
JFP 18 (4): 437–502, 2008. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006600 First published online 17 October 2007 Printed in the United Kingdom

437

Dynamic rebinding for marshalling and update,
via redex-time and destruct-time reduction

PETER SEWELL

University of Cambridge

(e-mail: Peter.Sewell@cl.cam.ac.uk)

GARETH STOYLE

University of Cambridge

(e-mail: gareth@almostlogical.org)

MICHAEL HICKS

University of Maryland, College Park

(e-mail: mwh@cs.umd.edu)

GAVIN BIERMAN

Microsoft Research, Cambridge

(e-mail: gmb@microsoft.com)

KEITH WANSBROUGH

Data Connection Ltd., Edinburgh

(e-mail: Keith.Wansbrough@lochan.org)

Abstract

Most programming languages adopt static binding, but for distributed programming an

exclusive reliance on static binding is too restrictive: dynamic binding is required in various

guises, for example, when a marshalled value is received from the network, containing

identifiers that must be rebound to local resources. Typically, it is provided only by ad hoc

mechanisms that lack clean semantics. In this paper, we adopt a foundational approach,

developing core dynamic rebinding mechanisms as extensions to the simply typed call-by-

value λ calculus. To do so, we must first explore refinements of the call-by-value reduction

strategy that delay instantiation, to ensure computations make use of the most recent versions

of rebound definitions. We introduce redex-time and destruct-time strategies. The latter forms

the basis for a λmarsh calculus that supports dynamic rebinding of marshalled values, while

remaining as far as possible statically typed. We sketch an extension of λmarsh with concurrency

and communication, giving examples showing how wrappers for encapsulating untrusted code

can be expressed. Finally, we show that a high-level semantics for dynamic updating can also

be based on the destruct-time strategy, defining a λupdate calculus with simple primitives to

provide type-safe updating of running code. We show how the ideas of this simple calculus

extend to more real-world, module-level dynamic updating in the style of Erlang. We thereby

establish primitives and a common semantic foundation for a variety of real-world dynamic

rebinding requirements.

1 Introduction

Most programming languages employ static binding, with the meaning of identifiers

determined by their compile-time context. In general, this gives more comprehensible

438 P. Sewell et al.

code than dynamic binding alternatives, where the meanings of identifiers depend

in some sense on their ‘use-time’ contexts; static binding is also a requirement for

conventional static type systems. Modern software, though, is becoming increasingly

dynamic, as it becomes ever more modular, extensible, and distributed. Exclusive

use of static binding is too limiting in many ways1:

• When values or computations are marshalled from a running system and

moved elsewhere, either by network communication or via a persistent store,

some of their identifiers may need to be dynamically rebound. These may be

both ‘external’ identifiers of system-calls or language run-time library functions,

and, more interestingly, ‘internal’ identifiers from application libraries that exist

in the new context. Such libraries should not be automatically copied with

values that use them, both for performance reasons and as they may have

location-dependent behaviour (e.g. routing functions). Moreover, a value may

be moved repeatedly, and the set of identifiers to be rebound may change as

it moves. For example, it may be desirable to acquire an organisation-specific

library that, once resolved, should be fixed and carried with code moved within

that organisation.

• Flexible control of dynamic rebinding can support secure encapsulation of

untrusted code, by allowing access only to sandboxed resources. For example,

when loading an untrusted applet, we may bind its open identifier to a

safe open function that opens files in the /tmp directory only. On the other

hand, we want the flexibility to link trusted code with the unconstrained open

function.

• Systems that must provide uninterrupted service (e.g. telephone switches) must

be dynamically updated to fix bugs and add new functionality. A general

purpose approach to this problem is to load new code into the program and

then dynamically rebind some of the existing identifiers to the new definitions.

While dynamic rebinding is clearly useful in practice, most modern programming

languages provide only rather limited and ad hoc mechanisms, and no adequate

semantic understanding of rebinding currently exists. Our goal in this paper is to

identify core mechanisms for dynamic rebinding, as a step towards the design of

improved languages for distributed computation and dynamic updating. We focus

on ML-like languages, with higher-order functions, for expressiveness; with call-by-

value (CBV) reduction, for a simple evaluation order (desirable in the presence of

either communication effects or dynamic updates); and where possible with static

typing, as early detection of errors is particularly important in both distributed and

long-running systems. This paper makes three contributions:

• The central contribution is our study of delayed instantiation strategies, which

admit sensible semantics when extended with rebinding. We study two such

calculi, λr and λd, which embody redex-time and destruct-time instantiation

1 ‘It is the conventional wisdom of distributed programming that in any cases of this sort early binding
is extremely wicked, and every opportunity must be taken to allow for variability’ (Needham 1993).

Dynamic rebinding for marshalling and update 439

semantics, respectively, in a simply typed λ calculus. We relate them to the

standard CBV operational semantics, embodied in the calculus λc, by proving

that all three evaluation strategies are observationally equivalent.

• We illustrate mechanisms for rebinding by extending our new calculi in two

ways. First, we define primitives for selectively marshalling and unmarshalling

values, to be communicated between processes or saved and restored from

external storage. The key problem to solve is how to handle free variables

appearing in marshalled λ terms. We introduce a concept of programmer-

specified marks to define ‘mobile’ and ‘immobile’ definitions, defining a policy of

which terms should and should not be marshalled when referenced by a λ term.

We sketch how marks can be used in a distributed setting (with π-calculus-

like communication primitives) and can be used to implement sandboxing for

untrusted code.

• Finally, we define a primitive for dynamically updating definitions in a running

program. The basic approach is a rather simple extension of λd, with run-time

system support for changing definitions according to an external specification.

We also consider module-level updating in the style of the functional language

Erlang (Armstrong et al. 1996), where we extend λr .

We express the semantics of these calculi with direct operational semantics, defining

reductions over the calculus syntax. This approach provides clarity, and should scale

well to full language designs; it avoids commitment to any particular implementation

strategy. We find this preferable to the lower-level alternatives of expressing semantics

using abstract machines or encodings (into languages with references), which we

believe would lead to rather complex definitions.

The next section gives a technical overview of the main body in §3–7. The

work presented here forms the foundation of subsequent research on distributed

programming in Acute (Sewell et al. 2004, 2007), a full-scale programming

language with type-safe marshalling and rebinding, and on dynamic updating in

Ginseng (Stoyle et al. 2005; Neamtiu et al. 2006), an implementation for dynamically

updating C programs. Relationships with this and prior work, and further discussion

of the design space, are presented in §8. In §9, we conclude. Proofs of results are

given in the Appendices.

This paper is a revised and extended version of the paper (Bierman et al. 2003a),

with differences as follows: in §3 the typing and run-time error rules are included,

and additional examples given; in §4, the error rules for λmarsh are included and the

extension with distributed communication is fleshed out with examples, typing and

semantics; §7 extends the basic updating calculus to more full-featured Erlang-style

(Armstrong et al. 1996) dynamic update (Bierman et al. 2003c); finally, §8 relates

the work herein to our subsequent work on distributed programming and dynamic

updating in full-scale programming languages.

Theorem 4 of the paper (Bierman et al. 2003a) asserted the observational

equivalence of the three calculi λc, λr and λd, as a check that the latter two are

essentially CBV despite their rather different evaluation strategies. After publication,

we discovered a technical flaw in the original proof, and so in the technical report

440 P. Sewell et al.

(Bierman et al. 2003b) we stated and proved the property for a simpler language,

replacing letrec by a non-terminating Ω (with Ω −→ Ω). A proof of the original

result has now been completed, using an intricate operational correspondence

argument. We summarise the main points here; the full details appear in Stoyle’s PhD

thesis (Stoyle 2006). The proofs of the other technical results are straightforward;

we give outlines here and refer the reader to the technical report (Bierman et al.

2003b) for details.

2 Overview

Revisiting CBV λ calculus

Consider the CBV λ calculus, a model fragment of ML, and in particular the way

in which identifiers are instantiated. The usual operational semantics substitutes out

binders—the standard construct-time (app) and (let) rules

(app) (λz :T .e)v −→ {v/z}e
(let) let z :T = v in e −→ {v/z}e

instantiate all instances of z as soon as the value v that it has been bound to has

been constructed.

This semantics is not compatible with dynamic rebinding, as it loses too much

information. To see this, suppose that e in the expression let z = v in e transmits a

function containing z to some other machine, and we have indicated that z should

be dynamically rebound to the local definition when it arrives. With the (let) rule

this would be futile, as the z is substituted away before the communication occurs.

Similarly, a dynamic update of z after a (let) would be vacuous.

Therefore, we need a more refined semantics that preserves information about the

binding structure of terms, allowing us to delay ‘looking up’ the value associated

with an identifier as long as possible so as to obtain the most relevant/recent version

of its definition. This should maintain the essentially CBV nature of the calculus,

however. We elaborate below on exactly what this means.

We present two reduction strategies with delayed instantiation in §3. The redex-

time (λr) semantics resolves identifiers when in redex position. While this is clean

and simple, it can be unnecessarily eager, and so we formulate the destruct-time (λd)

semantics to delay resolving identifiers until their values must be destructed.

Dynamic rebinding: The λmarsh calculus

With λr and λd in place, we can consider dynamic rebinding of marshalled values.

The key question is this: when a value is moved between scopes, how can the user

specify which identifiers should be rebound and which should be fixed? Our answer

is embodied in the λmarsh calculus of §4, which contains primitives for packaging

a value so that some of its identifiers are fixed to bindings in the current context,

while others will be rebound when unpackaged in a new scope (e.g. when the value

Dynamic rebinding for marshalling and update 441

is moved). Which bindings will be fixed is dynamically determined with respect to a

mark. Marking is done with an expression form

e ::= ... | mark M in e

Here the mark name M is taken from a new syntactic class (not subject to binding);

it names the surrounding declaration context. Packaging and unpackaging are done

by expressions

e ::= ... | marshal M e | unmarshal M e

which are both with respect to a mark. An expression marshal M e will first

reduce e to a value u , and copy all bindings within the nearest enclosing mark M ;

these bindings are essentially static. Identifiers of u not bound within the mark

are recorded in a type environment within the packaged value, which has form

(marshalled Γ u), and can be rebound. For example:

let x1:int = 5 in −→ let x1:int = 5 in

mark M in mark M in

let y1:int = 6 in let y1:int = 6 in

marshal M (x1, y1) marshalled (x1:int) (let y1:int = 6 in (x1, y1))

(Here the 1 on x1 and y1 is an α-varying tag, see §4.1.) Because y1 is defined within

the mark M , its definition is copied into the package, while x1 is defined outside of

M , so it is simply noted in the captured type environment. When this package is

unmarshalled using unmarshal with respect to some mark M ′, x1 will be rebound to

a definition outside M ′, subject to a dynamic type environment check.

To indicate more concretely how λmarsh can form the basis of a distributed

programming language that supports mobile code, in §5 we sketch an extension

with concurrency, communication and external library functions, giving examples

showing how wrappers for encapsulating untrusted code can be expressed. We also

sketch an implementation strategy. Later work (Sewell et al. 2004, 2007) has built

on these ideas to provide a full-scale prototype distributed programming language,

Acute, and the HashCaml extension of OCaml with type-safe marshalling (Billings

et al. 2006).

Dynamic update: The λupdate calculus

Dynamic updating also requires dynamic rebinding and delayed variable

instantiation. We again extend λd, here with a simple update primitive that allows a

program variable to be rebound to a new expression. The resulting λupdate calculus

is given in §6. As an example, consider the expression on the left below:

let x1 = 5 in
{y⇐(x1 ,6)}

−−−−−−→ let x1 = 5 in

let y1 = (4, 6) in let y1 = (x1, 6) in

let z1 = update in let z1 = () in

π1 y1 π1 y1

442 P. Sewell et al.

The update expression indicates that an update is possible at the point during

evaluation when update appears in redex position. At that run-time point, the user

can supply an update of the form {w ⇐ e}, indicating that w should be rebound

to expression e. Any identifier in scope at the update point can be rebound to

an expression that may mention identifiers in scope at its binding point. In the

example, this update is {y ⇐ (x1, 6)}; the let-binder for y1 is modified accordingly,

yielding the expression on the right above, and thence a final result of 5. We define

what it means for an update to be well typed with respect to a program; applying

well-typed updates preserves typing. A benefit of λd is that it simply and cleanly

supports updating higher-order functions, often ignored in past work. In §7, we

expand λupdate to develop a model of updating in the style of Erlang (Armstrong

et al. 1996) and illustrate its utility with some examples. Later work (Stoyle et al.

2005; Neamtiu et al. 2006) has built on the ideas of λupdate to study dynamic update

of C-like languages.

3 Cell-by-value λ calculus revisited

This section reconsiders the CBV λ calculus, exploring refined operational semantics

that instantiate identifiers at different times. We take a standard syntax:

Identifiers x , y , z

n

Types T ::= int | unit | T ∗ T ′ | T → T ′

Expressions e ::= z | n | () | (e, e′) | πr e r ∈ {1, 2}
| λz :T .e | e e′ | let z = e in e′

| letrec z = λx :T .e in e′

Expressions are taken up to the usual α-equivalence, though contexts are not. It is

simply typed, with a typing judgement Γ � e:T defined as usual, where Γ ranges

over sequences of z :T pairs containing at most one such for any z . The (standard)

typing rules are given in Figure 1.

3.1 Construct-time

The standard semantics, here called the construct-time semantics, is recalled at the

top of Figure 2. We define a small-step reduction relation e −→ e′, using evaluation

contexts E , and a run-time-error predicate e err defined in Figure 4. Context

composition and application are both written with a dot, for example, E .E ′ and E .e,

instead of the usual heavier brackets E [e]. Standard capture-avoiding substitution of

e for z in e′ is written {e/z}e′. For now we will be concerned only with the behaviour

of closed expressions, without external library functions. The choice of a small-step

semantics will be important when we add dynamic rebinding and communication

later.

Dynamic rebinding for marshalling and update 443

Fig. 1. Lambda calculi—typing.

3.2 Redex-time

The redex-time and destruct-time semantics are also shown in Figure 2. Instead

of substituting bindings of identifiers to values, as in the construct-time (app) and

(let), both semantics introduce a let to record a binding of the abstraction’s formal

parameter to the application argument, for example,

(λz :T .e)u −→ let z = u in e

This is illustrated in Example (1) in Figure 3, contrasted with the substitution

approach of the construct-time semantics. Note that the resulting let z = 8 in 7 is

a λr (and λd) value; we explain the reason for this below.

Example (2) in Figure 3 illustrates identifier instantiation. While the construct-

time strategy substitutes for x immediately, the redex-time strategy instantiates x

under the let, following the evaluation order. To allow such reduction under lets,

we must define, in addition to the atomic evaluation contexts A we had above (here

A1), binding contexts A2 ::= let z = u in . Reduction is closed under both, via the

definition of reduction contexts E3. Pure binding contexts E2 are required to state

the (inst) and (instrec) rules; pure evaluation contexts E1 are not used, but defined

here for comparison. Redex-time variable instantiation is handled with the (inst)

rule, which instantiates an occurrence of the identifier z in redex position with the

innermost enclosing let that binds that identifier. The side condition z /∈ hb(E3)

ensures that the correct binding of z is used. Here hb(E) denotes the list of identifiers

that bind around the hole of a context E , defined as

hb() = []

hb(E .(let z = e in)) = hb(E), z

hb(E .(letrec z = λx :T .e in)) = hb(E), z

hb(E .A) = hb(E) for any other context A

We overload ∈ for lists. The other side condition in the (inst) rule, fv(u) /∈ z , hb(E3),

which can always be achieved by α-conversion, prevents identifier capture, making

444 P. Sewell et al.

Fig. 2. Three call-by-value λ calculi.

Dynamic rebinding for marshalling and update 445

F
ig

.
3
.

C
a
ll
-b

y
-v

a
lu

e
λ

ca
lc

u
li

ex
a
m

p
le

s.

446 P. Sewell et al.

E3 and let z = u in transparent for u . Here fv() denotes the set of free identifiers

of an expression or context.

This and the first example both illustrate a further aspect of the redex-time

calculus: values u include let-bindings of the form let z = u in u ′. Intuitively,

this is because a value should ‘carry its bindings with it’, preventing otherwise stuck

applications, for example, (λx :int.x)(let z = 3 in 5) or, for an example where

the let is not garbage, (λf :(int → int).x 2)(let z = 3 in λx :int.z). Note that

identifiers are not values, so z , (z , z), and let z = 3 in (z , z) are not values. Values

may contain free identifiers under λ’s, as usual, so λx :int.z is an open value and

let z = 3 in λx :int.z is a closed value.

