; 0:x5=1; 1:x7=2;

1:x6=x; 1:x5=0; x=0;

CoRW2 RISC-V

Final: 1:x5=1; x=1;

H/W: N

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
ld t2, 0(t1) //c

Thread 1

Initial state: 0:x6=x; 0:x5=1; 1:x6=x;

1:x5=0; 1:x7=0; x=0;

CoRR RISC-V

Final: 1:x5=1; 1:x7=0; x=1;

H/W: N

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
std r3,0(r2) //c

Thread 1

Initial state: 0:r2=x; 0:r1=1; 1:r3=2;

1:r2=x; 1:r1=0; x=0;

CoRW2 Power

Final: 1:r1=1; x=1;

H/W: -

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
ld r3,0(r2) //c

Thread 1

Initial state: 0:r2=x; 0:r1=1; 1:r2=x;

1:r1=0; 1:r3=0; x=0;

CoRR Power

Final: 1:r1=1; 1:r3=0; x=1;

H/W: -

movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq $2, (x) //c

Thread 1

Initial state: 1:rax=0; x=0;
CoRW2 x86

Final: 1:rax=1; x=1;

H/W: -

movq $1, (x) //a

Thread 0
movq (x), %rax //b
movq (x), %rbx //c

Thread 1

Initial state: 1:rax=0; 1:rbx=0; x=0;
CoRR x86

Final: 1:rax=1; 1:rbx=0; x=1;

H/W: -

Figure 16.2: Multi-threaded coherence litmus tests

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 127

discussed in §16.1.8, out-of-order execution of such reads can be programmer-observable, some
architectures allow it, and some hardware implementations take advantage of it.

A hardware implementation may have to take care to avoid coherence violations in multiple
places. For example, in terms of the abstract microarchitectures of §15.2.3, potential coherence
violations could arise both from out-of-order execution in the thread, or in the buffering and
cache protocol of the storage subsystem. The former must constrain observable out-of-order
execution of pairs of memory accesses that are to the same address (or which might be to the
same address), either by blocking potentially violating steps, or by detecting potential violations
and restarting as needed. The latter arises, even for fairly simple storage hierarchies, because
caching creates multiple copies of memory data, to bring the data close to the hardware threads
that are acting on it, but the coherence order (for each location) is global.

Coherence and cache coherence Discussions of coherence in hardware-design (“Computer
Architecture”) contexts often focus on cache coherence, speaking of the thread-semantics issues
as particular hazards, but from an architecture-specification point of view, one has to consider
the observable properties of the whole design.

It’s hard to be sufficiently precise about this in prose without an underlying mathematical
specification. For example, Hennessy and Patterson [89, p378] define:

A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no writes
of X by another processor occurring between the write and the read by P, always
returns the value written by P.

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated in
time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same lo-
cation by any two processors are seen in the same order by all processors. For
example, if the values 1 and then 2 are written to a location, processors can
never read the value of the location as 2 and then later read it as 1.

In a relaxed setting, only parts of this really make sense. The third condition is straightforward,
captured by the CoRR test and clearly implied by our definition above. The first appeals to a
write by another processor “occuring between” a write and a read by P, but it’s unclear what
that is supposed to mean – it presumably refers to the global time of hardware execution, but, in
all the menagerie of high-performance hardware optimisations, writes and reads are processed
in many steps, and which step should be deemed to be the point at which they “occur”, would
be very specific to each design. The second condition leaves “sufficiently separated” vague, and
also suffers from the same problem as the first.

16.1.2 Out-of-order execution

For accesses to different locations, all three relaxed architectures by default permit observable
out-of-order execution of normal memory accesses, for all four pairs of reads and writes: read
program-order before read, write/write, write/read, and read/write. This enables the later in-
struction to make progress while the former instruction is blocked for some reason, for example,
if it is waiting for some dependency to be resolved, or for space in a store buffer, or to gain
sufficient ownership of the relevant cache line, or for its address translation to complete.

In abstract-microarchitectural terms, observable out-of-order execution can arise from thread
or storage-subsystem effects. From the programmers’ point of view, it is often not important to
distinguish between these. In defining architectural models, sometimes one does, to retain a

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 128

clear hardware-implementation intuition, and sometimes one abstracts from them, for model
simplicity.

For an intuition of out-of-order thread execution arising from thread pipeline behaviour,
consider the thread state below, in which instruction instances i1 and i2 are load or store in-
structions, and both have executed enough of their intra-instruction semantics to reach their
memory accesses.

Thread

i1 i2

A hardware implementation, or an abstract-microarchitectural model, might let i2 continue ex-
ecution with its memory access before i1 does its access. To avoid violating coherence, before i2
is finally committed, it has to check that the two are to distinct addresses, and, as we discuss in
the next section, certain dependencies also have to be respected.

On the storage-subsystem side, we saw for x86-TSO how per-thread write buffering gives rise
to observable out-of-order execution of writes program-order before reads, even if the thread
semantics executes instructions in-order and atomically: a program-order-later read can read
from memory before a program-order-earlier write (to a different address) leaves the buffer
and becomes visible to other threads. In the abstract-microarchitecture machine state below,
the finished instructions are a prefix of the instruction instance tree for each thread, and both
threads have finished executing their store instructions, but the load instructions can both read
from the initial value of memory, before the writes are dequeued from the store buffers to
memory.

movq 1,(x) movq (y),%rax

Thread 0
movq 1,(y) movq (x),%rax

Thread 1

a:t0:Wx=1

· · ·
· · ·

c:t1:Wy=1

· · ·
· · ·

Shared memory x=0 y=0

b:t0:Ry=0 d:t1:Rx=0

In concrete hardware implementations, one can also have buffering of read requests, in-
terconnects that are partitioned among sets of addresses (so the program-order-earlier access
might hit congestion while the program-order-later access does not), and many other optimisa-
tions. In abstract microarchitectural models, we abstract from the details of those, for example,
for Power, by regarding writes as propagating separately to each other thread.

SB: write/read reordering In terms of litmus tests, the basic SB test shows out-of-order ex-
ecution of write/read pairs. This is often observed (the lack of observation on the RISC-V core
tested is because that was a relatively simple non-optimised design).

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 129

STR X0,[X1]Wx=1a:LDR X2,[X3]

Ry=0b:

Thread 0

po

STR X0,[X1]Wy=1c:LDR X2,[X3]

Rx=0d:

Thread 1

porf rf
frfr

movq $1, (x) //a
movq (y), %rax //b

Thread 0
movq $1, (y) //c
movq (x), %rax //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0;

x=0;

SB x86

Final: 0:rax=0; 1:rax=0;

H/W: Y

std r1,0(r2)//a
ld r3,0(r4) //b

Thread 0
std r1,0(r2)//c
ld r3,0(r4) //d

Thread 1

Initial state: 0:r4=y; 0:r2=x;

0:r1=1; 0:r3=0; 1:r4=x; 1:r2=y;

1:r1=1; 1:r3=0; y=0; x=0;

SB Power

Final: 0:r3=0; 1:r3=0;

H/W: Y

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x; 1:X1=y;

1:X0=1; 1:X2=0; y=0; x=0;

SB AArch64

Final: 0:X2=0; 1:X2=0;

H/W: YYYYYYYYYYYYYYYNY

sd t0, 0(t1) //a
ld t2, 0(fp) //b

Thread 0
sd t0, 0(t1) //c
ld t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x6=x;

0:x5=1; 0:x7=0; 1:x8=x; 1:x6=y;

1:x5=1; 1:x7=0; y=0; x=0;

SB RISC-V

Final: 0:x7=0; 1:x7=0;

H/W: N

Figure 16.3: Litmus test SB

MP: write/write and read/read reordering The MP test could arise from out-of-order execu-

STR X0,[X1]Wx=1a:STR X0,[X2]

Wy=1b:

Thread 0

po

LDR X0,[X1]Ry=1c:LDR X2,[X3]

Rx=0d:

Thread 1

porf
rffr

movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq (x), %rbx //d

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0;

x=0;

MP x86

Final: 1:rax=1; 1:rbx=0;

H/W: N

std r1,0(r2)//a
std r1,0(r3)//b

Thread 0
ld r1,0(r2)//c
ld r3,0(r4)//d

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; y=0; x=0;

MP Power

Final: 1:r1=1; 1:r3=0;

H/W: Y

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP AArch64

Final: 1:X0=1; 1:X2=0;

H/W: YYYYYYYYYYYYYYYNY

sd t0, 0(t1) //a
sd t0, 0(t2) //b

Thread 0
ld t0, 0(t1) //c
ld t2, 0(fp) //d

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x8=x; 1:x6=y; 1:x5=0;

1:x7=0; y=0; x=0;

MP RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: N

Figure 16.4: Litmus test MP

tion of the Thread 0 write/write pair, or from out-of-order execution of the Thread 1 read/read
pair, or from non-FIFO write buffering or write propagation. We can isolate the write/write and
read/read effects by adding a strong memory fence to one of the threads, which forces the hard-
ware implementation to make any execution appear as if all the memory access instructions that
are program-order before the fence have finished before any of the memory access instruction
after the fence have started to execute. The litmus tests MP+po+fen and MP+fen+po do this
for write/write and read/read pairs, respectively. Both of these tests are architecturally allowed
and often observed.

LB: read/write reordering The LB test shows out-of-order execution of read/write pairs. In-
terestingly, this is allowed by all three architectures, but it has not been observed in practice on
Power implementations, or on most Armv8-A and Armv9-A implementations (we lack test data
on recent high-performance RISC-V implementations): a case where architectures are intention-
ally looser specifications than most implementations.

The reasons for this are interestingly intertwined with the asymmetry between reads and
writes and the semantics of exceptions, as we discuss in [140, §4]. Writes are not made visible
to other threads until they are known to be non-speculative, to avoid the need for cross-thread
rollback. For LB to be observable, both writes must go ahead early, and be visible to the other
thread, before the program-order-previous reads are satisfied – so both writes must be known to
be non-speculative before the reads are satisfied. At first sight, this is no problem: the address
translations of both accesses can complete early, and the reads and writes are to manifestly

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 130

STR X0,[X1]Wx=1a:STR X0,[X2]

Wy=1b:

Thread 0

po

LDR X0,[X1]Ry=1c:DMB SYLDR X2,[X3]

Rx=0e:

Thread 1

fen
rf

rffr

movq $1, (x) //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
mfence //d
movq (x), %rbx //e

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0;

x=0;

MP+po+mfence x86

Final: 1:rax=1; 1:rbx=0;

H/W: -

std r1,0(r2)//a
std r1,0(r3)//b

Thread 0
ld r1,0(r2)//c
sync //d
ld r3,0(r4)//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; y=0; x=0;

MP+po+sync Power

Final: 1:r1=1; 1:r3=0;

H/W: Y

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
DMB SY //d
LDR X2,[X3]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+po+dmb.sy AArch64

Final: 1:X0=1; 1:X2=0;

H/W: YYYYYYYYYYYNYYYNY

sd t0, 0(t1) //a
sd t0, 0(t2) //b

Thread 0
ld t0, 0(t1) //c
fence rw, rw //d
ld t2, 0(fp) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x8=x; 1:x6=y; 1:x5=0;

1:x7=0; y=0; x=0;

MP+po+fence.rw.rw RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: N

Figure 16.5: Litmus test MP+po+fen

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:LDR X2,[X3]

Rx=0e:

Thread 1

porf
rffr

movq $1, (x) //a
mfence //b
movq $1, (y) //c

Thread 0
movq (y), %rax //d
movq (x), %rbx //e

Thread 1

Initial state: 1:rax=0; 1:rbx=0; y=0;

x=0;

MP+mfence+po x86

Final: 1:rax=1; 1:rbx=0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2)//d
ld r3,0(r4)//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; y=0; x=0;

MP+sync+po Power

Final: 1:r1=1; 1:r3=0;

H/W: Y

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
LDR X2,[X3]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+po AArch64

Final: 1:X0=1; 1:X2=0;

H/W: YYYYYYYYYYYYYNYNY

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
ld t2, 0(fp) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x8=x; 1:x6=y; 1:x5=0;

1:x7=0; y=0; x=0;

MP+fence.rw.rw+po RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: N

Figure 16.6: Litmus test MP+fen+po

different addresses, so there is no potential coherence violation. However, the memory system
may detect errors such as data corruptions, e.g., using parity bits or error correcting codes, and
signal those errors to software with an exception (in Arm-A, this class of exceptions is called
“external aborts”). In systems with strong Reliability, Availablility, and Serviceability (RAS)
goals (typically server processors) one wants these exceptions to be precise, i.e. (roughly), to
appear as if at clean points in the instruction stream, with program-order previous instructions
completed. In such a system, the possibility that one of the reads in LB might generate such an
exception means that the program-order-later write must be considered speculative until it is
known that that will not happen, which is basically when the read is satisfied – and thus LB will
never be observable. In systems without strong RAS goals (e.g. mobile device processors), there
might be no fine-grained recovery from such an exception – for example, one might just kill the
entire process – and so it suffices for the exception to be imprecise. In that case, the write in LB
can be considered non-speculative as soon as the address translations for the read and the write
have completed, even if there might still be an (imprecise) external abort later – and thus LB
could be observable.

Current architectures do not provide support for processor implementations to announce to
software which of these cases applies, but that would be useful.

The fact that these architectures permit LB, combined with compiler optimisation, makes
it very hard to define sensible relaxed concurrency models for programmming languages, that
avoid the “thin-air problem”. We’ll return to this later.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 131

LDR X0,[X1]Rx=1a:STR X2,[X3]

Wy=1b:

Thread 0

po

LDR X0,[X1]Ry=1c:STR X2,[X3]

Wx=1d:

Thread 1

porfrf

movq (x), %rax //a
movq $1, (y) //b

Thread 0
movq (y), %rax //c
movq $1, (x) //d

Thread 1

Initial state: 0:rax=0; 1:rax=0; y=0;

x=0;

LB x86

Final: 0:rax=1; 1:rax=1;

H/W: -

ld r1,0(r2) //a
std r3,0(r4)//b

Thread 0
ld r1,0(r2) //c
std r3,0(r4)//d

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=0; 1:r4=x; 1:r3=1;

1:r2=y; 1:r1=0; y=0; x=0;

LB Power

Final: 0:r1=1; 1:r1=1;

H/W: N

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB AArch64

Final: 0:X0=1; 1:X0=1;

H/W: NNNNNNNNNNNNNNNNY

ld t0, 0(t1) //a
sd t2, 0(fp) //b

Thread 0
ld t0, 0(t1) //c
sd t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=0; 1:x8=x; 1:x7=1;

1:x6=y; 1:x5=0; y=0; x=0;

LB RISC-V

Final: 0:x5=1; 1:x5=1;

H/W: N

Figure 16.7: Litmus test LB

2+2W: write/write reordering and coherence The MP+po+fen test shows out-of-order ex-
ecution of writes, as observed by a pair of reads. A related but different question is captured
by test 2+2W, in which out-of-order execution of writes establishes coherence-order edges that

STR X0,[X1]Wx=2a:STR X2,[X3]

Wy=1b:

Thread 0

po

STR X0,[X1]Wy=2c:STR X2,[X3]

Wx=1d:

Thread 1

pococo

movq $2, (x) //a
movq $1, (y) //b

Thread 0
movq $2, (y) //c
movq $1, (x) //d

Thread 1

Initial state: y=0; x=0;
2+2W x86

Final: y=2; x=2;

H/W: -

std r1,0(r2)//a
std r3,0(r4)//b

Thread 0
std r1,0(r2)//c
std r3,0(r4)//d

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=2; 1:r4=x; 1:r3=1;

1:r2=y; 1:r1=2; y=0; x=0;

2+2W Power

Final: y=2; x=2;

H/W: -

STR X0,[X1]//a
STR X2,[X3]//b

Thread 0
STR X0,[X1]//c
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=2; y=0; x=0;

2+2W AArch64

Final: y=2; x=2;

H/W: YYYYYYYYYYYNYYYNY

sd t0, 0(t1) //a
sd t2, 0(fp) //b

Thread 0
sd t0, 0(t1) //c
sd t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=2; 1:x8=x; 1:x7=1;

1:x6=y; 1:x5=2; y=0; x=0;

2+2W RISC-V

Final: y=2; x=2;

H/W: N

Figure 16.8: Litmus test 2+2W

form a cycle when combined with program order of the two threads.
This is also architecturally allowed and routinely observed (though not on exactly the same

hardware implementations as MP+po+fen). This test becomes interesting when we come to
consider weaker barriers.

R and S: the other four-edge two-thread two-location tests We saw in §13.1 that there
are just six interesting (non-SC) test shapes that have a pair of accesses on each of two threads.
We’ve already discussed four of them: SB, MP (with two variants), LB, and 2+2W. The other two
shapes, R and S, are in most respects similar to SB and MP in terms of the allowed behaviour
with added synchronsation: they are variants of SB and MP with a write-to-write coherence
edge instead of a read-to-write from-reads edge. Without additional synchronisation, both are
architecturally allowed on Arm-A, Power, and RISC-V.

16.1.3 Dependencies

The Arm, Power, and RISC-V architectures place some restrictions on observable out-of-order
execution of memory accesses with address and data dependencies. In fact, the Arm Architecture
Reference Manual [?, p. 90] lists the use of dependencies as a means to avoid an excessive
number of barriers. Furthermore, the RISC-V Instruction Set Manual [?, p. 173] recognises

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 132

ldr X1,[X2] // instruction i1; r1 is X1

add X3,X1,#1 // instruction i2; r2 is X1; r2’ is X3

str X3,[X4] // instruction i3; r3 is X3

Figure 16.9: AArch64 example of transitivity of data-flow through registers from the write to X1

of the load instruction, to the read of X3 of the store instruction.

that “modern code sometimes intentionally uses such dependencies as a particularly lightweight
ordering enforcement mechanism”. And the Power ISA book [?, p. 915] states that “...an import
barrier is not needed if all the accesses to the shared data structure depend on the value obtained
for the pointer”.

Address and data dependencies are instances of data-flow between instructions of the same
thread. Recall that in §16.1.1 (Coherence) it was mentioned that, in order to preserve sequential
semantics of single-threaded programs, out-of-order execution must not appear to break data
flow between instructions from the same thread. Address and data dependencies emerge from
data-flow through registers, whereas coherence emerged from data-flow through memory.

An architecture will typically have a set of general purpose registers (GPRs) with sequential
read and write semantics. The sequential semantics guarantees that an instruction that reads
a GPR (or a portion of it) will see the value that is the combination of the GPR bits as they
were written, each by the nearest program-order preceding instruction that writes to that GPR
bit (or some initial bit value if no such instruction exists). Typically, special-purpose registers,
such as stack pointer, and flag registers also have sequential semantics. In some architectures
certain system registers require additional synchronisation to ensure sequential semantics [?].
In the following, a normal register refers to any register for which the architecture guarantees
sequential semantics.

Here, for simplicity, it is assumed that for every register read, the most recent preceding
register write to that register, writes to all the register bits that the read reads from. Later,
§16.2.4 discusses instructions that can access specific bits of special-purpose registers, breaking
the simplifying assumption, and how this affects dependencies. In addition, some architectures
have a different semantics for the PC register: the implicit reads and writes for instruction fetch
and branches might not respect dependencies, and there might not even be explicit reads and
writes to the PC register. This will not be discussed here.

There is a data-flow through registers between two instructions if the latter instruction, in
program-order, reads a value from a normal register that is computed from the value of a normal
register that the former instruction writes to, and all the intermediate values of the computation
are passed by instructions only through normal registers. That is, the computation does not
involve writing an intermediate value to memory, or a non-normal register, and later reading it
back in order to continue the same computation.

More precisely, the most simple case of data-flow through registers between two instructions
is that in which an instruction reads the value of a normal register that was written to that regis-
ter by a program-order preceding instruction. This is transitive (with some exceptions): if there
is a data-flow through registers from instruction i1’s write to register r1, to instruction i2’s read
from register r2, and there is a data-flow through registers from instruction i2’s write to register
r′2, to instruction i3’s read from register r3, then there is also a data-flow through registers from
instruction i1’s write to register r1, to instruction i3’s read from register r3. Fig. 16.9 shows an
instance of transitivity of data-flow through registers.

The transitivity of data-flow through registers has two exceptions. The first one is where the
intermediate instruction i2 is a load instruction and the output register r′2 is the register to which
the load writes the loaded value from memory. Although this exception affects the dependencies
that are defined below, which are an important part of the models of Arm, Power, and RISC-V,

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 133

ldr X1,[X2] // instruction i1; r1 is X1

blr X1 // instruction i2; r2 is X1; r2’ is X30

ldr X3,[X30] // instruction i3; r3 is X30

Figure 16.10: AArch64 example of the second exception to data-flow through registers. There
is no data-flow through registers from the write to X1 of the first load instruction, to the read of
X30 of the second load instruction.

that will be discussed later, the models allow exactly the same behaviours with or without this
exception.

The second and more significant exception is where the instruction semantics of the inter-
mediate instruction i2 has no data-flow from the input register r2 to the output register r′2. For
example, in Fig. 16.10 there is no data-flow through registers from the write to X1 of the first
load instruction, to the read of X30 of the second load instruction. This is because the AArch64
instruction blr (branch with link register) writes to register X30 the value of the PC register plus
4, which does not feed from the value it reads from register X1. Because blr is an indirect branch
instruction, there is a control dependency from the load instruction that precedes it, to the load
instruction that succeeds it (discussed later, in §16.1.4), but this is different from data-flow and
has different effects on the semantics of the code. Similar examples can be given for Power
(using the bctrl instruction), and RISC-V (using the jalr instruction).

Data-flow through registers from a memory load instruction to a memory access instruction,
where the register read of the latter instruction feeds into the memory address which the latter
instruction access is called address dependency. Similar data-flow through registers, where the
register read of the latter instruction feeds into the value that the latter instruction writes to
memory is called data dependency.

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 1

addr
rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=x; 1:X1=y; 1:X0=0;

1:X3=0; y=0; x=0;

MP+dmb.sy+addr AArch64

Final: 1:X0=1; 1:X3=0;

H/W: --NNNN-N-NNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x9=x; 1:x6=y; 1:x5=0;

1:x8=0; y=0; x=0;

MP+fence.rw.rw+addr RISC-V

Final: 1:x5=1; 1:x8=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
ldx r4,r3,r5//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r5=x; 1:r2=y; 1:r1=0;

1:r4=0; y=0; x=0;

MP+sync+addr Power

Final: 1:r1=1; 1:r4=0;

H/W: Y

Figure 16.11: Litmus test MP+fen+addr

MP+fen+addr has two loads from different memory locations, with an address dependency
between them. In all three architectures this dependency is enough to forbid observable read-
read reordering of the loads, making the behaviour of the litmus test forbidden by the architec-
ture. Similarly, the data dependencies in LB+datas forbid observable read-write reordering in
all three architectures.

Although dependencies restrict out-of-order execution, other reorderings in the storage sub-
system may still cause non-SC behaviour. For example, the Arm, Power, RISC-V, and x86 ar-
chitectures all allow SB+rfi-addrs, and the Power architecture also allows IRIW+addrs. Those

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 134

LDR X0,[X1]Rx=1a:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wy=1b:

Thread 0

data

LDR X0,[X1]Ry=1c:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1d:

Thread 1

datarfrf

LDR X0,[X1]//a
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X1=x;

0:X0=0; 1:X3=x; 1:X1=y; 1:X0=0;

y=0; x=0;

LB+datas AArch64

Final: 0:X0=1; 1:X0=1;

H/W: NNNNNN-NNNNNNNNNN

ld t0, 0(t1) //a
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //b

Thread 0
ld t0, 0(t1) //c
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x6=x;

0:x5=0; 1:x8=x; 1:x6=y; 1:x5=0;

y=0; x=0;

LB+datas RISC-V

Final: 0:x5=1; 1:x5=1;

H/W: N

ld r1,0(r2) //a
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//b

Thread 0
ld r1,0(r2) //c
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//d

Thread 1

Initial state: 0:r5=y; 0:r4=1;

0:r2=x; 0:r1=0; 1:r5=x; 1:r4=1;

1:r2=y; 1:r1=0; y=0; x=0;

LB+datas Power

Final: 0:r1=1; 1:r1=1;

H/W: Y

Figure 16.12: Litmus test LB+datas

are instances of non-multi-copy atomicity and variations of it, which will be discussed later in
§16.1.14.

Value Speculation

The restrictions that Arm, Power, and RISC-V place on observable out-of-order execution of ad-
dress and data dependencies effectively forbid observable value speculation of normal registers.
That is, a hardware implementation that implements one of those architectures is not allowed
to observably speculate the value of a register that is required during the execution of an in-
struction, in order to proceed with the execution. Value speculation is different from obtaining
a value by speculative execution of a load instruction, as discussed later in §16.1.4.

For example, if a hardware implementation were allowed to speculate register values, when
executing MP+fen+addr, the hardware implementation could immediately guess the value of
the register that feeds into the address of the second load (from x) of Thread 1 and execute that
load before the first load (from y), and before any of the values that Thread 0 writes to memory
take effect. The second load (from x) in this case could return the value 0, while the first load
(from y) return 1. Hence, such value speculation would allow the hardware implementation to
exhibit MP+fen+addr.

Note that value speculation does not break sequential semantics of single threaded code if
the hardware implementation takes the necessary precautions. In particular, after speculating
a value, and when the necessary information becomes available, the hardware implementation
could validate the speculation and if it turns out to be wrong, perform a roll-back of the affected
instructions, and re-execute them as necessary. Yet, such behaviour is forbidden by the Arm,
Power, and RISC-V architectures, as it observably breaks the ordering guarantees of address and
data dependencies.

The Alpha architecture [?, p. 5-15] notoriously does not strictly respect dependencies,
which has the effect of allowing some value speculation. In particular, from the model given
in the Alpha Architecture Reference Manual [?] it is clear that the Alpha architecture allows
MP+fen+addr, though it does not allow LB+datas and LB+addrs.

Artificial dependencies

The Arm, Power, and RISC-V architectures forbid hardware implementations to observably op-
timise away address and data dependencies, even when the computation that generates the

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 135

LDR X0,[X1]Rx=1a:EOR X2,X0,X0STR X3,[X4,X2]

Wy=1b:

Thread 0

addr

LDR X0,[X1]Ry=1c:EOR X2,X0,X0STR X3,[X4,X2]

Wx=1d:

Thread 1

addrrfrf

LDR X0,[X1] //a
EOR X2,X0,X0
STR X3,[X4,X2]//b

Thread 0
LDR X0,[X1] //c
EOR X2,X0,X0
STR X3,[X4,X2]//d

Thread 1

Initial state: 0:X4=y; 0:X3=1; 0:X1=x;

0:X0=0; 1:X4=x; 1:X3=1; 1:X1=y;

1:X0=0; y=0; x=0;

LB+addrs AArch64

Final: 0:X0=1; 1:X0=1;

H/W: NNNNNN-NNNNNNNNNN

ld t0, 0(t1) //a
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //b

Thread 0
ld t0, 0(t1) //c
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //d

Thread 1

Initial state: 0:x9=y; 0:x8=1;

0:x6=x; 0:x5=0; 1:x9=x; 1:x8=1;

1:x6=y; 1:x5=0; y=0; x=0;

LB+addrs RISC-V

Final: 0:x5=1; 1:x5=1;

H/W: N

ld r1,0(r2) //a
xor r3,r1,r1
stdx r4,r3,r5//b

Thread 0
ld r1,0(r2) //c
xor r3,r1,r1
stdx r4,r3,r5//d

Thread 1

Initial state: 0:r5=y; 0:r4=1; 0:r2=x;

0:r1=0; 1:r5=x; 1:r4=1; 1:r2=y;

1:r1=0; y=0; x=0;

LB+addrs Power

Final: 0:r1=1; 1:r1=1;

H/W: N

Figure 16.13: Litmus test LB+addrs

dependency is redundant.
For example, the address dependency in the AArch64 litmus test MP+dmb.sy+addr in

Fig. 16.11 is created by XORing the value that the first load (from y) reads from memory with
itself, and using the result, which is always 0, as an offset from x in the second load (from x). If
a hardware implementation could optimise away dependencies, it could compute the result of
the EOR instruction before obtaining the value of the input register, as the XOR of any value with
itself is always 0, and execute the second load (from x) of Thread 1 before the first load (from
y), and before any of the values that Thread 0 writes to memory take effect. The second load
(from x) in this case would return the value 0 while the first load (from y) return 1. Hence, such
optimisation would allow the hardware implementation to exhibit MP+fen+addr. This kind of
behaviour is forbidden by the three architectures.

