
Working Draft of July 16, 2010 (Revision: 5190 ) — Please Do Not Distribute

Mathematizing C++ Concurrency: The Isabelle/HOL model

Mark Batty Scott Owens Susmit Sarkar Peter Sewell Tjark Weber
University of Cambridge

http://www.cl.cam.ac.uk/users/pes20/weakmemory

1. Introduction
This document collects together the Isabelle/HOL definitions of
our C++ memory model, in their logical order. For explanation and
discussion, please see the associated paper.

TheXopsem part of a candidate executionX consists of a

• threadids , a set of thread

• actions , a set of actions

• location-kind, a location typing

and four binary relations over its actions:

• sequenced-before(sb),

• additional-synchronized-with(asw),

• data-dependency(dd), and

• control-dependency(cd).

TheXwitness part of a candidate executionX consists of a further
three binary relations over its actions:

• rf,

• sc, and

• modification-order(mo).

Given a candidate executionX = (Xopsem, Xwitness), this docu-
ment defines various derived relations:

• release-sequence

• hypothetical-release-sequence

• carries-a-dependency-to

• dependency-ordered-before

• inter-thread-happens-before

• happens-before

• visible-side-effect

• vsse

together with the predicates required to define

• consistent execution

and

• unsequenced-race,

• dr , and

• ir .

In the Isabelle/HOL source each definition is explicitly param-
eterised on the components of a candidate execution and the re-
quired derived relations, but here we suppress that parameterisation
to reduce clutter. The Isabelle/HOL also contains set-typed versions
of some of the predicates, for use in code extraction; we suppress
those here also.

2. Auxiliary definitions
relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−−→|s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

3. Types
type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

location kind =
MUTEX

| NON ATOMIC
| ATOMIC

memory order enum =
MO SEQ CST

| MO RELAXED
| MO RELEASE

| MO ACQUIRE

| MO CONSUME

| MO ACQ REL

action =
LOCK of action id thread id location

| UNLOCK of action id thread id location
| ATOMIC LOAD of action id thread id memory order enum location val
| ATOMIC STORE of action id thread id memory order enum location val
| ATOMIC RMW of action id thread id memory order enum location val val
| LOAD of action id thread id location val
| STORE of action id thread id location val
| FENCE of action id thread id memory order enum

1 2010/7/16



4. Auxiliary functions over actions
(action id of (LOCK aid ) = aid) ∧
(action id of (UNLOCK aid ) = aid) ∧
(action id of (ATOMIC LOAD aid ) = aid) ∧
(action id of (ATOMIC STOREaid ) = aid) ∧
(action id of (ATOMIC RMW aid ) = aid) ∧
(action id of (LOAD aid ) = aid) ∧
(action id of (STORE aid ) = aid) ∧
(action id of (FENCE aid ) = aid)

(thread id of (LOCK tid ) = tid) ∧
(thread id of (UNLOCK tid ) = tid) ∧
(thread id of (ATOMIC LOAD tid ) = tid) ∧
(thread id of (ATOMIC STORE tid ) = tid) ∧
(thread id of (ATOMIC RMW tid ) = tid) ∧
(thread id of (LOAD tid ) = tid) ∧
(thread id of (STORE tid ) = tid) ∧
(thread id of (FENCE tid ) = tid)

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

(location (LOCK l) = SOME l) ∧
(location (UNLOCK l) = SOME l) ∧
(location (ATOMIC LOAD l ) = SOME l) ∧
(location (ATOMIC STORE l ) = SOME l) ∧
(location (ATOMIC RMW l ) = SOME l) ∧
(location (LOAD l ) = SOME l) ∧
(location (STORE l ) = SOME l) ∧
(location (FENCE ) = NONE)

same location a b = (location a = location b)

(value read (ATOMIC LOAD v) = SOME v) ∧
(value read (ATOMIC RMW v ) = SOME v) ∧
(value read (LOAD v) = SOME v) ∧
(value read = NONE)

(value written (ATOMIC STORE v) = SOME v) ∧
(value written (ATOMIC RMW v) = SOME v) ∧
(value written (STORE v) = SOME v) ∧
(value written = NONE)

(memory order (ATOMIC LOAD modification-order ) =
SOME modification-order) ∧

(memory order (ATOMIC STORE modification-order ) =
SOME modification-order) ∧

(memory order (ATOMIC RMW modification-order ) =
SOME modification-order) ∧

(memory order (FENCE modification-order) =
SOME modification-order) ∧

(memory order =
NONE)

is lock a =
case a of LOCK → T ‖ → F

is unlock a =
case a of UNLOCK → T ‖ → F

is atomic load a =
case a of ATOMIC LOAD → T ‖ → F

is atomic store a =
case a of ATOMIC STORE → T ‖ → F

is atomic rmw a =
case a of ATOMIC RMW → T ‖ → F

is load a = case a of LOAD → T ‖ → F

is store a = case a of STORE → T ‖ → F

is fence a = case a of FENCE → T ‖ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is synchronization action a =
is lock or unlock a ∨ is atomic action a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