The (proj) and (app) rules are straightforward except for the additional binding

context E2. This is necessary as a value may now have some let-bindings around a

pair or λ; terms such as π1 (let z = 3 in (4, 5)) or, more interestingly, π1 (let z =

3 in (λx :int.z , 5)) would otherwise be stuck. The side condition for (app) can always

be achieved by α-conversion; it prevents capture.

Because λr values may involve lets, some clean-up is needed to extract the usual

final result, for which we define

[| n |] = n

[| () |] = ()

[| (u , u ′) |] = ([| u |], [| u ′ |])

[| λx :T .e |] = λx :T .e

[| let z = u in u ′ |] = {[| u |]/z}[| u ′ |]

[| letrec z = λx :T .e in u |] = {λx :T .letrec z = λx :T .e in e/z}[| u |] if z �= x

[| z |] = z

taking any value (λr or λd) and substituting out the lets.

The redex-time semantics is reminiscent of an explicit substitution (Abadi et al.

1990), save that here the let will not be percolated through the term structure, and

also of the λlet calculus (Ariola et al. 1995), though we are in a CBV not CBN setting,

and do not allow commutation of lets. In contrast, we must preserve let-binding

structure, since our later rebinding and update primitives depend on it.

3.3 Destruct-time

The redex-time strategy is appealingly simple, but it instantiates earlier than

necessary. In Example (2) in Figure 3, both occurrences of x are instantiated

before the projection reduction. However, we could delay resolving x until after

the projection; we see this behaviour in the destruct-time semantics in the third

column. In many dynamic rebinding scenarios, one might want instantiate as late as

possible. For example, in repeatedly mobile code, we might want to instantiate each

identifier only as needed to always pick up the current local definitions. Similarly, for

dynamically updateable code, we may want to delay looking up a variable as long

as possible, so as to acquire the most recent version. We explore these possibilities

here by introducing the destruct-time semantics. The choice between redex-time and

destruct-time semantics remains an interesting one, however. The latter may be more

complex for programmers to understand and may be harder to implement efficiently.

Dynamic rebinding for marshalling and update 447

The λupdate calculus of §7 uses destruct-time semantics, but for the λmod
updatecalculus of

§7, and for our later Acute and HashCaml programming languages, we revert to a

redex-time semantics (for module fields, as rebinding is at the module level for these

languages).

To instantiate as late as possible, while remaining CBV, we instantiate only

identifiers that are immediately under a projection or on the left-hand side of an

application. In these ‘destruct’ positions, their values are about to be deconstructed,

and so their outermost pair or λ structure must be made manifest. The destruct

contexts R ::= πr | u can be seen as the outer parts of the construct-time (proj) and

(app) redexes. This choice of destruct contexts is determined by the basic redexes. For

example, if we added arithmetic operations, we would need to instantiate identifiers

of int type before using them. This destruct-time semantics can be viewed as a

limited form of lazy evaluation in which only naked identifiers (and not arbitrary

expressions) are evaluated lazily; this restriction is important for ensuring that λd
remain ‘essentially CBV’ (see §3.5).

The essential change from the redex-time semantics is that now any identifier

z is a value u . The (proj) and (app) rules are unchanged. The (inst) rule is

replaced by two that together instantiate identifiers in destruct contexts R. The

first (inst-1) copes with identifiers that are let-bound outside a destruct context, for

example:

let z = (1, 2) in π1 z −→ let z = (1, 2) in π1 (1, 2)

whereas in (inst-2) the let-binder and destruct context are the other way around:

π1 (let z = (1, 2) in z) −→ π1 (let z = (1, 2) in (1, 2))

Furthermore, we must be able to instantiate under nested bindings between the

binding in question and its use. Therefore, (inst-2) must allow additional bindings

E2 and E ′
2 between R and the let and between the let and z . Similarly, (inst-1)

must allow bindings E2 between the R and z , and it must allow both binding and

evaluation contexts E3 between the let and the R. This handles the case

let z = (1, (2, 3)) in π1 (π2 z)

−→ let z = (1, (2, 3)) in π1 (π2 (1, (2, 3)))

with E3 = π1 , R = π2 and E2 = . The conditions z /∈ hb(E3,E2) and z /∈ hb(E ′
2)

ensure that the correct binding of z is used; the other conditions prevent capture

and can always be achieved by α-equivalence.

Example (3) in Figure 3 illustrates (inst-1) for a program with nested binders,

while Example (4) illustrates (inst-2) for a program with nested destructors. It is

interesting to notice how in Example (3) the chain of instantiations is handled from

outside-in for λr and from inside-out for λd.

448 P. Sewell et al.

Fig. 4. Three call-by-value λ calculi—error rules.

3.4 Soundness properties

This subsection gives basic properties of our various λ calculi: sanity checks to

confirm that our definitions are coherent. The proofs for the redex-time and destruct-

time calculi are slightly different to those for the usual λc calculus, but they are

essentially routine. Detailed proofs can be found in the technical report (Bierman

et al. 2003b).

First, we recall the important unique decomposition property of evaluation

contexts for λc, essentially as in Felleisen and Friedman (1987), namely, that any

expression is either a value, an error, or has a unique decomposition into an

evaluation context and a redex. Generalising this to the more subtle evaluation

contexts of λr and λd, we have the following.

Theorem 1 (Unique decomposition for λr and λd)

Let e be a closed expression. Then, in both the redex-time and destruct-time calculi,

exactly one of the following holds: (1) e is a value; (2) e err; (3) there exists a triple

(E3, e
′, rn) such that E3.e

′ = e and e′ is an instance of the left-hand side of rule rn .

Furthermore, if such a triple exists, then it is unique.

The destruct-time error rules defining e err, given in Figure 4, must include cases

for identifiers in destruct contexts that are not bound by enclosing lets and so are not

instantiable, giving stuck non-value expressions. Determinacy is a trivial corollary.

We also have standard type preservation and type-safety properties for the three

calculi.

Theorem 2 (Type preservation for λc, λr and λd)

If Γ � e:T and e −→ e′, then Γ � e′:T .

Dynamic rebinding for marshalling and update 449

As λr and λd involve only single instantiations, not general substitution, the

proofs of those results do not need the usual substitution lemma. Instead, they rely

on straightforward lemmas, inverting the type judgement for terms of the form E2.e

and E3.e.

Theorem 3 (Safety for λc, λr and λd)

If � e:T , then ¬(e err).

The normal progress result, that if � e:T , then either e is a value or there

exists e′ such that e −→ e′, is an immediate corollary of this and Theorem 1

above.

3.5 Contextual equivalence properties

In the previous sections, we have defined two variants of the CBV λ calculus with

delayed instantiation reduction strategies. In this section, we show that whilst the

reduction strategies are different, they are consistent with each other and with the

CBV λ calculus (λc). By this we mean that the contextual equivalence relations for

λc, λr and λd coincide. Contextual equivalence for λc is standard and repeated for

completeness below.

Definition 1 (Contextual equivalence for λc)

Expressions e and e′ are contextually equivalent in λc, written e
ctx
=c e′, if and only

if for all C such that � C[e]:int and � C[e′]:int the following hold:

i. if C[e] −→∗
c n , then C[e′] −→∗

c n

ii. if C[e′] −→∗
c n , then C[e] −→∗

c n

For the delayed instantiation calculi, we define contextual equivalence to relate

terms that reduce to values that collapse to identical terms under [| − |] (where [| − |]

is the value-collapsing function defined earlier). In other words, the environment is

substituted away before terms are compared at the end of the computation.

Definition 2 (Contextual equivalence for λr, λd)

Expressions e and e′ are contextually equivalent in λr/d, written e
ctx
=r/d e′, if and

only if for all C such that � C[e]:int and � C[e′]:int the following hold:

i. if C[e] −→∗
r/d v , then ∃ v ′.C[e′] −→∗

r/d v ′ ∧ [| v |] = [| v ′ |]

ii. if C[e′] −→∗
r/d v , then ∃ v ′.C[e] −→∗

r/d v ′ ∧ [| v |] = [| v ′ |]

To prove this coincidence of contextual equivalence relations, we first prove the

following key theorem.

Theorem 4 (Observational equivalence)

λc, λr and λd are all observationally equivalent at integer type:

1. If � e:int and e −→∗
c n, then for some u we have e −→∗

r/d u and [| u |] = n

2. If � e:int and e −→∗
r/d u, then for some n we have e −→∗

c n and [| u |] = n

Given this result, we can show the coincidence of contextual equivalence as follows.

450 P. Sewell et al.

Theorem 5 (Coincidence of contextual equivalence)
ctx
=c,

ctx
=r and

ctx
=d are equivalent relations.

Proof
It is sufficient to show for all e and e′ that e

ctx
=c e′ ⇐⇒ e

ctx
=r e′ and

e
ctx
=c e′ ⇐⇒ e

ctx
=d e′. We show just the former as the latter is similar.

case =⇒ :

First prove point (i) in the definition of
ctx
=r . Suppose

e
ctx
=c e′ (1)

� C[e]:int (2)

� C[e′]:int (3)

C[e] −→∗
r v (4)

We prove ∃ v ′.C[e′] −→∗
r v ′ ∧ [| v |] = [| v ′ |]. By 2, 4 and observational equivalence

(Theorem 4), we have ∃ n .C[e] −→∗
c n ∧ n = [| v |]. By 1 and the previous fact,

C[e′] −→∗
c n . By 3, the previous fact and observational equivalence (Theorem 4),

we have ∃ v ′′.C[e′] −→∗
c v ′′ ∧ n = [| v ′′ |]. It is immediate that [| v |] = [| v ′′ |], which

together with the last fact proves the result.

Case (ii) is shown similarly.
case ⇐ :

Identical reasoning to the previous case.

�

The proof of both parts of Theorem 4 use the same technique: we generalise

to arbitrary type and proceed to construct a bisimulation that captures a tight

operational correspondence between reductions in the different calculi. To do so,

we introduce intermediate caluli with annotated lets, distinguishing lets that, in

the λc reduction sequence, correspond to substitutions from those that have yet to

be reached. Additional transitions move value-lets from the latter to the former.

Bisimulations can then be constructed by factoring simulations through these

intermediate calculi. A key notion in the bisimulation proofs is that of instantiation

normal form. Essentially, a term is in instantiation normal form if it cannot do an

instantiation reduction. It is important that this form is always finitely reachable

by reduction from any term. Finally, we use the bisimulation and some auxiliary

lemmas to prove the generalised claim. The details of these proofs are very involved

and given in full in Chapter 3 of Stoyle’s thesis (Stoyle 2006). We give an outline

and some of the details in the Appendix.

4 A dynamic rebinding calculus: λmarsh

Many applications require a mix of dynamically and statically bound variables.

Consider sending a function value between machines. It might contain identifiers

for

1. standard library calls, for example, print , which should be rebound at the

destination;

Dynamic rebinding for marshalling and update 451

2. application-specific location-dependent library calls, for example, routing

functions, which should be rebound at the destination;

3. application code that is not location-dependent but (for performance) should

be rebound rather than sent; and

4. other let-bound application values, which should be sent with it.

Moreover, for both (1) and (2) one may wish the rebinding to be to non-standard

definitions, to securely encapsulate (sandbox) untrusted code.

In this section, we develop a calculi to support all of the above. The calculus

λmarsh extends the destruct-time λd calculus of §3.3 with high-level representations of

marshalled values and primitives to manipulate them. We make two main choices.

First, to have as intuitive a semantics as possible, we want dynamic rebinding to

occur only when unmarshalling values, not during normal computation. Second, to

allow the programmer to cleanly and flexibly notate which definitions should be

fixed and which should be rebindable, we introduce marks

e ::= ... | mark M in e

which name (the declaration parts of) contexts. Marshal and unmarshal operations

e ::= ... | marshal M e | unmarshal M e

are each with respect to a mark: a marshal M u packages the value u together with

all the bindings within the closest enclosing mark M (thus fixing them); it cuts

any bindings of identifiers in u that are defined outside that mark M (thus making

them rebindable). When the packaged value is unpackaged by an unmarshal M ′ ,

the latter identifiers are rebound to binders outside the closest enclosing mark M ′.

The mark M in e construct does not bind M in e; marks have global

meaning across a distributed system. Allowing the choice of context to be made

differently for each marshal and unmarshal provides important flexibility, especially

for implementing secure encapsulation. In the simplest practical case, each program

might have a single mark Lib in , distinguishing library code, defined above the

mark, from application code, defined below it (see, for example, Figure 12).

For simplicity, λmarsh simulates communication using β-reduction (in fact, λd
(inst) reduction), and omits treatment of standard library calls, focusing on the

more interesting cases of rebinding application-specific libraries. In the next section,

we sketch λio
marsh, which straightforwardly extends λmarsh with communication and

external identifiers, and discuss alternative design choices.

4.1 Syntax

The λmarsh syntax and an example, discussed below, are given in Figure 5; the new

semantic rules are given in Figures 6–8. The calculus requires a more elaborate

treatment of α-equivalence than λd. There, as usual for λ calculi, we had to use α-

equivalence during normal computation steps to avoid mistaken capture of identifiers

as the rules move subterms between different scopes. Here that is still required, but

occurrences of the ‘same’ identifier under different bindings must be related so that

the identifier can be marshalled with respect to one and unmarshalled with respect to

452 P. Sewell et al.

F
ig

.
5
.

D
y
n
a
m

ic
re

b
in

d
in

g
ca

lc
u
lu

s
λ

m
a
rs

h
:

S
y
n
ta

x
a
n
d

ex
a
m

p
le

.

Dynamic rebinding for marshalling and update 453

Fig. 6. Dynamic rebinding calculus λmarsh: Semantics.

another. Accordingly, instead of working with identifiers x , we work with variables

xi that are pairs of an identifier x and a tag i , similar to the external and internal

names used in some module systems. Alpha-conversion changes only the tags; tags

for different identifiers lie in different namespaces, so for example,

λx1:T .x1 = λx2:T .x2 �= λy2:T .y2 and

λx1:T .λy1:T .(x1, y1) = λx2:T .λy3:T .(x2, y3)

In practice, tags would not appear in source programs; they are needed only for

the semantics. The fv() and hb() functions now give sets and lists of variables,

respectively, not identifiers.

4.2 Example

As an example, consider the expression on the left of Figure 5. The value (y1, z1) is

marshalled with respect to the context marked M , where y = 6, but unmarshalled

with respect to the context M ′, where y = 7. The z1, on the other hand, is bound

below mark M , so its binding z1 = 3 is grabbed and carried with it.

The reduction sequence is shown in the figure, boxing key parts of redexes

and The first reduction step copies the bindings that are inside mark M

and around the marshal expression (here just z1 = 3), ensuring that these have

static-binding semantics. This gives a value

marshalled (y0:int) (let z1 = 3 in (y0, z1))

454 P. Sewell et al.

Fig. 7. Dynamic rebinding calculus λmarsh: Auxiliary functions.

Dynamic rebinding for marshalling and update 455

Fig. 8. Dynamic rebinding calculus λmarsh: Error rules.

This marshalled Γ u form would not occur in source programs. The free variables

of u are subject to rebinding when this is unmarshalled, so we regard all of fv(u) as

bound by Γ in marshalled Γ u . This is emphasised in the example by showing a y0

α-variant.

The second step instantiates the x1 under the (unmarshal M ′), with its value

let z1 = 3 in ...marshalled.... (In this case, the outer let z1 is redundant but in

more complex cases it would not be, for example, if x1 were bound to a pair of the

marshalled value and some other value mentioning z1.)

The third step performs the unmarshal, rebinding the y0 in the packaged value

let z1 = 3 in (y0, z1) to the innermost yi binder outside mark M ′—here, to y2. It

also discards the now-redundant bindings.

Modulo final instantiation, the result is (7, 3) (and not (6, 3)), showing the y1 and

z1 have been treated dynamically and statically, respectively. For contrast, putting

the first let y1 = 6 inside the first mark M would give (6, 3).

4.3 Semantics

The operational rules for λmarsh are given in Figure 6. The (proj), (app) and (inst-r)

rules are as in λd but with zk instead of z . In the (marshal) and (unmarshal) rules, we

abuse notation, writing the context mark M in as mark M . The (marshal) rule

copies all bindings and marks between the marshal M and the closest enclosing

mark M , using the bindmark() auxiliary function to extract the bind and mark

components of a context E3, discarding the evaluation context components. This

and other auxiliary functions are collected in Figure 7. bindmark() records the

marks as well as the let-bindings so that uses of marshal and unmarshal within u

will behave properly. The predicate dhb(E3) holds iff the hole-binders of E3 are

all distinct (which can always be made so by α-conversion). The auxiliary env(E3)

extracts the type environment of the hole-binders of E3, so they can be recorded

in the marshalled value. We record the full type environment env(E3), not just its

456 P. Sewell et al.

restriction to fv(u), as, while the latter would be more liberal (more unmarshals

would succeed) we believe it would lead to code that is hard to maintain: success of

an unmarshal would depend on the free variables of the marshalled value, instead of

simply depending on the binders above the mark used for marshalling. Depending

on how marshalling and marks are used, however, it is possible that the extra

liberality is essential in practice, and also that this semantics leads to unacceptable

accumulation of garbage type environments—a topic for future work.