In the example above, and similar cases with bitwise AND (when one of the operands is 0)
and bitwise OR (when all the bits of one of the operands are 1s), it is obvious that the result of
the computation is independent of the input register, and therefore the dependency is artificial.
Therefore, when designing an architecture, one might consider not to respect artificial depen-
dencies, as Arm did in earlier versions of the Arm architecture. However, defining precisely
artificial dependencies that the architecture may not respect (or alternatively, defining precisely
just the real dependencies that the architecture does respect) inevitably involves bounding the
information available to the optimisation, which is not very appealing. Moreover, the optimi-
sation is with respect to the semantics, which itself involves dependencies. This, if not defined
carefully, creates circular reasoning in the semantics which can easily give rise to out-of-thin-air
behaviour. Moreover, one might expect that compilers would in any case be able to do such opti-
misations, though there remains the problem of how the programmer should be able to indicate
that dependencies should be respected in the generated code where required.

Address-induced control dependency

Address dependencies have side effects that data dependencies do not. A memory access can
only be speculative until all the address dependencies of preceding instructions are resolved.
This is due to two reasons. First, while the address dependencies of preceding instructions
are not resolved, the hardware implementation can not guarantee that the succeeding memory
access will not violate coherence (in the case where a preceding memory access turns out to
have an overlapping memory footprint, after its address dependency is resolved). Second, when
the address dependency is resolved an address translation is performed (when enabled), which

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 136

might trigger an exception if something goes wrong with the translation. Hence, address trans-
lation is similar to conditional branching, in the sense that the succeeding instruction might be
either the instruction in location PC+4, or the instruction in the relevant exception handler loca-
tion. Therefore, before the address dependency is resolved the hardware implementation must
regard any succeeding instruction as speculative. The result of this is that LB+fen+addr-po is

LDR X0,[X1]Rx=1a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:STR X3,[X5]

Wx=1f:

Thread 1

addr

po

rf

rf

LDR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
STR X3,[X4,X2]//e
STR X3,[X5] //f

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X5=x; 1:X4=z;

1:X3=1; 1:X1=y; 1:X0=0; z=0; y=0;

x=0;

LB+dmb.sy+addr-po AArch64

Final: 0:X0=1; 1:X0=1;

H/W: -----------------

ld t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //e
sd fp, 0(a1) //f

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=0; 1:x11=x; 1:x9=z;

1:x8=1; 1:x6=y; 1:x5=0; z=0; y=0;

x=0;

LB+fence.rw.rw+addr-poRISC-V

Final: 0:x5=1; 1:x5=1;

H/W: -

ld r1,0(r2) //a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
stdx r4,r3,r5//e
std r4,0(r6) //f

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=0; 1:r6=x; 1:r5=z;

1:r4=1; 1:r2=y; 1:r1=0; z=0; y=0;

x=0;

LB+sync+addr-po Power

Final: 0:r1=1; 1:r1=1;

H/W: -

Figure 16.14: Litmus test LB+fen+addr-po

forbidden, while LB+fen+data-po is allowed, by all three architectures.

LDR X0,[X1]Rx=1a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wz=1e:STR X4,[X5]

Wx=1f:

Thread 1

data

po

rf

rf

LDR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//e
STR X4,[X5]//f

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X5=x; 1:X4=1;

1:X3=z; 1:X1=y; 1:X0=0; z=0;

y=0; x=0;

LB+dmb.sy+data-poAArch64

Final: 0:X0=1; 1:X0=1;

H/W: -----------------

ld t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(a0) //f

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=0; 1:x10=x; 1:x9=1;

1:x8=z; 1:x6=y; 1:x5=0; z=0; y=0;

x=0;

LB+fence.rw.rw+data-poRISC-V

Final: 0:x5=1; 1:x5=1;

H/W: -

ld r1,0(r2) //a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
std r4,0(r6)//f

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=0; 1:r6=x; 1:r5=z;

1:r4=1; 1:r2=y; 1:r1=0; z=0; y=0;

x=0;

LB+sync+data-po Power

Final: 0:r1=1; 1:r1=1;

H/W: -

Figure 16.15: Litmus test LB+fen+data-po

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 137

16.1.4 Speculative execution - branching

In order for a hardware implementation to execute instructions out-of-order, it has to fetch
instructions before the execution of previous instructions has completed. When one of these
incomplete instructions is a conditional or indirect branch instruction the hardware implemen-
tation does not know which location should be fetched from next, as that location is computed
by the incomplete branch instruction. An optimised hardware implementation often use branch
prediction, a technique where the next fetching location is guessed using heuristics, and proceed
with out-of-order execution based on that guess. Some hardware implementations may even
proceed with more than one guess for the same branch instruction at the same time. Execution
of instructions following a branch prediction is called speculative execution.

Speculative execution makes it possible to exhibit the MP+fen+ctrl litmus test, where

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00LDR X2,[X3]

Rx=0e:

Thread 1

ctrl
rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
CBNZ X0,LC00
LC00:
LDR X2,[X3]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+ctrl AArch64

Final: 1:X0=1; 1:X2=0;

H/W: YYYYYY-YYYYYYNYNY

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
ld t2, 0(fp) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x8=x; 1:x6=y; 1:x5=0; 1:x7=0; y=0;

x=0;

MP+fence.rw.rw+ctrl RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2)//d
cmpw r1,r1
bc 12,2,4
LC00:
ld r3,0(r4)//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; y=0; x=0;

MP+sync+ctrl Power

Final: 1:r1=1; 1:r3=0;

H/W: Y

Figure 16.16: Litmus test MP+fen+ctrl

Thread 0 is forced to execute in-order by a fence, and Thread 1’s load from x (event e) is
preceded by a conditional branch instruction, the condition of which depends on the value that
the load from y (event d) returns. A hardware implementation with speculative execution may
guess, before the load from y is performed, that the load from x will follow the conditional
branch, and so the hardware implementation may execute the load from x before any of the
values that Thread 0 writes to memory take effect. The load from x in this case would return
the value 0, while the load from y return 1. Hence, speculative execution can allow a hardware
implementation to exhibit MP+fen+ctrl.

The relation between the load from y and the load from x in the example above is an-
other form of dependency, a control dependency. There is a control dependency from a load
instruction to an instruction that succeeds it in program-order if: there is a conditional/indirect
branch instruction between them; and there is data flow through normal registers from the load
instruction to the branch instruction, that feeds into the computation of the branch target.

As demonstrated by MP+fen+ctrl, control dependency in the Arm, Power and RISC-V ar-
chitectures, does not restrict read-read reordering. However, control dependencies in all three
architectures do restrict read-write reordering to some extent, as demonstrated by the LB+ctrls
litmus test. If a hardware implementation would allow a speculative write (as in read-write
reordering with control dependency) to be observed by another thread, as would be required in
order to exhibit LB+ctrls (assuming it is the architecture’s intention to allow it), the hardware
implementation would have to coordinate a roll-back between multiple hardware threads, and
the associated caches and memory, in the case where the speculated write turns out to be on

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 138

LDR X0,[X1]Rx=1a:CBNZ X0,LC00STR X2,[X3]

Wy=1b:

Thread 0

ctrl

LDR X0,[X1]Ry=1c:CBNZ X0,LC01STR X2,[X3]

Wx=1d:

Thread 1

ctrlrfrf

LDR X0,[X1]//a
CBNZ X0,LC00
LC00:
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
CBNZ X0,LC01
LC01:
STR X2,[X3]//d

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x; 1:X2=1;

1:X1=y; 1:X0=0; y=0; x=0;

LB+ctrls AArch64

Final: 0:X0=1; 1:X0=1;

H/W: NNNNNN-NNNNNNNNNN

ld t0, 0(t1) //a
bne t0, zero, LC00
LC00:
sd t2, 0(fp) //b

Thread 0
ld t0, 0(t1) //c
bne t0, zero, LC01
LC01:
sd t2, 0(fp) //d

Thread 1

Initial state: 0:x8=y; 0:x7=1; 0:x6=x;

0:x5=0; 1:x8=x; 1:x7=1; 1:x6=y; 1:x5=0;

y=0; x=0;

LB+ctrls RISC-V

Final: 0:x5=1; 1:x5=1;

H/W: N

ld r1,0(r2) //a
cmpw r1,r1
bc 12,2,4
LC00:
std r3,0(r4)//b

Thread 0
ld r1,0(r2) //c
cmpw r1,r1
bc 12,2,4
LC01:
std r3,0(r4)//d

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=0; 1:r4=x; 1:r3=1;

1:r2=y; 1:r1=0; y=0; x=0;

LB+ctrls Power

Final: 0:r1=1; 1:r1=1;

H/W: N

Figure 16.17: Litmus test LB+ctrls

Thread 1 Thread 2
int r = x;

if (r == 42)

y = 42;

int r = y;

x = r;

Figure 16.18: Out-of-thin-air values

an untaken branch, which would violate the usual hardware-implementation desire for each
module to be as local as possible. Moreover, such behaviour would also allow executions where
the speculated write feeds into the condition that determines if the branch on which the write
is on would be taken or not, creating a causality loop. This behaviour would give rise to out-
of-thin-air values, as demonstrated in Fig. 16.18. An execution that speculates the condition of
the if in Thread 1 to be true, and allows the speculative assignment of 42 to y to be observed
by Thread 2, can continue with the execution of Thread 2, in-order, and assign 42 to x, which
would validate the speculation of Thread 1. Allowing out-of-thin-air values is undesirable, as it
makes reasoning about programs very hard.

Observing a speculative write by the same thread is easier to roll-back if the speculation
turns out to be wrong, and it cannot lead to causality loops, hence some architectures allow it.
This case is discussed later in §16.1.6.

Note that in all the litmus tests here that include a conditional branch, both targets of the
conditional branch are the same (whether the branch is taken or not), which could be considered
an artificial control dependency. Similar to address and data dependencies, the Arm, Power,
and RISC-V architectures forbid hardware implementations to observably optimise away control
dependencies, even when the computation that generates the dependency is artificial, or when
both targets are the same.

When speculating the target of a conditional branch, a hardware implementation is effec-
tively doing a value speculation of one bit, that determines which of the branch targets is taken.
The hardware implementation does not need to speculate the target locations, as those are en-
coded in the instruction semantics: if the condition does not hold, the target is the instruction
that immediately follows the branch instruction in memory; and if the condition does hold the
target is computed by adding to the program-counter an offset that is encoded in the branch
instruction machine code. One might think that the architectures allow this sort of one bit value
speculation, and forbid a more general value speculation as discussed in §16.1.3, because a one
bit speculation is easier to deal with, but this is not the case. The architectures also allow spec-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 139

ulative executions of indirect branch instructions, in which the target of the branch is computed
from a value held in a register, that might not be readily available at the time of speculation.
In this case the architecture is effectively allowing hardware implementations to speculate the
value of the register holding the branch target, but only for the purpose of computing the target
and not for any other computation.

For example, MP+fen+ctrlind, where the control dependency in Thread 1 is created using

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X4,X0,X0ADR X5,LC00ADD X6,X5,X4BR X6LDR X2,[X3]

Rx=0e:

Thread 1

ctrlind
rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
EOR X4,X0,X0
ADR X5,LC00
ADD X6,X5,X4
BR X6
LC00:
LDR X2,[X3]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+ctrlind AArch64

Final: 1:X0=1; 1:X2=0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor a0, t0, t0
add a0, a0, s1
jalr zero, a0, 0
LC00:
ld t2, 0(fp) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x9=LC00; 1:x8=x; 1:x6=y;

1:x5=0; 1:x7=0; y=0; x=0;

MP+fence.rw.rw+ctrlind RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2)//d
xor r6,r1,r1
add r6,r6,r5
mtlr r6
blr
LC00:
ld r3,0(r4)//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; 1:r5=P1:LC00; y=0; x=0;

MP+sync+ctrlind Power

Final: 1:r1=1; 1:r3=0;

H/W: -

Figure 16.19: Litmus test MP+fen+ctrlind

an indirect branch instruction, is allowed by the Arm, Power and RISC-V architectures, but the
similar MP+fen+ctrlindaddr litmus test, where the register holding the target of the indirect

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X4,X0,X0ADR X5,LC00ADD X6,X5,X4BR X6EOR X7,X6,X6LDR X2,[X3,X7]

Rx=0e:

Thread 1

ctrlind+addr
rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X4,X0,X0
ADR X5,LC00
ADD X6,X5,X4
BR X6
LC00:
EOR X7,X6,X6
LDR X2,[X3,X7]//e

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+ctrlindaddrAArch64

Final: 1:X0=1; 1:X2=0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor a0, t0, t0
add a0, a0, s1
jalr zero, a0, 0
LC00:
xor a1, a0, a0
add a2, a1, fp
ld t2, 0(a2) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x9=LC00; 1:x8=x; 1:x6=y;

1:x5=0; 1:x7=0; y=0; x=0;

MP+fence.rw.rw+ctrlindaddr
RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2)//d
xor r6,r1,r1
add r6,r6,r5
mtlr r6
blr
LC00:
xor r7,r6,r6
ld r3,r7,r4//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; 1:r5=P1:LC00; y=0; x=0;

MP+sync+ctrlindaddr Power

Final: 1:r1=1; 1:r3=0;

H/W: -

Figure 16.20: Litmus test MP+fen+ctrlindaddr

branch is also used to create an address dependency, is forbidden by those architectures.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 140

Modelling the speculation of indirect branch instructions, in a way that also allows exhaus-
tive enumeration of all valid executions of reasonable litmus tests, in finite time, is challenging.
See discussion later in ??.

16.1.5 Instruction Barrier

As fetching an instruction involves reading it from memory, it can be expected that some syn-
chronisation will have to be used to guarantee the fetch includes the intended instruction (e.g.
the code most recently produced by a just-in-time (JIT) compiler). Such synchronisation has
to handle cases where the code was loaded from a different thread than the one executing it.
In addition, to allow data and instructions to be efficiently cached separately, synchronisation
might also be needed even if the code is executed by the same thread that loaded it. The
synchronisation needed to guarantee the execution of newly loaded code was investigated and
modelled by Simner et al. [?], and is beyond the scope of this chapter. However, the instruction
fetching synchronisation includes an instruction barrier instruction (ISB/isync/fence.i) which
has interesting side effects that affect load instructions, which will be covered in this subsection.

In the Arm and Power architectures (but not in RISC-V), when an instruction barrier is
placed after a conditional or indirect branch, it prevents observable read-read reordering of any
load that feeds into the branch instruction with any load that follows the barrier in program-
order. This is because the instruction barrier effectively stops fetching until the barrier is not
speculative, as part of the fetching synchronisation. This is demonstrated by MP+fen+ctrlifen,

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00ISBLDR X2,[X3]

Rx=0f:

Thread 1

ctrl+ifenrf
rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
CBNZ X0,LC00
LC00:
ISB //e
LDR X2,[X3]//f

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+dmb.sy+ctrlisb AArch64

Final: 1:X0=1; 1:X2=0;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
fence.i
ld t2, 0(fp) //e

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x8=x; 1:x6=y; 1:x5=0; 1:x7=0; y=0;

x=0;

MP+fence.rw.rw+ctrlfenceiRISC-V

Final: 1:x5=1; 1:x7=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2)//d
cmpw r1,r1
bc 12,2,4
LC00:
isync //e
ld r3,0(r4)//f

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r4=x; 1:r2=y; 1:r1=0;

1:r3=0; y=0; x=0;

MP+sync+ctrlisync Power

Final: 1:r1=1; 1:r3=0;

H/W: Y

Figure 16.21: Litmus test MP+fen+ctrlifen

where Thread 1 has an instruction barrier. Recall, from the previous subsection, that without the
instruction barrier (MP+fen+ctrl) this behaviour is allowed by the Arm and Power architectures.
There, the second load of Thread 1 (from x) can be speculatively executed before the first
load of Thread 1 (from y), which results in reading 0 from x, and later reading 1 from y.
In MP+fen+ctrlifen, because of the instruction barrier, the second load of Thread 1 cannot be
fetched before the first load of Thread 1 is completed. Hence, by the time the second load is
executed, the stores and memory barrier of Thread 0 has already been performed, and therefore
Thread 1 must read 1 from x.

The RISC-V architecture does not guarantee the read-read ordering of the instruction barrier
instruction (fence.i), and therefore MP+fen+ctrlifen is allowed by the architecture. This deci-
sion, made by the RISC-V memory model task group, was motivated by the fact that this effect

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 141

is not the original intention of the fence.i instruction, and it was speculated that it is possible
to implement RISC-V hardware implementations without this side effect. Moreover, the RISC-V
architecture includes the fence r,r instruction which explicitly forces order between loads, and
should be used instead, when such order is desired. The Arm and Power architectures do not
include a barrier similar to the RISC-V fence r,r.

16.1.6 Write forwarding

As discussed in §16.1.4, the Arm, Power, and RISC-V architectures do not allow speculative
writes to be observable by other threads. However, they do all allow speculative writes to be
observed by the same thread, as discussed in this subsection.

Consider PPOCA (preserved program order control address, canonical name MP+fen+ctrl-

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STR X2,[X3]

Wz=1e:LDR X4,[X3]

Rz=1f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
STR X2,[X3] //e
LDR X4,[X3] //f
EOR X5,X4,X4
LDR X6,[X7,X5]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X7=x; 1:X3=z; 1:X2=1;

1:X1=y; 1:X0=0; 1:X4=0; 1:X6=0;

z=0; y=0; x=0;

PPOCA AArch64

Final: 1:X0=1; 1:X4=1; 1:X6=0;

H/W: YYYYYN-NNYYYYNYNY

sd t0, 0(t1) //a
fence w, w //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
sd t2, 0(fp) //e
ld s1, 0(fp) //f
xor a0, s1, s1
add a3, a2, a0
ld a1, 0(a3) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x12=x; 1:x8=z; 1:x7=1; 1:x6=y;

1:x5=0; 1:x9=0; 1:x11=0; z=0; y=0;

x=0;

PPOCA RISC-V

Final: 1:x5=1; 1:x9=1; 1:x11=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
cmpw r1,r1
bc 12,2,4
LC00:
std r3,0(r4)//e
ld r5,0(r4) //f
xor r6,r5,r5
ldx r7,r6,r8//g

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r8=x; 1:r4=z; 1:r3=1;

1:r2=y; 1:r1=0; 1:r5=0; 1:r7=0;

z=0; y=0; x=0;

PPOCA Power

Final: 1:r1=1; 1:r5=1; 1:r7=0;

H/W: Y

Figure 16.22: Litmus test PPOCA

rfi-addr, Fig. 16.22). In this version of MP, Thread 0 is forced to execute in-order by a fence,
and Thread 1’s loads from y (event d) and x (event g) are separated, in program-order, by a
store to z (event e) and a load from z (event f) on which g has an address dependency. In
addition, all the memory access instructions of Thread 1, except for the load from y, are on a
conditional branch, the condition of which is determined by the value loaded from y (i.e. the
memory accesses to z and x have a control dependency from the load of y).

A hardware implementation may speculate that the condition of the conditional branch in
Thread 1 will be successful, and satisfy the load from z with the write of 1 to z by the store that
precedes it (write forwarding). As the load from z is by the same thread as the store to z, and as
they are both on the same speculated branch, discarding these memory accesses, if needed, is
relatively simple (i.e., it does not involve coordinating a roll-back between multiple modules).
The hardware implementation can then, speculatively, resolve the address dependency from the
load of z to the load of x, speculatively perform the load from x, before any of the memory writes
of Thread 0 take effect, and satisfy it with the initial value 0. The execution can continue with

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 142

Thread 0 executing in-order (as required by the fence), followed by satisfying the load from y
of Thread 1 with the value that Thread 1 wrote to this location, which validates the speculation
of the conditional branch. This behaviour is indeed allowed by Arm, Power, and RISC-V.

In contrast to PPOCA, the very similar PPOAA (preserved program order address address,

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

addr

rf

rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
STR X3,[X4,X2]//e
LDR X5,[X4] //f
EOR X6,X5,X5
LDR X7,[X8,X6]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X8=x; 1:X4=z; 1:X3=1;

1:X1=y; 1:X0=0; 1:X5=0; 1:X7=0;

z=0; y=0; x=0;

PPOAA AArch64

Final: 1:X0=1; 1:X5=1; 1:X7=0;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //e
ld a1, 0(s1) //f
xor a2, a1, a1
add a5, a4, a2
ld a3, 0(a5) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x14=x; 1:x9=z; 1:x8=1;

1:x6=y; 1:x5=0; 1:x11=0; 1:x13=0;

z=0; y=0; x=0;

PPOAA RISC-V

Final: 1:x5=1; 1:x11=1; 1:x13=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
stdx r4,r3,r5//e
ld r6,0(r5) //f
xor r7,r6,r6
ldx r8,r7,r9 //g

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r9=x; 1:r5=z; 1:r4=1;

1:r2=y; 1:r1=0; 1:r6=0; 1:r8=0;

z=0; y=0; x=0;

PPOAA Power

Final: 1:r1=1; 1:r6=1; 1:r8=0;

H/W: Y

Figure 16.23: Litmus test PPOAA

canonical name MP+fen+addr-rfi-addr, Fig. 16.23) is forbidden by Arm, Power, and RISC-V. In
PPOAA there is no control dependency from the load from y to all the memory accesses that
succeed it in program-order, instead there is an address dependency from the load from y to the
succeeding store to z. As observable value speculation is forbidden by the three architectures,
the write to z is not allowed to be speculated in this case, which prevents the load from z from
being satisfied early, which prevents the address dependency from that load to the load from x
from being resolved, which prevents the load from x from executing out-of-order with the load
from y.

Write forwarding from store-exclusive instructions is discussed later in §16.1.15

16.1.7 Speculative execution - restarts

§16.1.4 discussed speculative execution of instructions as a result of conditional or indirect
branches. In those cases, when the target of the branch instruction is finally computed, any
speculated instruction that is not on the correct branch is discarded. In the kind of speculation
this subsection discusses, miss-speculated instructions are not discarded (as they are on the
correct execution path), they are instead rolled-back (restarted). For those instructions, what is
being speculated is the validity of doing their execution out-of-order with previous instructions.

It is a property of the Armv8-A, Power, and RISC-V architectures that a restart can not be
observed directly. That is, when a hardware implementation restarts an instruction it has to
leave no trace of the spurious execution, except perhaps for debug and performance-counter
facilities. This is reflected in the operational models of those architecture by the fact that every

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 143

behaviour that is allowed by the models can be exhibited by an execution that does not restart
any instruction.

Although the architectures do not allow restarts to be observed directly, the fact that a
hardware implementation can restart an instruction is observable, as demonstrated by the
MP+fen+addr-po litmus test, in which the two loads of Thread 1 are separated in program-

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:LDR X5,[X6]

Rx=0f:

Thread 1

addr

po

rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
STR X3,[X4,X2]//e
LDR X5,[X6] //f

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X6=x; 1:X4=z; 1:X3=1;

1:X1=y; 1:X0=0; 1:X5=0; z=0; y=0;

x=0;

MP+dmb.sy+addr-po AArch64

Final: 1:X0=1; 1:X5=0;

H/W: NYY----NNYYY-NY-Y

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //e
ld a1, 0(a2) //f

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x12=x; 1:x9=z; 1:x8=1;

1:x6=y; 1:x5=0; 1:x11=0; z=0; y=0;

x=0;

MP+fence.rw.rw+addr-poRISC-V

Final: 1:x5=1; 1:x11=0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
stwx r4,r3,r5//e
ld r6,0(r7) //f

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r7=x; 1:r5=z; 1:r4=1;

1:r2=y; 1:r1=0; 1:r6=0; z=0; y=0;

x=0;

MP+sync+addr-po Power

Final: 1:r1=1; 1:r6=0;

H/W: -

Figure 16.24: Litmus test MP+fen+addr-po

order, by a store to z (event e) with an address dependency from the load of y (d). As the load
from x has no dependency, a hardware implementation can execute this load out-of-order with
the preceding store to z and load from y. However, such execution of the load from x must be
speculative, as the hardware implementation does not yet know the memory location that the
preceding store will access (due to the address dependency). If the location that the preceding
store accesses turns out to be x, the out-of-order execution of the load from x would be a viola-
tion of coherence, similar to CoWR, and would have to be re-executed (i.e. restarted). Hence,

STR X0,[X1]Wx=1a:
Thread 0

STR X0,[X1]Wx=2b:LDR X2,[X1]

Rx=1c:

Thread 1

po

co

rf
fr

STR X0,[X1] //a

Thread 0
STR X0,[X1] //b
LDR X2,[X1] //c

Thread 1

Initial state: 0:X1=x; 0:X0=1; 1:X1=x;

1:X0=2; 1:X2=0; x=0;

CoWR AArch64

Final: 1:X2=1; x=2;

H/W: YNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a

Thread 0
sd t0, 0(t1) //b
ld t2, 0(t1) //c

Thread 1

Initial state: 0:x6=x; 0:x5=1; 1:x6=x;

1:x5=2; 1:x7=0; x=0;

CoWR RISC-V

Final: 1:x7=1; x=2;

H/W: Y

std r1,0(r2) //a

Thread 0
std r1,0(r2)//b
ld r3,0(r2) //c

Thread 1

Initial state: 0:r2=x; 0:r1=1; 1:r2=x;

1:r1=2; 1:r3=0; x=0;

CoWR Power

Final: 1:r3=1; x=2;

H/W: Y

Figure 16.25: Litmus test CoWR

exhibiting MP+fen+addr-po by a hardware implementation makes the fact that the hardware
implementation can do such speculation observable.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 144

Soft restarts

When a hardware implementation determines that an instruction has to be restarted, in most
cases in RISC architectures, it does not matter (i.e. it is unobservable) whether the instruction
is completely discarded and re-fetched, or if parts of the spurious execution, that were not
inconsistent, are kept. For example, if a load instruction has to be re-executed because it was
executed out-of-order with a preceding store that turned out to be to the same location, the part
of the execution of the load instruction that computes the memory location that the load reads
from would result in the same location. Hence, discarding this part of the execution and re-
executing it, or keeping the result of the computation from the spurious execution would have
the same effect.

However, in some cases, keeping parts of the spurious execution, even if those are not incon-
sistent, is observable. For example, the Arm and Power architectures include a load instruction
that can read multiple values from adjacent locations in memory, and store each value in a sepa-
rate register (AArch64 ldp, and Power lmw). Consider MP+fen+pos-si124-ctrlifen. In this version

STR X0,[X1]Wx=1a:DMB SYSTR W0,[X2,#124]

Wy[124..127]=0x00000001c:

Thread 0

fen

LDR W0,[X1,#124]Ry[124..127]=0x 00000001d:LDP W2,W5,[X1,#124]

Ry[124..127]=0x 00000001e0:
Ry[128..131]=0x00000000e1:
CBNZ X5,LC00ISBLDR X3,[X4]

Rx=0g:

Thread 1

porf

rf

rf

rf

fr
ctrl+ifen

STR X0,[X1] //a
DMB SY //b
STR W0,[X2,#124]//c

Thread 0
LDR W0,[X1,#124] //d
LDP W2,W5,[X1,#124]//e0,e1
CBNZ X5,LC00
LC00:
ISB //f
LDR X3,[X4] //g

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=0x1; 1:X4=x;

1:X1=y; 1:X0=0x0; 1:X3=0x0; y=0x0; x=0x0;

MP+dmb.sy+pos-si124-ctrlisb AArch64

Final: 1:X0=0x1; 1:X2=0x1; 1:X3=0x0;

H/W: -----------------

std r1,0(r2) //a
sync //b
stw r1,124(r3)//c

Thread 0
lwz r1,124(r2) //d
lmw r30,124(r2)//e0,e1
cmpw r31,r31
bc 12,2,4
LC00:
isync //f
ld r4,0(r5) //g

Thread 1

Initial state: 0:r3=y; 0:r2=x; 0:r1=0x1;

1:r5=x; 1:r2=y; 1:r1=0x0; 1:r4=0x0; y=0x0;

x=0x0;

MP+sync+pos-si124-ctrlisync Power

Final: 1:r1=0x1; 1:r4=0x0;

H/W: -

Figure 16.26: Litmus test MP+fen+pos-si124-ctrlifen

of MP the y location is allocated such that y[0], the first byte of the allocated region, is exactly
the beginning of a cache line, and the size of the allocated region spans multiple cache lines.
The y location is then used in the test to access two consecutive 4-byte words, y[124..127] and
y[128..131]. Those words are properly aligned (see §16.2.3) and, assuming 128 is a multiple
of the cache line size (which holds for all the machines we tested, but is not architecturally
mandated), each word is in a different cache line. Note that we take care to place those words
in this fashion (on a cache boundary) to make it more likely for a hardware implementation to
exhibit the interesting behaviour; the architectures allow this behaviour even when the words
are not on a cache boundary.

