VVUIRITTY Yialt Uil July 1V, £ULU \T\TVIoIUIN. V1JV) — Fitdot UU INWWJiolivuilc

Mathematizing C++ Concurrency: The Isabelle/HOL model

Mark Batty Scott Owens Susmit Sarkar Peter Sewell Tjark Webe

University of Cambridge
http://www.cl.cam.ac.uk/users/pes20/weakmemory

1. Introduction 2. Auxiliary definitions

This document collects together the Isabelle/HOL defingiof relation_over s rel = domain rel C s Arange rel C s
our C++ memory model, in their logical order. For explanatmd

discussion, please see the associated paper. rel

—|s=rel N (s X 8)
The Xopsem part of a candidate executioki consists of a
o threadids. a set of thread strict_preorder ord = irreflexive ord A trans ord

® actions, a set of actions total over s ord
—_over ora =

e |ocation-kind a location typing relation_over s ord A
. . .) ord ord
and four binary relations over its actions: (Vz € s.Vy € s,z —>yVy—aV(z=y))

e sequenced-befoisb),
q eb) strict_total_order_over s ord =

e additional-synchronized-witfasw), strict_preorder ord A total over s ord
¢ data-dependencfdd), and

ord
¢ control-dependencgcd). T ——pred Y =

ord ord ord
The Xwitness part of a candidate executiod consists of a further pred 2 Az —— y A=(3z. pred z Az — z — y)

three binary relations over its actions:
ord

o If, Ty =
e s¢ and xﬂ»y/\ﬁ(ﬂz.xﬂ»zﬂy)
¢ modification-ordefmo). 3. Types
Given a candidate executiofl = (Xopsem, Xwitness), this docu- type_abbrev action_id : string
ment defines various derived relations:
¢ release-sequence type_abbrev thread_id : string

¢ hypothetical-release-sequence

. type_abb location : stri

e carries-a-dependency-to ype-abbrev focation « string
¢ dependency-ordered-before type_abbrev val : string

e inter-thread-happens-before

¢ happens-before locatl\iAOn,kind =
.. . UTEX

¢ visible-side-effect | NON_ATOMIC

® ysse | ATOMIC

together with the predicates required to define
memory_order_enum =

® consistent_execution MoO_SEQCST
| MO_RELAXED
and | MO_RELEASE

| MO_ACQUIRE

e unsequenced-race | MO_CONSUME

e dr, and | MO_ACQ_REL
® ir.
ST - action =
In the Isabelle/HOL source each def_lnltlon is exp_hmtlyeme Lock of action_id thread_id location

eterised on the components of a candidate execution andethe r | UNLOCK of action_id thread_id location
quired derived relations, but here we suppress that paesisesion | ATOMIC_LOAD of action_id thread_id memory_order_enum location val
to reduce clutter. The Isabelle/HOL also contains setdymesions | AToMIC_STORE of action_id thread_id memory_order_enum location val
of some of the predicates, for use in code extraction; we rasgp | AToMIC_.RMW of action_id thread_id memory_order_enum location val val
those here also. | LoAD of action_id thread_id location val

| STORE of action_id thread_id location val
| FENCE of action_id thread_id memory_order_enum

1 2010/7/16

4. Auxiliary functions over actions
(action_id_of (LOCK aid _ _) = aid) A

(action_id_of (UNLOCK aid _) = aid) A
(action_id_of (ATOMIC_LOAD aid - - _ _) = aid) A
(action_id_of (ATOMIC_STOREaid _ _ _ _) = aid) A
(action_id_of (ATOMIC_RMW aid _ _ _ _ _) = aid) A
(action_id_of (LOAD aid - - _) = aid) A
(action_id_of (STORE aid _ _ _) = aid) A
(action_id_of (FENCE aid - _) = aid)

(thread_id_of (LOCK _ tid _) = tid) A
(thread_id_of (UNLOCK _ tid _) = tid) A
(thread_id_of (ATOMIC_LOAD _ tid _ _ _) = tid) A
(thread_id_of (ATOMIC_STORE_ tid _ _ _) = tid) A
(thread_id_of (ATOMIC_RMW _ tid _ _ _ _) = tid) A
(thread_id_of (LOAD _ tid _ _) = tid) A
(thread_id of (STORE_ tid _ _) = tid) A
(thread_id_of (FENCE_ tid _) = tid)

same_thread a b = (thread_id_of a = thread_id_of b)

threadwise_relation_over s rel =
relation_over s rel A (V(a, b) € rel. same_thread a b)