The (unmarshal) rule rebinds the fv(u) to the let-binders in E3 around the

nearest enclosing mark M , using the auxiliary function rebind(,) to construct

the appropriate substitution. Here dhb(E ′
3, hb(E3)) holds iff the hole-binders of E ′

3

are distinct from each other and from all the variables in hb(E3) (always possible

by α-conversion). We define rebind(Γ,L), for a type environment Γ and list of typed

hole-binders L, as a substitution taking each xi in dom(Γ) to the rightmost xj in L.

If there is shadowing of identifiers outside a mark, then a marshalled Γ u may have

Γ with xi:T and xj:T
′ for T �= T ′, in which case (unmarshal) will always fail. One

could check this at (marshal)-time, or indeed forbid shadowing outside marks.

To keep a unique decomposition property, the (unmarshal) rule is global, not

closed under additional E3. We briefly justify why the (unmarshal) rule discards its

E2 context: observe the right-hand side of the rule and notice that the binders in

the E2 context can no longer be referenced after unmarshalling, the only possible

references to the enclosing E2 are the free variables of u , but subsequent to this

reduction these variables are rebound to binders in E3.

Reduction must take place under a mark, so A2 now contains mark M in . To

maintain a CBV semantics both marshal and unmarshal should fully reduce their

arguments, so they are included in the evaluation contexts A1. The (unmarshal) rule

can only apply if the argument to unmarshal is of the form marshalled Γ u , so the

destruct contexts must include unmarshal M .

4.4 Typing and run-time errors

Figure 8 partitions the possible run-time errors for λmarsh into two classes, e err

and e err’. The first describes the usual projection/application errors, together with

unmarshalling of values not of the form marshalled Γ u . Errors e err′ have a more

dynamic nature, describing cases such as when a marshal or an unmarshal refers to

a mark that is not in scope, or when at (unmarshal)-time the environment does not

have the required binders at the correct types. We can define a simple type system

to exclude all of the err error cases by extending the standard simple type system

(Figure 1) with a type Marsh T of marshalled type T values, and rules

Γ � e:T
Γ � mark M in e:T

Γ � e:T
Γ � marshal M e:Marsh T

Γ � e:Marsh T
Γ � unmarshal M e:T

Γ′ � u:T
Γ � marshalled Γ′ u:Marsh T

Because errors err’ are not excluded, a full language would most likely raise catchable

exceptions, thereby allowing code to dynamically check the presence of resources.

Dynamic rebinding for marshalling and update 457

Ideally, one would like a type system that could statically prevent all run-time

errors, in the case where all parts of the (distributed) system can be type checked

coherently. Unfortunately, static typing and dynamic rebinding seem to be at odds.

Any sound type system for λmarsh must constrain the contexts around marks, ensuring

that when unmarshalling a marshalled value, the context of the unmarshal mark

contains bindings for all identifiers that were in the context of the marshal mark. The

problem is that reduction moves subterms, in particular subterms containing marks,

so the shape of the context around a mark can change dynamically. One can devise

rather draconian systems that prevent some run-time errors, but it is hard to see what

a really useful system could be like. Moreover, in the wide-area setting, it is generally

impossible to guarantee that all parts are type checked together, so we believe that

the limited guarantees of the simple type system above may have to suffice.

4.5 Soundness properties

Soundness properties for λmarsh are similar to those for the λ calculi of the prior

section. Proofs may be found in the technical report (Bierman et al. 2003b).

Theorem 6 (Unique redex/context decomposition)

Let e be a closed λmarsh expression. Then exactly one of the following holds: (1)

e is a value; (2) e err; (3) e err′; (4) there exist E3, e0, rn such that E3.e0 = e

and e0 is an instance of the left-hand side of rule rn ∈ (proj, app, inst-r, instrec-r);

(5) there exists rn ∈(marshal), (unmarshal) such that e is an instance of the left-hand

side of rule rn . Furthermore, if such a triple or rn exists, then it is unique.

Proof

The proof is by induction over (possibly open) λmarsh expressions e. �

Theorem 4.1 (Type preservation for λmarsh)

If � e:T and e −→ e′, then � e′:T .

Theorem 4.2 (Partial safety for λmarsh)

If � e:T , then ¬(e err).

4.6 Discussion

In this subsection, we review some of the design choices embodied in λmarsh and

their advantages and disadvantages, and sketch an implementation strategy.

A simple alternative to rebinding is to allow marshalling of only those values

that are in some sense closed (with a marshal-time check that they do not refer

to, for example, print). This would require the programmer to explicitly abstract all

the identifiers that are to be treated dynamically when constructing a value to be

marshalled, and to explicitly apply to the local definitions on unmarshalling. For

rebinding to a single standard library, this might be acceptable, though notationally

heavy, but for the richer usages we describe above, it would be prohibitively complex.

One therefore needs some form of dynamic rebinding.

To keep the semantics of local computation simple, with the normal static scoping,

we choose to permit rebinding only when unmarshalling values. The most interesting

458 P. Sewell et al.

question is then which variables in a value should be rebound after marshalling and

unmarshalling.

The main choice is between having two classes of variable (one treated statically

and one dynamically), or one class of variable, with some other way of specifying

which are rebound in any particular marshal/unmarshal instance.

Two classes were used in some related systems, though not motivated by

marshalling (Lee & Friedman 1993; Jagannathan 1994; Dami 1998; Lewis et al.

2000) (discussed further in §8). The disadvantages of the two-class choice are: (a) it

is less flexible in comparison with our use of marks, in which different marshals and

unmarshals can refer to different marks, for example, in the examples of §5; and

(b) if the types or usage-forms of the two classes differ, then changing the class of a

variable would require widespread code change (if the two classes are distinguished

by their declaration-forms only, this is not such a problem). Code would thus be

hard to maintain.

In contrast, adding marks or changing their position is syntactically lightweight; it

does not require any change to code except at marshal/unmarshal points. Moreover,

it will usually be straightforward to change the let-bindings in programs that contain

marks: changing let-bindings inside marks is as usual; changing them outside a

mark may require corresponding changes outside other marks but no change to any

marshal and unmarshal expressions. Taking one class has the disadvantage that it

is not obvious from a code fragment which variables might have been rebound, but

in typical cases one can simply look for enclosing marks and marshals.

A further disadvantage of λmarsh is that programs with many nested marks, and

with marks under λ’s, can become confusing. In practice, one would expect programs

to contain only a few marks. For ML-like languages with second-class module

systems, it may be desirable to allow marks only between module declarations—a

considerable simplification.

An alternative to marks, which implicitly define the variables to be rebound, would

be to specify the variables directly as an annotation to marshal. We believe the latter

would be cumbersome in practice (with large sets of standard library identifiers).

It would also be conceptually complex and difficult to implement efficiently—for

example, consider a sequence of bindings, each depending on the one before, around

a marshal that specifies that alternate bindings should be treated dynamically as in:

let w = 1 in

let x = (w , 2) in

let y = (x , 3) in

let z = (y , 4) in

marshal ∗ [z , x]e

The marshal∗ specifies that any references to z and x in e should be treated

dynamically—but then there is no obviously satisfactory semantics for y .

The reduction semantics as presented is not proposed as a realistic implementation

strategy. Instead of representing bindings by nested let terms, and preserving binding

scopes in the instantiation rules by copying and α-conversion, we would propose

Dynamic rebinding for marshalling and update 459

to use linked environment frames with sharing, as is done to implement function

closures. A function closure consists of the binding variable name, function body

and a pointer to the enclosing environment. The environment consists of frames,

each containing a variable name, value and a link pointer to the parent frame.

For λd, variables as well as functions are values; therefore, we introduce variable

closures, consisting of a variable name and an environment pointer through which

to look it up. Only when the variable closure appears in a destruct context is the

pointer followed to obtain its value. For λmarsh, the marshal operation captures

the linked environment between the environment pointers of its argument and the

relevant mark, and the unmarshal operation attaches the captured environment to

the current environment. We have sketched an abstract machine semantics for the

above. There are obvious problems with optimised implementation of calculi with

redex- or destruct-time semantics at the expression level, as dynamic rebinding or

update primitives invalidate general use of standard optimisations, for example,

inlining, and perhaps also environment-sharing schemes. For performance, it will

be important to identify conditions under which such optimisations are still valid—

perhaps via a characterisation of contextual equivalence for λmarsh.

In addition, we have explored three actual implementations of related languages.

First, in our Acute language, with a second-class module system, marks were

allowed only between module declarations, with a redex-time instantiation semantics.

The implementation was an interpreter corresponding closely to the operational

semantics, except that it used closures and an efficient representation of evaluation

contexts. Second, Billings developed a prototype adaptation of the OCaml bytecode

run-time, generating this modified bytecode from a fragment of the Acute front-end

(Billings 2005). Here too marks were between second-class modules; the existing

OCaml bytecode implementation already essentially uses redex-time instantiation of

module field references, so a reasonably efficient implementation was straightforward.

Third, in the HashCaml language, the existing OCaml bytecode compiler was

modified to support type-safe marshalling, but there with rebinding only to the

standard library.

5 Extending λmarsh with IO: λio
marsh

We now extend λmarsh just enough to show examples of distributed rebinding

scenarios from §1, defining a λio
marsh calculus.

5.1 Typing and semantics

Two extensions are required: semantics for open terms, to admit programs that use

external library calls such as print; and communication, to support code movement.

We present these extensions as simply as possible to illustrate the application of

λmarsh and demonstrate what is required—the exact choice of primitives is rather

arbitrary.

The syntax is shown in Figure 9. Distributed programs are described as

configurations P , composed of the null process 0; expressions e, each with a thread

ID t written t:e; or parallel compositions of processes P | P . One should think of

460 P. Sewell et al.

Fig. 9. Distributed λmarsh: λ
io
marsh—syntax.

threads as partitioned among a set of machines, although that structure has been

omitted from the formalisation. We suppose for simplicity that all machines provide

the same external library calls, with types given by a global type environment,

Γlib, and that there are global channels c for communication between threads.

Communication between threads is by synchronous message passing on typed

channels c, with output and input forms e!e′ and e?e′. Only marshalled values

can be communicated. We add strings s to the language for convenience. We explain

the form retT shortly.

The semantics is given in Figure 10. We define a transition relation P
l−→P ′ over

configurations where the labels l have three possible forms: (1) empty; (2) t:f u to

denote an invocation by thread t of library call f :T → T ′ from Γlib, with argument

u; or (3) t:u for a return of value u from the OS to such an invocation. The

unlabelled case is for normal reduction, while the latter two describe external library

calls.

Normal reduction is as in λmarsh, with differences to account for communication

and parallel composition. Values now include channels c and strings s . The A1

atomic evaluation contexts include input and output, with a left-to-right evaluation

order. More interestingly, the destruct contexts must include input and output on

both left and right to ensure we can reduce to an explicit channel, marshalled value

and λ before (comm) fires.

The (comm) rule for synchronisation simply moves values from sender to receiver

(typing, shown below, ensures that channels carry values of Marsh T types only,

which must be closed). The (marshal) and (unmarshal) rules are straightforward

adaptions of the corresponding λmarsh rules. In (marshal), note that we record Γlib

in the marshalled value, thereby ensuring the marshalled value can be typed as

in λmarsh. The (unmarshal) rule prepends Γlib (for which we must suppose a fixed

Dynamic rebinding for marshalling and update 461

Fig. 10. Distributed λmarsh: λ
io
marsh—semantics.

462 P. Sewell et al.

ordering, regarding it as a list of type assumptions xi:T) to env(E3) to calculate the

appropriate rebinding substitution.2

The external library calls in Γlib, for example, print0:string → unit, have the

same syntax as applications, but are handled by two separate rules, (lib-app) and

(lib-ret). The (lib-app) rule reduces external calls to a place-holder retT to record

that this thread is expecting a response from the OS of type T . The (lib-ret) rule

allows the OS to provide that response. Both (lib-app) and (lib-ret) introduce labels

annotated with the thread id performing the action, modelling the fact that IO on

different machines should usually be distinguished (in practice one should work with

a somewhat weaker notion of observation than this transition system, as discussed

in Sewell 1997). Invocation labels t:f u are not annotated with the tag i of the call,

as tags should not be visible to the programmer or observer. At an invocation of

an external call, we must collapse any let-structure of the argument to produce a

concrete value (typically, one of a type not involving any function spaces). This is

done in (lib-app) by the auxiliary [| e |] as defined for λd and λr in §3.2 but extended

to the additional syntax of λio
marsh:

[| mark M in u |] = mark M in [| u |]

[| marshalled Γ u |] = marshalled Γ u

[| c |] = c

[| s |] = s

Finally, the value returned from an external call must be well typed. The side

condition Γlib � u ′:T ′ of (lib-ret) allows this value to mention global channels or

other library calls, liberally, though in practice one might insist that return values

are closed.

The extensions to the λmarsh type system (§4.4) are given in Figure 11. We use

∆ as global map from channels c to types T , which we assume all have the form

Chan T ′ for some T ′. We do not state type preservation or partial safety results

for λio
marsh; they should be straightforward (albeit tedious) adaptations of the results

for λmarsh.

5.2 Examples

Some examples are given in Figures 12 and 13. Example P in Figure 12 shows

rebinding to an external print and an internal (application library) here, together

delimited by AppLib, on a communication from the left thread to the right. It has a

transition sequence with labels

t1:print“site 1”, t1:(), t2:print“site 2”, t2:()

for the invocations and returns of the two external print calls.

2 One could easily relax our assumption that all machines provide the same external library here, though
one might then wish to alter (marshal) to record only the used external calls—the obvious relaxation
of the rule given here would prevent unmarshalling of any value from a thread with a larger standard
library than that available to the unmarshaller.

Dynamic rebinding for marshalling and update 463

Fig. 11. Distributed λmarsh: λ
io
marsh—typing.

Our rebinding calculus is powerful enough to perform customised linking, useful

for implementing secure encapsulation. Example Q is similar to P but the receiver

defines two marks to be linked against, TrustedAppLib and UntrustedAppLib. The

former is for trusted programs, whereas the latter is an ‘encapsulated context’,

which reimplements both print and here with ‘safe’ versions. The safe print prints

the warning string “sandboxed: ” before any output; the safe here provides the

fake “site 33” to the encapsulated code, which has no way to access the true

here0 = “site 2” binding.3 Which context to be used is determined by the hypothetical

function trusted , which would take into account some security criteria, such as the

origin of the message. Assuming that trusted () returns false, Q has a transition

sequence with labels

t1:print“site 1”, t1:(), t2:print“sandboxed: ”, t2:(), t2:print“site 33”, t2:()

It is worth emphasising that without delayed instantiation, rebinding in these

examples would not be possible. In particular, in both cases the construct-time

(let) rule would substitute out here0 in t1 before sending the λ term, thus preventing

a rebinding of here at the remote site.

In R, again in Figure 12, there are two communications, from t1 to one of t2 or

t3, and thence to the other one; rebinding of here and print occurs twice.

Example S in Figure 13 shows a use of nested marks in which marshalling copies

a mark. Suppose the form of OuterLib (a definition of here) is standard on all sites,

3 The code as given does not prevent the encapsulated code itself executing an unmarshal
TrustedAppLib e. This can be protected against by redeclaring the TrustedAppLib mark within the
conditional limit.

464 P. Sewell et al.

F
ig

.
1
2
.

D
y
n
a
m

ic
re

b
in

d
in

g
w

it
h

IO
a
n
d

co
m

m
u
n
ic

a
ti
o
n
:
λ

io m
a
rs

h
ex

a
m

p
le

s.

Dynamic rebinding for marshalling and update 465

Fig. 13. Dynamic rebinding with IO and communication: Further λio
marsh examples.

whereas that of InnerLib (a definition of a resource x) is standard only on the sites

within a particular organisation. In the example, there are two communications,

from t1 (internal) to t2 (external) and from t2 back to t3 (internal). The first takes

the definition of x from its departure site, but the second, returning to within the

organisation, picks up the local definition of x . The three uses of x are therefore

with the definitions from t1, t1 again and t3.