With that, Thread 0 is forced to execute in-order by a fence, and Thread 1’s loads from
y[124..127] (event d) and x (event g) are separated, in program-order, by a load instruction that
access two locations: y[124..127] (event e1) and y[128..131] (event e0), a conditional branch that
is determined by e0, and an instruction fence (event f).

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 145

The MP+fen-si+si-addr litmus test demonstrates that hardware implementations may per-

STR X1,[X6]Wy=1a:DMB SYSTR X2,[X5]

Wx[0..7]=0x0000000200000001c:

Thread 0

fen

LDP W1,W2,[X5]Rx[0..3]=0x 00000000d0:
Rx[4..7]=0x00000002d1:
EOR W3,W1,W1LDR X4,[X6,W3,SXTW]

Ry=0e:

Thread 1

addr
rfx[4..7]

rf

rfx[0..3]
frx[0..3]

fr

STR X1,[X6]//a
DMB SY //b
STR X2,[X5]//c

Thread 0
LDP W1,W2,[X5] //d0,d1
EOR W3,W1,W1
LDR X4,[X6,W3,SXTW]//e

Thread 1

Initial state: 0:X2=0x200000001; 0:X1=0x1;

0:X6=y; 0:X5=x; 1:X6=y; 1:X5=x; x=0x0;

y=0x0;

MP+dmb.sy-si+si-addr AArch64

Final: 1:X1=0x0; 1:X2=0x2; 1:X4=0x0;

H/W: -----------------

stw r1,0(r5)//a
sync //b
std r2,0(r4)//c

Thread 0
lmw r30,0(r4)//d0,d1
xor r3,r30,r30
lwzx r2,r3,r5 //e

Thread 1

Initial state: 0:r5=y; 0:r4=x; 0:r1=0x3;

0:r2=0x100000002; 1:r5=y; 1:r4=x;

x=0x0;

MP+sync-si+si-addr Power

Final: 1:r2=0x0; 1:r30=0x0; 1:r31=0x2;

H/W: -

Figure 16.27: Litmus test MP+fen-si+si-addr

form the different memory reads of load-pair/multiple separately, and make the first-satisfied
value available in the appropriate register before reading the other memory location. For a hard-
ware implementation to exhibit MP+fen+pos-si124-ctrlifen it must also be able to perform only
part of the load-pair/multiple in a non-speculative way, while the other part was not performed
yet, or performed speculatively.

For a hardware implementation to exhibit MP+fen+pos-si124-ctrlifen it must perform the
part of the intermediate load of Thread 1 that reads from y[128..131] before the memory writes
of Thread 0 take effect, as the load from x has a control dependency on this part of the load, and
there is an instruction fence between the load from x and the conditional branch (see Instruction
Barrier above). In addition, the hardware implementation must perform the firs load of Thread 1
after the memory writes of Thread 0 take effect, and the part of the intermediate load that reads
from y[124..127] can only be speculative before that, as it access the same location as the first
load.

Performing a misaligned load (see §16.2.3) is somewhat similar to load-pair/multiple. The
key difference is that the latter loads into multiple distinct parts of the register state, that can be
depended or independent. Since a misaligned load loads into a single register, soft restart is not
observable, as the value that is loaded from memory is only available to other instructions (i.e.
written to the register) after all the memory reads of the load instruction are completed.

16.1.8 Satisfy same address reads out-of-order

As was mentioned in §16.1.1, it is possible to execute out-of-order two load instructions that ac-
cess the same memory location, without violating coherence. RSW (read same write, Fig. 16.28)
discriminates between architectures that allow such reordering and those that do not.

RSW is a variant of MP in which the stores of Thread 0 are forced to execute in-order by a
fence, and the loads from y and x of Thread 1 are separated by two loads from z, of which the
first has an address dependency from the load from y, and the second has an address dependency
to the load from x.

The RSW behaviour is coherent, with the total orders over x, y, and z, in Fig. 16.29.
A hardware implementation may exhibit this behaviour by satisfying the second load from

z (f) with the initial value 0 very early, calculating the address of the load from x (g) (i.e.
resolving the address dependency from f to g) and satisfying the load from x with the initial
value 0, before the memory writes of Thread 0 take effect. The hardware implementation can

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 146

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rz=0e:LDR X5,[X4]

Rz=0f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

po

addr

rf

rf

rf

fr

rf

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e
LDR X5,[X4] //f
EOR X6,X5,X5
LDR X7,[X8,X6]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X8=x; 1:X4=z; 1:X1=y;

1:X0=0; 1:X7=0; z=0; y=0; x=0;

RSW AArch64

Final: 1:X0=1; 1:X7=0;

H/W: YYYYYN-NNYYYYNYNY

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //e
ld a1, 0(s1) //f
xor a2, a1, a1
add a5, a4, a2
ld a3, 0(a5) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=1; 1:x14=x; 1:x9=z; 1:x6=y;

1:x5=0; 1:x13=0; z=0; y=0; x=0;

RSW RISC-V

Final: 1:x5=1; 1:x13=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
ldx r4,r3,r5//e
ld r6,0(r5) //f
xor r7,r6,r6
ldx r8,r7,r9//g

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r9=x; 1:r5=z; 1:r2=y;

1:r1=0; 1:r8=0; z=0; y=0; x=0;

RSW Power

Final: 1:r1=1; 1:r8=0;

H/W: Y

Figure 16.28: Litmus test RSW

init(x) < g < a
init(y) < c < d
init(z) < e < f

Figure 16.29: Coherence orders of RSW. Here, init(L) is the notional write that sets the initial
value for location L.

then complete the execution by performing all the instructions of Thread 0 in-order, satisfying
the load from y (d) with the value written by the store to y (c), and satisfying the first load from
z (e) with the initial value 0. Note that even though that e and f are to the same location (z),
they were satisfied out-of-order. The hardware implementation can be sure that the coherence
of z is not violated by allowing this behaviour only when Thread 1’s cache line that holds z has
not been released between the two reads of z (f and e).

Tracking the cache line in this way, in order to guarantee that there is no coherence violation,
excludes behaviours like RDW (read different writes, Fig. 16.30), which is similar to RSW,
except that the two reads of z return values from different writes, even though RDW does not
violate coherence. Moreover, when the second load, in a sequence of two loads from the same
location, is satisfied first, it must be regarded as speculative until the first load is satisfied.

16.1.9 Write forwarding from a non-speculative write

In §16.1.6 PPOCA was used to demonstrate write-forwarding of writes to program-order-
following reads. There, a speculative write that must not be observed by other threads while
speculative, is allowed to be observed by the thread that executes it (even while it is speculative).
In such forwarding, the read to which the write is being forwarded to must also be regarded by
the hardware implementation as speculative, at least until the write that is being forwarded to

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 147

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rz=0e:LDR X5,[X4]

Rz=1f:EOR X6,X5,X5LDR X7,[X8,X6]

Rx=0g:

Thread 1

addr

po

addr

STR X0,[X1]Wz=1h:
Thread 2

rf

rf

rf

rf

fr

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e
LDR X5,[X4] //f
EOR X6,X5,X5
LDR X7,[X8,X6]//g

Thread 1

STR X0,[X1] //h

Thread 2

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X8=x; 1:X4=z; 1:X1=y;

1:X0=0; 1:X3=0; 1:X5=0; 1:X7=0;

2:X1=z; 2:X0=1; z=0; y=0; x=0;

RDW AArch64

Final: 1:X0=1; 1:X3=0; 1:X5=1;

1:X7=0;

H/W: NNNNNN-NNN-NNNN-N

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //e
ld a1, 0(s1) //f
xor a2, a1, a1
add a5, a4, a2
ld a3, 0(a5) //g

Thread 1

sd t0, 0(t1) //h

Thread 2

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x14=x; 1:x9=z; 1:x6=y; 1:x5=0;

1:x8=0; 1:x11=0; 1:x13=0; 2:x6=z;

2:x5=1; z=0; y=0; x=0;

RDW RISC-V

Final: 1:x5=1; 1:x8=0; 1:x11=1;

1:x13=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
ldx r4,r3,r5//e
ld r6,0(r5) //f
xor r7,r6,r6
ldx r8,r7,r9//g

Thread 1

std r1,0(r2)//h

Thread 2

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r9=x; 1:r5=z; 1:r2=y;

1:r1=0; 1:r4=0; 1:r6=0; 1:r8=0;

2:r2=z; 2:r1=1; z=0; y=0; x=0;

RDW Power

Final: 1:r1=1; 1:r4=0; 1:r6=1;

1:r8=0;

H/W: -

Figure 16.30: Litmus test RDW

it is determined to be non-speculative. In PPOCA this is obvious, as both the write and the read
are on the same conditional branch, but in other cases the write could be speculative due to
other reasons that do not affect the read (see §16.1.7), other than by the forwarding from the
write.

A hardware implementation might require to prevent a write from being observed by other
threads at a given state for reasons other than the write being speculative, most notably, to
prevent coherence violations. In such circumstances a hardware implementation may be able
to forward the write without having to regard the read to which the write is forwarded to as
speculative. Consider MP+fen+data-wsi-rfi-ctrlifen. The first write to z (e) has a data depen-
dency on the preceding load from y and therefore that write can not be performed before the
the load from y is completed. The second write to z (f) has no dependencies, but the hardware
implementation can not perform it before the first write to z, as that can lead to violation of
coherence, similar to CoWW. Although the second write to z can not be performed before the
first write to z, it can be forwarded to the succeeding load from z, without violating coherence,
because the second write to z obscures the first write to z for the succeeding load. Unlike the
case of write-forwarding in PPOCA, here the write that is being forwarded is not speculative, as
it does not follow a speculative branch and is not amenable for restarts. Hence, after forwarding
f to g the hardware implementation can compute the condition of the conditional branch that
feeds from g, and it can be sure that the result will not change due to speculations. As the con-
ditional branch is resolved the instruction-fence that succeeds the conditional branch no longer
has any effect (in the context of this execution) and the succeeding read m can be satisfied,

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 148

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wz=1e:STR X4,[X3]

Wz=2f:LDR X5,[X3]

Rz=2g:CBNZ X5,LC00ISBLDR X6,[X7]

Rx=0m:

Thread 1

data

ctrl+ifen

co

rf

rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3] //e
STR X4,[X3] //f
LDR X5,[X3] //g
CBNZ X5,LC00
LC00:
ISB //h
LDR X6,[X7] //m

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X7=x; 1:X4=2; 1:X3=z; 1:X1=y; 1:X0=0;

1:X5=0; 1:X6=0; z=0; y=0; x=0;

MP+dmb.sy+data-wsi-rfi-ctrlisb
AArch64

Final: 1:X0=1; 1:X5=2; 1:X6=0; z=2;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(fp) //f
ld a0, 0(fp) //g
bne a0, zero, LC00
LC00:
fence.i
ld a1, 0(a2) //h

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x12=x; 1:x9=2; 1:x8=z; 1:x6=y; 1:x5=0;

1:x10=0; 1:x11=0; z=0; y=0; x=0;

MP+fence.rw.rw+data-wsi-rfi-ctrlfencei
RISC-V

Final: 1:x5=1; 1:x10=2; 1:x11=0; z=2;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
std r6,0(r5)//f
ld r7,0(r5) //g
cmpw r7,r7
bc 12,2,4
LC00:
isync //h
ld r8,0(r9) //m

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r9=x; 1:r6=2; 1:r5=z;

1:r4=1; 1:r2=y; 1:r1=0; 1:r7=0;

1:r8=0; z=0; y=0; x=0;

MP+sync+data-wsi-rfi-ctrlisync
Power

Final: 1:r1=1; 1:r7=2; 1:r8=0; z=2;

H/W: -

Figure 16.31: Litmus test MP+fen+data-wsi-rfi-ctrlifen

before any of the stores of Thread 0 take effect.
This behaviour is allowed by the Arm and RISC-V architectures, though since the RISC-V

instruction-fence is weaker than the Arm instruction fence, for RISC-V this is not much different
from PPOCA. That is, the same behaviour can be explained for RISC-V without using the fact
that forwarding of f to g is non-speculative. The similar test S+fen+data-wsi-rfi-ctrl, which
eliminates the instruction-fence, and changes the last memory access of MP+fen+data-wsi-rfi-
ctrlifen from a load to a store, is allowed by both RISC-V and Arm because they allow the control
dependency in Thread 1 to be resolved by non-speculative forwarding.

Sarkar et al.’s PLDI11 memory model of the Power architecture [?] does not allow the be-
haviour of MP+fen+data-wsi-rfi-ctrlifen (and the similar S+fen+data-wsi-rfi-ctrl), as none of the
Power hardware implementations exhibit this behaviour and it is not clear whether there is any
benefit in allowing it. If need be, the PLDI11 model could be adapted to allow this behaviour
by relaxing the condition of the Thread transition “Commit in-flight instruction” [?, p. 7]. In
particular, condition 4 of this transition can be changed to exclude loads if the load is satisfied
by forwarding from a store that cannot be restarted and all program-order previous instructions
which might access the load’s address are committed.

An alternative explanation for MP+fen+data-wsi-rfi-ctrlifen is discussed later, in §16.1.12.

16.1.10 Multi-step read satisfaction

In 2012, while investigating the relationship between the Arm architecture and Sarkar et al.’s
PLDI11 memory model of the Power architecture [?], the authors of [?, ?] discovered some

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 149

STR X0,[X1]Wx=2a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wz=1e:STR X4,[X3]

Wz=2f:LDR X5,[X3]

Rz=2g:CBNZ X5,LC00STR X6,[X7]

Wx=1h:

Thread 1

data

ctrl

co

co

rf

rf

STR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//e
STR X4,[X3]//f
LDR X5,[X3]//g
CBNZ X5,LC00
LC00:
STR X6,[X7]//h

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X7=x; 1:X6=1;

1:X4=2; 1:X3=z; 1:X1=y; 1:X0=0;

1:X5=0; z=0; y=0; x=0;

S+dmb.sy+data-wsi-rfi-ctrl
AArch64

Final: 1:X0=1; 1:X5=2; z=2; x=2;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(fp) //f
ld a0, 0(fp) //g
bne a0, zero, LC00
LC00:
sd a1, 0(a2) //h

Thread 1

Initial state: 0:x8=y; 0:x7=1; 0:x6=x;

0:x5=2; 1:x12=x; 1:x11=1; 1:x9=2;

1:x8=z; 1:x6=y; 1:x5=0; 1:x10=0; z=0;

y=0; x=0;

S+fence.rw.rw+data-wsi-rfi-ctrl
RISC-V

Final: 1:x5=1; 1:x10=2; z=2; x=2;

H/W: N

std r1,0(r2)//a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
std r6,0(r5)//f
ld r7,0(r5) //g
cmpw r7,r7
bc 12,2,4
LC00:
std r4,0(r8)//h

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=2; 1:r8=x; 1:r6=2;

1:r5=z; 1:r4=1; 1:r2=y; 1:r1=0;

1:r7=0; z=0; y=0; x=0;

S+sync+data-wsi-rfi-ctrl Power

Final: 1:r1=1; 1:r7=2; z=2; x=2;

H/W: -

Figure 16.32: Litmus test S+fen+data-wsi-rfi-ctrl

inconsistencies between that model and the observed behaviour of some Armv7-A hardware im-
plementations. Most notably, the Qualcomm APQ8060 SoC (dual-core Scorpion CPU architec-
ture, Armv7-A) exhibited MP+fen+fri-rfi-ctrlifen, that is not allowed by the PLDI11 model. This
behaviour, and other litmus tests that the APQ8060 exhibited and are not allowed by the PLDI11
model, were discussed with Arm and Qualcomm designers. Most of those behaviours were con-
cluded to be bugs in the APQ8060 implementation (e.g. a coherence violation, of CoRR), but
the MP+fen+fri-rfi-ctrlifen behaviour was deemed to be an intended allowed behaviour of the
Armv7-A architecture, and also, later, of the Armv8-A architecture. In those discussions, the
behaviour of MP+fen+fri-rfi-ctrlifen was explained by the use of a hardware implementation
queue that can hold write events and unsatisfied read request events, that are kept in order if
they access the same location (similar to a write buffer, with the addition of read request events).
When such a hardware implementation is performing a memory access, an event is placed in the
queue, which is served (and removed from the queue) when the appropriate cache line is made
available. In addition, a read that is immediately preceded by a write to the same location, can
be satisfied by that write. If such a read is completely satisfied by the write, it is removed from
the queue, but if it is not completely satisfied (see §16.2), the hardware implementation has to
ensure single-copy atomicity (see §16.2.3), which can be enforced in the model by, for example,
swapping the position in the queue of the write with the read that it partially satisfied.

This queue can be used to explain MP+fen+fri-rfi-ctrlifen as follows. The hardware imple-
mentation places the read d in the queue; it then forwards the write e to the succeeding read
f , and places e in the queue. The fact that the queue preserves the order of events to the same

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 150

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:STR X2,[X1]

Wy=2e:LDR X3,[X1]

Ry=2f:CBNZ X3,LC00ISBLDR X4,[X5]

Rx=0h:

Thread 1

co

rf

rf

rf

fr

fr

ctrl+ifen

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
STR X2,[X1]//e
LDR X3,[X1]//f
CBNZ X3,LC00
LC00:
ISB //g
LDR X4,[X5]//h

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X5=x; 1:X2=2; 1:X1=y;

1:X0=0; 1:X3=0; 1:X4=0; y=0;

x=0;

MP+dmb.sy+fri-rfi-ctrlisb
AArch64

Final: 1:X0=1; 1:X3=2; 1:X4=0;

y=2;

H/W: NNNNNN-NNNNNNNNNY

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
sd t2, 0(t1) //e
ld fp, 0(t1) //f
bne fp, zero, LC00
LC00:
fence.i
ld s1, 0(a0) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x10=x; 1:x7=2; 1:x6=y; 1:x5=0;

1:x8=0; 1:x9=0; y=0; x=0;

MP+fence.rw.rw+fri-rfi-ctrlfencei
RISC-V

Final: 1:x5=1; 1:x8=2; 1:x9=0; y=2;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
std r3,0(r2)//e
ld r4,0(r2) //f
cmpw r4,r4
bc 12,2,4
LC00:
isync //g
ld r5,0(r6) //h

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r6=x; 1:r3=2; 1:r2=y;

1:r1=0; 1:r4=0; 1:r5=0; y=0; x=0;

MP+sync+fri-rfi-ctrlisync Power

Final: 1:r1=1; 1:r4=2; 1:r5=0; y=2;

H/W: N

Figure 16.33: Litmus test MP+fen+fri-rfi-ctrlifen

location guarantees that d will always precede e in the queue, and therefore coherence will not
be violated by d getting its value from e, or a coherence-after write. Hence Thread 1 can regard
e as if it has been performed non-speculatively, even though it is still in the queue and cannot
yet be observed by Thread 0, and even though the program-order preceding read from the same
location (which is also in the queue) has not been satisfied yet. At this point the hardware
implementation can compute the condition of the conditional branch that feeds from f , and
be sure that the result will not change due to speculations (there are no potential coherence
violations that will require restarts). As the conditional branch is resolved, the instruction-fence
that succeeds the conditional branch no longer has any effect (in the context of this execution)
and the succeeding read h can be satisfied, before any of the stores of Thread 0 take effect. This
hardware implementation explanation is the inspiration behind the storage subsystem of the
Flowing memory-model that will be discussed in ??.

MP+fen+fri-rfi-ctrlifen is another behaviour that the PLDI11 memory model of the Power
architecture does not allow, as none of the Power hardware implementations exhibit this be-
haviour and it was not clear whether there was any benefit in allowing it. If need be, this model
could be adapted to allow this behaviour by adding to each thread a queue that can hold read
and write events before they are propagated to the storage.

As Alglave et al. [?, p. 53-54] observed, MP+fen+fri-rfi-ctrlifen can also be explained by
write-forwarding from a non-speculative write (discussed above §16.1.9), from e to f . How-
ever, other behaviours that the queue enables, such as MP+fen+fri-[ws-rf]-ctrlifen (for non-
multi-copy-atomic architectures), and the mixed-size LB+data+pod-rfi-pos-data+MIX1, can not
be explained by write-forwarding from a non-speculative write. And the opposite is also true,
write-forwarding from a non-speculative write enables MP+fen+data-wsi-rfi-ctrlifen, which can
not be explained by the queue.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 151

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:STR X2,[X1]

Wy=2e:LDR X3,[X1]

Ry=3f:CBNZ X3,LC00ISBLDR X4,[X5]

Rx=0h:

Thread 1

po

ctrl+ifen

STR X0,[X1]Wy=3m:
Thread 2

co

corf

rf

rf

fr

fr

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
STR X2,[X1] //e
LDR X3,[X1] //f
CBNZ X3,LC00
LC00:
ISB //g
LDR X4,[X5] //h

Thread 1

STR X0,[X1] //m

Thread 2

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X5=x; 1:X2=2; 1:X1=y; 1:X0=0; 1:X3=0;

1:X4=0; 2:X1=y; 2:X0=3; y=0; x=0;

MP+dmb.sy+fri-[ws-rf]-ctrlisbAArch64

Final: 1:X0=1; 1:X3=3; 1:X4=0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
sd t2, 0(t1) //e
ld fp, 0(t1) //f
bne fp, zero, LC00
LC00:
fence.i
ld s1, 0(a0) //g

Thread 1

sd t0, 0(t1) //h

Thread 2

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x10=x; 1:x7=2; 1:x6=y; 1:x5=0; 1:x8=0;

1:x9=0; 2:x6=y; 2:x5=3; y=0; x=0;

MP+fence.rw.rw+fri-[ws-rf]-ctrlfencei
RISC-V

Final: 1:x5=1; 1:x8=3; 1:x9=0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
std r3,0(r2) //e
ld r4,0(r2) //f
cmpw r4,r4
bc 12,2,4
LC00:
isync //g
ld r5,0(r6) //h

Thread 1

std r1,0(r2) //m

Thread 2

Initial state: 0:r3=y; 0:r2=x; 0:r1=1;

1:r6=x; 1:r3=2; 1:r2=y; 1:r1=0; 1:r4=0;

1:r5=0; 2:r2=y; 2:r1=3; y=0; x=0;

MP+sync+fri-[ws-rf]-ctrlisync Power

Final: 1:r1=1; 1:r4=3; 1:r5=0;

H/W: -

Figure 16.34: Litmus test MP+fen+fri-[ws-rf]-ctrlifen

16.1.11 Detour

In MP+fen+fri-[ws-rf]-ctrlifen, from the previous subsection, the memory accesses e and f of
Thread 1 are ordered by the external event m from Thread 2. This is a relatively simple case of
a detour: two events from the same thread that are ordered by external events [?]. A more com-
plex example is MP+fen+fri-[rf-addr-rf]-addr. Here, the memory accesses e and f of Thread 1,
are to different locations, and are ordered by memory accesses from Thread 2, that are ordered
by an address dependency between themselves. This can get even more complicated if the
events of Thread 2 are also ordered by any number of detours.

Recursive detours can be tricky to get right axiomatically, in a non-multi-copy atomic archi-
tecture, and in fact where one of the reasons given by Arm staff for changing to a multi-copy
atomic architecture.

16.1.12 Write subsumption

It is possible for a hardware implementation to detect two (or more) memory stores to the same
location, and discards the program order preceding one, if there are no loads from the same
location, from the same thread, between the stores (i.e., the succeeding write subsumes the
preceding one). For example, consider S+fen+data-wsi, where Thread 1 performs two adjacent
stores to x. Without write subsumption this behaviour cannot be exhibited because the write of
2 to x (f) can only be performed after the write of 1 to x (e) has been performed, to ensure that
those two writes are not observed out of order; in addition, the first write of 1 to x can only be
performed after the read from y (d), that feeds into its data, has been performed, and the read
can get its value from the write to y of Thread 0 (c) only after the write of 3 to x of Thread 0

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 152

LDR X0,[X1]Rx=1a:EOR X3,X0,X0ADD X3,X3,X4STRB W3,[X2]

Wy[0]=0x 10b:

Thread 0

data

LDRB W0,[X1]Ry[0] =0x 10c:STRB W2,[X1,#1]

Wy[1] =0x11d:LDRH W3,[X1]

Ry[0..1]=0x1110e:LDRB W5,[X1,#1]

Ry[1] =0x11f:EOR X6,X5,X5ADD X6,X6,#1STR X6,[X4]

Wx=1g:

Thread 1

po

po

data

rfy[0]

rfy[0]
rfy[1]

rfy[1]rf

LDR X0,[X1] //a
EOR X3,X0,X0
ADD X3,X3,X4
STRB W3,[X2]//b

Thread 0
LDRB W0,[X1] //c
STRB W2,[X1,#1]//d
LDRH W3,[X1] //e
LDRB W5,[X1,#1]//f
EOR X6,X5,X5
ADD X6,X6,#1
STR X6,[X4] //g

Thread 1

Initial state: 0:X4=0x10; 0:X2=y;

0:X1=x; 0:X0=0x1; 1:X6=0x0;

1:X2=0x11; 1:X3=0x0; 1:X4=x; 1:X1=y;

x=0x0; y=0x0;

LB+data+pod-rfi-pos-data+MIX1
AArch64

Final: 0:X0=0x0; 1:X0=0x10;

1:X3=0x1110; 1:X5=0x11; y=0x1110;

H/W: -----------------

ld t0, 0(t1) //a
xor t2, t0, t0
or t2, t2, tp
sb t2, 0(fp) //b

Thread 0
lb t0, 0(t1) //c
sb t2, 1(t1) //d
lh fp, 0(t1) //e
lb s1, 1(t1) //f
xor a0, s1, s1
ori a0, a0, 1
sd a0, 0(a1) //g

Thread 1

Initial state: 0:x4=0x10; 0:x8=y;

0:x6=x; 0:x5=0x0; 1:x11=x;

1:x7=0x11; 1:x6=y; 1:x5=0x0;

1:x8=0x0; y=0x0; x=0x0;

LB+data+pod-rfi-pos-data+MIX1
RISC-V

Final: 0:x5=0x1; 1:x5=0x10;

1:x8=0x1110; 1:x9=0x11; y=0x1110;

H/W: -

ld r1,0(r2) //a
xor r3,r1,r1
add r3,r3,r4
stb r3,0(r5)//b

Thread 0
lbz r1,0(r2) //c
stb r3,1(r2) //d
lhz r4,0(r2) //e
lbz r5,1(r2) //f
xor r6,r5,r5
add r6,r6,r7
std r6,0(r8) //g

Thread 1

Initial state: 0:r5=y; 0:r4=0x10;

0:r2=x; 0:r1=0x0; 1:r8=x; 1:r7=0x1;

1:r3=0x11; 1:r2=y; 1:r1=0x0;

1:r4=0x0; y=0x0; x=0x0;

LB+data+pod-rfi-pos-data+MIX1
Power

Final: 0:r1=0x1; 1:r1=0x10;

1:r4=0x1110; 1:r5=0x11; y=0x1110;

H/W: -

Figure 16.35: Litmus test LB+data+pod-rfi-pos-data+MIX1

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:STR X2,[X1]

Wy=2e:LDR X3,[X4]

Rz=1f:EOR X5,X3,X3LDR X6,[X7,X5]

Rx=1g:

Thread 1

po

po

addr

LDR X0,[X1]Ry=2h:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1m:

Thread 2

addr
co

rf

rf rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
STR X2,[X1] //e
LDR X3,[X4] //f
EOR X5,X3,X3
LDR X6,[X7,X5]//g

Thread 1
LDR X0,[X1] //h
EOR X2,X0,X0
STR X3,[X4,X2]//m

Thread 2

Initial state: 0:X2=y; 0:X1=x; 0:X0=1; 1:X7=x; 1:X4=z;

1:X2=2; 1:X1=y; 1:X0=0; 1:X3=0; 1:X6=0; 2:X4=z;

2:X3=1; 2:X1=y; 2:X0=0; z=0; y=0; x=0;

MP+dmb.sy+fri-[rf-addr-rf]-addr AArch64

Final: 1:X0=1; 1:X3=1; 1:X6=1; 2:X0=2; y=2;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
sd t2, 0(t1) //e
ld fp, 0(s1) //f
xor a0, fp, fp
add a3, a2, a0
ld a1, 0(a3) //g

Thread 1
ld t0, 0(t1) //h
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //m

Thread 2

Initial state: 0:x7=y; 0:x6=x; 0:x5=1; 1:x12=x;

1:x9=z; 1:x7=2; 1:x6=y; 1:x5=0; 1:x8=0; 1:x11=0;

2:x9=z; 2:x8=1; 2:x6=y; 2:x5=0; z=0; y=0; x=0;

MP+fence.rw.rw+fri-[rf-addr-rf]-addr RISC-V

Final: 1:x5=1; 1:x8=1; 1:x11=1; 2:x5=2; y=2;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
std r3,0(r2)//e
ld r4,0(r5) //f
xor r6,r4,r4
ldx r7,r6,r8//g

Thread 1
ld r1,0(r2) //h
xor r3,r1,r1
stdx r4,r3,r5//m

Thread 2

Initial state: 0:r3=y; 0:r2=x; 0:r1=1; 1:r8=x; 1:r5=z;

1:r3=2; 1:r2=y; 1:r1=0; 1:r4=0; 1:r7=0; 2:r5=z;

2:r4=1; 2:r2=y; 2:r1=0; z=0; y=0; x=0;

MP+sync+fri-[rf-addr-rf]-addr Power

Final: 1:r1=1; 1:r4=1; 1:r7=1; 2:r1=2; y=2;

H/W: -

Figure 16.36: Litmus test MP+fen+fri-[rf-addr-rf]-addr

(a) has been performed, because of the fence between the two writes, and therefore the write
of 3 to x (a) cannot be coherence-after the write of 2 to x (f).