SOME modification-order→
modification-order ∈
{MO ACQUIRE, MO ACQ REL, MO SEQ CST} ∧

(is read a ∨ is fence a) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
(modification-order= MO CONSUME) ∧ is fence a

‖ NONE → is lock a)

is consume a =
is read a ∧ (memory order a = SOME MO CONSUME)

is release a =
(case memory order a of

SOME modification-order→
modification-order ∈ {MO RELEASE, MO ACQ REL, MO SEQ CST} ∧

(is write a ∨ is fence a)
‖ NONE → is unlock a)

is seq cst a = (memory order a = SOME MO SEQ CST)

5. Well-formed threads
well formed action a =

case a of
ATOMIC LOAD modification-order → modification-order ∈
{MO RELAXED, MO ACQUIRE, MO SEQ CST, MO CONSUME}

‖ ATOMIC STORE modification-order → modification-order ∈
{MO RELAXED, MO RELEASE, MO SEQ CST}

‖ ATOMIC RMW modification-order → modification-order∈
{MO RELAXED, MO RELEASE, MO ACQUIRE, MO ACQ REL,

MO SEQ CST, MO CONSUME}
‖ → T

locations of actions = {l . ∃a. (location a = SOME l)}

2 2010/7/16



actions respect location kinds =
∀a.

case location a of SOME l →
(case location-kindl of

MUTEX → is lock or unlock a

‖ NON ATOMIC → is load or store a

‖ ATOMIC → is load or store a ∨ is atomic action a)
‖ NONE → T

is at location kind = is at location kind =
case location a of

SOME l → (location-kindl = lk0 )
‖ NONE → F

is at mutex location a =
is at location kind a MUTEX

is at non atomic location a =
is at location kind a NON ATOMIC

is at atomic location a =
is at location kind a ATOMIC

well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before∧
threadwise relation over actions data-dependency∧
threadwise relation over actions control-dependency∧
strict preorder sequenced-before∧
strict preorder data-dependency∧
strict preorder control-dependency∧
relation over actions additional-synchronized-with∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency⊆ sequenced-before

6. Consistent locks
all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks =
∀l ∈ locations of actions. (location-kindl = MUTEX) =⇒ (

let lock unlock actions =
all lock or unlock actions at (SOME l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock)
operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one
of the lock functions until it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mu-
tex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al
|
lock order
−−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the
mutex can be obtained for the calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au
|
lock order
−−−−−−−→ al =⇒ is unlock au)))

7. Release sequences
rs element rs head a =

same thread a rs head ∨ is atomic rmw a

arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (

(b = arel ) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c. arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

a
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ b =
is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c. a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

8. Synchronizes-with

a
synchronizes-with
−−−−−−−−−→ b =
(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)
(is unlock a ∧ is lock b ∧ a

sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c. a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

9. Carries-a-dependency-to

a
carries-a-dependency-to
−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

10. Dependency-ordered-before

a
dependency-ordered-before
−−−−−−−−−−−−−−→ d =
a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

3 2010/7/16



(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−→ d ∨ (b = d)))

11. Inter-thread-happens-before and
happens-before

inter-thread-happens-before
−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−→)

happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−→

12. Consistent SC order
all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−−→ ⊆

sc
−→

13. Consistent modification order
consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kindl of
ATOMIC → (

let actions at l = {a. (location a = SOME l)} in
let writes at l = {a at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l ) ∧

(* happens-before at the writes ofl is a subset of mo forl *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* M O SEQ CST fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l )

⊆
modification-order
−−−−−−−−−−→)

‖ → (
let actions at l = {a. (location a = SOME l)} in

(
modification-order
−−−−−−−−−−→|actions at l ) = {}))

14. Visible side effects and visible sequences of
side effects

a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c. (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible sequence of side effects tail vsse head b =

{c. vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

visible sequences of side effects =
λ(vsse head , b).

(b, if is at atomic location b then
{vsse head} ∪
visible sequence of side effects tail vsse head b

else
{})

15. Well-formed reads-from mapping
well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a 6= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒

(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

16. Consistent reads-from mapping
consistent reads from mapping =

(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ ¬ is seq cst a ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧

4 2010/7/16



is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

17. All data dependency
all data dependency
−−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−→)+

18. Consistent executions
consistent execution =

well formed threads ∧

consistent locks ∧

consistent inter thread happens before∧

consistent sc order ∧

consistent modification order∧

well formed reads from mapping ∧

consistent reads from mapping

19. Sources of undefined behaviour
indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = {(a, b).
is load or store a ∧ is load or store b ∧
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

20. C++ memory model
The top-level definition of the memory model is:

cpp memory model opsem (p : program) =
let pre executions = {(Xopsem, Xwitness).

opsem p Xopsem ∧
consistent execution (Xopsem, Xwitness)} in

if ∃X ∈ pre executions .

(indeterminate reads X 6= {}) ∨
(unsequenced races X 6= {}) ∨
(data races X 6= {})

then NONE

elseSOME pre executions

5 2010/7/16