6 A simple update calculus: λd + update

We now turn from dynamic rebinding of marshalled values to the rebinding involved

in dynamic software updating (DSU). DSU is a technique by which a running

program is patched with new code and data on-the-fly, while it runs. This is

handy for systems that must provide uninterrupted service, but nonetheless require

enhancements and bug fixes. One example is the telephone switch, with a complex

internal state, many overlapping interactions with its environment, and a requirement

for high availability. DSU is a general, software-based technique: there is no need

for redundant hardware or special-purpose software architectures, and application

state is naturally preserved between updated versions, so that current processing is

not compromised or interrupted.

466 P. Sewell et al.

Fig. 14. Simple update calculus: λupdate.

Because the systems being updated are typically safety-critical, it is important to

be able to reason about the meaning and possible effects of updates to ensure that

the patched system operates correctly. Without care, after several updates the state

of an updated system can become confusing, particularly when updates are in terms

of binary patches. To ameliorate this, we would like high-level update primitives:

with semantics expressed in terms of the source programming language rather than

some abstract machine or particular compilation strategy.

In this section and the next, we show this can be done for typed CBV functional

programs. In this section, we present a simple extension to λd—the λupdate calculus—

that permits let-bound variables to be rebound to new expressions. Delayed

instantiation via λd is required so that running code picks up any rebound definitions

as it executes. This calculus is simple yet powerful, and illustrates the basic ideas

behind dynamic updating.

In a practical setting, updating is probably more sensible at the module level,

rather than at the level of individual bindings. In the next section, we present λmod
update,

a calculus for dynamically updating whole modules in the style of the functional

language Erlang (Armstrong et al. 1996). For λmod
update, the rebinding semantics is

based on λr , rather than λd. This choice makes name resolution more eager, and we

discuss the trade-offs of λr versus λd in this setting. Together, the formal foundations

presented here underpin our recent work on Ginseng (Stoyle et al. 2005; Neamtiu

et al. 2006), a practical dynamic updating system we have built for C programs,

which we discuss in §8.

6.1 The λupdate calculus

The λupdate calculus, shown in Figure 14, extends λd with a single primitive update

to mark points in the code where a dynamic update could occur. As many past

researchers have observed, the timing of an update is critical to ensuring its validity

(Lee 1983; Frieder & Segal 1991; Gupta 1994; Hicks 2001). The synchronous update

primitive, by dictating when an update can occur, makes it easier to understand

the state(s) of the program which an update is applied to than the alternative

Dynamic rebinding for marshalling and update 467

asynchronous approach, in which an update could occur at any time. Our experience

is that synchronous updating makes it easier to write correct updates (Hicks 2001;

Neamtiu et al. 2006).

Apart from this extension, the semantics of the language is exactly that of λd
(whose operational rules are given in Figure 2 and error rules are in Figure 4). As

in §4, it is convenient to use tagged identifiers and explicitly typed lets, but the types

are omitted in examples.

The intended semantics of update is that evaluation will block until a dynamic

update (possibly null) is available. An update can modify any identifier that is within

its scope (at update-time). For example, in

let x1 = (let w1 = 4 in w1) in

let y1 = update in

let z1 = 2 in

(x1, z1)

x1 may be modified by the update, but w1, y1 and z1 may not. For simplicity, we

allow only a single identifier to be rebound to an expression of the same type, and we

do not allow the introduction of new identifiers (we relax this restriction in λmod
update).

As shown in Figure 14, we define the semantics of the update primitive using a

labelled transition system, where the label is the updating expression. For example,

supplying the label {x ⇐ π1 (3, 4)} means that the nearest enclosing binding of x

is replaced with a binding to π1 (3, 4). Note that updates can be expressions, not

just values—after an update the new expression, if not a value, will be in redex

position. Furthermore, they can be open, with free variables that become bound by

the context of the update. This allows, among other things, computing an updated

identifier’s value on the basis of values in the current program (Hicks 2001).

The static typing rule for update is trivial, as it is simply an expression of type

unit. Naturally, we have to perform some type checking at run-time; this is the

second condition in the transition rule in Figure 14. Notice, however, that we do

not have to type check the whole program; it suffices to check that the expression

to be bound to the given identifier has the required type in the context that it will

evaluate in.

The other conditions of the transition rule are similarly straightforward. The

first ensures that a rebinding substitution is defined, that is, that the context E3

surrounding the to-be-updated identifier definition has hole-binders that are α-

equivalent to the free variables of e. (Here, rebind(V ,L) is just as in λmarsh, defined

in Figure 7.) The binders must be chosen from E3 since the updating expression e

is installed into that context (as opposed to the location of the update). In contrast

to λmarsh, an updateable program need not distinguish ‘location-dependent’ versus

‘location-independent’ identifiers, and thus has no need of marks to distinguish them

when linking the free variables of e. The third condition ensures that the binding

being updated, xi, is the closest such binding occurrence for x with respect to the

position of the update. (Notice that an equivalence class x is specified for the update,

but that the closest enclosing member, xi, of this class is chosen as the updated

binding.)

468 P. Sewell et al.

6.2 The role of delayed instantiation

The use of delayed instantiation via λd cleanly defines a model in which function

applications always use the most recent function definition, whether the call is direct

or indirect. Consider the following program (call it e):

let f1 = λy1.(π2 y1, π1 y1) in

let w1 =λg1.let = update in g1(5, 6) in

let y1 = f1(3, 4) in

let z1 = w1 f1 in

(y1, z1)

which contains an occurrence of update in the body of w1. If, when w1 is evaluated,

we update the function f :

e −→∗ {f ⇐λp1 .p1}
−−−−−−→ −→∗ u

we have [| u |] = ((4, 3), (5, 6)). Delayed instantiation via λd plays a key role here: with

the λc semantics, the result would be [| u |] = ((4, 3), (6, 5)); that is, the update would

not take effect because the g1 in the body of w1 would be substituted away by the

(app) rule before the update occurs.

With λr semantics, the structure of contexts and names of variables would

be preserved, but instantiation would be more eager: the identifier f1 would be

instantiated prior to the call to w1, when f1 appears in redex position, and therefore

the call to g1 would use the original definition of f1, not the updated one. This

semantics can be more intuitive in higher-order programming in some cases. For

example, it may be preferable to preserve the meaning of f when evaluating fold f l

rather than allowing f to change in the middle. In first-order programming, the

distinction between λr and λd is less apparent; the example from the prior subsection

evaluates to the same answer in both semantics when x is updated.

6.3 Formal properties

The λupdate calculus enjoys the following formal properties. Their proofs are

straightforward.

Theorem 9 (Unique decomposition for λupdate)

Let e be a closed λupdate expression. Then, exactly one of the following holds: (1) e

is a value; (2) e err; or (3) there exists a triple (E3, e
′, rn) such that E3.e

′ = e and e′

is an instance of the left-hand side of rule rn . Furthermore, if such a triple exists,

then it is unique.

Theorem 10 (Type preservation for updates)

If � e:T and e
{x⇐e′}
−→ e′′, then � e′′:T

Theorem 11 (Safety for updates)

If � e:T , then ¬(e err).

Dynamic rebinding for marshalling and update 469

Fig. 15. The λmod
update calculus syntax.

7 Module-level updating: λmod
update

This section presents λmod
update, a calculus in which updates occur at the level of modules.

The λmod
update calculus is based roughly on the mechanisms in Erlang (Armstrong et al.

1996), in which the transition to a new module, or the continued use of the old

module, is specified at each call site. This section is based on an earlier formalism

presented at a workshop (Bierman et al. 2003c). We present syntax and semantics

first, and then some detailed examples.

7.1 Syntax

Figure 15 shows the syntax of the language, which is basically a simply typed, CBV

λ calculus with two extensions: (1) a simple module system with novel variable

lookup rules, and (2) an update primitive that allows loading a new version of a

module during program execution.

A program P consists of a mutually recursive set ms of module declarations and

an expression e to evaluate. Module declarations are of the form module Mn = m ,

where M is a module name, n is a version number and m is a module body. (Note

that the version superscript n is part of the abstract syntax of programs, while a

subscript k on a module name—or a variable or expression for that matter—as

470 P. Sewell et al.

in Mnk
k , is used only to notate enumerations.) Many different versions of the same

module can coexist in a program, but each pair of a module name and a version

number is unique. In turn, a module body m is a collection of bindings of values

for module component identifiers, written z :T = v .

Expressions e are as in λupdate, including update and two new forms for accessing

module members. Here, the update primitive is used to update a module with a

new version, or insert a new module. To allow staged transitions from old to new

code, we allow flexible access to module components: to access the z component of

a module named M , one can write either M .z , which will use the newest version

of the module M , or Mn.z (for some n), which uses version n of the code. This

semantics is analogous to the semantics of Erlang, but is slightly more general. In

particular, Erlang requires all references to an external module to invoke the newest

version of the code, while internal references can be either to the ‘current’ version

(i.e. the same version of the module as the code making the call) or to the newest

version.

7.2 Semantics and typing

Figure 16 presents the dynamics of the calculus. We define a small-step reduction

relation P −→ P ′, using evaluation contexts E1 for expressions and E2 for programs.

The rules for (let), (app) and (proj) are standard, while the remaining three rules

describe accessing module bindings and updating module definitions.

Module component identifiers are resolved in the style of λr . In particular, the

(ver) rule will resolve the component identifier z from version n of module M when

the expression Mn.z appears in redex position. Similarly, the (unver) rule handles

the M .z case, with the difference being that the most recent version of module M is

used. Both rules are similar to the λr (inst) rule in Figure 2.4 The semantics of λmod
update

is simplified from that of λr as we are concerned only with delayed instantiation of

module names, not arbitrary identifiers. This allows us to use the standard (app)

rule, for example, rather than λr ’s (app) rule, which introduces a let-binding for

possible rebinding later.

The (update) rule uses labelled transitions P
Mn=m−−−→ P ′, which loads version n

of module M (having body m) into the program, assuming that type safety is not

compromised and as long as n is greater than any existing version of M . Any

unversioned existing references to M in the code will now refer to the newly loaded

module.

We can now look at an example update. In the following, take

ms ≡ {module M0 = { f = λx :unit.let y:unit = update in M .z

z = 3}}

4 We could use the more standard substitution semantics for Mn.z , but this is unnecessary as the
semantics of update prevents replacing an extant module version. We therefore use the delayed lookup
semantics for symmetry in both cases.

Dynamic rebinding for marshalling and update 471

Fig. 16. The λmod
update calculus reduction rules.

to be the initial set of modules, an initial expression M .f (), and m ≡ {z = (5, 5)}
be a module body to be loaded. We have:

modules ms in M .f ()

−→ modules ms in (λx :unit.let y:unit = update in M .z) ()

−→ modules ms in let y:unit = update in M .z
M1=m−−−→ modules ms′ in let y:unit = () in M .z

−→ modules ms′ in M .z

−→ modules ms′ in (5, 5)

where ms′ = ms ∪ {module M1 = {z = (5, 5)}}.
At the point where M .f is resolved, in the first reduction step, the greatest extant

version of M is M0—so M .f is replaced by its M0.f definition. When M .z is resolved

in the last reduction step, however, the greatest version of M is M1 supplied by the

update—and so M .z resolves to (5, 5) instead of 3. Notice that the update changes

the type of M .z from int ∗ int to int. This is acceptable because it does not admit

the possibility of any run-time type errors (though it causes the type of the final

result to change), as determined by re-type checking the program at update-time

(more on this in the next subsection).

472 P. Sewell et al.

Fig. 17. The λmod
update calculus typing rules.

The type system provides the necessary checks to ensure that loading a module

does not result in a program that will reduce to a stuck state (one in which the

expression is not a value and yet no reduction rule applies). Figure 17 shows the type

system for our calculus. The rules for the judgement Σ; Γ � e:T are the standard

ones for the simply typed λ calculus, extended in the obvious way to deal with

the typing of module components. As in λupdate, the update command is statically

uninteresting and types as unit, as this is the type of the () value it becomes after

(update). The other two judgements are more interesting. The judgement Σ � P :U

Dynamic rebinding for marshalling and update 473

types whole programs and handles most of the complexity in typing modules. We

use two auxiliary functions modsig and modctx: modsig determines the interface of

a module given its body and, given a set of modules, modctx determines the partial

function that maps versioned module names Mn to their signatures and also maps

the unversioned module names M to the signature of the highest-versioned module

with the same name. The function modctx can thus be used to determine the module

context in which the program (including the module bodies themselves) should be

typed. The single rule defining the judgement ensures that the expression and every

module body can be typed in this context; this means that the modules are allowed

to be mutually recursive, as every module name is available in the typing of each

module.

Typing of module bodies is expressed by the judgement Σ � m:σ, that is, that

module body m has interface σ in the context of module declarations Σ; it simply

requires that each component of the module has the appropriate type.

7.3 Discussion

Many design decisions reflect our aim to keep the λmod
update calculus simple, but

nonetheless, practical and able to express different updating strategies for programs.

We further consider some of those design decisions here.

The calculus addresses the run-time mechanisms involved in implementing

updating (i.e. loading new modules and allowing existing code or parts thereof

to refer to them), but does not cover all the important software development issues

of managing updateable code. In practice, we would expect compiler support for

aiding the development process (Hicks 2001). For example, user programs could

refer to the ‘current’ and ‘previous’ versions of a module, and the compiler would

fill in the absolute version number.

An important design question of language-level updating systems is whether an

old version and a new version of a binding may coexist. While some systems

prefer one version at a time (Gupta 1994; Gilmore et al. 1997), many systems allow

multiple versions to coexist, possibly indefinitely (Frieder & Segal 1991; Armstrong

et al. 1996; Peterson et al. 1997; Duggan 2001; Hicks 2001).5 The λupdate calculus

ensures that each ‘use’ of an identifier (e.g. a function call) will be the most recent

version. Thus, it is possible that an old and a new version will be active if the old

version was active at the time of the dynamic update. At best, this coexistence is

indirect (with the intention that the older versions will eventually become redundant

and then thrown away). By contrast, the use of module versions in λmod
update allows

multiple generations of a module to exist simultaneously, and provides explicit

control over which version of a module we are referring to, allowing us to delimit

the effect of an update.

We chose to use λr-style reduction in λmod
update to keep things simple. We could have

used λd in the obvious way—that is, by making expressions M .z (but not Mn.z)

into values, and by partitioning evaluation contexts to include destruct contexts.

5 A. Appel, unpublished data, December 1994.

474 P. Sewell et al.

Some of the consequences of choosing λr rather than λd were discussed at the

end of the last section. Interestingly, the semantics of Erlang, upon which λmod
update

was based, is silent on the meaning of higher-order functions and updates. The

informal specification (Barklund & Virding 1999) states that a direct external call

(of form M .z e1 . . . en in λmod
update) should be to the newest version of module M .

However, there is nothing said of what would happen should M .z be passed as a

functional argument that is ultimately applied after its definition has been updated.

The current version of Erlang at the time of this writing (5.5) uses λd semantics in

this case, as with λupdate. Oddly, versioned calls (like Mn.z in λmod
update) are also given

this semantics—they will reduce to the updated version! We view this incongruity

as evidence of the need to formally define the meaning of updates. (We note that

the most recent ‘core Erlang’ formal specification, Carlsson et al. 2004, is silent on

the semantics of updates.)

Finally, similarly to λupdate, module updates in λmod
update must leave the program well

typed following the update. However, in contrast to λupdate, an update to a module

is permitted to change the types of that module’s member elements. This allows

updates to be more flexible (indeed, it is critical in practice; Neamtiu et al. 2006),

but imposes a greater burden at link-time: the entire program must be checked

following the update, rather than just the updated element in the context in which

it appears. To see why this is necessary, consider a reference to M .z . When the

program was initially checked, z might have type T but in the new version it could

have type T ′. References to M .z could appear in the active computation (i.e. the e

part in modules ms in e) and the existing modules. We must type check the whole

program to ensure that any such references are still correctly typed.

However, rather than rechecking the entire program at link-time, we could imagine

‘precomputing’ the relevant information about the existing code, and then using that

information to preclude problematic updates. We have explored a type system for

supporting such an approach in related work on a language called Proteus (Stoyle

et al. 2005). Although we have not made use of this type system here, to keep things

simpler, we briefly sketch how it would work. Adapted to λmod
update, a Proteus-style

type system would identify, for each update point, those module-level identifiers

M .z1 . . .M .zn the program could eventually reference from non-updated code after

the update; if those identifiers change type, we would have a type violation. Such

non-updated code could either be in the active expression or be in modules called

from the active expression through versioned calls Mn.f (since such functions could

make ‘outdated’ unversioned calls). Whenever an update point is reached, a dynamic

update is only permitted to take effect if the loaded code is itself well typed (as the

condition required by the λupdate updating rule), and if no identifier in M .z1 . . .M .zn
changes type.