A hardware implementation with the write subsumption optimisation could notice that even-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 153

STR X0,[X1]Wx=3a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1e:STR X4,[X3]

Wx=2f:

Thread 1

data
co

co

rf

co

STR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3] //e
STR X4,[X3] //f

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=3; 1:X4=2; 1:X3=x;

1:X1=y; 1:X0=0; y=0; x=0;

S+dmb.sy+data-wsi AArch64

Final: 1:X0=1; y=1; x=2;

H/W: NNN----NNNNN-NN-N

sd t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(fp) //f
ld a0, 0(fp) //g

Thread 1

Initial state: 0:x8=y; 0:x7=1; 0:x6=x;

0:x5=3; 1:x9=2; 1:x8=x; 1:x6=y;

1:x5=0; 1:x10=0; y=0; x=0;

S+fence.rw.rw+data-wsi RISC-V

Final: 1:x5=1; 1:x10=3;

H/W: -

std r1,0(r2)//a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
std r6,0(r5)//f
ld r7,0(r5) //g

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=3; 1:r6=2; 1:r5=x;

1:r4=1; 1:r2=y; 1:r1=0; 1:r7=0;

y=0; x=0;

S+sync+data-wsi Power

Final: 1:r1=1; 1:r7=3;

H/W: -

Figure 16.37: Litmus test S+fen+data-wsi

tually the write of 1 to x (e) would be overwritten (subsumed) by the program-order succeeding
write of 2 to x (f), and therefore it could decide to discard the write of 1 to x (e), before per-
forming the read from y (d) that feeds into e’s data. After discarding the write of 1 to x (e),
it could immediately perform the write of 2 to x (f), before any of the stores of Thread 0 take
effect. We have not observed this behaviour on any hardware implementation we have tested.

Notice that S+fen+data appears as a sub-execution in the execution of S+fen+data-wsi. As

STR X0,[X1]Wx=2a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1e:

Thread 1

dataco rf

STR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//e

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=2; 1:X3=x; 1:X1=y;

1:X0=0; y=0; x=0;

S+dmb.sy+data AArch64

Final: 1:X0=1; x=2;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=2; 1:x8=x; 1:x6=y;

1:x5=0; y=0; x=0;

S+fence.rw.rw+data RISC-V

Final: 1:x5=1; x=2;

H/W: N

std r1,0(r2)//a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=2; 1:r5=x; 1:r4=1;

1:r2=y; 1:r1=0; y=0; x=0;

S+sync+data Power

Final: 1:r1=1; x=2;

H/W: N

Figure 16.38: Litmus test S+fen+data

S+fen+data is forbidden by any architecture that respects coherence and data dependencies,
modelling such an architecture that also allows S+fen+data-wsi in an axiomatic style is challeng-
ing. For example, in the Herd axiomatic framework [?], the cycle that makes the S+fen+data
execution forbidden, will also be present in S+fen+data-wsi, and therefore it is also forbidden.

The Armv8-A, RISC-V and Power architectures all forbid S+fen+data-wsi. The Armv7-A ar-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 154

chitecture allows the S+fen+data-wsi behaviour, though we have never observed it on Armv7-A
implementations. Originally Armv8-A also allowed S+fen+data-wsi, but it was retroactively
changed when Arm published the axiomatic memory model.

It is possible that hardware implementations implement the subsumed write optimisation in
ways that are not observable, or ways that are observable but can also be explained by other
mechanisms. For example, the behaviour of MP+fen+data-wsi-rfi-ctrlifen, that was discussed in

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wz=1e:STR X4,[X3]

Wz=2f:LDR X5,[X3]

Rz=2g:CBNZ X5,LC00ISBLDR X6,[X7]

Rx=0m:

Thread 1

data

ctrl+ifen

co

rf

rf

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3] //e
STR X4,[X3] //f
LDR X5,[X3] //g
CBNZ X5,LC00
LC00:
ISB //h
LDR X6,[X7] //m

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X7=x; 1:X4=2; 1:X3=z; 1:X1=y; 1:X0=0;

1:X5=0; 1:X6=0; z=0; y=0; x=0;

MP+dmb.sy+data-wsi-rfi-ctrlisb
AArch64

Final: 1:X0=1; 1:X5=2; 1:X6=0; z=2;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(fp) //f
ld a0, 0(fp) //g
bne a0, zero, LC00
LC00:
fence.i
ld a1, 0(a2) //h

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x12=x; 1:x9=2; 1:x8=z; 1:x6=y; 1:x5=0;

1:x10=0; 1:x11=0; z=0; y=0; x=0;

MP+fence.rw.rw+data-wsi-rfi-ctrlfencei
RISC-V

Final: 1:x5=1; 1:x10=2; 1:x11=0; z=2;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
std r6,0(r5)//f
ld r7,0(r5) //g
cmpw r7,r7
bc 12,2,4
LC00:
isync //h
ld r8,0(r9) //m

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r9=x; 1:r6=2; 1:r5=z;

1:r4=1; 1:r2=y; 1:r1=0; 1:r7=0;

1:r8=0; z=0; y=0; x=0;

MP+sync+data-wsi-rfi-ctrlisync
Power

Final: 1:r1=1; 1:r7=2; 1:r8=0; z=2;

H/W: -

Figure 16.39: Litmus test MP+fen+data-wsi-rfi-ctrlifen

§16.1.9, can also be explained by the write e being subsumed by the write f before the read d is
satisfied.

A minor variation of MP+fen+data-wsi-rfi-ctrlifen, MP+fen+data-[rf-fr]-rfi-ctrlifen, is allowed
by write forwarding from a non-speculative write, and is not allowed (by architectures with
a strong instruction-fence, such as Arm and Power) by write subsumption. The addition of
a third thread that reads the first value that Thread 1 writes to z has no effect on the non-
speculative write forwarding explanation, but since that value is now observed by another thread
(Thread 2), it can no longer be discarded (i.e. write subsumption cannot be used to exhibit the
relaxed behaviour). This shows that write subsumption does not subsume write forwarding from
a non-speculative write. For the reverse, S+fen+data-wsi (discussed above) has no instance of
a load that succeeds a store to the same location, and therefore it cannot be explained by write
forwarding from a non-speculative write. Hence, write forwarding from a non-speculative write
does not subsume write subsumption.

Modelling write subsumption in mixed-size settings is complicated as in general it is possible
that a write is subsumed by a set of writes, each one overwriting different bytes of the subsumed
write.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 155

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wz=1e:STR X4,[X3]

Wz=2f:LDR X5,[X3]

Rz=2g:CBNZ X5,LC00ISBLDR X6,[X7]

Rx=0m:

Thread 1

data

ctrl+ifen

LDR X0,[X1]Rz=1n:
Thread 2

co

rf rf

rf

rf

fr

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3] //e
STR X4,[X3] //f
LDR X5,[X3] //g
CBNZ X5,LC00
LC00:
ISB //h
LDR X6,[X7] //m

Thread 1

LDR X0,[X1] //n

Thread 2

Initial state: 0:X2=y; 0:X1=x; 0:X0=1; 1:X7=x;

1:X4=2; 1:X3=z; 1:X1=y; 1:X0=0; 1:X5=0;

1:X6=0; 2:X1=z; 2:X0=0; z=0; y=0; x=0;

MP+dmb.sy+data-[rf-fr]-rfi-ctrlisb
AArch64

Final: 1:X0=1; 1:X5=2; 1:X6=0; 2:X0=1; z=2;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
sd s1, 0(fp) //f
ld a0, 0(fp) //g
bne a0, zero, LC00
LC00:
fence.i
ld a1, 0(a2) //h

Thread 1

ld t0, 0(t1) //m

Thread 2

Initial state: 0:x7=y; 0:x6=x; 0:x5=1; 1:x12=x;

1:x9=2; 1:x8=z; 1:x6=y; 1:x5=0; 1:x10=0;

1:x11=0; 2:x6=z; 2:x5=0; z=0; y=0; x=0;

MP+fence.rw.rw+data-[rf-fr]-rfi-ctrlfencei
RISC-V

Final: 1:x5=1; 1:x10=2; 1:x11=0; 2:x5=1; z=2;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5) //e
std r6,0(r5) //f
ld r7,0(r5) //g
cmpw r7,r7
bc 12,2,4
LC00:
isync //h
ld r8,0(r9) //m

Thread 1

ld r1,0(r2) //n

Thread 2

Initial state: 0:r3=y; 0:r2=x; 0:r1=1;

1:r9=x; 1:r6=2; 1:r5=z; 1:r4=1;

1:r2=y; 1:r1=0; 1:r7=0; 1:r8=0;

2:r2=z; 2:r1=0; z=0; y=0; x=0;

MP+sync+data-[rf-fr]-rfi-ctrlisync
Power

Final: 1:r1=1; 1:r7=2; 1:r8=1;

2:r1=1; z=2;

H/W: -

Figure 16.40: Litmus test MP+fen+data-[rf-fr]-rfi-ctrlifen

16.1.13 Symbolic forwarding

This subsection explores the boundaries of what could be architecturally allowed, and it is not
clear if any hardware implementation implements such mechanisms.

A hardware implementation may identify a store instruction that is succeeded by a load
instruction, where the addresses of both memory accesses are resolved, and to the same location,
but the store has a data dependency that is still unresolved. In such a state the hardware
implementation can already decide to forward the store to the succeeding load, even though the
actual value of the store is not yet known. We call this symbolic forwarding.

Consider for example S+fen+data-rfi-fri, which is very similar to S+fen+data-wsi from the
discussion about write subsumption, with the addition of a load between the two stores of
Thread 1. Recall that such a load would normally prevent the first store from being subsumed
by the second store. By deciding that the first store will be forwarded to the intervening load,
before the data dependency is resolved, the hardware implementation could subsume the first
store by the second store and allow the second store to be propagated to Thread 0. When the
data dependency of the first store is resolved, the forwarding is complete, and the first store is
never propagated to other threads.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 156

STR X0,[X1]Wx=3a:DMB SYSTR X2,[X3]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0ADD X2,X2,#1STR X2,[X3]

Wx=1e:LDR X4,[X3]

Rx=1f:STR X5,[X3]

Wx=2g:LDR X6,[X3]

Rx=3h:

Thread 1

data

po

co
rf

rf

rf

fr

co

STR X0,[X1]//a
DMB SY //b
STR X2,[X3]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
ADD X2,X2,#1
STR X2,[X3]//e
LDR X4,[X3]//f
STR X5,[X3]//g
LDR X6,[X3]//h

Thread 1

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=3; 1:X5=2; 1:X3=x;

1:X1=y; 1:X0=0; 1:X4=0; 1:X6=0;

y=0; x=0;

S+dmb.sy+data-rfi-friAArch64

Final: 1:X0=1; 1:X4=1; 1:X6=3;

H/W: NNN----NNNNN-NN-N

sd t0, 0(t1) //a
fence rw, rw //b
sd t2, 0(fp) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
ori t2, t2, 1
sd t2, 0(fp) //e
ld s1, 0(fp) //f
sd a0, 0(fp) //g
ld a1, 0(fp) //h

Thread 1

Initial state: 0:x8=y; 0:x7=1;

0:x6=x; 0:x5=3; 1:x10=2; 1:x8=x;

1:x6=y; 1:x5=0; 1:x9=0; 1:x11=0;

y=0; x=0;

S+fence.rw.rw+data-rfi-fri
RISC-V

Final: 1:x5=1; 1:x9=1; 1:x11=3;

H/W: -

std r1,0(r2)//a
sync //b
std r3,0(r4)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
add r3,r3,r4
std r3,0(r5)//e
ld r6,0(r5) //f
std r7,0(r5)//g
ld r8,0(r5) //h

Thread 1

Initial state: 0:r4=y; 0:r3=1;

0:r2=x; 0:r1=3; 1:r7=2; 1:r5=x;

1:r4=1; 1:r2=y; 1:r1=0; 1:r6=0;

1:r8=0; y=0; x=0;

S+sync+data-rfi-fri Power

Final: 1:r1=1; 1:r6=1; 1:r8=3;

H/W: -

Figure 16.41: Litmus test S+fen+data-rfi-fri

In the non-mixed-size context, symbolic forwarding is only observable in conjunction with
write subsumption. The Armv7-A architecture allowed that behaviour, but it is not allowed by
the Armv8-A, Power, and RISC-V architectures.

16.1.14 Multi-Copy Atomicity

According to Collier [?], who introduced the term multi-copy atomicity: “multicopy atomicity
requires that all copies of an operand change value at the same instant”. Other authors use
a more relaxed definition of multi-copy atomicity, as we do here: an architecture is said to
be multi-copy atomic if it requires implementations to make each memory write appear as if
they become visible to (i.e. can be read from) all hardware threads at the same time, except
for the thread from which the write originated from, which might read from the write before
the other threads can. The latter definition makes a more useful distinction between practical
architectures, as will be explained at the end of this subsection. The Armv8-A Architecture
Reference Manual uses Collier’s definition of multi-copy atomicity, and calls the more relaxed
definition, in which a thread might read from its own writes before other threads can, other-
multi-copy atomicity [?, p. 94].

Although programs do not usually have a direct way of observing when a memory write
becomes visible to each thread, a program can, in some cases, observe the relative order in
which memory writes become visible. Consider for example IRIW+addrs (Independent Reads
of Independent Writes, Fig. 16.42). In this test, Threads 0 and 2 each perform a single write,
to x and y respectively. Threads 1 and 3 both read from both of those locations, with address
dependencies from the first load to the second load, to keep their execution in-order. Thread 1

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 157

STR X0,[X1]Wx=1a:
Thread 0

LDR X0,[X1]Rx=1b:EOR X2,X0,X0LDR X3,[X4,X2]

Ry=0c:

Thread 1

addr

STR X0,[X1]Wy=1d:
Thread 2

LDR X0,[X1]Ry=1e:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0f:

Thread 3

addr

rf rf

rf
fr rffr

STR X0,[X1]//a

Thread 0
LDR X0,[X1] //b
EOR X2,X0,X0
LDR X3,[X4,X2]//c

Thread 1

STR X0,[X1]//d

Thread 2
LDR X0,[X1] //e
EOR X2,X0,X0
LDR X3,[X4,X2]//f

Thread 3

Initial state: 0:X1=x; 0:X0=1;

1:X4=y; 1:X1=x; 1:X0=0; 1:X3=0;

2:X1=y; 2:X0=1; 3:X4=x; 3:X1=y;

3:X0=0; 3:X3=0; y=0; x=0;

IRIW+addrs AArch64

Final: 1:X0=1; 1:X3=0; 3:X0=1;

3:X3=0;

H/W: NNNNNN-NN---NNN-N

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //c

Thread 1

sd t0, 0(t1) //d

Thread 2
ld t0, 0(t1) //e
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //f

Thread 3

Initial state: 0:x6=x; 0:x5=1;

1:x9=y; 1:x6=x; 1:x5=0; 1:x8=0;

2:x6=y; 2:x5=1; 3:x9=x; 3:x6=y;

3:x5=0; 3:x8=0; y=0; x=0;

IRIW+addrs RISC-V

Final: 1:x5=1; 1:x8=0; 3:x5=1;

3:x8=0;

H/W: N

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
xor r3,r1,r1
ldx r4,r3,r5//c

Thread 1

std r1,0(r2)//d

Thread 2
ld r1,0(r2) //e
xor r3,r1,r1
ldx r4,r3,r5//f

Thread 3

Initial state: 0:r2=x; 0:r1=1;

1:r5=y; 1:r2=x; 1:r1=0; 1:r4=0;

2:r2=y; 2:r1=1; 3:r5=x; 3:r2=y;

3:r1=0; 3:r4=0; y=0; x=0;

IRIW+addrs Power

Final: 1:r1=1; 1:r4=0; 3:r1=1;

3:r4=0;

H/W: -

Figure 16.42: Litmus test IRIW+addrs

reads x first, and y second, and Thread 3 reads y first, and x second. An execution where
Thread 1 reads 1 for x and 0 for y while Thread 3 reads 1 for y and 0 for x, implies that the
write of Thread 0 became visible to Thread 1 before the write of Thread 2 did, and the write of
Thread 2 became visible to Thread 3 before the write of Thread 0 did. Assume for a contradiction
that this execution is multi-copy atomic. By the values that Thread 1 read, the write of Thread 0
became visible (to all threads) before the write of Thread 2 did but, by the values that Thread 3
read, the write of Thread 2 became visible (to all threads) before the write of Thread 0 did. This
is of course a contradiction and therefore this execution is not multi-copy atomic.

The Power architecture, which is not multi-copy atomic, allows hardware implementations
to make the write of Thread 0 to x visible to Thread 1 before making it visible to Thread 3,
and make the write of Thread 2 to y visible to Thread 3 before making it visible to Thread 1.
Thread 1 can then read from the write of Thread 0, resolve the address dependency and read
the initial value of y, while Thread 3 reads from the write of Thread 2, resolves the address
dependency and reads the initial value of x. Here, Thread 1 observes the write of Thread 0 to x
before observing the write of Thread 2 to y, while Thread 3 observes the write of Thread 2 to y
before observing the write of Thread-0 to x.

The Armv8-A architecture, as originally specified in the first public Beta release of the
Armv8-A reference manual [?] from September 2013, was also a non-multi-copy atomic archi-
tecture, and as such it allowed IRIW+addrs. This was also the case in the first non-Beta (EAC)
release of the reference manual in June 2016 [?]. Starting from the version of the reference
manual that was released on March 2017 [?] the architecture has changed to be multi-copy
atomic (other-multi-copy atomic in the manual’s terms), and therefore IRIW+addrs is no longer
allowed by Armv8-A. As all public implementations of the Armv8-A architecture, up to that
time, were multi-copy atomic (i.e., they were all stronger than the architecture required), this
change to the architecture did not render those implementations unsound.

This change of the Armv8-A architecture, from non-multi-copy atomic to multi-copy atomic,
was informed in part by observations from the above-cited work. Allowing non-multi-copy

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 158

atomic behaviour added substantial complexity to the memory model, especially combined with
the previous architectural desire for a model providing as much implementation freedom as pos-
sible, and the Armv8-A store-release/load-acquire instructions. In the Arm context, the potential
performance benefits were not thought to justify the complexity of implementation, validation,
and reasoning.

The Armv7-A architecture is non-multi-copy atomic and allows IRIW+addrs. The RISC-V
architecture is multi-copy atomic and so it forbids IRIW+addrs.

For a long time it was thought that the IRIW shape does not come up in practice, until a
code from the Java virtual machine [?] was discovered to exhibit it. The WRC (Write-to-Read
Causality) [?] shape, which is also affected by multi-copy atomicity, might be more common
than IRIW. Consider WRC+addrs, this test is very similar to MP, except that in WRC+addrs the

STR X0,[X1]Wx=1a:
Thread 0

LDR X0,[X1]Rx=1b:EOR X2,X0,X0STR X3,[X4,X2]

Wy=1c:

Thread 1

addr

LDR X0,[X1]Ry=1d:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0e:

Thread 2

addr

rf

rf

fr
rf

STR X0,[X1]//a

Thread 0
LDR X0,[X1] //b
EOR X2,X0,X0
STR X3,[X4,X2]//c

Thread 1

LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 2

Initial state: 0:X1=x; 0:X0=1;

1:X4=y; 1:X3=1; 1:X1=x; 1:X0=0;

2:X4=x; 2:X1=y; 2:X0=0; 2:X3=0;

y=0; x=0;

WRC+addrs AArch64

Final: 1:X0=1; 2:X0=1; 2:X3=0;

H/W: NNNNNN-NNN-NNNN-N

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //c

Thread 1

ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //e

Thread 2

Initial state: 0:x6=x; 0:x5=1; 1:x9=y;

1:x8=1; 1:x6=x; 1:x5=0; 2:x9=x;

2:x6=y; 2:x5=0; 2:x8=0; y=0; x=0;

WRC+addrs RISC-V

Final: 1:x5=1; 2:x5=1; 2:x8=0;

H/W: N

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
xor r3,r1,r1
stdx r4,r3,r5//c

Thread 1

ld r1,0(r2) //d
xor r3,r1,r1
ldx r4,r3,r5 //e

Thread 2

Initial state: 0:r2=x; 0:r1=1;

1:r5=y; 1:r4=1; 1:r2=x; 1:r1=0;

2:r5=x; 2:r2=y; 2:r1=0; 2:r4=0;

y=0; x=0;

WRC+addrs Power

Final: 1:r1=1; 2:r1=1; 2:r4=0;

H/W: Y

Figure 16.43: Litmus test WRC+addrs

first thread is split to two threads, the first one doing the first store, to x, and the second one
reading from x, and then doing the store to y, with an address dependency from the read of x,
to keep those two accesses locally in order. The third thread then (similarly to the second thread
of MP) reads from y and x, with an address dependency between the reads to keep them locally
in order. Despite the local order of the accesses in each thread, in a non-multi-copy architecture
the read of x in the third thread can return 0 while the read of y in the same thread returns 1.
In such an execution, the third thread observes the write to x (by Thread 0) after the write to y
(by Thread 1), hence the write to y must become visible to all threads (except Thread 1) before
the write to x. This contradicts the address dependency in the second thread, that requires
Thread 1 to observe the write to x before performing the write to y, which means the write to y
can become visible only after the write to x has already become visible.

WRC+addrs is allowed by the Power and Armv7-A architectures, and forbidden by the
Armv8-A and RISC-V architectures.

For non-multi-copy atomic architectures, non-multi-copy atomic behaviour can be exhibited
when some threads share caches or store-buffers that are not shared with other threads. For
example, a multi-processor machine with 4 cores might have two separate L2 caches, the first
one shared by the first two cores and the second one shared by the two other cores. In such
configuration, some cache protocols will allow the first core to read from L2 values that were

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 159

written by the second core, while the other cores can still read older values from their L2 cache.
When similar cache configurations are used in multi-copy atomic implementations the cache
protocol has to perform additional synchronisation to guarantee that when a value is written to
one of the L2 caches, old values in the other L2 caches are no longer accessible.

A similar example is simultaneous multithreading (SMT), where a single core executes mul-
tiple hardware threads at the same time. If the core has an L1 cache that is not shared with
any other core, the hardware threads running on a single core share that core’s L1 cache, and
so those hardware threads can potentially observe the writes of each other while other threads
can still observe older values. SMT in a multi-copy atomic implementation can, for example, tag
cache lines to prevent sharing of cache lines between hardware threads.

Non-multi-copy atomicity can also be exhibited on system with symmetric caches, where a
shared cache is always shared by all cores.

Terminology

Returning to the terminology around multicopy atomicity, note that SB+rfi-addrs is forbidden by

STR X0,[X1]Wx=1a:LDR X2,[X1]

Rx=1b:EOR X3,X2,X2LDR X4,[X5,X3]

Ry=0c:

Thread 0

addr

STR X0,[X1]Wy=1d:LDR X2,[X1]

Ry=1e:EOR X3,X2,X2LDR X4,[X5,X3]

Rx=0f:

Thread 1

addr

rf rf

rf
rf

frfr

STR X0,[X1] //a
LDR X2,[X1] //b
EOR X3,X2,X2
LDR X4,[X5,X3]//c

Thread 0
STR X0,[X1] //d
LDR X2,[X1] //e
EOR X3,X2,X2
LDR X4,[X5,X3]//f

Thread 1

Initial state: 0:X5=y; 0:X1=x; 0:X0=1;

0:X2=0; 0:X4=0; 1:X5=x; 1:X1=y;

1:X0=1; 1:X2=0; 1:X4=0; y=0; x=0;

SB+rfi-addrs AArch64

Final: 0:X2=1; 0:X4=0; 1:X2=1; 1:X4=0;

H/W: -----------------

sd t0, 0(t1) //a
ld t2, 0(t1) //b
xor fp, t2, t2
add a1, a0, fp
ld s1, 0(a1) //c

Thread 0
sd t0, 0(t1) //d
ld t2, 0(t1) //e
xor fp, t2, t2
add a1, a0, fp
ld s1, 0(a1) //f

Thread 1

Initial state: 0:x10=y; 0:x6=x;

0:x5=1; 0:x7=0; 0:x9=0; 1:x10=x;

1:x6=y; 1:x5=1; 1:x7=0; 1:x9=0;

y=0; x=0;

SB+rfi-addrs RISC-V

Final: 0:x7=1; 0:x9=0; 1:x7=1;

1:x9=0;

H/W: N

std r1,0(r2)//a
ld r3,0(r2) //b
xor r4,r3,r3
ldx r5,r4,r6//c

Thread 0
std r1,0(r2)//d
ld r3,0(r2) //e
xor r4,r3,r3
ldx r5,r4,r6//f

Thread 1

Initial state: 0:r6=y; 0:r2=x;

0:r1=1; 0:r3=0; 0:r5=0; 1:r6=x;

1:r2=y; 1:r1=1; 1:r3=0; 1:r5=0;

y=0; x=0;

SB+rfi-addrs Power

Final: 0:r3=1; 0:r5=0; 1:r3=1;

1:r5=0;

H/W: Y

Figure 16.44: Litmus test SB+rfi-addrs

Collier’s definition of multi-copy atomicity, and is allowed by the more relaxed definition. This
test is similar to IRIW+addrs, only that Thread 0 and Thread 1 are merged to a single thread,
and so are Thread 2 and Thread 3.

Armv8-A, RISC-V, and x86 (TSO) all allow SB+rfi-addrs, and forbid the IRIW+addrs, and
therefore are non-multi-copy atomic by Collier’s definition, but are multi-copy atomic by the
more relaxed definition (other-multi-copy atomic in Armv8-A terms). The Power architecture
allows IRIW+addrs (and SB+rfi-addrs), and therefore Power is non-multi-copy atomic by both
definitions. The following table indicates which architectures (and SC) are MCA by the different

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 160

definitions.

Collier MCA / Arm OMCA our MCA
SC yes yes
x86 (TSO) no yes
Armv8-A, RISC-V no yes
Armv7-A no no
Power no no

If an architecture intends to allow implementations to use store-buffers effectively, which
is in fact one of the oldest and most widely used hardware optimisations, and is usually the
intention of any non-SC architecture, this architecture can not be multi-copy atomic by Collier’s
definition, but can still be multi-copy atomic by the more relaxed definition (as Armv8-A, RISC-V
and x86 are). Hence, Collier’s definition partitions the architectures in a non-useful way, which
is why the more relaxed definition is preferred by other authors and here.