(location (LoCcK _ _ 1) = SOME) A
(location (UNLOCK _ _ 1) = SOME [) A

(location (ATOMIC_LOAD _ _ _ [_) = SOME [) A
(location (ATOMIC_STORE_ _ _ [_) = SOME [) A
(location (ATOMIC_.RMW _ _ _ 1 __) = SOME [) A

(location (LOAD _ _ 1 _) = SOME) A
(location (STORE_ _ [_) = SOME [) A
(location (FENCE_ __) = NONE)

same_location a b = (location a = location b)

(value_read (ATOMIC_LOAD _ _ _ _v) = SOME v) A
(value_read (ATOMIC_RMW _ _ _ _ v _) = SOME v) A
(value_read (LOAD _ _ _ v) = SOME v) A

(value_read - = NONE)

(value_written (ATOMIC_STORE_ _ _ _ v) = SOME v) A
(value_written (ATOMIC_LRMW _ _ _ _ _ v) = SOME v) A
(value_written (STORE_ _ _ v) = SOME v) A
(value_written _ = NONE)

(memory_order (ATOMIC_LOAD _ _ modification-order_ _) =
SoME modification-ordef A

(memory_order (ATOMIC_STORE_ _ modification-order_ _) =
SoME modification-ordej A

(memory_order (ATOMIC_RMW _ _ modification-order_ _ _) =
SoME modification-ordej A

(memory_order (FENCE_ _ modification-ordej =
SoME modification-ordef A

(memory_order _ =
NONE)

is_lock a =
casea of LOCK___—>T| -—F

is_unlock a =
casea of UNLOCK___—T|_-—F

is_atomic_load a =
case a of ATOMIC_LOAD _ ____ —-T|-—F

is_atomic_store a =
case a of ATOMIC_STORE_ _ ___ —Tl_-—F

is_atomic_rmw a =

case a of ATOMICLRMW _ _ _ _ __ —-T|-—F
is_load a =casea of LoAD____—>T|_-—F
is_store a =casea of STORE____—T |- —>F
is_fence a =casea of FENCE___—>T | - —F

is_lock_or_unlock a = is_lock a Vis_unlock a

is_atomic_action a =
is_atomic_load a V is_atomic_store a V is_atomic_rmw a

is_load_or_store a = is_load a V is_store a

is_synchronization_action a =
is_lock_or_unlock a V is_atomic_action a

is_read a =
is_atomic_load a V is_atomic_rmw a V is_load a

is_write a =
is_atomic_store a V is_atomic_rmw a V is_store a

is_acquire a =
(case memory_order a of
SoME modification-order—
modification-order €
{MO_ACQUIRE, MO_ACQ_REL, MO_SEQCST} A

(is_read a V is_fence a)V
(* 29.8:5 states that consume fences are acquire fences. *)
(modification-order= MO_CONSUME) A is_fence a

|| NONE — is_lock a)

is_consume a =
is read a A (memory_order a = SOME MO_CONSUME)

is_release a =
(case memory_order a of
SoME modification-order—
modification-order € {MO_RELEASE MO_ACQ_REL, MO_SEQ.CST} A
(is_write a V is_fence a)
|| NONE — is_unlock a)

is_seq_cst a = (memory_order a = SOME MO_SEQCST)