7.4 Example: Updating a server application

To illustrate the expressive power of our calculus, we present more realistic examples

of updating a long-lived server application. There are many real-world examples

of this class of system that employ or could benefit from DSU; for example,

Dynamic rebinding for marshalling and update 475

Fig. 18. An updateable (web) server.

financial transaction processors, web and database servers, network routers, intrusion

detection sensors, and more. Because our calculus lacks concurrency (a non-trivial

extension), we focus on a single-threaded, event-based architecture, which is not

uncommon in server applications (Pai et al. 1999; Welsh et al. 2001; Boa n.d.).

To make the code examples easier to read, we have taken some liberties with our

syntax. In particular, we allow tuples rather than pairs, with pattern-matching;

we have elided all typing annotations; we assume the existence of booleans

and conditionals; we assume the existence of a type of queues, which could be

implemented using lists; and we allow simultaneous updates of multiple modules.

All these should be clear in context and would be routine to add to the calculus

definition.

7.4.1 Initial system

The initial program for our updateable server is shown in Figure 18. The Server

module implements the basic event loop. The loop function has a queue of events,

for example, HTTP requests from clients or responses sent by handlers. New events

are created by getevent, which queues any new events (such as client requests) and

returns, or blocks if both the queue is empty and no new events have occurred.

Once an event is extracted, it is demultiplexed by the handle function, which calls

the handlers implemented in the Handlers module. One possible event is a request

to update the server. This is processed by the Handlers.handleUpdate function,

476 P. Sewell et al.

Fig. 19. Adding a log to the server.

which invokes update. Notice that because of the placement of the update primitive,

updates will always occur just before the recursive call to loop, meaning that no

computations will be incomplete when the update is accepted. This intuitively allows

us to believe that an update will not result in an inconsistent state. Also notice

that calls to Handlers functions use an explicit version; the reason for this will be

evident shortly. We assume that the program is using a module Queue to implement

its event queue, which is not shown. The programs starts with a call to loop with

an empty queue as its argument.

7.4.2 First update: adding a log

As a first example update, say we want to log all of the HTTP events that we

process, so we want to add logging to the server. To do this, we need to change

the loop and handle functions of Server to additionally take a log object as an

argument. Upon handling each event, a record will be added to the log. To realise

this change online, we note that the existing Server.loop function does not expect

this extra parameter, and therefore we must introduce a ‘transitional’ function loop

at the old type (i.e. expecting only a queue as its argument), which then calls the

new version of loop’ at the new type (i.e. expecting both the queue and the log as

arguments). This is shown in Figure 19. Transitional functions have been proposed

in existing systems under various names and guises (Lee 1983; Frieder & Segal 1991;

Hicks 2001). Note that we do not need to add a transitional function for handle

since, following the update, it can only ever be called from loop’ (at the new type).

Dynamic rebinding for marshalling and update 477

When the original Server1.loop function handles the update event, its recursive

call to Server.loop will dispatch to the new Server2.loop function by the (unver)

reduction rule. This function creates an empty log and calls Server2.loop’, which

continues processing events. This function will call the new handle function, which

expects the log as an argument, and will log the appropriate events.

It would seem unfortunate from a software engineering point of view that the

name of the loop function changes to loop’ in the new version. However, this issue

can be resolved with compiler/tool support, as we have motivated and implemented

in other work (Hicks 2001; Neamtiu et al. 2006). Our goal is to focus on the run-time

issues, since doing so keeps things simpler and will not impede our formal reasoning

ability.

7.4.3 Second update: Enriching events

The first update added to the server’s functionality; we might also wish to enrich or

change existing functionality. For instance, we could extend the definition of events

to include additional information, perhaps to refine existing event descriptions or to

add new ones. Such a change will impact all of the code that manipulates events,

including our event queue and handler functions.

Because we are making the change without shutting down the system, we have

to consider the existing unprocessed events before switching to the new format.

In particular, the server’s existing event queue could be nonempty. Here are two

possible choices: (1) convert all of the events in the existing queue to have the format

expected by the new code, or (2) process the old events using the old code and then

switch to using new code for the new events. The former strategy, which we shall

dub convert, is taken by most proposed DSU systems (e.g. Lee 1983; Frieder & Segal

1991; Gilmore et al. 1997; Duggan 2001; Hicks 2001; Stoyle et al. 2005; Neamtiu

et al. 2006; Squeak n.d.) while the latter, which we dub complete, is taken by fewer

systems (e.g. Appel 1994; Peterson et al. 1997). Each approach has advantages and

disadvantages; a main goal for our calculus is to be able to express a range of design

decisions, so as to evaluate these trade-offs.

In both cases, we will need to create new versions of the Handlers and Log

modules that use the new form of events:

module Handlers2 = ...handles new event type

module Log2 = ...handles new event type

(we omit the details of these two).

The new Server module for the complete strategy is illustrated in Figure 20.

Here, if the existing queue is nonempty, the new loop’ processes the old events by

explicitly referring to Server2.getevent and Server2.handle functions, which call

the handlers from the Handlers1 module. Once the queue is empty, loop’ calls the

new Server3.loop’’ function with an empty queue (to hold the new events).

Note that the complete strategy would not have worked if we had not

explicitly included the version number when calling Handlers1 handling functions

in Server2.handlers. If instead we had used the unversioned syntax (e.g.

478 P. Sewell et al.

Fig. 20. Complete existing events first.

Handlers.handleGet), the new versions of the handlers would have been called

following the update, and this would have been flagged as a type error. On the other

hand, had we used the unversioned syntax, we could have supplied an intermediate

update that inserted the versioned variable syntax, and then proceeded with our

original update!

The new module required for the convert strategy is shown in Figure 21. Here,

we have defined two new functions convertevent and convert; the former converts

an event from the old to the new format, and the latter recursively creates a

new queue containing the converted events of the old one. At the time of the

update, the loop’ function will call convert to create a new queue, and then call

Server3.loop’’ to proceed with processing the converted (and new) events with

the new code.

8 Related work

8.1 Lambda calculi

As discussed in §3.2, our approach in λr and λd of using lets to record the arguments

of functions has some similarities to prior work on explicit substitutions (Abadi

et al. 1990) and on sharing in call-by-need languages (Ariola et al. 1995).

In work on the compilation of extended recursion (particularly for mixin modules)

Hirschowitz et al. have (independently) used a semantics that is similar to λd, save

that (a) the language allows more general recursive definitions and (b) the semantics

collapses multiple lets (Hirschowitz 2003; Hirschowitz et al. 2003). It draws on the

work of Ariola and Blom (2002), which also collapses let blocks. For rebinding, we

need to preserve this structure.

Dynamic rebinding for marshalling and update 479

Fig. 21. Convert existing events to new format.

There are also similarities with Felleisen and Hieb’s (1992) syntactic theory of

state. Their ΛS models late (redex-time) resolution of state variables in a substitution-

based system by labelling the substituted-in values with the name of the variable;

assignment to a variable triggers a global replacement of all values labelled with

that variable throughout the program with the new value. This is then revised to

an equivalent store-based model. As in our system, there is a notion of a ‘final

answer’, which may require further clean-up to yield the value that is the result of

the computation in the usual calculus (our [| . |] function).

8.2 Dynamic rebinding and λmarsh

Dynamic binding

Work on dynamic binding can be roughly classified along three dimensions. Firstly,

one can have either dynamic scoping, in which variable occurrences are resolved

with respect to their dynamic environment, or static scoping with explicit rebinding,

where variables are resolved with respect to their static environment, but additional

primitives allow explicit modification of these environments. Secondly, one can work

either with one class of variables or split into two: one treated statically and one

dynamically. Thirdly, for explicit rebinding the variables to be rebound can be

specified either individually, per name, or as all those bound by a certain term

480 P. Sewell et al.

context. We identify some points in this space below, and refer the reader to the

surveys of Moreau (1998) and Vivas Frontana (2001) for further discussion.

Dynamic scoping first appeared as a bug in McCarthy’s Lisp 1.0, and has survived

in most modern Lisp dialects in some form. There it is usually referred to as ‘dynamic

binding’. Lisp 1.0 had one class of variables. MIT Scheme’s (MIT n.d.) fluid-let

form and Perl’s local declaration similarly perform dynamically scoped rebinding

of variables. Modern Lisp distinguishes between dynamically and statically scoped

variables at declaration time, as formalised in the λd calculus of Moreau (1998).

Lewis et al. (2000) propose to add syntactically distinct, dynamically scoped implicit

parameters to statically scoped Haskell. While flexible, dynamic scoping can result

in unpredictable behaviour, since variables can be inadvertently captured; this was

referred to as the downward funarg problem in the Lisp community (to avoid this in

a typed setting, Lewis et al. forbid arguments of higher-order functions from using

dynamically scoped variables).

Turning to static scoping with explicit rebinding, the quasi-static scoping Scheme

extension of Lee and Friedman (1993) and the λN calculus of Dami (1998) both

have two classes of variable, with a rebinding primitive that specifies new bindings

for individual variables. Jagannathan’s (1994) Rascal language maintains both a

static environment and a public environment, corresponding again to two variable

classes. The barrier, reify and reflect operations allow explicit manipulation of the

variables bound by an entire term context.

Outside the above classification, MIT Scheme also permits explicit manipulation

of top-level environments. Hashimoto and Ohori (2001) introduce a typed context

calculus for expressing first-class evaluation contexts within the λ calculus. Context

holes can be ‘filled in’ with terms having free variables that are captured by the

surrounding context. This allows binding at context-application time, but does not

support rebinding. This is developed in the MobileML language (Hashimoto &

Yonezawa 2000). Garrigue (1995) presents a calculus based on streams that can be

used to encode dynamic binding for particular scope-free variables.

Locating our λmarsh calculus in this space, it adopts static scoping with explicit

rebinding, has a single class of variables and supports rebinding with respect to

named contexts (not of individual variables). Use of the destruct-time strategy delays

variable resolution until the last possible moment to give the most useful semantics,

for example, for repeatedly mobile code. As argued in §4, we believe these choices

will lead to code that is easier to write and maintain, particularly for large systems.

We conjecture that λmarsh could be encoded in Rascal, and also that it could be

given semantics either in an environment-passing style or using an abstract machine

with concrete environments. We believe, however, that our reduction semantics, with

small-step reductions over the source syntax, is more perspicuous.

Partial continuations

The context-marking operator mark is reminiscent of Felleisen and Friedman’s

(1987) prompt operator # and marshal/unmarshal of their control operator F.

Their operators capture partial continuations, whereas our operators may be seen

Dynamic rebinding for marshalling and update 481

as capturing partial environments: mark marks a binding context, whereas # marks

an evaluation context. In fact, λmarsh filters the captured context to retain only the

binding structure (E2), whereas Felleisen et al.’s semantics exhibits the behaviour of

our λc, eagerly substituting out bindings and leaving only the control structure (E1)

to be captured.

Another interesting connection is between abstract continuations (Felleisen et al.

1988), as used by Queinnec (1993), and the reduction contexts E3 used in our

operational semantics. Each A1 or A2 corresponds to a frame of the continuation,

except that the semantics of ACPS substitutes the A2 binding frames away.

Gunter et al. (1995) have studied # and F in a typed setting. It is interesting

to note that although they state a type-safety result, this does not exclude the

possibility that a well-typed program can get ‘stuck’ if an appropriate prompt does

not exist (c.f. §4.4). Very recently, Kiselyov et al. (2006) have studied the problems

of combining dynamic binding with delimited control (such as the control operators

of Gunter et al.). They show how these two features, when combined, result in a

system with a number of undesirable features. They propose expressing dynamically

bound parameters in terms of delimited control prompts. It would be interesting

future work to examine in detail similar translations of λr and λd.

In the λmarsh calculus, marks are named (not anonymous), are not bound

and are preserved by marshal/unmarshal operations. Some other choices have

been investigated in the context of partial continuations by Moreau and

Queinnec (Queinnec 1993; Moreau & Queinnec 1994).

Dynamic linking

Dynamic linking is a ubiquitous simple form of dynamic binding, allowing program

bindings to be resolved either at load-time or run-time, rather than statically.

Conventional executables will, when run, dynamically link shared libraries for

standard library functions (e.g. read, write). Which libraries are loaded depends

upon the context; for example, a machine might have a library compiled with

profiling enabled and one without. However, once dynamically bound, a variable’s

definition is fixed, precluding rebinding for marshalling or update. Modern languages

often provide an interface to the dynamic linker so that programs can load new code

at run-time (Armstrong et al. 1996; Rouaix 1996; Leroy et al. 2001; Drossopoulou &

Eisenbach 2002; dlopen n.d.). Dynamic linking has been formally modelled for low-

level machine code (Duggan 2000; Hicks et al. 2000; Hicks & Weirich 2000),

and high-level languages such as Java (Drossopoulou & Eisenbach 2002). Several

authors have considered customised linking for security, performance or debugging

purposes (Rouaix 1996; Hicks et al. 2000; Serra et al. 2000; Sewell & Vitek 2000).

Rebinding in distributed calculi

A number of distributed process calculi provide implicit rebinding of names,

adopting interaction primitives with meanings that depend on where they are used

in a location structure (Cardelli & Gordon 1998; Riely & Hennessy 1999; Sewell

482 P. Sewell et al.

et al. 1999; Chothia & Stark 2000; Sewell & Vitek 2000; Schmitt 2002). This allows

a form of rebinding to application libraries, but these works do not address the

problem of integrating this rebinding with local functional computation.

The JoCaml and Nomadic Pict languages for mobile computation (Fournet et al.

1996; Sewell et al. 1999) provide rebinding to external functions, but the details are

matters of implementation, not semantically specified—though a more principled

proposal for JoCaml has been made by Schmitt in a Join-calculus setting (Schmitt

2002).

8.3 Dynamic update

There has been steady interest in how to dynamically update running systems since

at least Fabry (1976). Frieder and Segal (1991), Hicks (2001), and Ajmani (2004)

each has surveyed (overlapping) portions of the literature. Recent work has explored

dynamic updating for operating systems (Soules et al. 2003; Baumann et al. 2004,

2005; Potter & Nieh 2005; Chen et al. 2006), servers (Altekar et al. 2005; Stoyle et al.

2005; Neamtiu et al. 2006), distributed systems (Ajmani et al. 2006) and persistent

object stores (Boyapati et al. 2003), and many languages provide some form of

support for DSU, including Erlang (Armstrong et al. 1996), Smalltalk (Goldberg &

Robson 1989) and Java (Java n.d.). As mentioned earlier, while Erlang has a core

semantics (Carlsson et al. 2004), the semantics does not consider dynamic updating.

Indeed, most past work has focused on implementation issues; our current work

focuses on defining rigorous semantics. There is a small collection of related work

in this area.

Duggan (2001) defines a formal language in which module types may be converted

lazily during program execution, rather than at once during garbage collection. As

a result, different versions of a type/module may coexist during program execution,

and must be convertible from the old to new version and vice versa. A novel type

system is presented and type soundness is proved. In this system, code updating is

treated informally, based on arguments around reference types. The assumption is

that a compiler will introduce an extra level of indirection, converting all updateable

definitions of type T be ones of type T ref . While expedient, such informality side

steps the question of higher-level semantics: following an update, which program

elements should ‘notice’ the change? In other words, one must decide, when writing

Duggan’s hypothetical compiler, where the dereference operations should be inserted.

Our λr and λd reduction strategies provide two possible answers: in redex position

or in destruct position. Moreover, we have shown that these two strategies are

‘essentially call-by-value’ (Theorem 4), corresponding the original (precompilation)

semantic view of the program.

Dynamic ML (Gilmore et al. 1997) is a proposed implementation of ML with

a formalised abstract machine (Walton 2001) that enables replacement of modules

at run-time; changes can include the alteration of abstract types and the addition

(and possibly deletion) of module definitions. To ensure soundness, existing values

of changed abstract types will be converted to the new representation during a

garbage-collection phase at update-time. Different versions of modules may not

Dynamic rebinding for marshalling and update 483

coexist, and a module must be inactive (e.g. not on the run-time stack) before it can

be replaced.

Both Duggan’s formalism and Dynamic ML focus primarily on the problem

of converting values of changed types following an update, adopting particular

language mechanisms to do so. We believe the wider questions of how and when to

ensure safe updates require attention; a prime goal of the λupdate and λmod
updatecalculi

has been to use the simplest mechanisms possible in order to highlight commonality

among various DSU systems. The fact that Erlang and its update mechanisms are

in wide use strongly motivated it as the inspiration for λmod
update; to our knowledge

neither Dynamic ML nor Duggan’s system has been implemented.

Using the foundations presented here, we recently formalised a calculus called

Proteus (Stoyle et al. 2005) for modelling updates in imperative programs and

implemented it in a C compiler called Ginseng (Neamtiu et al. 2006). In Proteus,

updates occur at the granularity of individual definitions (whether types, variables

or functions) as in λupdate (rather than modules as in λmod
update). Replacement definitions

may have different types in comparision with their originals, and a novel type system

based on capabilities (Walker et al. 2000) is used to ensure type safety. The fact that

possible update points are made explicit in the program text is a key to balancing

the flexibility and safety of the system.