Cumulativity of barriers

The presence of an appropriate barrier between two memory writes of a thread (such as in
MP+fen+po for example), forces the memory writes to become visible to all threads in-order. In
non-multi-copy atomic architectures the barrier can also have an ordering effect on writes from
other threads. A memory barrier is said to be A-cumulative if the barrier forces any write from
other threads that was observed (i.e. read from, or by A-cumulativity of another barrier) by the
thread that performs the barrier, before the barrier was performed, to become visible to all other
threads before any write that succeeds the barrier in program-order.

In WRC+fen+addr, for example, Thread 1 observes the write of Thread 0 to x, by reading

STR X0,[X1]Wx=1a:
Thread 0

LDR X0,[X1]Rx=1b:DMB SYSTR X2,[X3]

Wy=1d:

Thread 1

fen

LDR X0,[X1]Ry=1e:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0f:

Thread 2

addr

rf

rf
rf

fr

STR X0,[X1]//a

Thread 0
LDR X0,[X1] //b
DMB SY //c
STR X2,[X3] //d

Thread 1

LDR X0,[X1] //e
EOR X2,X0,X0
LDR X3,[X4,X2]//f

Thread 2

Initial state: 0:X1=x; 0:X0=1;

1:X3=y; 1:X2=1; 1:X1=x; 1:X0=0;

2:X4=x; 2:X1=y; 2:X0=0; 2:X3=0;

y=0; x=0;

WRC+dmb.sy+addr AArch64

Final: 1:X0=1; 2:X0=1; 2:X3=0;

H/W: NNNNNN-NNN-NNNN-N

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
fence rw, rw //c
sd t2, 0(fp) //d

Thread 1

ld t0, 0(t1) //e
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //f

Thread 2

Initial state: 0:x6=x; 0:x5=1; 1:x8=y;

1:x7=1; 1:x6=x; 1:x5=0; 2:x9=x;

2:x6=y; 2:x5=0; 2:x8=0; y=0; x=0;

WRC+fence.rw.rw+addr RISC-V

Final: 1:x5=1; 2:x5=1; 2:x8=0;

H/W: N

std r1,0(r2)//a

Thread 0
ld r1,0(r2) //b
sync //c
std r3,0(r4)//d

Thread 1

ld r1,0(r2) //e
xor r3,r1,r1
ldx r4,r3,r5//f

Thread 2

Initial state: 0:r2=x; 0:r1=1;

1:r4=y; 1:r3=1; 1:r2=x; 1:r1=0;

2:r5=x; 2:r2=y; 2:r1=0; 2:r4=0;

y=0; x=0;

WRC+sync+addr Power

Final: 1:r1=1; 2:r1=1; 2:r4=0;

H/W: -

Figure 16.45: Litmus test WRC+fen+addr

from it, before it performs the memory barrier, and therefore (if the barrier is A-cumulative)
when Thread 2 reads from y, the write of Thread 0 to x must already be visible to Thread 2, and
therefore the following read from x cannot return 0.

As the Power sync barrier is A-cumulative, the Power architecture forbids the WRC+fen+addr
behaviour. The Armv8-A and RISC-V architectures also forbid this behaviour, but as those are

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 161

multi-copy atomic architectures, the local ordering of the barrier is enough to forbid this be-
haviour for those architectures, in the same way that the address dependency in WRC+addrs
did.

A memory barrier is said to be B-cumulative if the barrier forces any write that precedes the
barrier in program-order to become visible to all threads before any other write that is observed
by some other thread after a write that succeeds the barrier in program-order.

To see the effects of B-cumulativity, consider the ISA2+fen+addr+addr litmus test. This test

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:EOR X2,X0,X0STR X3,[X4,X2]

Wz=1e:

Thread 1

addr

LDR X0,[X1]Rz=1f:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0g:

Thread 2

addrrf rf
rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
EOR X2,X0,X0
STR X3,[X4,X2]//e

Thread 1

LDR X0,[X1] //f
EOR X2,X0,X0
LDR X3,[X4,X2]//g

Thread 2

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=z; 1:X3=1; 1:X1=y;

1:X0=0; 2:X4=x; 2:X1=z; 2:X0=0;

2:X3=0; z=0; y=0; x=0;

ISA2+dmb.sy+addr+addr
AArch64

Final: 1:X0=1; 2:X0=1; 2:X3=0;

H/W: NNNNNN-NNN-NNNN-N

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
xor t2, t0, t0
add a0, s1, t2
sd fp, 0(a0) //e

Thread 1

ld t0, 0(t1) //f
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //g

Thread 2

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x9=z; 1:x8=1; 1:x6=y; 1:x5=0;

2:x9=x; 2:x6=z; 2:x5=0; 2:x8=0; z=0;

y=0; x=0;

ISA2+fence.rw.rw+addr+addr
RISC-V

Final: 1:x5=1; 2:x5=1; 2:x8=0;

H/W: N

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
stdx r4,r3,r5//e

Thread 1

ld r1,0(r2) //f
xor r3,r1,r1
ldx r4,r3,r5 //g

Thread 2

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r5=z; 1:r4=1; 1:r2=y;

1:r1=0; 2:r5=x; 2:r2=z; 2:r1=0;

2:r4=0; z=0; y=0; x=0;

ISA2+sync+addr+addr Power

Final: 0:r1=1; 2:r1=1; 2:r4=1;

H/W: -

Figure 16.46: Litmus test ISA2+fen+addr+addr

is somewhat similar to MP, with the second thread of MP split over two threads, one that reads
from y and then writes to a new location z, and a second thread that reads from z and then
reads from x, with address dependencies in those two threads to keep the memory accesses
locally in-order, and a barrier in Thread 0. The write to z of Thread 1 can only be performed
after the read from y by the same thread, because of the address dependency between the two
memory accesses. Hence, the write to z can be performed only after the write of Thread 0 to x
became visible to Thread 1. Therefore, if the barrier in Thread 0 is B-cumulative, the write of
Thread 0 to x must become visible before the write to z for Thread 2, and therefore if the read
of z by Thread 2 returns 1, the following read of x cannot return 0.

As the Power sync barrier is B-cumulative, the Power architecture forbids this behaviour. The
Armv8-A and the RISC-V architectures also forbid this behaviour, but again, as those architec-
tures are multi-copy atomic, the local ordering of the barrier is enough to explain that.

16.1.15 Atomic Memory Modification

The Armv8-A, RISC-V, and Power architectures were all originally conceived as RISC architec-
tures. Principally, instructions that perform multiple memory accesses are counter to the RISC
principles, and even more so, instructions that do multiple memory accesses atomically (i.e.,
no other memory access can be observed to be performed between the memory accesses of the
atomic instruction). Instead, RISC architectures such as Arm, Power, and RISC-V, used to only
offer a pair of special load and store instructions that when performed successfully guarantee

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 162

some atomicity between the accesses of the load and store: load-exclusive (LDXR) and store-
exclusive (STXR) in Arm; load-and-reserve (lwarx) and store-conditional (stwcx) in Power; and
load-reserved (LR) and store-conditional (SC) in RISC-V. Those architectures also provide vari-
ants of those instructions, with different access sizes and other attributes. To the best of the
author’s knowledge, this mechanism was first designed for the S-1 AAP multiprocessor; there
the special instructions are called sync-load and sync-store [?]. Note that in some older ar-
chitectures, the similarly named conditional-store is a read-modify-write instruction, different
from the Power and RISC-V store-conditional, though it is used to achieve similar synchronisa-
tion goals, in different ways. The special load instruction is also sometimes called load-lock,
or load-link. In this text, the special load and store instructions are uniformly referred to as
load-exclusive and store-exclusive, respectively, regardless of the architecture.

The AArch64 assembly code in Fig. 16.47 uses load-exclusive and store-exclusive instructions
to atomically increment the value in memory pointed by X1, by the value held in X2. The code
starts by reading the value from memory into register X0, using a load-exclusive instruction
(LDXR). The code then adds the value of X2 to X0, and attempts to store the result back to
memory, using a store-exclusive instruction (STXR). This can either succeed or fail. If it succeeds,
the store-exclusive writes 0 to register X3, and guarantees that the memory write of the store-
exclusive is the immediate successor of the write from which the load-exclusive read from, in
the coherence-order, and that no other write will ever be placed between them in the future. If
the store-exclusive fails, the store-exclusive writes 1 to register X3. The conditional branch that
follows the store-exclusive causes this sequence of instructions to repeat until the store-exclusive
succeeds.

loop:

LDXR X0,[X1]

ADD X0,X0,X2

STXR X3,X0,[X1]

CBNZ X3,loop

Figure 16.47:

Note that in general, in some architecture, the success of a store-exclusive does not prohibit
writes from the same thread to intervene in the coherence order between the write the load-
exclusive read from and the store-exclusive write.

A store-exclusive is paired with the most recent program-order preceding load-exclusive (to
the same location or not), if such a load exists, and there are no other store-conditional (success-
ful, unsuccessful, or undetermined, to any location) between them. An unpaired atomic store
will always fail in Arm, Power, and RISC-V.

A simple implementation of load-exclusive/store-exclusive can leverage the cache protocol.
When the load-exclusive is performed, the cache line holding the relevant memory location is
marked as owned by the thread performing the load-exclusive and an additional flag indicates
that this line is also reserved. Any operation that normally changes the ownership (e.g. a write
by a different thread) also clears the reservation flag. When the store-exclusive is executed, if
the reservation flag is set, the store succeeds, and the reservation flag is cleared. In any other
case the store-exclusive fails.

Note that this implementation, without additional measures, could easily lead to a livelock.
For example, if two threads are executing code similar to the one in Fig. 16.47, the first thread
could perform the load-exclusive first, which would take ownership of the cache line, then,
before the first thread gets to perform its store-exclusive, the second thread could execute its
load-exclusive which would clear the ownership of the first thread (and the reserved flag). This
would cause the store-exclusive of the first thread to fail, and then, before the second thread gets

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 163

to perform its store-exclusive, the first thread could execute its load-exclusive (for the second
time) which would clear the ownership of the second thread (and the reserved flag). This would
cause the store-exclusive of the second thread to fail, and so on.

To allow programmers to avoid livelocks, the Arm and RISC-V architectures specify condi-
tions for eventually making forward progress (which hardware implementations must respect):
ARM Architecture Reference Manual, B2.9.5 Load-Exclusive and Store-Exclusive instruction us-
age restrictions [?, p. 142]; and, RISC-V Instruction Set Manual, 8.2 Load-Reserved/Store-
Conditional Instructions [?, p. 49]. The Power architecture does not make such guarantees as an
architecture, but implementations make their best effort to eventually make forward progress,
and individual implementations can specify their own conditions for forward progress (Power
ISA: 1.7.4.2 Forward Progress [?, p. 820]).

For implementation simplicity, after a load-exclusive is performed, implementations are not
required to track accesses to the exact memory location and size of the load-exclusive, in order to
fail the paired store-exclusive if an intervening access is detected. Instead, an implementation
may track accesses to a larger block of memory, a reservation granule that contains the load-
exclusive access. One side effect of this imprecision is that a store-exclusive can fail because
of an intervening write that is to a different location from the load/store-exclusive accesses.
Semantically this is subsumed by the fact that store-exclusives are allowed to fail arbitrarily.
Another side effect of this, is that the architectures do not require a store-exclusive to fail if it
is paired with a load-exclusive that access a non-overlapping memory location (as that would
require a precise tracking of the load-exclusive access). In the case where the paired load-
exclusive and store-exclusive are to a non-overlapping memory locations, it is not clear what
kind of atomicity is guaranteed, as the write the load-exclusive reads from might not be ordered
with the write of the store-exclusive in the coherence-order. One will normally consider this a
programming error.

In §16.1.3 dependencies were defined in terms of data-flow through registers. As such, a
dependency stems from a memory load instruction, where the value the load instruction writes
to the output register comes from memory, and not from some computation that only depends
on registers. The value that is written to the status register of the store-exclusive instruction is
similarly not the result of a computation that only depends on the input registers, and as such
this register write can be the source of dependencies. In the Power and RISC-V architectures,
data-flow through registers that stems from the status register of a store-exclusive preserves
observable order, and therefore it induces dependencies. In the Arm architecture this data-flow
is not guaranteed to preserve observable order. For example, consider MP+fen+frixx-addr,
where the address dependency in Thread 1 stems from the status register of the store-exclusive.
As the Power and RISC-V architectures require the address dependency to be respected, the
second load of Thread 1 cannot be performed before the store-exclusive, which in turn cannot
be performed (successfully) before the load-exclusive. Together with the barrier in Thread 0 this
makes the MP+fen+frixx-addr behaviour, on Power and RISC-V, forbidden. On Arm, on the other
hand, the address dependency in Thread 1 is not respected as such, and therefore it is valid to
speculate the result of the store-exclusive before it is performed, which allows the second load
of Thread 1 to be satisfied before any of the stores in Thread 0 have been performed, which
makes the behaviour of MP+fen+frixx-addr allowed on Arm.

The reason for the decision to not respect store-exclusive dependencies in Arm is to allow a
microarchitectural optimisation in which a pair of load-exclusive and store-exclusive is replaced
by an atomic read-modify-write operation in memory. When a pair of exclusives is detected
and replaced by a read-modify-write operation, the store-exclusive is guaranteed to succeed
before the read-modify-write access is performed, and therefore 0 can be written to the status
register of the store-exclusive very early, and succeeding instructions in program-order can read
it, effectively breaking any dependency from the status register.

The Power architecture has some additional restrictions on the execution of exclusives that

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 164

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDXR X1,[X0]Rexc y=1d:STXR W2,X1,[X0]

Wexc y=1e:EOR X3,X2,X2LDR X6,[X5,X3]

Rx=0f:

Thread 1

data

addr

co

rf

rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDXR X1,[X0] //d
STXR W2,X1,[X0]//e
EOR X3,X2,X2
LDR X6,[X5,X3] //f

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X5=x; 1:X0=y; 1:X1=0; 1:X6=0; y=0;

x=0;

MP+dmb.sy+frixx-addr AArch64

Final: 1:X1=1; 1:X2=0; 1:X6=0; y=1;

x=1;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
lr.d t1, t0 //d
sc.d t2, t0, t1 //e
xor fp, t2, t2
add s1, s1, fp
ld a0, 0(s1) //f

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x9=x; 1:x5=y; 1:x10=0; 1:x6=0; y=0;

x=0;

MP+fence.rw.rw+frixx-addr
RISC-V

Final: 1:x6=1; 1:x7=0; 1:x10=0; y=1;

x=1;

H/W: -

Figure 16.48: Litmus test MP+fen+frixx-addr

are due to the fact that a hardware thread can only track a single load-exclusive at a time. As
a result, MP+fen+poxx, where the loads of Thread 1 are load-exclusives, is forbidden on Power.
Normally, to exhibit an MP litmus test with a fence between the stores of Thread 0, the second
load of Thread 1 has to be speculated before the first load of Thread 1 is satisfied. In the case of
MP+fen+poxx on Power, the second load cannot be speculated before the first load is satisfied
as both of those loads are load-exclusive and both need to use the reservation facility, of which
only one exists. Hence, only after the first load has finished its use of the reservation facility
(and therefore has already been satisfied), the second load can be satisfied and make use of the
now free reservation facility. Note that this also restricts the execution of store-exclusives: those
must execute in program-order with respect to other store-exclusives, but the propagation of the
writes from those store-exclusives can still make them appear to be executed out-of-order. This
is demonstrated by MP+poxx+addr which is allowed by the Power architecture.

Finally, the Arm architecture forbids write-forwarding from a store-exclusive to a load-
acquire, and the Power and RISC-V architectures forbid write-forwarding from a store-exclusive
altogether. The reason for this restriction is to enable efficient compilation schemes for C atom-
ics. In particular, this is required to preserve the order induced by C release sequences where
the sequence ends with a load-acquire that reads from a read-modify-write (compiled to load-
exclusive/store-exclusive loop), and both operations are from the same thread.

16.1.16 Release/Acquire Memory Accesses

Using barriers to enforce order can be expensive, and using dependencies, in places where
dependencies do not naturally occur, can make the code unnecessarily complicated. Some ar-
chitectures, such as Arm and RISC-V (but not Power), provide special load and store instructions
with release/acquire semantics that can be used to enforce order instead of barriers and depen-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 165

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDXR X1,[X0]Rexc y=1d:STXR W2,X1,[X0]

Wexc y=1e:LDXR X4,[X3]

Rexc x=0f:STXR W5,X4,[X3]

Wexc x=0g:

Thread 1

data

po

data

co

co

rf

rf

fr

fr

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDXR X1,[X0] //d
STXR W2,X1,[X0]//e
LDXR X4,[X3] //f
STXR W5,X4,[X3]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x; 0:X0=1;

1:X3=x; 1:X0=y; 1:X1=0; 1:X2=0;

1:X4=0; 1:X5=0; y=0; x=0;

MP+dmb.sy+poxx AArch64

Final: 1:X1=1; 1:X2=0; 1:X4=0;

1:X5=0; y=1; x=1;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
lr.d t1, t0 //d
sc.d t2, t0, t1 //e
lr.d s1, fp //f
sc.d a0, fp, s1 //g

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x8=x; 1:x5=y; 1:x6=0; 1:x7=0;

1:x9=0; 1:x10=0; y=0; x=0;

MP+fence.rw.rw+poxx RISC-V

Final: 1:x6=1; 1:x7=0; 1:x9=0;

1:x10=0; y=1; x=1;

H/W: -

Figure 16.49: Litmus test MP+fen+poxx

dencies. In general, a store-release instruction will not execute observably out-of-order with
any program-order preceding memory access instruction, and a load-acquire will not execute
observably out-of-order with any program-order succeeding memory access instruction. For ex-
ample, the litmus test MP+poprl+poaqp that has a store-release for the second store of Thread 0,
and a load-acquire for the first load of Thread 1, is forbidden by Arm and RISC-V. The store-
release in Thread 0 must execute in-order with the store that precedes it, and the load-acquire in
Thread 1 must execute in-order with the load that succeeds it. Hence, all the memory accesses
in this litmus test must execute in-order, and therefore, as there are only two threads, a non-SC
behaviour is not possible.

Note that because both Armv8-A and RISC-V are multi-copy atomic, using release/acquire
to enforce thread-local in-order execution is enough to eliminate non-SC behaviour. As such,
WRC+poprl+poaqp, which uses a store-release in Thread 1, and a load-acquire in Thread 2, to
enforce thread-local order in those threads, but uses a regular store in Thread 0, is forbidden by
the Armv8-A and RISC-V architectures. In those architectures, even though the store in Thread 0
is a regular store, the store-release in Thread 1 can only be performed after the load in the same
thread is satisfied, which guarantees that the regular store of Thread 0 has already propagated
to all threads, including Thread 2.

In non-multi-copy atomic architectures, the same WRC+poprl+poaqp might be allowed. The
author is not aware of any such architecture, but the analogous C litmus test in Fig. 16.53 is an
allowed C behaviour, as the C semantics does not assume multi-copy atomicity. This behaviour
can be eliminated by changing the store of Thread 0 to store-release, and changing the load of
Thread 1 to load-acquire.

In fact, the WRC+poprl+poaqp was also forbidden in the Armv8-A architecture when it was
non-MCA, before it transformed to MCA. The reason for this is that the intended semantics of

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 166

LDXR X2,[X0]Rexc x=0a:STXR W3,X1,[X0]

Wexc x=1b:LDXR X5,[X4]

Rexc y=0c:STXR W6,X1,[X4]

Wexc y=1d:

Thread 0

po

po

po

LDR X0,[X1]Ry=1e:EOR X2,X0,X0LDR X3,[X4,X2]

Rx=0f:

Thread 1

addr

rf
rf

rf

rf
fr

fr

fr

LDXR X2,[X0] //a
STXR W3,X1,[X0]//b
LDXR X5,[X4] //c
STXR W6,X1,[X4]//d

Thread 0
LDR X0,[X1] //e
EOR X2,X0,X0
LDR X3,[X4,X2]//f

Thread 1

Initial state: 0:X4=y; 0:X1=1; 0:X0=x;

0:X2=0; 0:X3=0; 0:X5=0; 0:X6=0; 1:X4=x;

1:X1=y; 1:X0=0; 1:X3=0; y=0; x=0;

MP+poxx+addr AArch64

Final: 0:X2=0; 0:X3=0; 0:X5=0; 0:X6=0;

1:X0=1; 1:X3=0; y=1; x=1;

H/W: -----------------

lr.d t2, t0 //a
sc.d fp, t0, t1 //b
lr.d a0, s1 //c
sc.d a1, s1, t1 //d

Thread 0
ld t0, 0(t1) //e
xor t2, t0, t0
add a0, s1, t2
ld fp, 0(a0) //f

Thread 1

Initial state: 0:x9=y; 0:x6=1; 0:x5=x;

0:x7=0; 0:x8=0; 0:x10=0; 0:x11=0;

1:x9=x; 1:x6=y; 1:x5=0; 1:x8=0; y=0;

x=0;

MP+poxx+addr RISC-V

Final: 0:x7=0; 0:x8=0; 0:x10=0;

0:x11=0; 1:x5=1; 1:x8=0; y=1; x=1;

H/W: -

Figure 16.50: Litmus test MP+poxx+addr

STR X0,[X1]Wx=1a:STLR X0,[X2]

Wrel y=1b:

Thread 0

po

LDAR X0,[X1]Racq y=1c:LDR X2,[X3]

Rx=0d:

Thread 1

porf
rffr

STR X0,[X1] //a
STLR X0,[X2]//b

Thread 0
LDAR X0,[X1]//c
LDR X2,[X3] //d

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

MP+popl+poap AArch64

Final: 1:X0=1; 1:X2=0;

H/W: NNNNNN-NNNNNNNNNN

sd t0, 0(t1) //a
sd.rl t0, 0(t2) //b

Thread 0
ld.aq t0, 0(t1) //c
ld t2, 0(fp) //d

Thread 1

Initial state: 0:x7=y; 0:x6=x; 0:x5=1;

1:x8=x; 1:x6=y; 1:x5=0; 1:x7=0; y=0;

x=0;

MP+poprl+poaqp RISC-V

Final: 1:x5=1; 1:x7=0;

H/W: -

Figure 16.51: Litmus test MP+poprl+poaqp

store-release and load-acquire in Armv8-A is Release Consistency with special access sequentially
consistent (RCsc) [?]. In the RCsc semantics, memory accesses to shared locations are parti-
tioned to competing accesses which are intended to force-order, such as the writing and reading
of the flag in message-passing, and non-competing accesses that are protected by the former

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 167

STR X0,[X1]Wx=1a:
Thread 0

LDR X0,[X1]Rx=1b:STLR X2,[X3]

Wrel y=1c:

Thread 1

po

LDAR X0,[X1]Racq y=1d:LDR X2,[X3]

Rx=0e:

Thread 2

po

rf

rf
rf

fr

STR X0,[X1]//a

Thread 0
LDR X0,[X1] //b
STLR X2,[X3] //c

Thread 1

LDAR X0,[X1] //d
LDR X2,[X3] //e

Thread 2

Initial state: 0:X1=x; 0:X0=1; 1:X3=y;

1:X2=1; 1:X1=x; 1:X0=0; 2:X3=x;

2:X1=y; 2:X0=0; 2:X2=0; y=0; x=0;

WRC+popl+poap AArch64

Final: 1:X0=1; 2:X0=1; 2:X2=0;

H/W: -----------------

sd t0, 0(t1) //a

Thread 0
ld t0, 0(t1) //b
sd.rl t2, 0(fp) //c

Thread 1

ld.aq t0, 0(t1) //d
ld t2, 0(fp) //e

Thread 2

Initial state: 0:x6=x; 0:x5=1; 1:x8=y;

1:x7=1; 1:x6=x; 1:x5=0; 2:x8=x;

2:x6=y; 2:x5=0; 2:x7=0; y=0; x=0;

WRC+poprl+poaqp RISC-V

Final: 1:x5=1; 2:x5=1; 2:x7=0;

H/W: -

Figure 16.52: Litmus test WRC+poprl+poaqp

Thread 0 Thread 2
atomic_store_explicit(x, 1,

memory_order_relaxed);

int r1 = atomic_load_explicit(y, // Read 1

memory_order_acquire);

int r2 = atomic_load_explicit(x, // Read 0

memory_order_relaxed);

Thread 1
int r0 = atomic_load_explicit(x, // Read 1

memory_order_relaxed);

atomic_store_explicit(y, 1,

memory_order_release);

Figure 16.53: The WRC litmus test in C

accesses, such as the writing and reading of the data in message-passing. With RCsc semantics,
a properly-labelled program where competing store accesses are store-release, and competing
load accesses are load-acquire, can only exhibit SC behaviour. This makes the Armv8-A (confus-
ingly named) load-acquire and store-release a suitable mapping from the SC-atomic load and
store of C. Similarly, the RISC-V load-acquire-RCsc and store-release-RCsc implement the RCsc
semantics. The RISC-V architecture has an additional pair of load and store instructions, load-
acquire-RCpc and store-release-RCpc, which implement the slightly weaker Release Consistency
with special access processor consistent (RCpc) semantics [?]. The Armv8-A architecture provides
a load-acquirePC, which can be paired with store-release to achieve RCpc semantics.

16.2 Mixed-Size Phenomena

Previous sections considered only memory accesses that were of the same size and suitably
aligned. In such settings a load instruction always reads a value that was written by a single
store instruction (or from the initial state). In practice, however, load and store instructions can

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 168

access different numbers of bytes. For example, the AArch64 instruction set of Armv8-A includes
the instructions LDRB, for loading a single byte from memory, LDRH, for loading a half-word (two
bytes) from memory, and LDR for loading either a word (four bytes) or a double word (eight
bytes) from memory, together with STRB, STRH and STR for storing the corresponding sized values
to memory. The location accessed by those instructions is not required to be aligned, though
misaligned accesses are not guaranteed to be (single-copy) atomic (see §16.2.3). AArch64, along
with the other architectures that appear in this thesis and most other modern architectures, does
not support sub-byte accesses.

16.2.1 Reading from Multiple Writes

The most fundamental phenomenon of the mixed-size setting is that writes and reads may be
of different sizes, with reads potentially reading from fragments of writes and from multiple
writes. For example, in the sequential case, we might have a sequence of two overlapping writes
followed by a read that reads from both of them, as in the MIX1 litmus test.

STR W1,[X0]Wx[0..3]=0x13121110a:STRB W2,[X0,#2]

Wx[2] =0x 22b:LDR W3,[X0]

Rx[0..3]=0x13221110c:

corfx[0..1,3]

rfx[2]

STR W1,[X0] //a
STRB W2,[X0,#2] //b
LDR W3,[X0] //c

Initial state: 0:X2=0x22;
0:X1=0x13121110; 0:X0=x; x=0x0;

MIX1 AArch64

Final: 0:X3=0x13221110;
H/W: -----------------

sw sp, 0(ra) //a
sb gp, 2(ra) //b
lw tp, 0(ra) //c

Initial state: 0:x3=0x22;
0:x2=0x13121110; 0:x1=x; x=0x0;

MIX1 RISC-V

Final: 0:x4=0x13221110;
H/W: -

stw r2,0(r1) //a
stb r3,2(r1) //b
lwz r4,0(r1) //c

Initial state: 0:r3=0x22;
0:r2=0x13121110; 0:r1=x; x=0x0;

MIX1 Power

Final: 0:r4=0x13221110;
H/W: -

Figure 16.54: Litmus test MIX1

Here, l[i..j]=n indicates that the value n is being written to or read from the sequence of
bytes at memory locations l+i, l+i+1, . . . , l+j, where l is a shared memory location symbol (e.g.
x, y, z), i and j are integers, and n is a memory value comprising of j+1-i bytes. The set of
byte locations that an instruction (or memory event) accesses are called the memory footprint
of the instruction (or memory event). When talking about an instruction (or memory event)
that access multiple bytes, l[i..j], it is said that the instruction (or memory event) access j+1-i

bytes at l+i. The shorthand l[i]=n stands for l[i..i]=n, i.e., the value n is being written to or read
from the one byte at l+i. Recall that in this thesis, memory accesses in non-mixed-size litmus
tests are all 8 bytes, hence a memory access l=n in a non-mixed-size litmus test is a shorthand
for l[0..7]=n.