The implementation in Ginseng has been shown to scale to realistic programs. In

particular, we dynamically updated three open-source programs: the “Very Secure”

FTP daemon, vsftpd, OpenSSH’s sshd daemon and the zebra routing daemon

from the GNU Zebra routing package. These programs range in size from 10 to

58 KLOC. We were able to start program versions at least 3 years old and then

subsequently update them, while they ran, with code implementing each subsequent

release. This resulted in as many as 12 successful dynamic updates.

In summary, Proteus and Ginseng benefit from the basic insights presented

here and demonstrate that our core rebinding ideas can be scaled to practical

implementations.

9 Conclusions

We have established a clean semantic foundation for dynamic rebinding and update.

In particular, we

• reconciled the dynamic-rebinding need for delayed instantiation with standard

CBV semantics via novel redex-time and destruct-time reduction strategies;

• introduced the λmarsh calculus, providing core mechanisms for dynamic

rebinding of marshalled values, with a clean destruct-time operational

semantics, and argued that our design choices are appropriate for a distributed

programming language;

• showed how to extend λmarsh with communication and external functions to

express dynamic rebinding and secure encapsulation of transmitted code;

• demonstrated that dynamic update of functional programs can be expressed

using similar mechanisms by introducing the λupdate calculus—again with a

simple destruct-time semantics; and

484 P. Sewell et al.

• showed how the basic ideas in λupdate can be scaled up to a more realistic

calculus λmod
update, which permits updates at the module level. This calculus

models a more general form of the updating capability in the functional

programming language Erlang (Armstrong et al. 1996).

These ideas have been used to build realistic programming languages for distributed

programming, such as Acute (Sewell et al. 2004, 2007) and HashCaml (Billings

et al. 2006), and dynamic updating, such as Proteus (Stoyle et al. 2005) and

Ginseng (Neamtiu et al. 2006). These languages are under active development,

with ongoing research on language designs that harmonise the tensions of flexibility,

efficiency and safety for realistic programs. We refer the reader to our papers on

these languages for specific discussion of various possible future directions.

Acknowledgments

We acknowledge support from a Royal Society University Research Fellowship

(Sewell), a Marconi EPSRC CASE Studentship (Stoyle), a St. Catharine’s

College Heller Research Fellowship (Wansbrough), EPSRC grants GRN24872 and

GRT11715, AFRL-IFGA IAI grant AFOSR F49620-01-1-0312 (Hicks, while at

Cornell University), EC FET-GC project IST-2001-33234 PEPITO, and APPSEM 2.

Appendix

Observational equivalence between λr, λc and λd

In this appendix, we outline our proof that λ calculus with our delayed instantiation

reduction strategies has the same observational equivalence as with the standard

CBV reduction strategy.

To show these results, we build a particular form of (weak) bisimulation that we

call eventually weak (bi)simulation (EWS/EWB).

Definition 3 (Eventually weak (bi)simulation)

Given two transition systems X ⊆ S1 × S1 and Y ⊆ S2 × S2, we say that a relation

R ⊆ S1 × S2 regarding states of X to states of Y is an eventually weak simulation

from X to Y if and only if for every ex R ey the following holds:

ex −→X e′
x =⇒ ∃ e′

y. ey −→∗
Y e′

y ∧ ∃ n � 0. e′
x −→n

X e′′
x ∧ e′′

x R e′
y

If the implication holds after interchanging X and Y, then R is said to be an

eventually weak bisimulation between X and Y .

It is straightforward to see that every weak bisimulation is an eventually weak

bisimulation, and hence that every bisimulation is an eventually weak bisimulation.

Informally, we require the weakness relaxation because λr performs more work

than λc: while λc instantiates all instances of a bound variable in a single reduction

step, λr requires reductions proportional to the number of occurrences of the

variable. In addition, we require the eventually weak relaxation as λc’s recursive

Dynamic rebinding for marshalling and update 485

function expansion results in occurrences of λx .letrec z = λx .e in e while in λr , we

obtain occurrences of λx .e instead. For example:

letrec z = λx :T .e in z n −→c (λx :T .letrec z = λx :T .e in e)n (letrec)

letrec z = λx :T .e in z n −→r letrec z = λx :T .e in (λx :T .e)n (instrec)

Upon application of these functions, λc requires an extra reduction when compared

with λr , that is:

(λx .letrec z = λx .e in e)v −→c letrec z = λx .e in {v/x}e
−→c {λx .letrec z = λx .e in e/z}{v/x}e

but

(λx .e)u −→r let x = u in e

A similar situation holds for λd.

The proofs of observational equivalence between λr and λc as well as λd and λc
are similar. In the interests of space, we give only details of the equivalence between

λr and λc. Details of the other proof can be found in Stoyle’s PhD thesis (Stoyle

2006).

A.1 λr ↔ λc observational equivalence

First, we restate the theorem we intend to prove in this section.

Theorem 7

For all e ∈ λ, the following hold:

1. � e:int =⇒ (e −→∗
c n =⇒ ∃ u . e −→∗

r u ∧ n = [| u |])

2. � e:int =⇒ (e −→∗
r u =⇒ ∃ n . e −→∗

c n ∧ n = [| u |])

Rather than explicitly construct an eventually weak bisimulation relation between

λr and λc terms (which seems to be very difficult), we actually first introduce

an annotated calculus, λr′ , that records more information during reduction. We

can then show observational equivalence between λr and λc by defining an EWB

between λr and λr′ , and showing that the termination relation for λr′ and λc
coincide.

To motivate the intermediate calculus λr′ , we observe that not every value-binding

let in a λr term is part of ‘the environment’. Let-bindings on the outside of a

computation that bind values are morally part of the computation’s environment;

their values are used by the computation, but the terms they bind are fully computed.

For example, in

let x = 5 in let y = 6 in let z = π1 (x , y) in z

the values bound to x and y are used by the computation under them, but no more

computation occurs above or within them. The variables x and y are part of the

environment, but the let binding z is in the part of the program that is yet to be

computed: it is part of the ‘computation’.

486 P. Sewell et al.

Fig. A 1. Annotated syntax for λr′ .

The intermediate language, λr′ , given in Figures A 1 and A 2, explicitly distinguishes

these two forms of let . Zero-tagged lets (let0) for environment-let s and one-tagged

lets (let1) for program-let s. The (zero) and (zerorec) reductions convert a one-tagged

let /letrec into a zero-tagged let /letrec whenever a one-tagged let /letrec binding

a value is in redex position. These reductions correspond to substituting let s away

in λc.

Similarly, a tagging scheme is employed for distinguishing between functions

and recursive unrollings of functions. Whenever a variable bound by a letrec is

instantiated, we tag the function with the name of the letrec it came from, for

example, z will be instantiated to λz x .a . See the (instrec) rule in Figure A 2.

Notation We say that λz x .a is a recursive function and call z in that term a recursive

variable. Write frv(a) (the free recursive variables in a) for the recursive variables in

a not bound by an enclosing letrec and frf(a) (the free recursive functions in a) for

the recursive functions whose recursive variables are in frv(a).

Notation Whenever we want to specify that a reduction is of a specific type, we

will label the transition with its name, for example, a
inst−→r′ a ′. As a generalisation

of this, we will write a
insts−−→r′ a ′ to mean that a can do an inst or instrec transition

to become a ′, and we call the action an inst reduction. Similarly, we write a
zeros−−→r′ a ′

for a zero or zerorec transition and call it a zero reduction.

Notation We write µ(z , x ,T , e) for λx :T .letrec z = λx :T .e in e and overload it

for annotated terms such that µ(z , x ,T , a) stands for λx :T .letrec1 z = λx :T .a in a .

Whenever the types are clear from the context, we write µ(z , x , e) and µ(z , x , a),

respectively.

Intuitively, environment-let s are found only on the outside of a computation,

and subsequent to a program-let occurring there should be no more occurrences

of environment-let s. Also, we expect tagged functions to be introduced only by

the computation and not by the user, therefore we do not expect to find tagged

functions under λ’s or below program let s. We call such terms well-formed, and

write wf[a] to denote that a term a is well formed. For reasons of space, we suppress

the rather obvious definition.

In Figure A 3, we define a function [| − |]Φ that translates a λr′ term into an

‘equivalent’ λc term. The parameter Φ is an environment, which is essentially a record

of (value) substitutions. It is defined as follows.

Dynamic rebinding for marshalling and update 487

Fig. A 2. λr′ calculus.

Definition 4 (Environment)

An environment Φ is an ordered list containing pairs whose first component is an

identifier and whose second component is a c-value or an identifier. An environment

is well formed if the following hold:

(i) Whenever (x , z) ∈ Φ, then x = z .

(ii) Whenever (x , e) ∈ Φ, then for all z ∈ fv(e) it holds that z�Φx where �Φ is

the ordering of the identifiers in Φ.

(iii) All of the first components of the pairs in the list are distinct.

When Φ is well formed, we write Φ �.6 We write Φ, z �→ v for the disjoint extension

of Φ forming a new environment and Φ[z �→ v] for the environment acting as Φ,

but mapping z to v .

Note that in the above definition if Φ is well formed, it does not necessarily follow that

the extensions are well formed. Clause (i) in the definition is a simplifying assumption

reflecting the fact that if an environment maps an identifier to a nonvalue, then

it maps it to itself. Clause (ii) is a closure property ensuring that variables that

6 We adopt this strange notation as later we extend environment well formedness to environment well
formedness w.r.t. a term a , which we write Φ � a .

488 P. Sewell et al.

Fig. A 3. Instantiate-substitute correspondence and its extension to evaluation contexts.

occur free in the environment have definitions further up the environment. Clause

(iii) ensures that each identifier is defined only once, allowing us to treat an

environment as a finite partial function without ambiguity.

The function [| − |]Φ is not well defined for all terms. Given a well-formed

environment Φ the function [| − |]Φ on λ terms acts on variables by looking them up

in the environment Φ. Thus, it is well defined only for terms whose free variables

are contained in the domain of Φ. In addition, because recursive functions, λz x .a ,

mention a variable z , whenever we apply [| − |]Φ to such a term z should be mapped

by Φ. In this case, the environment and the term both associate a function with z

and we must ensure that the terms they associate with it are compatible. The correct

definition of compatible is that the body of the function in the environment is the

Dynamic rebinding for marshalling and update 489

image of the one in the term under [| − |]Φ
′
, where Φ′ is the bindings above z in Φ

extended to map the free variables x and z to themselves. The following definition

formalises this compatibility of environment and term.

Definition 5 (Environment-term compatibility)

A term a is compatible with an environment Φ, written Φ � a , if and only if the

following hold:

i. the environment is well formed: Φ �
ii. fv(a) ⊆ dom(Φ)

iii. for all λz x .â ∈ frf(a) there exists Φ1,Φ2, e such that Φ = Φ1, z �→ λx .letrec z =

λx .e in e,Φ2 and Φ1, x �→ x , z �→ z � â and e = [| â |]Φ1 , x �→x , z �→z .

The definition extends naturally to evaluation contexts Φ � E3.

The following lemma shows that environment-term compatibility is closed under

reduction.

Lemma 13 (− � − is closed under reduction)

Φ � a ∧ a −→r′ a ′ =⇒ Φ � a ′ �

A.1.1 Defining R

We have now defined a function to relate the intermediate language λr′ to λc.

However, we wish to define a candidate bisimulation relation, R, between λr and

λc. We therefore need a way of relating unannotated λr and annotated λr′ terms.

Fortunately, this is straightforward. Going from unannotated to annotated, it is

assumed that the whole term is part of the program, so all let s are 1-annotated and

functions are left unannotated, while the reverse direction is the forgetful function

that removes all annotations. The former is called inject (and written ι[]) and the

latter erase (written ε[]). Their rather simple definitions are omitted.

We can now give our definition of the candidate weak bisimulation R.

Definition 6 (Candidate eventually weak bisimulation)

R ≡ {(e, e′) | ∃ a . wf[a] ∧ a closed ∧ e = [| a |]� ∧ e′ = ε[a]}

This relation is defined on unannotated terms, but defined in terms of projections

out of an annotated λr′ term; [| − |]− forms the corresponding λc term and ε[−] the

corresponding λr term.

The goal is to show that if we start with identical terms, then the two reduction

systems reduce them to equivalent values, we therefore need identical terms to be

related by R. We check this sanity property.

Definition 7 (idλ)

The identity relation on closed λ terms is idλ, that is: idλ = {(e, e) | e ∈ λ ∧

e closed}, where λ is the set of all λ terms.

Lemma 14 (R contains identity)

The candidate bisimulation R contains idλ. �

490 P. Sewell et al.

A.1.2 Basic properties of constituents of R

This section establishes some basic properties of [| − |]−, ε[−] and wf[−]—the basic

building blocks of R—as well as environment well-formedness conditions. We are

mainly interested in how the operations distribute over our syntax, that they preserve

values and that well formedness of terms is preserved by reduction.

The following definition provides the link between λr′ evaluation contexts and

environments Φ.

Definition 8 (Binding context)

Ec[E3]
Φ builds an environment corresponding to the binding context of the λr′

reduction context E3 using the environment Φ.

Ec[]Φ = �
Ec[.E3]

Φ = Ec[E3]
Φ

Ec[A1.E3]
Φ = Ec[E3]

Φ

Ec[let0 z = u in .E3]
Φ = z �→ [| u |]Φ,Ec[E3]

Φ , z �→[| u |]Φ

Ec[letrec0 z = λx .a in .E3]
Φ = z �→ [| µ(z , x , a) |]Φ,Ec[E3]

Φ , z �→[| µ(z ,x ,a) |]Φ

The context E3 and the environment Φ must be compatible in the sense that

fv(E3) ⊆ dom(Φ) and hb(E3) must be unique.

When extending an environment with a value care must be taken to ensure the

resulting environment is well formed. The following facts are useful in doing this.

Proposition 1 (Environment properties)

i. If Φ � u and z /∈ dom(Φ), then Φ, z �→ [| u |]Φ �
ii. If Φ � a and Φ,Φ′ �, then Φ,Φ′ � a

iii. If Φ � E3.a , then Φ,Ec[E3]
Φ � a

iv. If Φ � a and wf[a] and a −→r′ a ′, then Φ � a ′ �

We can extend parts (ii) and (iii) of the previous lemma to contexts to conclude

the following.

Corollary 15 (Environment context properties)

i. If Φ � E3 and Φ,Φ′ �, then Φ,Φ′ � E3

ii. If Φ � E3.E
′
3, then Φ,Ec[E3]

Φ � E ′
3 �

Lemma 16 ([| − |]− Value preservation)

Φ � u ∧ wf[u] =⇒ [| u |]Φ cval �

Lemma 17 (Well-formed context decomposition)

wf[E3.a] ⇐⇒ wf[E3] ∧ wf[a] �

Lemma 18 (λr′ reduction preserves well formedness)

wf[a] ∧ a −→r′ a ′ =⇒ wf[a ′] �

We now prove some conditions under which a change of environment in [| − |]−

leaves the image unchanged.

Dynamic rebinding for marshalling and update 491

Proposition 2 ([| − |]− Environment properties)

i. If wf[a] and fv(a) ⊆ dom(Φ) and fv(v) ⊆ dom(Φ), then {v/x}[| a |]Φ , x �→x =

[| a |]Φ , x �→v . If wf[a] and Φ, x �→ x � a and Φ, x �→ v ,Φ′ �, then

{v/x}[| a |]Φ , x �→x , Φ′
= [| a |]Φ , x �→v , Φ′

ii. If x /∈ fv(a), then [| a |]Φ , x �→v = [| a |]Φ. If Φ � a and Φ,Φ′ � a , then [| a |]Φ =

[| a |]Φ , Φ′

iii. If Φ1,Φ2,Φ3,Φ4 � a and Φ1,Φ3,Φ2,Φ4 � a , then [| a |]Φ1 , Φ2 , Φ3 , Φ4 =

[| a |]Φ1 , Φ3 , Φ2 , Φ4 . �

Lemma 19 ([| − |] Outer value preservation)

For all λr′ values u:

a. If wf[u], Φ � u and [| u |]Φ = λx :T .e, then there exists E2, a , j such that

u = E2.λ
j x :T .a

b. [| u |]Φ = (v1, v2) =⇒ ∃ E2, u1, u2. u = E2.(u1, u2) �

Lemma 20 ([| − |]− Distribution over contexts)

For all E3,Φ and a , if Φ � E3.a and wf[E3.a], then [| E3.a |]Φ = [| E3 |]Φ.[| a |]Φ ,Ec[E3]
Φ

�

Lemma 21 ([| − |] Preserves contexts)

If Φ � E3 and wf[E3], then there exists a λc reduction context E such that [| E3 |]Φ = E .

�

We now establish a similar set of properties for ε[−], although the definition is

considerably simpler making the proofs routine.

Lemma 22 (ε[−] Value preservation)

wf[u] =⇒ ε[u] rval �

Lemma 23 (ε[−] Distributes over contexts)

ε[E3.a] = ε[E3].ε[a] �

Lemma 24 (ε[−] Preserves contexts)

If wf[E3], then there exists a λr reduction context E ′
3 such that ε[E3] = E ′

3. �

Lemma 25 (ε[−] Outer value preservation)

For all λr′ values u:

a. If wf[u] and ε[u] = E2.λx :T .e, then there exists Ê2, a , z , j such that u =

Ê2.λ
j x :T .a

b. ε[u] = E2.(v1, v2) =⇒ ∃ Ê2, u1, u2. u = Ê2.(u1, u2) �

A.2 R is an eventually weak bisimulation

In this section, we show that R, as defined in Definition 6, is an eventually weak

bisimulation between λc and λr . To do this, we factor the problem into two EWS,

one from λc to λr and the other in the reverse direction. These EWS are further

factored through the annotated calculus λr′ .

492 P. Sewell et al.

A.2.1 An eventually weak CR-simulation

Before we prove that R is an EWS from λc to λr , we observe some key facts about

reduction in λr′ The first is that performing instantiation reductions to a term a

leaves the image of a under [| − |]Φ unchanged.

Lemma 26 ([| − |]− Invariant under insts)

wf[a] ∧ Φ � a ∧ a
insts−−→

∗
r′ a ′ =⇒ [| a |]Φ = [| a ′ |]Φ �

Another important observation is that every contiguous sequence of instantiations

is finite. That is, we eventually reach a term that cannot reduce via an instantiation.

We say such a term is in instantiation normal form, (INF) which is formally

defined as follows (the obvious variant of these definitions hold for λr as

well).

Definition 9 (INF)

A term a is in instantiation normal form if and only if there does not exist an a′ such

that a
insts−−→ a ′. We write a infr when a is in INF.

Definition 10 (Open INF)

A possibly open term a is in open instantiation normal form if and only if there

does not exist an E3 and z such that a = E3.z . We write a inf ◦
r when a is in open

INF.

INF and open INF agree on closed terms, but not necessarily on open ones. For

example, if there does not exist E3,E
′
3, z , x , u , a such that a = E3.let0 z = u in E ′

3.z

and a �= E ′
3.letrec0 z = λx .a in E ′

3.z , then a cannot perform an inst or instrec

reduction and is in INF. However, it may still be the case that for some E ′′
3 and z

that a = E ′′
3 .z as long as z /∈ hb(E ′′

3), and therefore a is not in open INF.

A useful property of instantiation normal forms is that they are preserved by

removing a surrounding E3 context, the proof of which follows easily by proving the

contrapositive.

Lemma 27 (inf ◦
r preserved by E3 removal)

For any evaluation context E3, if E3.a inf ◦
r , then a inf ◦

r �

To prove that we can reach an instantiation normal form from any λr′ term by

reduction, we observe that the number of variables above λ’s decreases with every

instantiation. Therefore, we define the function instvar[e] in Definition 11 that counts

the number of variables above λ’s and prove that this is monotonically decreasing

w.r.t. instantiation reductions to obtain an ‘INF reachability’ result.

Dynamic rebinding for marshalling and update 493

Definition 11 (instvar[−])

The function instvar[a] denotes the number of potential instantiations that a can

do.

instvar[z] = 1

instvar[n] = 0

instvar[()] = 0

instvar[πr a] = instvar[a]

instvar[(a a ′)] = instvar[a] + instvar[a ′]

instvar[λj x .a] = 0

instvar[a a ′] = instvar[a] + instvar[a ′]

instvar[letm z = a in a ′] = instvar[a] + instvar[a ′]

instvar[letrecm z = λx .a in a ′] = instvar[a ′]

Lemma 28 (instvar[−] properties)

For all λr′ terms a and a ′

1. a r’val =⇒ instvar[a] = 0

2. a
insts−−→r′ a ′ =⇒ instvar[a ′] = instvar[a] − 1 �

Lemma 29 (INF reachability)

For all closed a , if wf[a], then there exists a ′ such that a
insts−−→

∗
r′ a ′ ∧ a ′ infr �

The next fact also highlights the importance of INF. We might imagine that if

[| a |]Φ is a value, then a is a value, but a counter-example is quite easy to find:

[| let x = 3 in x |]Φ = 3

The result 3 is a value, but let x = 3 in x is not. The extra requirement needed is

that a is in INF.

Lemma 30 ([| − |]Φ source-value property)

For all λr′ expressions a , the following holds:

wf[a] ∧ a inf ◦
r ∧ Φ � a ∧ [| a |]Φ cval =⇒ a r’val

�

We can now prove a vital correspondence between λc and λr′ .

Lemma 31 (c − r′ correspondence)

If a closed and wf[a] and [| a |]� −→c e′, then there exists a ′, a ′′ such that

a
insts−−→

∗
r′ a ′′ −→r′ a ′ and a ′′ infr and either

i. e′ = [| a ′ |]� or

ii. there exists e′′ such that e′ −→c e′′ and e′′ = [| a ′ |]�.

We now wish to prove a similar correspondence between λr′ and λr . To do so, we

need two important lemmas.

494 P. Sewell et al.

Lemma 32 (Inst match property)

wf[a] ∧ a
insts−−→r′ a ′ =⇒ ∃ e′. ε[a]

insts−−→r e′ ∧ e′ = ε[a ′]

�

Lemma 33 (Inst match sequence)

wf[a] ∧ a
insts−−→

n

r′ a ′ =⇒ ∃ e′. ε[a]
insts−−→

n

r e′ ∧ e′ = ε[a ′]

�

Lemma 34 (r′ − r correspondence)

a closed ∧ wf[a] ∧ a
l−→r′ a ′ ∧ l �= zero =⇒ ∃ e′. ε[a] −→r e′ ∧ e′ = ε[a ′]

Putting the c − r′ and r′ − r correspondences together and using the following

lemma (easily proved by inspection), we obtain the cr-simulation result. �

Lemma 35 (ε[−] invariant under zeros)

wf[a] ∧ a
zeros−−→

∗
r′ a ′ =⇒ ε[a] = ε[a ′] �

Finally, we can prove that R is an EWS from λc to λr .

Lemma 36 (cr eventually weak simulation)

R is an eventually weak simulation from λc to λr �

A.2.2 An eventually weak RC-simulation

We now prove the reverse simulation using a similar process to the one used to

prove the CR-simulation. The role played by INFs is replaced by zero normal forms

(ZNFs), with zeros in λr′ matching let-reductions in λc.

We first define ZNF, establish some properties of it and prove that these forms are

always reachable. We do not need to define open and closed ZNFs as we did with

INF as the two definitions coincide. That is, a term a cannot do an instantiation

reduction if and only if the following ZNF condition holds:

Definition 12 (Open ZNF)

We say that a possibly open λr′ expression is in open zero normal form and write

a znf ◦
r if and only if there does not exist E3, z , u , a

′ such that a = E3.let1 z = u in a ′

Lemma 37 (znf ◦
r preserved by E3 stripping)

E3.a znf ◦
r =⇒ a znf ◦

r �

Lemma 38 (ε[−] Source-value property)

wf[a] ∧ a znf ◦
r ∧ ε[a] rval =⇒ a r’val �

Lemma 39 (ε[−] source context)

If ε[a] = E3.e and a znf ◦
r , then there exists an Ê3 and â such that a = Ê3.â and

ε[Ê3] = E3. �

Dynamic rebinding for marshalling and update 495

Lemma 40 (ZNF reachability)

For all closed a , if wf[a], then there exists a ′ such that a
zero−−→

∗
r′ a ′ ∧ a ′ znfr �

To see the above lemma, observe that all contiguous sequences of (zero)-reductions

are finite. Define a metric ones: λ′ → � that counts the number of 1-annotated-

let s in an expression, then each (zero) reduction strictly reduces this measure.

As expressions are finite, our metric is finite valued and thus reduction sequences

consisting only of (zero)-reductions are finite.

For every zero or zerorec reduction that λr′ can do, λc can match it. As noted

by the following two lemmas, which can be proved by induction on the transition

systems and number of reductions, respectively.

Lemma 41 (Zero match property)

wf[a] ∧ Φ � a ∧ a
zero−−→r′ a ′ =⇒ ∃ e′. [| a |]Φ

let−→c e′ ∧ e′ = [| a ′ |]Φ

�

Lemma 42 (Zero match sequence)

wf[a] ∧ Φ � a ∧ a
zero−−→

n

r′ a ′ =⇒ ∃ e′. [| a |]Φ
let−→

n

c e′ ∧ e′ = [| a ′ |]Φ

�

Lemma 43 (r − r′ correspondence)

a closed ∧ wf[a] ∧ ε[a] −→r e′ =⇒ ∃ a ′, a ′′. a
zero−−→

∗
r′ a ′′

−→r′ a ′ ∧ a ′′ znfr ∧ e′ = ε[a ′]

�

Lemma 44 (r′ − c correspondence)

If a closed and wf[a] and a
l−→r′ a ′ and l �= insts, then there exists an e′ such that

[| a |]� −→c e′ and either:

(i) e′ = [| a ′ |]� or

(ii) there exists e′′ such that e′ −→c e′′ and e′′ = [| a ′ |]� �

Lemma 45 (r-c eventually weak simulation)

R is an eventually weak simulation from λr to λc. �

A.3 Equivalence

Having demonstrated an eventually weak bisimulation between λc and λr , we now

use that relation to establish observational equivalence. The EWB tells us how terms

reduced under λr and λc are related. However, because the bisimulation is weak, it

does not tell us anything about how termination behaviour is related to the two

calculi.

496 P. Sewell et al.

We must show that the termination of expressions coincides for both systems in

order to show that the two are observationally equivalent. We first relate [| − |] and

[| − |]−. The former is used to obtain λc values from λr results (or, equivalently, erased

λr′ results), while the latter provides the link between λc and λr′ expressions; we

show they are consistent. The main difference is that [| − |] uses substitution, whereas

[| − |]− uses an environment. In what follows, we write σ to range over substitutions.

The following definition introduces a function S that builds a substitution from an

environment.

Definition 13 (Environment-substitution correspondence)

S[Φ , z �→ [| u |]Φ] = S[Φ]{[| ε[u] |]/z}
S[�] = {}

The simple value-collapsing function [| ε[−] |] and [| − |]− do not agree on all values,

but only those of ground type. For values of function type, they may not agree as

they may differ in their recursive unrollings:

[| ε[letrec0 z =λ x .a in λz x .a] |] = {λx .letrec z = λx .ε[a] in ε[a]/z}(λx .ε[a])

but

[| letrec0 z =λ x .a in λz x .a |]� = λx .letrec z = [| a |]x �→x , z �→z in [| a |]x �→x , z �→z

It turns out that the results of these operators do agree above λ abstractions, which

is sufficient for our purposes as we need to consider only contextual equivalence at

integer type. This motivates the next definition that is used in following lemma to

prove a compatibility result between the two functions.

Definition 14 (Equality on λ terms up to functions)

We define =λ to be the standard equality relation up to α-equivalence, but extended

to equate every function.

Lemma 46 (Value correspondence)

If Φ = Φk where

Φ0 = �
Φn+1 = Φn, xn+1 �→ [| un+1 |]Φn where fv([| un+1 |]Φn) = �

and Φ � u and wf[u], then S[Φ][| ε[u] |] =λ [| u |]Φ. �

The following two facts about typing are easily proved by induction on the typing

derivation.

Lemma 47 (Typing is substitutive)

Γ � v :T ∧ Γ, z :T � e:T ′ =⇒ Γ � {v/z}e:T ′ �

Lemma 48 ([| − |] Type preservation)

Γ � u:T =⇒ Γ � [| u |]:T �

Dynamic rebinding for marshalling and update 497

A.3.1 Proof of the main theorem

Proof of Theorem 12

We are now in a position to prove the main theorem of this section. To prove the

first part, we first prove the following fact:

e closed ∧ e −→∗
c v1 =⇒

∃ v2, u . e −→∗
r v2 ∧ wf[u] ∧ u closed ∧ v1 = [| u |]� ∧ v2 = ε[u](∗)

Assume e closed and e −→∗
c v1, and recall e R e by R contains identity

(Lemma 14). By c-r eventually weak simulation (Lemma 36) R is a c-r simulation,

thus there exists an e′ such that e −→∗
r e′ and v1 R e′. Expanding the definition of

R in the latter, we are ensured that

∃ a . wf[a] ∧ a closed ∧ v1 = [| a |]� ∧ e′ = ε[a]

We are left to show e′ −→∗
r e′′ and e′′ rval. By ε[−] Source-value property

(Lemma 38), it suffices to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧

a ′ znfr ∧ e′′ = ε[a ′].

Suppose that a infr, then by [| − |]Φ Source-value property (Lemma 30), a r’val.

By ε[−] value preservation (Lemma 22), ε[a] rval as required.

Now suppose that ¬(a infr), then by INF reachability (Lemma 29), there exists

an a ′′ such that a −→∗
r′ a ′ ∧ a ′ infr. By λr′-reduction preserves well formedness

(Lemma 18) wf[a ′] and by [| − |]− Invariant under Insts (Lemma 26), v1 = [| a ′ |]�.

Thus, by [| − |]Φ Source-value property (Lemma 30), a ′ r’val. By Inst match sequence

(Lemma 33), there exists an e′′ such that e′ −→∗
r e′′ ∧ e′′ = ε[a ′] as required.

We now prove the following result:

� e:int ∧ e −→∗
c n =⇒ ∃ v . e −→∗

r v ∧ n = [| v |]

Assuming � e:T ∧ e −→∗
c n , we can derive e closed, thus by (*) we know that

there exists a u and v2 such that e −→∗
r v2 ∧ wf[u] ∧ u closed ∧ n = [| u |]� ∧ v2 =

ε[u].

We are left to show that n = [| v2 |]. By Value correspondence (Lemma 46),

[| ε[u] |] = [| u |]�. We are left to show that this value is an integer, for which it suffices

to show that one of the values in the equality above types to int, as the only values

of type int in λc are integers. By type preservation for λr � v2:int, thus � ε[u]:int by

dint of equality with v2. By [| − |] Type preservation (Lemma 48), � [| ε[u] |]:int, as

required.

Now we prove the second part of the main theorem. As before, we first prove

e closed ∧ e −→∗
r v1 =⇒ ∃ v2,

u . e −→∗
c v2 ∧ wf[u] ∧ u closed ∧ v2 = [| u |]� ∧ v1 = ε[u]

Assume e closed and e −→∗
r v1, and recall e R e by R contains identity

(Lemma 14). By r-c eventually weak simulation (Lemma 45) R is a r-c simulation,

thus there exists an e′ such that e −→∗
c e′ and e′ R v1. Expanding the definition of

R in the latter, we are ensured that

∃ a . wf[a] ∧ a closed ∧ e′ = [| a |]� ∧ v1 = ε[a]

498 P. Sewell et al.

We are left to show e′ −→∗
c e′′ and e′′ cval. By [| − |]Φ Source-value property

(Lemma 30), it suffices to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧

a ′ infr ∧ e′′ = [| a ′ |]�.

Suppose that a znfr, then by ε[−] Source-value property (Lemma 38), a r’val.

By [| − |]− Value preservation (Lemma 16), [| a ′ |]� cval as required.

Now suppose that ¬(a znfr), then by ZNF reachability (Lemma 40), there exists

an a ′′ such that a
zeros−−→

∗
r′ a ′ ∧ a ′ znfr. By λr′-reduction preserves well formedness

(Lemma 18) wf[a ′] and by ε[−] Invariant under zeros (Lemma 35), v1 = ε[a ′].

Thus, by ε[−] Source-value property (Lemma 38), a ′ r’val. By Zero match sequence

(Lemma 42), there exists an e′′ such that e′ −→∗
c e′′ ∧ e′′ = ε[a ′] as required.

Now we prove the following result:

� e:int ∧ e −→∗
r v =⇒ ∃ n . e −→∗

c n ∧ n = [| v |]

Assume � e:int and e −→∗
r v , then by the above lemma there exists a v2 and a u

such that e −→∗
c v2; wf[u]; u closed; v2 = [| u |]�; v = ε[u] and u r’val.