As a read event in the mixed-size setting might read from multiple writes, a read event in
the litmus diagrams can have multiple read-from edges, one from each write it reads from. In
addition, the read-from edges are labelled with the subset of bytes the read event reads from, as
a read event does not necessarily read all the bytes of the write it reads from. This can be seen
in the diagram of MIX1 where the rf edge from a to c is labelled with x[0..1, 3] to indicate that
in this execution c reads only from the bytes x+ 0, x+ 1, and x+ 3, out of the four bytes that
a writes. For the remaining byte, x+ 2, c reads from the value that b writes, as indicated by the
label x[2] of the rf edge from b to c.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 169

16.2.2 Mixed-size Coherence

Lifting the definition of coherence to mixed-size memory accesses requires some care. In the
non-mixed-size setting we defined coherence over memory accesses (??). That definition of
coherence partitions the memory accesses in an execution by their location, and induces a total
order over the memory accesses in each partition. In a non-mixed-size execution, all the memory
accesses in a single partition have exactly the same footprint.

In the mixed-size context there are two plausible coherence notions: per-byte and per-access.
The two notions are defined as follows.

Those two definitions of coherence are not equivalent. To see the difference between them,
consider MP+sis. This test can be viewed as a version of MP where Thread 0 writes some data

STRH W1,[X0]Wx[0..1]=0x1110a:

Thread 0

LDRH W1,[X0]Rx[0..1]=0x1100b:

Thread 1

rf x[1]

rf x[0]

fr x[0]

STRH W1,[X0]//a

Thread 0
LDRH W1,[X0]//b

Thread 1

Initial state: 0:X1=0x1110; 0:X0=x;

1:X0=x; x=0x0;

MP+sis AArch64

Final: 1:X1=0x1100;
H/W: -----------------

sh sp, 0(ra) //a

Thread 0
lh sp, 0(ra) //b

Thread 1

Initial state: 0:x2=0x1110; 0:x1=x;

1:x1=x; x=0x0;

MP+sis RISC-V

Final: 1:x2=0x1100;
H/W: -

sth r2,0(r1)//a

Thread 0
lhz r2,0(r1)//b

Thread 1

Initial state: 0:r2=0x1110; 0:r1=x;

1:r1=x; x=0x0;

MP+sis Power

Final: 1:r2=0x1100;
H/W: -

Figure 16.55: Litmus test MP+sis

to x[0] and sets the flag at x[1] in one big store to x[0..1], and Thread 1 reads the flag and the
data in one big load from x[0..1]. The si part in the litmus test name stands for same-instruction,
indicating that the two memory accesses (two one-byte accesses) it relates are from the same
instruction (the suffix s, as usual, indicates that the si applies to both threads).

As a and b have overlapping footprints, per-access coherence requires that either a is ordered
before b, which implies that b cannot return 0x00 for byte x+ 1, or b is ordered before a, which
entails that b cannot return 0x11 for byte x, and therefore MP+sis is forbidden by per-access
coherence. Per-byte coherence, by itself (ignoring other architecture restrictions), does not
forbid MP+sis. The per-byte total orders b ≤ a for location x, and a ≤ b for location x+ 1, allow
the read of Thread 1 to return the value 0x1100.

Observe that per-access coherence entails per-byte coherence, as the partial order over mem-
ory accesses, when restricted to memory accesses that include a particular one-byte location,
forms a total order over those memory accesses. The additional order that per-access coherence
provide over per-byte coherence is called single-copy atomicity and it is discussed in the next
subsection.

Per-access coherence is a better match to microarchitecture, where writes propagate, and
win or lose coherence races, as atomic units. It also appears to be simpler algorithmically. The
PLDI11 operational memory model of the Power architecture constructs the per-access coher-
ence order explicitly (). The POP operational memory model () constructs a partial order over
memory accesses and barrier events, that when restricted to memory accesses is a per-access
coherence order. In Herd, the axiomatic models framework, it is more convenient to separate
single-copy atomicity from coherence, and therefore per-byte coherence is used.

In our litmus diagrams the co edges depict per-access coherence, as it is less cluttered, but
the fr edges are computed, as described below, from the per-byte coherence induced from the
per-access coherence order of the co edges.

To make litmus tests more readable we usually choose memory values of the form
0xck−1k − 1 . . . c11c00, where ci implies the intended place of this value in the per-byte coher-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 170

fr = {(r, s, w)|∃w′, s′.(w′, s′, r) ∈ rf ∧ s = {b ∈ s′|(w′, w) ∈ cob} ∧ s ̸= ∅}

Figure 16.56: Formal definition of fr.

ence order of the byte with offset i. For example, the value that is written by W x[0..1]=0x2110 is
composed of two bytes, 0x21 and 0x10. The byte with value 0x10 is written to the byte location
x[0], as implied by the “0”, and it is intended to be the first write to this byte location in per-byte
coherence order, as implied by the “1”. The byte with value 0x21 is written to the byte location
x[1], as implied by the “1”, and it is intended to be the second write to this byte location in
per-byte coherence order, as implied by the “2”.

Note that MIX1 and MP+sis assume little-endianness, as do all the litmus tests that appear
in this thesis. Arm, Power and RISC-V all support little- and big-endian modes. When running
litmus tests on a machine for this thesis, the machine’s default endianness is used. Except for
Power7 which is big-endian, the default mode of all the machines that were used for running
litmus tests is little-endian. Since the endianness of the Power7 machine is different from the
one assumed in the included litmus tests, the tests that were run on that machine are slightly
different. For example, in the big-endian version of MIX1 that was tested on the Power7 ma-
chine, the store of Thread 0 writes the value 0x10111213 instead of 0x13121110, and the load of
Thread 1 is expected to read the value 0x10112213 instead of 0x13221110.

As the from-reads relation is derived from the read-from and coherence relations, in the
mixed-size setting it is labelled with an appropriate footprint. The mixed-size from-reads rela-
tion is computed by composing the converse of read-from with per-byte coherence. The formal
definition of fr is given in Fig. 16.56.

Note that in the MIX1 diagram there is no fr edge from c to b despite there being an rf edge
from a to c and a co edge from a to b, which in the non-mixed-size setting would entail an fr
edge from c to b. This is because the label of the rf edge from a to c is x[0..1,3], and the memory
footprint of b is x[2], which is disjoint.

16.2.3 Single-copy Atomicity

The per-access definition of coherence from the previous subsection is stronger (i.e. allows less
behaviours) than the per-byte definition of coherence, as it requires all the overlapping bytes of
two accesses to have consistent order. This consistency between bytes of overlapping footprints
is called single-copy atomicity [?], and an architecture may guarantee it for the set of bytes
accessed by an instruction in some cases, and not in other cases.

In the Arm, Power, and RISC-V architectures, the size of a single-copy atomic memory access
is always some power of 2, and the location is always aligned to that size. It follows, that if two
single-copy atomic memory accesses are ordered in per-access coherence, a ≤ b, there exists a
single-copy atomic memory access c in the execution, such that a ≤ c ≤ b, and the footprint of c
subsumes the footprints of a and b.

Single-copy atomicity is not the opposite of multi-copy atomicity. Multi-copy atomicity guar-
antees that when a write is observable to any other thread, it is also observable to all other
threads (see §16.1.14), whereas single-copy atomicity guarantees that when a byte of a multi-
byte write is observable to a thread, all other bytes of the write are also observable to that
thread.

An execution is single-copy atomic consistent if it is per-access coherent over single-copy mem-
ory access events. Alternatively, an execution is single-copy atomic consistent if it is per-byte
coherent, and in addition, for every two byte locations x and y, and for every two single-copy
memory access events a and b that both access both byte locations x and y, a and b are ordered
in the same direction in the per-byte orders for x and for y.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 171

The Arm, Power and RISC-V architectures require that a properly aligned regular memory
access instruction is single-copy atomic, where properly aligned means that the location the
instruction access (lowest byte location) is divisible by the number of bytes being accessed. The
Armv8-A [?, p. 93] and RISC-V [?, p. 82] architectures treat a misaligned regular memory access
as an unordered set of single-byte single-copy-atomic accesses. The Power architecture used to
be similar, but now provides stronger requirements [?, p. 811] (first match applies):

• A misaligned access of 16 bytes that is aligned to 8 bytes is performed as two disjoint
single-copy atomic accesses of 8 bytes.

• A misaligned access of at least 8 bytes that is aligned to 4 bytes is performed as multiple
disjoint single-copy atomic accesses of 4 bytes.

• A misaligned access of at least 4 bytes that is aligned to 2 bytes is performed as multiple
disjoint single-copy atomic accesses of 2 bytes.

• Otherwise, a misaligned access is performed as multiple disjoint single-copy atomic ac-
cesses of one byte.

The additional requirements in Power allow for more efficient copying of arrays, without break-
ing single-copy atomicity of the array’s elements, when the array is aligned to the size of the
elements in the array.

Memory access events in litmus execution graphs represent single-copy atomic memory ac-
cesses. Hence, each properly aligned load or store instruction will be associated with a single
memory access event in an execution, reflecting the architecture specifications for such instruc-
tion. Each misaligned memory access instruction will be associated with multiple memory access
events.

Consider MP+sis (Fig. 16.55) again. A hypothetical microarchitecture might exhibit MP+sis
by decomposing the store of Thread 0 to two one-byte writes (for whatever reason), and then
performing the load of Thread 1 after the write to x[1] and before the write to x[0]. Or alter-
natively, a microarchitecture might decompose the load of Thread 1 to two one-byte reads, and
then perform the store of Thread 0 before the read from x[1] and after the read from x[0].

Recall that the symbolic memory locations in litmus tests are 8-byte aligned (§15.3), and as
such, the store and load of MP+sis are both properly aligned, and therefore both are single-copy
atomic in the Arm, Power, and RISC-V architectures. Therefore, MP+sis violates single-copy
atomicity and therefore the test is forbidden by Arm, Power and RISC-V.

Contrast MP+sis with MP+fen+si1. Here, the writing of the data and the flag in Thread 0

STRB W1,[X0,#1]Wx[1]=0x 11a:DMB SYSTRB W2,[X0,#2]

Wx[2]=0x12c:

Thread 0

fen

LDRH W2,[X0,X1]Rx[2]=0x12d1:
Rx[1]=0x 00d0:

Thread 1

rfx[2]
rfx[1]

frx[1]

STRB W1,[X0,#1]//a
DMB SY //b
STRB W2,[X0,#2]//c

Thread 0
LDRH W2,[X0,X1]//d0,d1

Thread 1

Initial state: 0:X2=0x12; 0:X1=0x11; 0:X0=x;

1:X1=0x1; 1:X0=x; x=0x0;

MP+dmb.sy+si1 AArch64

Final: 1:X2=0x1200;
H/W: -----------------

sb ra, 1(tp) //a
fence rw, rw //b
sb sp, 2(tp) //c

Thread 0
lh sp, 1(tp) //d0,d1

Thread 1

Initial state: 0:x2=0x12; 0:x1=0x11;

0:x4=x; 1:x4=x; x=0x0;

MP+fence.rw.rw+si1 RISC-V

Final: 1:x2=0x1200;
H/W: -

stb r1,1(r4)//a
sync //b
stb r2,2(r4)//c

Thread 0
lhz r2,1(r4)//d0,d1

Thread 1

Initial state: 0:r2=0x12; 0:r1=0x11;

0:r4=x; 1:r4=x; x=0x0;

MP+sync+si1 Power

Final: 1:r2=0x1200;
H/W: -

Figure 16.57: Litmus test MP+fen+si1

are done in two distinct instructions, that are separated by a fence, and the reading of the flag

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 172

and the data is done by a single instruction with a misaligned memory access that architecturally
gives rise to two single-copy atomic one-byte reads. The 1 in si1 in the litmus test name indicates
that the associated memory access is offset by 1 byte from an address that is cache-size aligned.
In the litmus diagram, the two one-byte reads, d0 and d1, from the single load instruction of
Thread 1, appear adjacent to each other, with no edges between them.

When a microarchitecture executes the load of Thread 1 it is allowed to perform it as two
one-byte reads, one from x[1] (d0 in the litmus diagram) and one from x[2] (d1 in the litmus
diagram), in arbitrary order. In particular, the microarchitecture may do the read from x[1] first,
before any of the writes of Thread 0 has been performed, and it may do the read from x[2] after
the writes of Thread 0 has been performed and made visible to Thread 1. Hence, the load of
Thread 1 may return the value 0x1200, where the byte value 0x12 was read from the write c of
Thread 0, and the byte value 0x00 was read from the initial value of x[1].

Similar behaviour is not allowed by the Arm, Power, and RISC-V architectures for MP+fen+si,

STRB W1,[X0]Wx[0]=0x 10a:DMB SYSTRB W2,[X0,#1]

Wx[1]=0x11c:

Thread 0

fen

LDRH W2,[X0]Rx[0..1]=0x1100d:

Thread 1

rfx[1]

rfx[0]

frx[0]

STRB W1,[X0] //a
DMB SY //b
STRB W2,[X0,#1]//c

Thread 0
LDRH W2,[X0]//d

Thread 1

Initial state: 0:X2=0x11; 0:X1=0x10;

0:X0=x; 1:X0=x; x=0x0;

MP+dmb.sy+si AArch64

Final: 1:X2=0x1100;
H/W: -----------------

sb ra, 0(tp) //a
fence rw, rw //b
sb sp, 1(tp) //c

Thread 0
lh sp, 0(tp) //d

Thread 1

Initial state: 0:x2=0x11; 0:x1=0x10;

0:x4=x; 1:x4=x; x=0x0;

MP+fence.rw.rw+si RISC-V

Final: 1:x2=0x1100;
H/W: -

stb r1,0(r4)//a
sync //b
stb r2,1(r4)//c

Thread 0
lhz r2,0(r4)//d

Thread 1

Initial state: 0:r2=0x11; 0:r1=0x10;

0:r4=x; 1:r4=x; x=0x0;

MP+sync+si Power

Final: 1:r2=0x1100;
H/W: -

Figure 16.58: Litmus test MP+fen+si

as here the load of Thread 1 is properly aligned and therefore must not be observed as two reads.
This, together with the fence in Thread 0, ensures that if the load reads the value 0x11 for the
byte location x[1], it cannot read the value 0x00 for the byte location x[0].

For store instructions, MP+si1+fen and MP+si+fen demonstrate the same point, misaligned

STRH W1,[X0,X2]Wx[1]=0x 11a0:
Wx[2]=0x12a1:

Thread 0
LDRB W1,[X0,#2]Rx[2]=0x12b:DMB SYLDRB W2,[X0,#1]

Rx[1]=0x 00d:

Thread 1

fen

rfx[2]

rfx[1]
frx[1]

STRH W1,[X0,X2]//a0,a1

Thread 0
LDRB W1,[X0,#2]//b
DMB SY //c
LDRB W2,[X0,#1]//d

Thread 1

Initial state: 0:X2=0x1; 0:X1=0x1211; 0:X0=x;

1:X0=x; x=0x0;

MP+si1+dmb.sy AArch64

Final: 1:X1=0x12; 1:X2=0x0;

H/W: -----------------

sh t0, 1(t1) //a0,a1

Thread 0
lb t0, 2(t1) //b
fence rw, rw //c
lb t2, 1(t1) //d

Thread 1

Initial state: 0:x6=x; 0:x5=0x1211;

1:x6=x; x=0x0;

MP+si1+fence.rw.rw RISC-V

Final: 1:x5=0x12; 1:x7=0x0;

H/W: -

sth r2,1(r1)//a0,a1

Thread 0
lbz r2,2(r1)//b
sync //c
lbz r3,1(r1)//d

Thread 1

Initial state: 0:r2=0x1211; 0:r1=x;

1:r1=x; x=0x0;

MP+si1+sync Power

Final: 1:r2=0x12; 1:r3=0x0;

H/W: -

Figure 16.59: Litmus test MP+si1+fen

and properly aligned respectively.
In addition to the misaligned litmus tests above, similar variants with offsets of 3, 7, 15,

31, 63, and 127 were also tested on real hardware. Microarchitecturally, one would expect at

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 173

STRH W1,[X0]Wx[0..1]=0x1110a:
Thread 0

LDRB W1,[X0,#1]Rx[1]=0x11b:DMB SYLDRB W2,[X0]

Rx[0]=0x 00d:

Thread 1

fen

rfx[1]

rfx[0]

frx[0]

STRH W1,[X0]//a

Thread 0
LDRB W1,[X0,#1]//b
DMB SY //c
LDRB W2,[X0] //d

Thread 1

Initial state: 0:X1=0x1110; 0:X0=x;

1:X0=x; x=0x0;

MP+si+dmb.sy AArch64

Final: 1:X1=0x11; 1:X2=0x0;

H/W: -----------------

sh t0, 0(t1) //a

Thread 0
lb t0, 1(t1) //b
fence rw, rw //c
lb t2, 0(t1) //d

Thread 1

Initial state: 0:x6=x; 0:x5=0x1110;

1:x6=x; x=0x0;

MP+si+fence.rw.rw RISC-V

Final: 1:x5=0x11; 1:x7=0x0;

H/W: -

sth r2,0(r1)//a

Thread 0
lbz r2,1(r1)//b
sync //c
lbz r3,0(r1)//d

Thread 1

Initial state: 0:r2=0x1110; 0:r1=x;

1:r1=x; x=0x0;

MP+si+sync Power

Final: 1:r2=0x11; 1:r3=0x0;

H/W: -

Figure 16.60: Litmus test MP+si+fen

least memory accesses whose footprint spans a cache-line boundary to be split (otherwise one
is in the realm of hardware transactional memory implementations, to provide atomic access
to multiple cache lines while avoiding a deadlock), but splitting at finer granularities is also
observed. Such splitting could be the result of store-buffer width, and other microarchitecture
mechanisms, such as write-forwarding. The architectures explicitly do not guarantee single-
copy atomicity for misaligned accesses within cache lines, or indeed commit to any particular
cache-line sizes, so programmers should not rely on that.

The split of misaligned memory access instructions into multiple single-copy atomic accesses
means that some of those accesses might execute out-of-order with another instruction, while
other accesses execute in-order with the same instruction. Consider MP+fen+pos-si1, in which

STRB W1,[X0,#1]Wx[1]=0x 11a:DMB SYSTRB W2,[X0,#2]

Wx[2]=0x12c:

Thread 0

fen

LDRB W2,[X0,#2]Rx[2]=0x12d:LDRH W3,[X0,X1]

Rx[2]=0x12e1:
Rx[1]=0x 00e0:

Thread 1

porfx[2]

rfx[2]

rfx[1]

frx[1]

STRB W1,[X0,#1]//a
DMB SY //b
STRB W2,[X0,#2]//c

Thread 0
LDRB W2,[X0,#2] //d
LDRH W3,[X0,X1]//e0,e1

Thread 1

Initial state: 0:X2=0x12; 0:X1=0x11; 0:X0=x;

1:X1=0x1; 1:X0=x; x=0x0;

MP+dmb.sy+pos-si1 AArch64

Final: 1:X2=0x12; 1:X3=0x1200;

H/W: -----------------

sb ra, 1(tp) //a
fence rw, rw //b
sb sp, 2(tp) //c

Thread 0
lb sp, 2(tp) //d
lh gp, 1(tp) //e0,e1

Thread 1

Initial state: 0:x2=0x12; 0:x1=0x11;

0:x4=x; 1:x4=x; x=0x0;

MP+fence.rw.rw+pos-si1 RISC-V

Final: 1:x2=0x12; 1:x3=0x1200;

H/W: -

stb r1,1(r4)//a
sync //b
stb r2,2(r4)//c

Thread 0
lbz r2,2(r4) //d
lhz r3,1(r4)//e0,e1

Thread 1

Initial state: 0:r2=0x12; 0:r1=0x11;

0:r4=x; 1:r4=x; x=0x0;

MP+sync+pos-si1 Power

Final: 1:r2=0x12; 1:r3=0x1200;

H/W: -

Figure 16.61: Litmus test MP+fen+pos-si1

the second load of Thread 1 is misaligned and has a memory footprint that overlaps with the first
load. Because the second load is misaligned, the Arm, Power, and RISC-V architectures allow
the second load to be performed as two one-byte memory reads, as illustrated in Fig. 16.61, and
because read e1 does not overlap with read d, e1 can be performed out-of-order with d, making
this litmus test allowed by these architectures.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 174

16.2.4 Atomicity of register accesses

In the Arm, Power, and RISC-V architectures, general purpose register (GPR) writes always write
to all the bits of the register. When an instruction manipulates data that is smaller than the GPR
it is written to, the data is either zero or sign extended to fit the register size, depending on the
architecture and the instruction. Hence, the values of all the bits that a GPR read reads come
from a single GPR write, the most recent preceding write, in program-order, to that GPR.

For special-purpose registers this is not always the case. Some instructions can access (read
or write) particular bits of special-purpose registers. It is then up to the architecture to define
in which circumstances a write/read pair to such a special-purpose register induces dependency
that restricts out-of-order execution. The Arm, Power, and RISC-V architectures manuals are
not explicit about this, perhaps because it was not considered, or perhaps intending to allow
the most relaxed behaviour, allowing hardware implementors the most freedom. The relaxed
behaviour is also easier to model mathematically, and is the behaviour implemented in the
architecture models that will be discussed in later chapters.

In the Power architecture, CR (Condition Register) is a special-purpose 32-bit register, parti-
tioned to eight 4-bit fields (CR0,. . . ,CR7), that reflect the result of certain operations, and can
be tested with conditional branch instructions. All four bits of a single CR field can be accessed
using the mtocrf (write to a field) and mfocrf (read from a field) instructions, and specific bits
of the CR can be accessed using the crnand instruction which reads two specified bits of CR, and
writes the negated AND of their values to a third specified bit. Consider MP+lwsync+addr-cr,

li r1,1stw r1,0(r2)Wx=1a:lwsyncli r3,1stw r3,0(r4)

Wy=1c:

Thread 0

lwsync

lwz r1,0(r2)Ry=1d:mtocrf 16,r1mfocrf r2,8xor r3,r2,r2lwzx r4,r3,r5

Rx=0e:

Thread 1

addr+cr
rf

rffr

li r1,1
stw r1,0(r2)//a
lwsync //b
li r3,1
stw r3,0(r4)//c

Thread 0
lwz r1,0(r2) //d
//move to cr field 3
mtocrf 16,r1
//move from cr field 4
mfocrf r2,8
xor r3,r2,r2
lwzx r4,r3,r5 //e

Thread 1

Initial state: 0:r4=y; 0:r2=x; 1:r5=x;

1:r2=y;

MP+lwsync+addr-cr Power

Final: 1:r1=1; 1:r4=0;

H/W: -

Figure 16.62: Litmus test MP+lwsync+addr-cr

where the value returned from the first load of Thread 1 is written to (some bits of) CR, which is
followed by a read of (some bits of) CR, which feeds the address computation of the second load
of Thread 1. Note that here one has to look at the assembly, not just the diagram, as the diagram
just shows the memory accesses, with just an addr+cr edge, not the register accesses. If the fact
that the write and read of CR involve different fields were to be ignored, there would appear
to be a data-flow from the first load to the second load, which would induce an address depen-
dency between them, which would restrict their out-of-order execution (as in MP+lwsync+addr,
Fig. 16.63). However, as the write to CR writes just the four bits of the CR3 field, and the read
form CR reads only from the four bits of the CR4 field, there is no actual data-flow between
the accesses of CR. The architecture design has a free choice here whether to regard that as a
respected dependency or not. Experimental results from running the litmus test on Power ma-
chines show the out-of-order behaviour is observed. This has been discussed with the Power
designers, and this is intentional. Therefore, the PLDI11 model of the Power architecture does
not restrict the out-of-order execution of those two loads.

MP+lwsync+addr-cr5 extends MP+lwsync+addr-cr by adding, between the accesses to CR3
and CR4, a write to bit 0 of CR5, of the negation of bit 0 of CR3, and a write to bit 0 of CR4 of
the negation of bit 1 of CR5. Again, if the fact that the write and read of CR5 involve different

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 175

std r1,0(r2)Wx=1a:lwsyncstd r1,0(r3)

Wy=1c:

Thread 0

lwsync

ld r1,0(r2)Ry=1d:xor r3,r1,r1ldx r4,r3,r5

Rx=0e:

Thread 1

addr
rf

rffr

std r1,0(r2)//a
lwsync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
xor r3,r1,r1
ldx r4,r3,r5//e

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=1; 1:r5=x; 1:r2=y; 1:r1=0;

1:r4=0; y=0; x=0;

MP+lwsync+addr Power

Final: 1:r1=1; 1:r4=0;

H/W: N

Figure 16.63: Litmus test MP+lwsync+addr

li r1,1stw r1,0(r2)Wx=1a:lwsyncli r3,1stw r3,0(r4)

Wy=1c:

Thread 0

lwsync

lwz r1,0(r2)Ry=1d:mtocrf 16,r1crnand 20,12,12crnand 16,21,21mfocrf r2,8xor r3,r2,r2lwzx r4,r3,r5

Rx=0e:

Thread 1

addr+cr5
rf

rffr

li r1,1
stw r1,0(r2)//a
lwsync //b
li r3,1
stw r3,0(r4)//c

Thread 0
lwz r1,0(r2) //d
//move to cr field 3
mtocrf 16,r1
//set bit 0 of field 5 to NOT of
//bit 0 of field 3
crnand 20,12,12
//set bit 0 of field 4 to NOT of
//bit 1 of field 5
crnand 16,21,21
//move from cr field 4
mfocrf r2,8
xor r3,r2,r2
lwzx r4,r3,r5 //e

Thread 1

Initial state: 0:r4=y; 0:r2=x; 1:r5=x; 1:r2=y;
MP+lwsync+addr-cr5 Power

Final: 1:r1=1; 1:r4=0;

H/W: -

Figure 16.64: Litmus test MP+lwsync+addr-cr5

bits is ignored for a moment, there appears to be a data-flow from the first load to the second
load, which induces an address dependency between them, which would normally restrict their
out-of-order execution. However, as the write to CR5 writes to bit 0 of the field, and the read
form CR5 reads only bit 1 of the field, there is no data-flow between the accesses of CR5, and
therefore the Power architecture does not restrict the out-of-order execution of the two loads.
This out-of-order behaviour was not observed in the experimental results for the litmus test on
Power machines.

In Arm the situation is more complicated. The Armv8 architecture defines an abstraction of
the process state, PSTATE, composed of fields each of which can be accessed as special-purpose
registers, though most of those are not accessible by application-level code (EL0), and therefore
are out of scope for this thesis. The NZCV field of the PSTATE is accessible by application-level
code as the 64-bit NZCV special-purpose register. The NZCV register holds 4 flags: the negative
condition flag in bit index 31 (N), the zero condition flag in bit index 30 (Z), the carry condition
flag in bit index 29 (C), and the overflow condition flag in bit index 28 (V). The other bits of the
NZCV register are unused.

In versions of Armv8 older than Armv8.4-A, the pseudocode that defines the behaviour of
instructions in the Arm Architecture Reference Manual [?] always writes all four flags together.
For example, the pseudocode of the ANDS instruction writes to the N and Z flags values computed
from the operands of the instruction, and 0 to the C and V flags. Hence, it appears that accessing
NZCV is similar to accessing GPRs in that a read of NZCV always returns the value that was
written by the most recent write (in program-order) to NZCV, and therefore such a sequence
will always induce a dependency (as GPRs do). Armv8.4-A introduced instructions that can
write to individual flags of NZCV, without changing the values of other flags. For example, the

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 176

RMIF instruction can be used to set, clear, or leave untouched any combination of the NZCV
flags. Using the RMIF instruction to write just the N flag, and the SBC instruction to read just
the C flag, an MP-like litmus test can be constructed, MP+dmb.sy+addrNC, in which the address
dependency between the loads of Thread 1 passes through disjoint bits of the NZCV register.

Another aspect of register atomicity is whether a register read that accesses a strict subset of
the bits that the most recent write to the same register wrote, can appear to be performed before
the register write is completed, as the read only requires the overlapping bits to be available.
For example, consider MP+dmb.sy+si1-addr, in which the second load of Thread 1 is misaligned.