We are left to show that [| u |] = n . By Value correspondence (Lemma 46)[| ε[u] |] =

[| u |]�. We are left to show that this value is an integer, for which it suffices to

show that one of the values in the equality above types to int, as the only values

of type int in λc are integers. By type preservation for λr � v :int, thus � ε[u]:int by

dint of equality with v . By [| − |] Type preservation (Lemma 48), � [| ε[u] |]:int, as

required. �

References

Abadi, M., Cardelli, L., Curien, P-L. & Lèvy, J-J. (1990) Explicit substitutions. In Proc.

17th POPL, ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages.

pp. 31–46.

Ajmani, S. (2004) A review of software upgrade techniques for distributed systems. Available

at: http://pmg.csail.mit.edu/∼ajmani/papers/review.pdf. Accessed Sept 2007.

Ajmani, S., Liskov, B. & Shrira, L. (2006) Modular software upgrades for distributed systems.

In Proc. ECOOP, the 20th European Conference on Object-Oriented Programming (Nantes,

France), LNCS 4067. New York: Springer, pp. 452–476.

Altekar, G., Bagrak, I., Burstein, P. & Schultz, A. (2005 August) OPUS: Online patches

and updates for security. In Proceedings of 14th USENIX Security Symposium. USENIX,

Berkeley, CA, USA. pp. 287–302.

Ariola, Z. M. & Blom, S. (2002) Skew confluence and the lambda calculus with letrec. Ann.

Pure Appl. Logic, 117(1–3), 97–170.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. & Wadler, P. (1995 January). A call-

by-need lambda calculus. In Proc. 22nd POPL: ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (San Francisco). pp. 233–246.

Armstrong, J., Virding, R., Wikstrom, C. & Williams, M. (1996) Concurrent Programming in

Erlang, 2nd ed. Englewood Cliffs, NJ, USA. Prentice Hall.

Barklund, J. & Virding, R. (1999 February) Erlang 4.7.3 reference manual DRAFT

(0.7). Available at: http://www.erlang.org/download/erl spec47.ps.gz. Accessed Sept

2007.

Baumann, A., Appavoo, J., Silva, D. Da, Krieger, O. & Wisniewski, R. (2004 October).

Improving operating system availability with dynamic update. In Proceedings of the

Dynamic rebinding for marshalling and update 499

Workshop on Operating System and Architectural Support for the on demand IT InfraStructure

(OASIS) (Boston). pp. 21–27.

Baumann, A., Appavoo, J., Silva, D. Da, Kerr, J., Krieger, O. & Wisniewski, R. W. (2005)

Providing dynamic update in an operating system. In Proceedings of the USENIX Annual

Technical Conference (Anaheim, CA). USENIX. pp. 279–291.

Bierman, G., Hicks, M., Sewell, P., Stoyle, G. & Wansbrough, K. (2003a August) Dynamic

rebinding for marshalling and update, with destruct-time lambda. In Proceedings of

ICFP 2003: the 8th ACM SIGPLAN International Conference on Functional Programming

(Uppsala). pp. 99–110.

Bierman, G., Hicks, M., Sewell, P., Stoyle, G. & Wansbrough, K. (2003b June) Dynamic

Rebinding for Marshalling and Update, With Destruct-Time λ. Tech. Rept. 568. University of

Cambridge Computer Lab. Available at: http://www.cl.cam.ac.uk/∼pes20/. Accessed

Sept 2007.

Bierman, G., Hicks, M., Sewell, P. & Stoyle, G. (2003c April). Formalizing dynamic software

updating. In Proceedings of USE 2003: The Second International Workshop on Unanticipated

Software Evolution (Warsaw).

Billings, J. (2005) A Bytecode Compiler for Acute. Computer Science Tripos Part II

Dissertation, University of Cambridge.

Billings, J., Sewell, P., Shinwell, M. & Strniša, R. (2006 September) Type-safe distributed

programming for OCaml. In Proc. ML’06, 2006 ACM SIGPLAN Workshop on ML.

pp. 20–31.

Boa. (n.d.) Boa webserver. Available at: http://www.boa.org. Accessed Sept 2007.

Boyapati, C., Liskov, B., Shrira, L., Moh, C.-H. & Richman, S. (2003 October). Lazy modular

upgrades in persistent object stores. In Proc. OOPSLA: ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages and Applications (Anaheim, CA).

pp. 403–417.

Cardelli, L. & Gordon, A. D. (1998) Mobile ambients. In Proc. FoSSaCS: 1st International

Conference on Foundations of Software Science and Computation Structure, as part of ETAPS

(Lisbon), LNCS 1378. New York: Springer, pp. 140–155.

Carlsson, Richard, Gustavsson, Björn, Johannson, Erik, Lindgren, Thomas, Nyström, Svel-

Olof, Pettersson, Mikael, & Virding, Robert. 2004 (Nov.). Core Erlang 1.0.3 language

specification. http://www.it.uu.se/research/group/hipe/cerl/. Accessed Sept 2007.

Chen, H., Chen, R., Zhang, F., Zang, B. & Yew, P.-C. (2006) Live updating operating systems

using virtualization. In Proceedings of VEE: the 2nd International Conference on Virtual

Execution Environments (Ottawa). New York: ACM, pp. 35–44.

Chothia, T. & Stark, I. (2000) A distributed pi-calculus with local areas of communication. In

Proceedings of HLCL: The 4th International Workshop on High-Level Concurrent Languages

(Montreal), published as Electr. Notes Theor. Comput. Sci. 41(2). pp. 1–16.

Dami, L. (1998) A lambda-calculus for dynamic binding. Theor. Comput. Sci. 192(2), 201–231.

dlopen. (n.d.) POSIX dlopen specification. Available at: http://www.opengroup.org/

onlinepubs/007904975/functions/dlopen.html. Accessed Sept 2007.

Drossopoulou, S. & Eisenbach, S. (2002 June) Manifestations of dynamic linking.

In Proceedings of the 1st Workshop on Unanticipated Software Evolution (USE 2002).

Available at: http://slurp.doc.ic.ac.uk/pubs/manifestations-use02.pdf. Accessed

Sept 2007.

Duggan, D. (2000) Sharing in typed module assembly language. In Proceedings of TIC: The

3rd International Workshop on Types in Compilation (Montreal), Revised Selected Papers,

LNCS 2071. New York: Springer, pp. 85–116.

500 P. Sewell et al.

Duggan, D. (2001) Type-based hot swapping of running modules. In Proc. 5th ICFP: The

ACM SIGPLAN International Conference on Functional Programming (Firenze). pp. 62–73.

Fabry, R. S. (1976) How to design a system in which modules can be changed on

the fly. In Proceedings of the International Conference on Software Engineering (ICSE).

pp. 470–476.

Felleisen, M. & Friedman, D. P. (1987) Control operators, the SECD-machine, and the

lambda calculus. In Formal Description of Programming Concepts III, Wirsing, M. (ed).

North-Holland: Elsevier, pp. 193–219.

Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential

control and state. Theor. Comput. Sci. 103(2), 235–271.

Felleisen, M., Wand, M., Friedman, D. P. & Duba, B. F. (1988 July) Abstract continuations:

A mathematical semantics for handling full functional jumps. In ACM Conference on LISP

and Functional Programming (Snowbird, Utah). pp. 52–62.

Fournet, C., Gonthier, G., Lévy, J-J., Maranget, L. & Rémy, D. (1996) A calculus of mobile

agents. In Proceedings of CONCUR ’96: The 7th International Conference on Concurrency

Theory (Pisa), LNCS 1119. New York: Springer, pp. 406–421.

Frieder, O. & Segal, M. E. (1991) On dynamically updating a computer program: From

concept to prototype. J. Syst. Software 14(2), 111–128.

Garrigue, J. (1995) Dynamic binding and lexical binding in a transformation calculus.

In Proceedings of the Fuji International Workshop on Functional and Logic Programming.

Singapore: World Scientific, 14 pp.

Gilmore, S., Kirli, D. & Walton, C. (1997) Dynamic ML Without Dynamic Types. Tech. Rept.

ECS-LFCS-97-378. Dept. of Computer Science, The University of Edinburgh.

Goldberg, A. & Robson, D. (1989) Smalltalk 80—The Language and Its Implementation.

Reading MA: Addison-Wesley.

Gunter, C. A., Rémy, D. & Riecke, J. G. (1995 June) A generalisation of exceptions and control

in ML-like languages. In Proceedings of FPCA ’95: The ACM SIGPLAN-SIGARCH-WG2.8

Conference on Functional Programming Languages and Computer Architecture (La Jolla,

CA). pp. 12–23.

Gupta, D. (1994 November) On-line Software Version Change, Ph.D. thesis. Kanpur, India:

Department of Computer Science and Engineering, Indian Institute of Technology.

Hashimoto, M. & Ohori, A. (2001) A typed context calculus. Theor. Comput. Sci. 266(1–2),

249–272.

Hashimoto, M. & Yonezawa, A. (2000) MobileML: A programming language for mobile

computation. In Proc. COORDINATION (Limassol, Cyprus), LNCS 1906. New York:

Springer, pp. 198–215.

Hicks, M. (2001 August). Dynamic Software Updating, Ph.D. thesis. Philadelphia: University

of Pennsylvania.

Hicks, M. & Weirich, S. (2000) A Calculus for Dynamic Loading. Tech. Rept. MS-CIS-00-07.

Philadelphia: University of Pennsylvania.

Hicks, M., Weirich, S. & Crary, K. (2000) Safe and flexible dynamic linking of native code. In

Proceedings of TIC: the 3rd International Workshop on Types in Compilation (Montreal),

Revised Selected Papers, LNCS 2071. New York: Springer, pp. 147–176.

Hirschowitz, T. (2003) Modules mixins, modules et récursion étendue en appel par valeur, Thèse

de doctorat. Université Paris 7.

Hirschowitz, T. Leroy, X. & Wells, J. B. (2003 August) Compilation of extended recursion

in call-by-value functional languages. In Proceedings of PPDP: the 5th International ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming (Uppsala).

pp. 160–171.

Dynamic rebinding for marshalling and update 501

Jagannathan, S. (1994) Metalevel building blocks for modular systems. ACM Trans. Program.

Lang. Syst. 16(3), 456–492.

Java. (n.d.) Java platform debugger architecture. (This supports class replacement). Available

at: http://java.sun.com/j2se/1.4.2/docs/guide/jpda/. Accessed Sept 2007.

Kiselyov, O. Chieh Shan, C. & Sabry, A. (2006) Delimited dynamic binding. In Proceedings

of ICFP: the 11th ACM SIGPLAN International Conference on Functional Programming

(Portland, Oregon). pp. 26–37.

Lee, I. (1983 April) DYMOS: A dynamic modification system. Ph.D. thesis. Madison:

Department of Computer Science, University of Wisconsin.

Lee, S-D. & Friedman, D. P. (1993 January) Quasi-static scoping: Sharing variable bindings

across multiple lexical scopes. In Proceedings of POPL: The 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Charleston). pp. 479–492.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D. & Vouillon, J. (2001 December) The Objective

Caml System Release 3.04 Documentation. Paris: Institut National de Recherche en In

formatique et en Automatique.

Lewis, J. R., Launchbury, J., Meijer, E. & Shields, M. (2000 January) Implicit parameters:

Dynamic scoping with static types. In Proceedings of POPL: The 27th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Boston). pp. 108–118.

MIT. (n.d.) MIT Scheme. Available at: http://www.swiss.ai.mit.edu/projects/scheme/.

Accessed Sept 2007.

Moreau, L. (1998) A syntactic theory of dynamic binding. Higher-order Symbolic Comput.

11(3), 233–279.

Moreau, L. & Queinnec, C. (1994) Partial continuations as the difference of continuations:

A duumvirate of control operators. In Proc. PLILP: The 6th International Symposium on

Programming Language Implementation and Logic Programming (Madrid), LNCS 844. New

York: Springer, pp. 182–197.

Neamtiu, I. Hicks, M. Stoyle, G. & Oriol, M. (2006 June) Practical dynamic software updating

for C. In Proceedings of PLDI: The ACM Conference on Programming Language Design

and Implementation (Ottawa). pp. 72–83.

Needham, R. M. (1993) Names. In Distributed Systems, Mullender, S. (ed) 2nd ed. Wokingham,

England: Addison-Wesley, pp. 315–327.

Pai, V. S., Druschel, P. & Zwaenepoel, W. (1999 June) Flash: An efficient and portable

webserver. In Proceedings of the USENIX Annual Technical Conference. pp. 106–119.

Peterson, J. Hudak, P. & Ling, G. S. (1997 July) Principled Dynamic Code Improvement. Tech.

Rept. YALEU/DCS/RR-1135. New Haven, CT: Department of Computer Science, Yale

University.

Potter, S. & Nieh, J. (2005 December) Reducing downtime due to system maintenance and

upgrades. In Proceedings of LISA: The 19th Conference on Systems Administration (San

Diego). 47–62.

Queinnec, C. (1993) A library of high level control operators. Lisp Pointers ACM SIGPLAN

Spec. Interest Publ. Lisp 6(4), 11–26.

Riely, J. & Hennessy, M. (1999 January). Trust and partial typing in open systems of

mobile agents. In Proceedings of POPL: The 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (San Antonio). pp. 93–104.

Rouaix, F. (1996) A web navigator with applets in Caml. Comput. Networks ISDN Sys.

28(7–11), 1365–1371.

Schmitt, A. (2002) Safe dynamic binding in the join calculus. In Proceedings of IFIP TCS:

IFIP International Conference on Theoretical Computer Science (Montréal). IFIP Conference

Proceedings, vol. 223. Norwell, MA: Kluwer, pp. 563–575.

502 P. Sewell et al.

Serra, A. Navarro, N. & Cortes, T. (2000) DITools: Application-level support for dynamic

extension and flexible composition. In Proc. USENIX Annual Technical Conference.

pp. 225–238.

Sewell, P. (1997) On implementations and semantics of a concurrent programming language. In

Proceedings of CONCUR 97: Concurrency Theory (Warsaw). LNCS 1243. Berlin: Springer-

Verlag, pp. 391–405.

Sewell, P. & Vitek, J. (2000) Secure composition of untrusted code: Wrappers and

causality types. In Proc. CSFW: The 13th IEEE Computer Security Foundations Workshop

(Cambridge). pp. 269–284.

Sewell, P. Wojciechowski, P. T. & Pierce, B. C. (1999) Location-independent communication

for mobile agents: A two-level architecture. In Internet Programming Languages, LNCS

1686. Springer, pp. 1–31.

Sewell, P. Leifer, J. J., Wansbrough, K. Allen-Williams, M. Zappa Nardelli, F. Habouzit,

P. & Vafeiadis, V. (2004 October) Acute: High-level Programming Language Design for

Distributed Computation. Design Rationale and Language Definition. Tech. Rept. UCAM-

CL-TR-605. University of Cambridge Computer Laboratory. Also published as INRIA

RR-5329. 193 pp.

Sewell, P. Leifer, J. J., Wansbrough, K. Zappa Nardelli, F. Allen-Williams, M. Habouzit,

P. & Vafeiadis, V. (2007) Acute: High-level programming language design for distributed

computation. J. Funct. Programming 17(4–5), 547–612. Invited submission for an ICFP

2005 special issue.

Soules, C., Appavoo, J., Hui, K., Silva, D. Da, Ganger, G., Krieger, O., Stumm, M., Wisniewski,

R., Auslander, M., Ostrowski, M., Rosenburg, B. & Xenidis, J. (2003 June) System support

for online reconfiguration. In Proceedings of the USENIX Annual Technical Conference

(San Antonio). pp. 141–154.

Squeak. (n.d.) Squeak Smalltalk-80 Programming system. Available at: http://www.squeak.

org

Stoyle, G. (2006) A Theory of Dynamic Software Updates, Ph.D. thesis. University of

Cambridge.

Stoyle, G. Hicks, M. Bierman, G. Sewell, P. & Neamtiu, I. (2005 January) Mutatis Mutandis:

Safe and predictable dynamic software updating. In Proc. POPL 2005: The 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach).

pp. 183–194.

Vivas Frontana, J. L. (2001 March) Dynamic Binding of Names in Calculi for Mobile Processes,

Ph.D. thesis. Stockholm: KTH.

Walker, D., Crary, K. & Morrisett, G. (2000) Typed memory management via static

capabilities. ACM Trans. Programming Lang. Syst. 22(4), 701–771.

Walton, C. (2001) Abstract Machines for Dynamic Computation, Ph.D. thesis. University of

Edinburgh. ECS-LFCS-01-425.

Welsh, M. Culler, D. & Brewer, E. (2001 October) SEDA: An architecture for well-conditioned,

scalable internet services. In Proceedings of SOSP: The 18th Eighteenth Symposium on

Operating Systems Principles (Banff). pp. 230–243.