STR X3,[X0]Wx=1a:DMB SYSTR W4,[X1,X2]

Wy[5]=0x 15c0:
Wy[6]=0x 16c1:
Wy[7]=0x 17c2:
Wy[8]=0x18c3:

Thread 0

dmb sy

LDR X3,[X0,X2]Ry[1]=0x 00d0:
Ry[2]=0x 00d1:
Ry[3]=0x 00d2:
Ry[4]=0x 00d3:
Ry[5]=0x 15d4:
Ry[6]=0x 16d5:
Ry[7]=0x 17d6:
Ry[8]=0x18d7:

EOR W4,W3,W3LDR X5,[X1,W4,SXTW]

Rx=0e:

Thread 1

addr

rf y[5]
rf y[6]
rf y[7]

rf y[8]

rf y[1]
rf y[2]
rf y[3]
rf y[4]

rf

fr

STR X3,[X0] //a
DMB SY //b
STR W4,[X1,X2]//c0,c1,c2,c3

Thread 0
LDR X3,[X0,X2]//d0,d1,d2,d3,d4,d5,d6,d7
EOR W4,W3,W3
LDR X5,[X1,W4,SXTW] //e

Thread 1

Initial state: 0:X4=0x18171615; 0:X3=0x1; 0:X2=0x5; 0:X1=y; 0:X0=x;

1:X5=0x0; 1:X3=0x0; 1:X2=0x1; 1:X1=x; 1:X0=y; x=0x0; y=0x0;

MP+dmb.sy+si1-addr AArch64

Final: 1:X3=0x1817161500000000; 1:X5=0x1;

H/W: -----------------

Figure 16.65: Litmus test MP+dmb.sy+si1-addr

This litmus test is very similar to MP+dmb.sy+addr (Fig. 16.11) except that the first load of
Thread 1 is misaligned, and the address dependency feeds only from the bottom half of the
register, the value of which is written by the preceding load after reading it from the initial
memory value. A hypothetical microarchitecture could exhibit this behaviour, by allowing the
first load of Thread 1 to read from y[1− 4] the initial value, and write it to the bottom 4 bytes
of the output register, before reading from y[5− 8], and before writing to the top 4 bytes of
the output register. The address dependency would then be resolved, as it only reads from the
bottom 4 bytes of the register, and the second load of Thread 1 would be performed, reading 0,
before any of the writes of Thread 0 has been performed.

The Arm, Power, and RISC-V architectures all forbid this behaviour, because even though
the first load is allowed to be performed as 8 separate reads, the value that the load writes to
the output register must appear to become available to program-order succeeding instructions
atomically.

16.2.5 Mixed-size Multi-copy Atomicity

In the mixed-size setting, non-multi-copy atomicity allows stores with overlapping memory foot-
prints to be observed by a hardware thread in order that is reversed to their coherence order.
This is surprising, and weaker than the Power reference manual suggests [?, p. 813]: Atomic

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 177

stores to a given location are coherent if they are serialized in some order, and no processor or mech-
anism is able to observe any subset of those stores as occurring in a conflicting order; and also: a
processor or mechanism can never load a “newer” value first and then, later, load an “older” value.

For example, consider WRR+2W+sis, in which the store a of Thread 0, and the store d of

STRB W0,[X1]Wx[0]=0x 20a:
Thread 0

LDRH W0,[X1]Rx[0..1]=0x0020b:LDRH W2,[X1]

Rx[0..1]=0x1120c:

Thread 1

po

STRH W0,[X1]Wx[0..1]=0x1110d:
Thread 2

co

rfx[0]

rfx[0]
rfx[1]

rfx[1]

frx[1]

stb r2,0(r1)//a

Thread 0
lhz r2,0(r1)//b
lhz r3,0(r1)//c

Thread 1

sth r2,0(r1)//d

Thread 2

Initial state: 0:r2=0x20; 0:r1=x;

1:r1=x; 2:r2=0x1110; 2:r1=x;

x=0x0;

WRR+2W+sis Power

Final: 1:r2=0x20; 1:r3=0x1120;

x=0x1120;

H/W: -

STRB W0,[X1]//a

Thread 0
LDRH W0,[X1]//b
LDRH W2,[X1]//c

Thread 1

STRH W0,[X1]//d

Thread 2

Initial state: 0:X0=0x20; 0:X1=x;

1:X1=x; 2:X0=0x1110; 2:X1=x;

x=0x0;

WRR+2W+sis AArch64

Final: 1:X0=0x20; 1:X2=0x1120;

x=0x1120;

H/W: -----------------

sb sp, 0(ra) //a

Thread 0
lh sp, 0(ra) //b
lh gp, 0(ra) //c

Thread 1

sh sp, 0(ra) //d

Thread 2

Initial state: 0:x2=0x20; 0:x1=x;

1:x1=x; 2:x2=0x1110; 2:x1=x;

x=0x0;

WRR+2W+sis RISC-V

Final: 1:x2=0x20; 1:x3=0x1120;

x=0x1120;

H/W: -

Figure 16.66: Litmus test WRR+2W+sis

Thread 2 have overlapping footprints. The Power architecture, which is non-multi-copy atomic,
allows the execution of this litmus test where d is (per-access) coherence-before a, and the first
load of Thread 1 reads x[0] from a, before d becomes observable to Thread 1, as evident by
reading from the initial memory value of x[1]. This behaviour is consistent with the excerpts
from the Power reference manual above, with respect to the per-byte coherence interpertation,
but if the per-access interpertation of coherence is considered, it is not clear that those excerpts
still hold. Note that all the memory access instructions in this litmus test are properly aligned
and therefore they are each associated with exactly one single-copy atomic memory access.

Microarchitecturally, this behaviour can occur in several ways. A simple one is when Threads
0 and 1 share some level of cache that is not shared with Thread 2. In that configuration, b
can update the cache level that is shared between Threads 0 and 1, before the coherence race
between a and c is determined. Thread 1 can then read the value 0x0020 for x[0..1], from the
shared cache. Finally, c wins the coherence race with a (i.e. c is sequenced before a), the shared
cache is updated, and Thread 1 reads the bytes at x[0..1] again (for the second load), this time
returning the value 0x1120.

Although not immediately obvious, this non-multi-copy atomic behaviour has significant im-

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 178

plications on the ability of programmers of Power systems to restore sequential consistency using
fences. Consider WRR+2W+sis+VAR1, which is similar to WRR+2W+sis, with the addition of

stb r2,0(r1)Wx[0]=0x 20a:
Thread 0

lhz r2,0(r1)Rx[0..1]=0x0020b:synclhz r3,0(r1)

Rx[0..1]=0x1120d:

Thread 1

sync

sth r2,0(r1)Wx[0..1]=0x1110e:
Thread 2

co

rfx[0]

rfx[0]
rfx[1]

rfx[1]

frx[1]

stb r2,0(r1)//a

Thread 0
lhz r2,0(r1)//b
sync //c
lhz r3,0(r1)//d

Thread 1
sth r2,0(r1)//e

Thread 2

Initial state: 0:r2=0x20; 0:r1=x; 1:r1=x;

2:r2=0x1110; 2:r1=x; x=0x0;

WRR+2W+sis+VAR1 Power

Final: 1:r2=0x20; 1:r3=0x1120; x=0x1120;

H/W: -

Figure 16.67: Litmus test WRR+2W+sis+VAR1

a barrier between the loads in Thread 1, which one might hope can only exhibit sequentially
consistent behaviour, as all the instructions are separated by a fence. This litmus test is allowed
by the Power architecture and observed on Power machines. This behaviour is not sequentially
consistent: there is no total order over the instructions in which each read reads each byte from
the most recent write to that byte (in the total order). Moreover, this behaviour cannot be elim-
inated by inserting more fences, as Threads 0 and 2 each have only one memory access, and the
two memory accesses in Thread 1 are already separated by a fence. This contradicts a standard
result for relaxed memory models, which is also a property that architectures have been thought
to intend and to guarantee. The only exception that the author of this thesis was previously
aware of is the Itanium architecture [?].

16.2.6 Mixed-size write-forwarding

The non-mixed-size litmus test PPOCA (Fig. 16.22) demonstrates simple write-forwarding,
where a single speculative write (e) satisfies a read (f) by forwarding. In the mixed-size setting
the footprints of the speculative write and the read that it satisfies do not have to match per-
fectly, for example in the litmus test MP+fen+ctrl-si-rfi-addr, the speculative write that is being
forwarded writes to two bytes and the read to which it is being forwarded reads from just one
of them. In the MP+fen+ctrl-rfi-si-addr the speculative write that is being forwarded writes one
byte and the read to which it is being forwarded reads two bytes, one by the forwarding, and
the other byte from the initial value in memory. Finally, in MP+fen+ctrl-rfi-si-addr+VAR1 two
speculative one-byte writes to adjacent locations are forwarded to a two-byte read. All these
variations of PPOCA are allowed by Arm, Power, and RISC-V.

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 179

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STRH W2,[X3]

Wz[0..1]=0x0001e:LDRB W4,[X3]

Rz[0]=...0x 01f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rfz[0]

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
STRH W2,[X3] //e
LDRB W4,[X3] //f
EOR X5,X4,X4
LDR X6,[X7,X5]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=0x1; 1:X7=x; 1:X3=z;

1:X2=0x1; 1:X1=y; 1:X0=0x0;

1:X4=0x0; 1:X6=0x0; z=0x0; y=0x0;

x=0x0;

MP+dmb.sy+ctrl-si-rfi-addr
AArch64

Final: 1:X0=0x1; 1:X4=0x1;

1:X6=0x0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
sh t2, 0(fp) //e
lb s1, 0(fp) //f
xor a0, s1, s1
add a3, a2, a0
ld a1, 0(a3) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=0x1; 1:x12=x; 1:x8=z; 1:x7=0x1;

1:x6=y; 1:x5=0x0; 1:x9=0x0;

1:x11=0x0; z=0x0; y=0x0; x=0x0;

MP+fence.rw.rw+ctrl-si-rfi-addr
RISC-V

Final: 1:x5=0x1; 1:x9=0x1; 1:x11=0x0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
cmpw r1,r1
bc 12,2,4
LC00:
sth r3,0(r4)//e
lbz r5,0(r4)//f
xor r6,r5,r5
ldx r7,r6,r8//g

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=0x1; 1:r8=x; 1:r4=z;

1:r3=0x1; 1:r2=y; 1:r1=0x0;

1:r5=0x0; 1:r7=0x0; z=0x0; y=0x0;

x=0x0;

MP+sync+ctrl-si-rfi-addr Power

Final: 1:r1=0x1; 1:r5=0x1;

1:r7=0x0;

H/W: -

Figure 16.68: Litmus test MP+fen+ctrl-si-rfi-addr

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 180

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STRB W2,[X3]

Wz[0]=...0x 01e:LDRH W4,[X3]

Rz[0..1]=0x0001f:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0g:

Thread 1

ctrl

addr

rf

rfz[0]
rfz[1]

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
STRB W2,[X3] //e
LDRH W4,[X3] //f
EOR X5,X4,X4
LDR X6,[X7,X5]//g

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=0x1; 1:X7=x; 1:X3=z;

1:X2=0x1; 1:X1=y; 1:X0=0x0;

1:X4=0x0; 1:X6=0x0; z=0x0; y=0x0;

x=0x0;

MP+dmb.sy+ctrl-rfi-si-addr
AArch64

Final: 1:X0=0x1; 1:X4=0x1;

1:X6=0x0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
sb t2, 0(fp) //e
lh s1, 0(fp) //f
xor a0, s1, s1
add a3, a2, a0
ld a1, 0(a3) //g

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=0x1; 1:x12=x; 1:x8=z; 1:x7=0x1;

1:x6=y; 1:x5=0x0; 1:x9=0x0;

1:x11=0x0; z=0x0; y=0x0; x=0x0;

MP+fence.rw.rw+ctrl-rfi-si-addr
RISC-V

Final: 1:x5=0x1; 1:x9=0x1; 1:x11=0x0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
cmpw r1,r1
bc 12,2,4
LC00:
stb r3,0(r4)//e
lhz r5,0(r4)//f
xor r6,r5,r5
ldx r7,r6,r8//g

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=0x1; 1:r8=x; 1:r4=z;

1:r3=0x1; 1:r2=y; 1:r1=0x0;

1:r5=0x0; 1:r7=0x0; z=0x0; y=0x0;

x=0x0;

MP+sync+ctrl-rfi-si-addr Power

Final: 1:r1=0x1; 1:r5=0x1;

1:r7=0x0;

H/W: -

Figure 16.69: Litmus test MP+fen+ctrl-rfi-si-addr

Part II Chapter 16 Arm-A, IBM Power, and RISC-V phenomena 181

STR X0,[X1]Wx=1a:DMB SYSTR X0,[X2]

Wy=1c:

Thread 0

fen

LDR X0,[X1]Ry=1d:CBNZ X0,LC00STRB W2,[X3]

Wz[0]=...0x 10e:STRB W8,[X3,#1]

Wz[1]=...0x11f:LDRH W4,[X3]

Rz[0..1]=0x1110g:EOR X5,X4,X4LDR X6,[X7,X5]

Rx=0h:

Thread 1

ctrl

po

addr

rf

rfz[0]rfz[1]

rf

fr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
STRB W2,[X3] //e
STRB W8,[X3,#1]//f
LDRH W4,[X3] //g
EOR X5,X4,X4
LDR X6,[X7,X5] //h

Thread 1

Initial state: 0:X2=y; 0:X1=x;

0:X0=0x1; 1:X7=x; 1:X3=z;

1:X8=0x11; 1:X2=0x10; 1:X1=y;

1:X0=0x0; 1:X4=0x0; 1:X6=0x0;

z=0x0; y=0x0; x=0x0;

MP+dmb.sy+ctrl-rfi-si-addr+VAR1
AArch64

Final: 1:X0=0x1; 1:X4=0x1110;

1:X6=0x0;

H/W: -----------------

sd t0, 0(t1) //a
fence rw, rw //b
sd t0, 0(t2) //c

Thread 0
ld t0, 0(t1) //d
bne t0, zero, LC00
LC00:
sb t2, 0(fp) //e
sb a4, 1(fp) //f
lh s1, 0(fp) //g
xor a0, s1, s1
add a3, a2, a0
ld a1, 0(a3) //h

Thread 1

Initial state: 0:x7=y; 0:x6=x;

0:x5=0x1; 1:x12=x; 1:x8=z;

1:x14=0x11; 1:x7=0x10; 1:x6=y;

1:x5=0x0; 1:x9=0x0; 1:x11=0x0;

z=0x0; y=0x0; x=0x0;

MP+fence.rw.rw+ctrl-rfi-si-addr+VAR1
RISC-V

Final: 1:x5=0x1; 1:x9=0x1110;

1:x11=0x0;

H/W: -

std r1,0(r2)//a
sync //b
std r1,0(r3)//c

Thread 0
ld r1,0(r2) //d
cmpw r1,r1
bc 12,2,4
LC00:
stb r3,0(r4)//e
stb r9,1(r4)//f
lhz r5,0(r4)//g
xor r6,r5,r5
ldx r7,r6,r8//h

Thread 1

Initial state: 0:r3=y; 0:r2=x;

0:r1=0x1; 1:r8=x; 1:r4=z;

1:r9=0x11; 1:r3=0x10; 1:r2=y;

1:r1=0x0; 1:r5=0x0; 1:r7=0x0;

z=0x0; y=0x0; x=0x0;

MP+sync+ctrl-rfi-si-addr+VAR1
Power

Final: 1:r1=0x1; 1:r5=0x1110;

1:r7=0x0;

H/W: -

Figure 16.70: Litmus test MP+fen+ctrl-rfi-si-addr+VAR1

Part III

Systems concurrency

182

Part IV

Reflections, related work, and history

183

Bibliography

[1] C++ standards committee papers. https://www.open-std.org/JTC1/SC22/WG21/docs/

papers/. Accessed 2023-09-01.

[2] The SPARC Architecture Manual, V. 8. SPARC International, Inc., 1992. Revision
SAV080SI9308. http://www.sparc.org/standards/V8.pdf.

[3] The SPARC Architecture Manual, V. 8. SPARC International, Inc., 1992. Re-
vision SAV080SI9308. https://sparc.org/technical-documents/#V8, https://sparc.

org/wp-content/uploads/2014/01/v8.pdf.gz. Accessed 2023-09-17.

[4] The SPARC Architecture Manual, V. 9. SPARC International, Inc./PTR Prentice Hall,
1992. Revision SAV09R1459912. https://sparc.org/technical-documents/#V9, https:
//sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz. Accessed 2023-09-17.

[5] Linux Kernel mailing list, thread “spin unlock optimization(i386)”, 119 messages,
Nov. 20–Dec. 7th, 1999, https://lkml.org/lkml/1999/11/20/76. Accessed 2023/09/10.,
1999.

[6] cpp-threads mailing list archives. https://www.decadent.org.uk/pipermail/

cpp-threads/, 2004–2013. Accessed 2023-09-01.

[7] Power ISATM Version 2.03. IBM, September 2006. 850 pages.

[8] AMD64 Architecture Programmer’s Manual (3 vols). Advanced Micro Devices, September
2007. rev. 3.14.

[9] Intel 64 architecture memory ordering white paper, 2007. Intel Corporation. SKU
318147-001.

[10] Power ISATM Version 2.05. IBM, October 2007.

[11] Intel 64 and IA-32 Architectures Software Developer’s Manual (5 vols). Intel Corporation,
March 2010. rev. 34.

[12] Programming Languages — C. 2011. ISO/IEC 9899:2011. A non-final but recent version
is available at http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf.

[13] Arm architecture reference manual (armv8, for armv8-a architecture profile). https:

//developer.arm.com/documentation/ddi0487/, 2017. ARM DDI 0487B.a (ID033117).
Issue B.a. 6354 pages. Accessed 2023-08-30.

[14] Risc-v memory model task group mailing list archives. https://lists.

riscv.org/g/tech-memory-model-archive/, 2017. https://lists.riscv.org/g/

tech-memory-model-archive/messages. Accessed 2023-09-01.

[15] Arm architecture reference manual (for a-profile architecture). https://developer.arm.
com/documentation/ddi0487/, November 2024. ARM DDI 0487. Issue L.a. 14568 pages.
Accessed 2025-01-08.

184

https://www.open-std.org/JTC1/SC22/WG21/docs/papers/
https://www.open-std.org/JTC1/SC22/WG21/docs/papers/
http://www.sparc.org/standards/V8.pdf
https://sparc.org/technical-documents/#V8
https://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
https://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
https://sparc.org/technical-documents/#V9
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz
https://lkml.org/lkml/1999/11/20/76
https://www.decadent.org.uk/pipermail/cpp-threads/
https://www.decadent.org.uk/pipermail/cpp-threads/
http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.pdf
https://developer.arm.com/documentation/ddi0487/
https://developer.arm.com/documentation/ddi0487/
https://lists.riscv.org/g/tech-memory-model-archive/
https://lists.riscv.org/g/tech-memory-model-archive/
https://lists.riscv.org/g/tech-memory-model-archive/messages
https://lists.riscv.org/g/tech-memory-model-archive/messages
https://developer.arm.com/documentation/ddi0487/
https://developer.arm.com/documentation/ddi0487/

Part IV Chapter 16 Bibliography 185

[16] Allon Adir, Hagit Attiya, and Gil Shurek. Information-flow models for shared memory
with an application to the powerpc architecture. IEEE Trans. Parallel Distributed Syst.,
14(5):502–515, 2003.

[17] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Manual Volumes
1-5. https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/

programmer-references/40332.pdf, June 2023. Accessed 2023-08-30. 3336 pages.

[18] S. V. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors. PhD
thesis, University of Wisconsin-Madison, 1993.

[19] Sarita V. Adve and Mark D. Hill. Weak ordering - A new definition. In Jean-Loup Baer,
Larry Snyder, and James R. Goodman, editors, Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, Seattle, WA, USA, June 1990, pages 2–14.
ACM, 1990.

[20] ahadali5000, Alasdair Armstrong, Alexander Richardson, Aril Computer Corp. (for con-
tributions by Scott Johnson), Ben Marshall, Bicheng Yang, Bilal Sakhawat, Brian Camp-
bell, Chris Casinghino, Christopher Pulte, Martin Berger Codasip (for contributions by
Tim Hutt, Ben Fletcher), dylux, eroom1966, Google LLC (for contributions by its employ-
ees), Hesham Almatary, Jan Henrik Weinstock, Jessica Clarke, Jon French, Martin Berger,
Michael Sammler, Microsoft (for contributions by Robert Norton-Wright, Nathaniel Wes-
ley Filardo), Muhammad Bilal Sakhawat, Nathaniel Wesley Filardo, Paul A. Clarke, Pe-
ter Rugg, Peter Sewell, Philipp Tomsich, Prashanth Mundkur, Rafael Sene, Rishiyur S.
Nikhil (Bluespec, Inc.), Robert Norton-Wright, Shaked Flur, Thibaut Pérami, Thomas
Bauereiss, VRULL GmbH (for contributions by its employees), William McSpaddden, and
Xinlai Wan. Sail RISC-V instruction-set architecture (ISA) model, 2014–2024.

[21] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The power
of processor consistency. In Lawrence Snyder, editor, Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’93, Velen, Germany, June 30 -
July 2, 1993, pages 251–260. ACM, 1993.

[22] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli.
The semantics of Power and ARM multiprocessor machine code. In Proc. DAMP 2009,
January 2009.

[23] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models. In
Proc. CAV, 2010.

[24] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running tests against hardware.
In Proc. TACAS, 2011.

[25] Jade Alglave. A Shared Memory Poetics. PhD thesis, l’Université Paris 7 – Denis Diderot,
2010. http://www0.cs.ucl.ac.uk/staff/J.Alglave/these.pdf.

[26] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,
Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU concurrency: Weak be-
haviours and programming assumptions. In Özcan Özturk, Kemal Ebcioglu, and Sandhya
Dwarkadas, editors, Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey,
March 14-18, 2015, pages 577–591. ACM, 2015.

[27] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak
consistency model specification language cat. CoRR, abs/1608.07531, 2016.

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
http://www0.cs.ucl.ac.uk/staff/J.Alglave/these.pdf

Part IV Chapter 16 Bibliography 186

[28] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget.
Armed cats: Formal concurrency modelling at arm. ACM Trans. Program. Lang. Syst.,
43(2):8:1–8:54, 2021.

[29] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget.
Armed cats: Formal concurrency modelling at arm. ACM Trans. Program. Lang. Syst.,
43(2):8:1–8:54, 2021.

[30] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in
Computer Science, pages 141–157. Springer, 2013.

[31] Jade Alglave and Luc Maranget. herd “legacy” repository. https://github.com/herd/

legacy/. Accessed 2023-10-23. Github contributors: Luc Maranget, John Wickerson,
Kate Deplaix, Mark Batty, Shaked Flur, Susmit Sarkar, jacquev6, Gabriel Kerneis, nafe.

[32] Jade Alglave and Luc Maranget. The herdtools7 tool suite. diy.inria.fr, https://

github.com/herd/herdtools7/. Accessed 2023-08-30.

[33] Jade Alglave and Luc Maranget. x86 tso mixed axiomatic model, 2020. https://github.
com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat. Accessed 2023-09-
20.

[34] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern. Fright-
ening small children and disconcerting grown-ups: Concurrency in the linux kernel. In
Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of
the Twenty-Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018,
pages 405–418. ACM, 2018.

[35] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S.
Stern. Linux kernel memory consistency model (linux kernel documenta-
tion), 2018–2023. https://kernel.googlesource.com/pub/scm/linux/kernel/

git/torvalds/linux/+/refs/heads/master/tools/memory-model/README, https:

//kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/

heads/master/tools/memory-model/Documentation/README. Accessed 2024-04-01.

[36] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus: running tests
against hardware. In Proc. TACAS: the 17th international conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, LNCS 6605, TACAS’11/ETAPS’11,
pages 41–44. Springer-Verlag, 2011.

[37] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory
models (extended version). Formal Methods in System Design, 40(2):170–205, April 2012.

[38] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simu-
lation, testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.,
36(2):7:1–7:74, 2014.

[39] ARM. ARM Barrier Litmus Tests and Cookbook, October 2008. PRD03-GENC-007826
2.0.

[40] Alasdair Armstrong. The isla-axiomatic tool. https://isla-axiomatic.cl.cam.ac.uk/.
Accessed 2020-10-10.

https://github.com/herd/legacy/
https://github.com/herd/legacy/
diy.inria.fr
https://github.com/herd/herdtools7/
https://github.com/herd/herdtools7/
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/heads/master/tools/memory-model/README
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/heads/master/tools/memory-model/README
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/heads/master/tools/memory-model/Documentation/README
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/heads/master/tools/memory-model/Documentation/README
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/refs/heads/master/tools/memory-model/Documentation/README
https://isla-axiomatic.cl.cam.ac.uk/

Part IV Chapter 16 Bibliography 187

[41] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte,
Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for ARMv8-
A, RISC-V, and CHERI-MIPS. In Proceedings of the 46th ACM SIGPLAN Symposium on
Principles of Programming Languages, January 2019. Proc. ACM Program. Lang. 3, POPL,
Article 71.

[42] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell.
Isla: Integrating full-scale ISA semantics and axiomatic concurrency models. In Proc.
33rd International Conference on Computer-Aided Verification, volume 12759 of Lecture
Notes in Computer Science, pages 303–316. Springer, July 2021.

[43] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell.
Isla: Integrating full-scale ISA semantics and axiomatic concurrency models (extended
version). Formal Methods in System Design, May 2023.

[44] Charles Babbage. On the mathematical powers of the calculating engine: [26. dec. 1837].
In The Origins of Digital Computers: Selected Papers, pages 19–54. Springer, 1837.

[45] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency.
In Proc. POPL, 2011.

[46] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics in C11
and opencl. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 634–648. ACM, 2016.

[47] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. Clarify-
ing and Compiling C/C++ Concurrency: from C++11 to POWER. In Proceedings of
POPL 2012: The 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Philadelphia), 2012.

[48] Mark Batty, Scott Owens, Jean Pichon-Pharabod, Susmit Sarkar, and Peter Sewell. Cpp-
mem: C/C++ memory model exploration tool, 2012–2019. [web interface].

[49] Mark John Batty. The C11 and C++11 Concurrency Model. PhD thesis, University of
Cambridge, 2014. 2015 SIGPLAN John C. Reynolds Doctoral Dissertation award and
2015 CPHC/BCS Distinguished Dissertation Competition winner.

[50] Thomas Bauereiss, Brian Campbell, Alasdair Armstrong, Alastair Reid, Kathryn E. Gray,
Anthony Fox, Peter Sewell, and Arm Limited. Sail Armv9.4-A, Armv9.3-A and ARMv8.5-A
instruction-set architecture (ISA) models, 2019, 2022, 2024.

[51] P. Becker, editor. Programming Languages — C++. Final Committee Draft. 2010. ISO/IEC
JTC1 SC22 WG21 N3092.

[52] Adam Biltcliffe, Michael Dales, Sam Jansen, Thomas Ridge, and Peter Sewell. Rigorous
protocol design in practice: An optical packet-switch MAC in HOL. In Proceedings of
the 14th IEEE International Conference on Network Protocols (Santa Barbara), pages 117–
126, November 2006. See also the SWIFT MAC Protocol: HOL Specification at http:

//www.cl.cam.ac.uk/~pes20/optical/spec.pdf.

[53] Steve Bishop, Matthew Fairbairn, Hannes Mehnert, Michael Norrish, Tom Ridge, Peter
Sewell, Michael Smith, and Keith Wansbrough. Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the Sockets API. J. ACM, 66(1):1:1–
1:77, December 2018.

http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem
http://www.cl.cam.ac.uk/~pes20/optical/spec.pdf
http://www.cl.cam.ac.uk/~pes20/optical/spec.pdf

Part IV Chapter 16 Bibliography 188

[54] Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and
Keith Wansbrough. Rigorous specification and conformance testing techniques for net-
work protocols, as applied to TCP, UDP, and Sockets. In Proceedings of the ACM Confer-
ence on Computer Communications (Philadelphia), published as Vol. 35, No. 4 of Computer
Communication Review, pages 265–276, August 2005.

[55] Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and
Keith Wansbrough. Engineering with logic: HOL specification and symbolic-evaluation
testing for TCP implementations. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (Charleston), pages 55–66, January 2006.

[56] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and Susmit Sarkar.
Nitpicking C++ concurrency. In Proceedings of the 13th International ACM SIGPLAN Sym-
posium on Principles and Practices of Declarative Programming, PPDP ’11, pages 113–124,
New York, NY, USA, 2011. ACM.

[57] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency memory model. In
Proc. PLDI, 2008.

[58] Hans Boehm, Martin Buchholz, David Holmes, Andrew Haley, and Erik Osterlund. Ac-
tual IRIW use case? (thread on jmm-dev mailing list). https://mail.openjdk.org/

pipermail/jmm-dev/2020-September/000440.html, September 2020. Accessed 2023-09-
07. See also https://github.com/openjdk/jdk/pull/387.

[59] Hans-Juergen Boehm. Threads cannot be implemented as a library. In Vivek Sarkar and
Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pages 261–268.
ACM, 2005.

[60] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory
model. In Rajiv Gupta and Saman P. Amarasinghe, editors, Proceedings of the ACM SIG-
PLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008, pages 68–78. ACM, 2008.

[61] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used micro-
processor. J. ACM, 43(1):166–192, 1996.

[62] William Collier. Personal communication, October 2024.

[63] William W. Collier. Reasoning about parallel architectures. Prentice Hall, 1992.

[64] William W. Collier. Archtest, 1994. https://www.mpdiag.com/. Accessed 2025-01-01.

[65] William W. Collier. Testing memory models. In Ninth International Workshop on Micro-
processor Test and Verification, MTV 2008, Austin, Texas, USA, 8-10 December 2008, pages
14–17. IEEE Computer Society, 2008.

[66] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1. Intel, November 2006. 253668-022US.

[67] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A: System Programming Guide, Part 1. Intel, July 2008. 253668-027US.

[68] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Com-
bined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. https://www.intel.com/

content/www/us/en/developer/articles/technical/intel-sdm.html, June 2023. Ac-
cessed 2023-08-30. 5066 pages.

https://mail.openjdk.org/pipermail/jmm-dev/2020-September/000440.html
https://mail.openjdk.org/pipermail/jmm-dev/2020-September/000440.html
https://github.com/openjdk/jdk/pull/387
https://www.mpdiag.com/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Part IV Chapter 16 Bibliography 189

[69] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[70] Will Deacon. The armv8 application level memory model. https:

//github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat, https:

//github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7#

diff-0461c726950c4454a08bd97fbfd49252, 2016. Accessed 2023-10-05.

[71] Will Deacon, Jade Alglave, Nikos Nikoleris, and Artem Khyzha. The armv8
application level memory model, December 2024. https://github.com/herd/

herdtools7/blob/master/herd/libdir/aarch64.cat and https://developer.arm.com/

herd7. Accessed 2025-01-08.

[72] D. Dice. Java memory model concerns on Intel and AMD systems. http://blogs.sun.

com/dave/entry/java_memory_model_concerns_on, January 2008.

[73] Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races
in space and time. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018, Philadelphia, PA, USA, June 18-22, 2018, pages 242–255. ACM, 2018.

[74] Paul Durbaba. Mechanising proofs of equivalence of operational and axiomatic formali-
sations of the x86-TSO memory model. Part III Project Dissertation, Department of Com-
puter Science and Technology, University of Cambridge, May 2021.

[75] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathematical
Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied Mathematics,
pages 19–32, Providence, Rhode Island, 1967. American Mathematical Society.

[76] Shaked Flur. litmus-latex: Machinery for including litmus tests in latex documents, 2019–
2023. https://github.com/litmus-tests/litmus-latex. Accessed 2023-10-22.

[77] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget,
Will Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: concur-
rency and ISA. In Proceedings of the 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (St. Petersburg, FL, USA), pages 608–621, January 2016.

[78] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,
Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. Mixed-size concurrency: ARM,
POWER, C/C++11, and SC. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Paris), pages 429–442, January 2017.

[79] Open POWER Foundation. Power ISA Version 3.1B. https://files.openpower.

foundation/s/dAYSdGzTfW4j2r2, September 2021. Accessed 2023-08-30. 1562 pages.

[80] Open POWER Foundation. Power Instruction Set Architecture Specification Docu-
ment, Power ISA Version 3.1C, May 2024. https://files.openpower.foundation/

s/9izgC5Rogi5Ywmm, https://openpowerfoundation.org/specifications/isa/. Revision
99a1cac of 2023-06-22. Accessed 2025-01-08. 1495 pages.

[81] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Doc-
ument Version 20191213. https://riscv.org/technical/specifications/, December

https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7#diff-0461c726950c4454a08bd97fbfd49252
https://github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7#diff-0461c726950c4454a08bd97fbfd49252
https://github.com/herd/herdtools7/commit/daa126680b6ecba97ba47b3e05bbaa51a89f27b7#diff-0461c726950c4454a08bd97fbfd49252
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://developer.arm.com/herd7
https://developer.arm.com/herd7
http://blogs.sun.com/dave/entry/java_memory_model_concerns_on
http://blogs.sun.com/dave/entry/java_memory_model_concerns_on
https://github.com/litmus-tests/litmus-latex
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2
https://files.openpower.foundation/s/dAYSdGzTfW4j2r2
https://files.openpower.foundation/s/9izgC5Rogi5Ywmm
https://files.openpower.foundation/s/9izgC5Rogi5Ywmm
https://openpowerfoundation.org/specifications/isa/
https://riscv.org/technical/specifications/

Part IV Chapter 16 Bibliography 190

2019. Contributors: Arvind, Krste Asanović, Rimas Avižienis, Jacob Bachmeyer, Christo-
pher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston Briggs, Christo-
pher Celio, Chuanhua Chang, David Chisnall, Paul Clayton, Palmer Dabbelt, Ken Dockser,
Roger Espasa, Shaked Flur, Stefan Freudenberger, Marc Gauthier, Andy Glew, Jan Gray,
Michael Hamburg, John Hauser, David Horner, Bruce Hoult, Bill Huffman, Alexandre
Joannou, Olof Johansson, Ben Keller, David Kruckemyer, Yunsup Lee, Paul Loewenstein,
Daniel Lustig, Yatin Manerkar, Luc Maranget, Margaret Martonosi, Joseph Myers, Vi-
jayanand Nagarajan, Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Albert Ou, John
Ousterhout, David Patterson, Christopher Pulte, Jose Renau, Josh Scheid, Colin Schmidt,
Peter Sewell, Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy
Thorn, Caroline Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs,
Andrew Waterman, Robert Watson, Derek Williams, Andrew Wright, Reinoud Zandijk,
Sizhuo Zhang. 238 pages. Accessed 2023-08-30.

[82] FSF. Gcc 13.2 manual, 6.47.2 extended asm - assembler instructions with c expres-
sion operands, 2023. https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Extended-Asm.
html. Accessed 2023-09-17.

[83] K. Gharachorloo. Memory consistency models for shared-memory multiprocessors. WRL
Research Report, 95(9), 1995.

[84] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop Gupta,
and John L. Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In Jean-Loup Baer, Larry Snyder, and James R. Goodman,
editors, Proceedings of the 17th Annual International Symposium on Computer Architec-
ture, Seattle, WA, USA, June 1990, pages 15–26. ACM, 1990.

[85] Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords. Verifying x86 instruction
implementations. In Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2020, page 47–60, New York, NY, USA, 2020. Association
for Computing Machinery.

[86] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison-
Wesley Longman Publishing Co., Inc., USA, 1st edition, August 1996.

[87] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit Sarkar,
and Peter Sewell. An integrated concurrency and core-ISA architectural envelope defini-
tion, and test oracle, for IBM POWER multiprocessors. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture (Waikiki), pages 635–646, December 2015.

[88] Jim Handy. The cache memory book. Academic Press Professional, Inc., USA, 1993.

[89] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition,
2017.

[90] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[91] Intel. Pentium pro processor specification update, January 1999. 242689-035.
http://www.cpu-zone.com/Pentium/Pentium%20processor%20specification.pdf. Ac-
cessed 2023-09-17.

[92] ISO. ISO/IEC 14882:2017 Information technology — Programming languages — C++.
International Organization for Standardization, Geneva, Switzerland, fifth edition, De-
cember 2017.

https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gcc/Extended-Asm.html
http://www.cpu-zone.com/Pentium/Pentium%20processor%20specification.pdf

Part IV Chapter 16 Bibliography 191

[93] ISO. ISO/IEC 9899:2018 Information technology — Programming languages — C.
International Organization for Standardization, Geneva, Switzerland, fourth edition,
June 2018. Final draft at https://web.archive.org/web/20181230041359/http://www.

open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf.

[94] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s next-generation server
processor. IEEE Micro, 30:7–15, March 2010.

[95] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promis-
ing semantics for relaxed-memory concurrency. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 175–189.
ACM, 2017.

[96] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency.
In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 649–662. ACM, 2016.

[97] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., C-28(9):690–691, 1979.

[98] Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and Peter
Sewell. Cerberus-BMC: a principled reference semantics and exploration tool for con-
current and sequential C. In Proc. 31st International Conference on Computer-Aided Verifi-
cation, July 2019.

[99] Stella Lau, Kayvan Memarian, Victor B. F. Gomes, Kyndylan Nienhuis, Justus Matthiesen,
James Lingard, and Peter Sewell. Cerberus-BMC tool for exploring the behaviour of small
concurrent C test programs with respect to an arbitrary axiomatic concurrency model,
2019. [web interface].

[100] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti, W. Sauer,
E. M. Schwarz, and M. T. Vaden. IBM POWER6 microarchitecture. IBM Journal of Re-
search and Development, 51(6):639–662, 2007.

[101] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–446,
2009.

[102] Arm Ltd. Memory model tool: Herd7 simulator, 2025. https://developer.arm.com/

herd7. Accessed 2025-01-08.

[103] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott
Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams. An axiomatic
memory model for power multiprocessors. In Proc. CAV, 24th International Conference on
Computer Aided Verification, LNCS 7358, pages 495–512, 2012.

[104] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. Counterexamples and proof loophole for the C/C++ to POWER and armv7
trailing-sync compiler mappings. CoRR, abs/1611.01507, 2016.

[105] Jeremy Manson. The design and verification of java’s memory model. In Mamdouh
Ibrahim, editor, Companion of the 17th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA 2002, Seattle, Washington,
USA, November 4-8, 2002, pages 10–11. ACM, 2002.

https://web.archive.org/web/20181230041359/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://web.archive.org/web/20181230041359/http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
http://cerberus.cl.cam.ac.uk/bmc.html
https://developer.arm.com/herd7
https://developer.arm.com/herd7

Part IV Chapter 16 Bibliography 192

[106] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In Jens
Palsberg and Martín Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005, pages 378–391. ACM, 2005.

[107] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to the ARM and
POWER relaxed memory models, October 2012. Draft.

[108] Kayvan Memarian. The Cerberus C semantics. Technical Report UCAM-CL-TR-981, Uni-
versity of Cambridge, Computer Laboratory, May 2023. PhD thesis.

[109] Kayvan Memarian. The Cerberus C semantics. PhD thesis, University of Cambridge, May
2023.

[110] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. Exploring C semantics and pointer provenance. In
Proceedings of the 46th ACM SIGPLAN Symposium on Principles of Programming Languages,
January 2019. Proc. ACM Program. Lang. 3, POPL, Article 67. Also available as ISO/IEC
JTC1/SC22/WG14 N2311.

[111] Dominic Mulligan, Thomas Bauereiss, Kathryn E. Gray, Scott Owens, Peter Sewell,
Thomas Tuerk, Basile Clement, Brian Campbell, Christopher Pulte, David Sheets, Fabian
Immler, Frederic Loulergue, Francesco Zappa Nardelli, Gabriel Kerneis, James Lingard,
Jean Pichon-Pharabod, Justus Matthiesen, Kayvan Memarian, Kyndylan Nienhuis, Lars
Hupel, Mark Batty, Michael Greenberg, Michael Norrish, Ohad Kammar, Peter Boehm,
Robert Norton, Sami Mäkelä, Shaked Flur, Stephen Kell, Thibaut Pérami, Thomas
Bauereiss, Thomas Williams, Victor Gomes, and emersion. Lem, a tool for lightweight
executable mathematics, 2010–2023.

[112] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. Lem:
Reusable engineering of real-world semantics. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 175–188, New York,
NY, USA, September 2014. ACM.

[113] John von Neumann. First draft of a report on the edvac. Technical report, 1945.

[114] Frank P. O’Connell and Steven W. White. POWER3: The next generation of PowerPC
processors. IBM Journal of Research and Development, 44(6):873–884, 2000.

[115] S. Owens, P. Böhm, F. Zappa Nardelli, and P. Sewell. Lightweight tools for heavyweight
semantics. Submitted for publication http://www.cl.cam.ac.uk/~so294/lem/.

[116] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In
Proc. TPHOLs, pages 391–407, 2009.

[117] Scott Owens. Reasoning about the implementation of concurrency abstractions on
x86-TSO. In ECOOP 2010: Proceedings of the 24th European Conference on Object-
Oriented Programming, volume 6183 of Lecture Notes in Computer Science, pages 478–
503. Springer, 2010.

[118] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO (ex-
tended version). Technical Report UCAM-CL-TR-745, University of Cambridge, Computer
Laboratory, March 2009. 52pp.

[119] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hard-
ware Software Interface ARM Edition. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2016.

http://www.cl.cam.ac.uk/~so294/lem/

Part IV Chapter 16 Bibliography 193

[120] Christopher Pulte. The Semantics of Multicopy Atomic ARMv8 and RISC-V. PhD thesis, Uni-
versity of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/292229.

[121] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
Simplifying ARM Concurrency: Multicopy-atomic Axiomatic and Operational Models for
ARMv8. In Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Programming
Languages, January 2018.

[122] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-
Kil Hur. Promising-arm/risc-v: a simpler and faster operational concurrency model. In
Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, pages 1–15. ACM, 2019.

[123] Azalea Raad, Luc Maranget, and Viktor Vafeiadis. Extending intel-x86 consistency and
persistency: formalising the semantics of intel-x86 memory types and non-temporal
stores. Proc. ACM Program. Lang., 6(POPL):1–31, 2022.

[124] Alastair Reid. Trustworthy specifications of arm® v8-a and v8-m system level architec-
ture. In Ruzica Piskac and Muralidhar Talupur, editors, 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016, pages 161–168.
IEEE, 2016.

[125] Tom Ridge. A rely-guarantee proof system for x86-tso. In Proceedings of the Third Inter-
national Conference on Verified Software: Theories, Tools, Experiments, VSTTE’10, pages
55–70, Berlin, Heidelberg, 2010. Springer-Verlag.

[126] Tom Ridge, Michael Norrish, and Peter Sewell. A rigorous approach to networking: TCP,
from implementation to protocol to service. In Proceedings of the 15th International Sym-
posium on Formal Methods (Turku, Finland), LNCS 5014, pages 294–309, May 2008.

[127] RISC-V. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Doc-
ument Version 20240411. https://riscv.org/technical/specifications/, December
2021. Contributors: Krste Asanović and Peter Ashenden and Rimas Avižienis and Jacob
Bachmeyer and Allen J. Baum and Jonathan Behrens and Paolo Bonzini and Ruslan Bukin
and Christopher Celio and Chuanhua Chang and David Chisnall and Anthony Coulter and
Palmer Dabbelt and Monte Dalrymple and Paul Donahue and Greg Favor and Dennis Fer-
guson and Marc Gauthier and Andy Glew and Gary Guo and Mike Frysinger and John
Hauser and David Horner and Olof Johansson and David Kruckemyer and Yunsup Lee and
Daniel Lustig and Andrew Lutomirski and Prashanth Mundkur and Jonathan Neuschäfer
and Rishiyur Nikhil and Stefan O’Rear and Albert Ou and John Ousterhout and David
Patterson and Dmitri Pavlov and Kade Phillips and Josh Scheid and Colin Schmidt and
Michael Taylor and Wesley Terpstra and Matt Thomas and Tommy Thorn and Ray VanDe-
Walker and Megan Wachs and Steve Wallach and Andrew Waterman and Claire Wolf and
Reinoud Zandijk. https://riscv.org/specifications/ratified/. Accessed 2025-01-08.
172 pages.

[128] RISC-V. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document
Version 20240411, November 2024. Contributors: Derek Atkins and Arvind and Krste
Asanović and Rimas Avižienis and Jacob Bachmeyer and Christopher F. Batten and Allen
J. Baum and Abel Bernabeu and Alex Bradbury and Scott Beamer and Hans Boehm and
Preston Briggs and Christopher Celio and Chuanhua Chang and David Chisnall and Paul
Clayton and Palmer Dabbelt and L Peter Deutsch and Ken Dockser and Paul Donahue
and Aaron Durbin and Roger Espasa and Greg Favor and Andy Glew and Shaked Flur

https://www.repository.cam.ac.uk/handle/1810/292229
https://riscv.org/technical/specifications/
https://riscv.org/specifications/ratified/

Part IV Chapter 16 Bibliography 194

and Stefan Freudenberger and Marc Gauthier and Andy Glew and Jan Gray and Gianluca
Guida and Michael Hamburg and John Hauser and John Ingalls and David Horner and
Bruce Hoult and Bill Huffman and Alexandre Joannou and Olof Johansson and Ben Keller
and David Kruckemyer and Tariq Kurd and Yunsup Lee and Paul Loewenstein and Daniel
Lustig and Yatin Manerkar and Luc Maranget and Ben Marshall and Margaret Martonosi
and Phil McCoy and Nathan Menhorn and Christoph Müllner and Joseph Myers and
Vijayanand Nagarajan and Rishiyur Nikhil and Jonas Oberhauser and Stefan O’Rear
and Markku-Juhani O. Saarinen and Albert Ou and John Ousterhout and Daniel Page
and David Patterson and Christopher Pulte and Jose Renau and Josh Scheid and Colin
Schmidt and Peter Sewell and Susmit Sarkar and Ved Shanbhogue and Brent Spinney and
Brendan Sweeney and Michael Taylor and Wesley Terpstra and Matt Thomas and Tommy
Thorn and Philipp Tomsich and Caroline Trippel and Ray VanDeWalker and Muralidaran
Vijayaraghavan and Megan Wachs and Paul Wamsley and Andrew Waterman and Robert
Watson and David Weaver and Derek Williams and Claire Wolf and Andrew Wright and
Reinoud Zandijk and Sizhuo Zhang. https://riscv.org/specifications/ratified/. Ac-
cessed 2025-01-08. 670 pages.

[129] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant, M. Myreen, and
J. Alglave. The semantics of x86-CC multiprocessor machine code. In Proc. POPL 2009,
January 2009.

[130] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget,
Jade Alglave, and Derek Williams. Synchronising C/C++ and POWER. In Proceedings of
PLDI, the 33rd ACM SIGPLAN conference on Programming Language Design and Implemen-
tation (Beijing), 2012.

[131] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Under-
standing POWER multiprocessors. In Proc. PLDI, 2011.

[132] Susmit Sarkar, Peter Sewell, Luc Maranget, Shaked Flur, Christopher Pulte, Jon French,
Ben Simner, Scott Owens, Pankaj Pawan, Francesco Zappa Nardelli, Sela Mador-Haim,
Dominic Mulligan, Ohad Kammar, Jean Pichon-Pharabod, Gabriel Kerneis, Alasdair Arm-
strong, Thomas Bauereiss, and Jeehoon Kang. RMEM: Executable operational concur-
rency model exploration tool for ARMv8, RISC-V, Power, and x86, 2010–2023. [web
interface].

[133] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP calculus: Rigorous
semantics for real networking. In Proceedings of Theoretical Aspects of Computer Software
(Sendai), LNCS 2215, pages 535–559, October 2001.

[134] Jaroslav Sevcík. Program transformations in weak memory models. PhD thesis, University
of Edinburgh, UK, 2009.

[135] Jaroslav Sevcík and David Aspinall. On validity of program transformations in the java
memory model. In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lec-
ture Notes in Computer Science, pages 27–51. Springer, 2008.

[136] Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and
Peter Sewell. Compcerttso: A verified compiler for relaxed-memory concurrency. J. ACM,
60(3):22:1–22:50, 2013.

[137] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. x86-TSO: A rigorous
and usable programmer’s model for x86 multiprocessors. Communications of the ACM,
53(7):89–97, July 2010.

https://riscv.org/specifications/ratified/
http://www.cl.cam.ac.uk/users/pes20/rmem
http://www.cl.cam.ac.uk/users/pes20/rmem

Part IV Chapter 16 Bibliography 195

[138] Dennis E. Shasha and Marc Snir. Efficient and correct execution of parallel programs that
share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

[139] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A sepa-
ration logic for fictional sequential consistency. In Programming Languages and Systems
- 24th European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings, pages 736–761, 2015.

[140] Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean
Pichon-Pharabod, , and Peter Sewell. Relaxed exception semantics for arm-a (extended
version), 2024.

[141] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard
Grisenthwaite, and Peter Sewell. Relaxed virtual memory in Armv8-A. In Proceedings
of the 31st European Symposium on Programming, volume 13240 of Lecture Notes in Com-
puter Science, pages 143–173. Springer, April 2022.

[142] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod,
Luc Maranget, and Peter Sewell. ARMv8-A system semantics: instruction fetch in relaxed
architectures. In Proceedings of the 29th European Symposium on Programming, April
2020.

[143] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal specification of memory models. In
Scalable Shared Memory Multiprocessors, pages 25–42. Kluwer, 1991.

[144] Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cekleov. Formal specification of mem-
ory models. In Scalable Shared Memory Multiprocessors, pages 25–41. Springer, 1992.
Book editors: Michel Dubois and Shreekant Thakkar. Another version of this chapter
appeared as Xerox TR CSL-91-11.

[145] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd D. Millstein, and Madan-
lal Musuvathi. End-to-end sequential consistency. In 39th International Symposium on
Computer Architecture (ISCA 2012), June 9-13, 2012, Portland, OR, USA, pages 524–535.
IEEE Computer Society, 2012.

[146] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5 system
microarchitecture. IBM Journal of Research and Development, 49(4-5):505–522, 2005.

[147] Richard L. Sites. Alpha Architecture Reference Manual. Digital Press, USA, 1992.

[148] Intel staff. Personal communication, November 2009.

[149] W. J. Starke, J. Stuecheli, D. M. Daly, J. S. Dodson, F. Auernhammer, P. M. Sagmeister,
G. L. Guthrie, C. F. Marino, M. Siegel, and B. Blaner. The cache and memory subsystems
of the IBM POWER8 processor. IBM Journal of Research and Development, 59(1):3:1–
3:13, 2015. Part of IBM Journal of Research and Development Issue 1 Jan.-Feb. 2015
IBM POWER8 Technology, https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=
7029148&punumber=5288520.

[150] Joel M. Tendler, J. Steve Dodson, J. S. Fields Jr., Hung Le, and Balaram Sinharoy.
POWER4 system microarchitecture. IBM Journal of Research and Development, 46(1):5–
26, 2002.

[151] A. M. Turing. Proposals for Development in the Mathematics Division of
an Automatic Computing Engine (ACE). Report E.882, The National Physical

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7029148&punumber=5288520
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7029148&punumber=5288520

Part IV Chapter 16 Bibliography 196

Laboratory. https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/

Alan-Turing/turing-proposal-Alan-LR.pdf?lang=en-GB. Accessed 2024-04-01.

[152] Alan M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[153] J. von Neumann. First draft of a report on the edvac. IEEE Annals of the History of
Computing, 15(4):27–75, 1993.

[154] Keith Wansbrough, Michael Norrish, Peter Sewell, and Andrei Serjantov. Timing UDP:
mechanized semantics for sockets, threads and failures. In Proceedings of the 11th Euro-
pean Symposium on Programming (Grenoble), LNCS 2305, pages 278–294, April 2002.

[155] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan,
Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo. Repairing and mechanising the
javascript relaxed memory model. In Alastair F. Donaldson and Emina Torlak, editors,
Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages 346–361.
ACM, 2020.

[156] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. Weakening webassembly.
Proc. ACM Program. Lang., 3(OOPSLA):133:1–133:28, 2019.

[157] M. V. Wilkes and W. Renwick. The EDSAC (electronic delay storage automatic calcula-
tor). Math. Comp., 4:61–65, 1950. https://www.ams.org/journals/mcom/1950-04-030/

S0025-5718-1950-0037589-7/. Accessed 2024-04-01.

[158] F. C. Williams and T. Kilburn. Electronic digital computers. Nature, 162:487, 1948.
https://www.nature.com/articles/162487a0. Accessed 2024-04-01.

[159] M. Woodger. Automatic Computing Engine of the National Physical Laboratory. Nature,
167:270–271, 1951.

[160] Yuan Yu. Automated proofs of object code for a widely used microprocessor. PhD thesis,
University of Texas at Austin, 1992.

https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/turing-proposal-Alan-LR.pdf?lang=en-GB
https://www.npl.co.uk/getattachment/about-us/History/Famous-faces/Alan-Turing/turing-proposal-Alan-LR.pdf?lang=en-GB
https://www.ams.org/journals/mcom/1950-04-030/S0025-5718-1950-0037589-7/
https://www.ams.org/journals/mcom/1950-04-030/S0025-5718-1950-0037589-7/
https://www.nature.com/articles/162487a0

	Acknowledgements
	Reading guide
	Readership
	Structure
	Use as course material

	Introduction
	Memory
	Out-of-order and speculative uniprocessors
	Shared-memory multiprocessors
	Sequential consistency
	Running the example experimentally, on hardware
	Architecture specifications
	Programming language compiler effects
	Programming language specifications
	Status of the models

	I SC, x86, tools, and approach
	x86 basic phenomena
	Litmus tests and candidate executions
	SB: store buffering?
	LB: load request buffering?
	MP: message passing?
	SB+rfi-pos: write buffers with read-back?
	IRIW: independent reads of independent writes?
	WRC: write-to-read causality?
	SB+mfences: restoring order with fences
	Read-modify-write instructions
	Synchronising power of locked instructions

	x86: some vendor documentation history
	pre-IWP (before Aug. 2007)
	IWP/AMD3.14/x86-CC
	Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010)
	AMD APM version 3.15 (Nov. 2009)
	Intel SDM rev.80 (June 2023)
	AMD APM 4.07 (April 2020)

	x86-TSO: creating a good de facto standard model
	Operational and axiomatic concurrency model definitions
	SC, operationally
	An operational SC model

	x86-TSO, operationally
	An operational x86-TSO model
	x86-TSO operational example: SB
	x86-TSO operational example: spinlocks
	Discussion

	Making operational models executable as a test oracle: RMEM
	SC, axiomatically
	Execution graphs, formally
	Coherence
	An axiomatic SC model
	Equivalence of the operational and axiomatic SC models

	x86-TSO, axiomatically
	Coherence in x86-TSO
	Local ordering and the external relations
	An x86-TSO axiomatic model, without MFENCE and LOCK'd instructions
	x86-TSO axiomatic examples
	Equivalence of the operational and axiomatic x86-TSO models, without MFENCE and LOCK'd instructions
	Relational algebra Cat notation for axiomatic model definitions
	An x86-TSO axiomatic model, with LOCK'd instructions and MFENCE
	Equivalence of the operational and axiomatic x86-TSO models

	Making axiomatic models executable: Herd and Isla
	Running tests on hardware: Litmus
	Test families and test generation: Diy
	Organising tests
	Generating single tests from cycles
	Generating families of tests

	Validating the model: why should one believe it?
	Sound with respect to existing hardware: experimental validation
	Sound with respect to future hardware; loose enough to permit future microarchitectural innovation
	Opaque with respect to hardware implementation detail
	Complete with respect to hardware
	Strong enough for software
	Precise and unambiguous
	Clear
	Executable as a test oracle
	Incrementally executable
	Mathematically validated
	Authoritative
	Accurately capturing the architectural intent
	Consistency with the de facto standard

	II Arm-A, IBM Power, and RISC-V
	Introducing Arm-A, IBM Power, and RISC-V relaxed concurrency
	Architectures and Implementations
	Arm-A
	IBM Power
	RISC-V

	Relaxed behaviour and abstract microarchitecture, informally
	Microarchitecture optimisations and relaxed architecture specifications
	The pros and cons of relaxed architecture specifications
	Abstract microarchitecture – structure
	Abstract microarchitecture – behaviour

	Litmus tests
	Candidate executions

	Arm-A, IBM Power, and RISC-V phenomena
	Non-mixed-size Phenomena
	Coherence
	Out-of-order execution
	Dependencies
	Speculative execution - branching
	Instruction Barrier
	Write forwarding
	Speculative execution - restarts
	Satisfy same address reads out-of-order
	Write forwarding from a non-speculative write
	Multi-step read satisfaction
	Detour
	Write subsumption
	Symbolic forwarding
	Multi-Copy Atomicity
	Atomic Memory Modification
	Release/Acquire Memory Accesses

	Mixed-Size Phenomena
	Reading from Multiple Writes
	Mixed-size Coherence
	Single-copy Atomicity
	Atomicity of register accesses
	Mixed-size Multi-copy Atomicity
	Mixed-size write-forwarding

	III Systems concurrency
	IV Reflections, related work, and history
	References