5. Well-formed threads

well_formed_action a =
case a of
ATOMIC_LOAD _ _ modification-order_ _ — modification-order €
{MO_RELAXED, MO_ACQUIRE, MO_SEQ.CST, MO_CONSUME}
|| AToMic_STORE_ _ modification-order_ _ — modification-order €
{MO_RELAXED, MO_RELEASE MO_SEQCST}
|| ATomic_RMwW _ _ modification-order— _ _ — modification-order €
{MO_RELAXED, MO_RELEASE MO_ACQUIRE, MO_ACQ_REL,
MO_SEQCST, MO_CONSUME}
|-—T

locations_of actions = {l. Ja. (location a = SOME [)}

2010/7/16

actions_respect_location_kinds =
Va.
case location a of SOME | —
(case location-kind of
MUTEX — is_lock or_unlock a
|| NON_ATOMIC — is_load_or_store a
|| ATOMIC — is_load_or_store a V is_atomic_action a)
|| NoNE— T

is_at_location_kind = is_at_location_kind =
case location a of
SoME | — (location-kind! = 1k0)
|| NoNE — F

is_at_mutex_location a =
is_at_location_kind a MUTEX

is_at_non_atomic_location a =
is_at_location_kind a NON_ATOMIC

is_at_atomic_location a =
is_at_location_kind a ATOMIC

well_formed_threads =
inj_on action_id_of (actions) A
(Va. well_formed_action a) A
threadwise_relation_over actions sequenced-before
threadwise_relation_over actions data-dependenci
threadwise_relation_over actions control-dependency
strict_preorder sequenced-beforg
strict_preorder data-dependency
strict_preorder control-dependency
relation_over actions additional-synchronized-with
(Va. thread_id_of a € threads) A
actions_respect_location_kinds A
data-dependencyC sequenced-before

6. Consistentlocks

all_lock_or_unlock_actions_at lopt as =
{a € as. is_lock or_unlock a A (location a = lopt)}

consistent_locks =
V1 € locations_of actions. (location-kindl = MUTEX) = (
let lock_unlock_actions =
all_lock_or_unlock_actions_at (SOME [)actions in

let lock_order = i‘lock,unlock,acﬂ,ons in

(* 30.4.1:5 - The implementation shall serialize those Klaad unlock)
operations. *)

strict_total_order_over lock_unlock_actions lock_order A

(*30.4.1:1 A thread owns a mutex from the time it succesgfcdllls one
of the lock functions until it calls unlock.*)

(* 30.4.1:20 Requires: The calling thread shall own the mute

(* 30.4.1:21 Effects: Releases the calling threads ownmershthe mu-
tex.*)

(Vayu € lock_unlock_actions. is_unlock a, =

(3a; € lock_unlock_actions.

lock_orde .
PO, Gy A same_thread a; ay Ais_lock a;)) A

(* 30.4.1:7 Effects: Blocks the calling thread until owrfags of the
mutex can be obtained for the calling thread.*)

(* 30.4.1:8 Postcondition: The calling thread owns the mvtg

(Va; € lock_unlock_actions. is_lock a; =

(VYau € lock_unlock_actions.
lock_order

ay —————— a; = is_unlock ay)))

7. Release sequences

rs_element rs_head a =
same_thread a rs_head V is_atomic_rmw a

release-sequence
arrzl — b =
is_at_atomic_location b A
is_release ¢ A (
(b = a'rel) \

modification-order
(rs_element ape b A Gpgg ————— b A

modification-order modification-order

(VC' Qrel ¢ b=
rs_element a,¢ c)))

hypothetical-release-sequenc% 7

is_at_atomic_location b A (
(b=1a)V

(rs_element a b A a

modification-order modification-order
(Ve. a c b =

rs_element a c)))

modification-order
bt

8. Synchronizes-with

synchronizes-with
qQ ———

b=
(* — additional synchronization, from thread create etc) — *
additional-synchronized-with by

(same_location a b A a € actions ANb € actions A (
(* — mutex synchronization —*)

(is_unlock a Ais_lock b A a =5 b)V

(* — release/acquire synchronization — *)
(is_release a A is_acquire b A —same_thread a b A

(Hc. o release-sequencec l b))\/

(* — fence synchronization —*)
(is_fence a Ais_release a A is_fence b A is_acquire b A
(Jz. Jy. same_location = y A
is_atomic_action z A is_atomic_action y A is_write = A
sequenced-before sequenced-beforeb A
hypothetical-release-sequence rf

z—y))V

(3z. z

(is_fence a A is_release a A

is_atomic_action b A is_acquire b A

(3z. same_location z b A
is_atomic_action z A is_write = A

sequenced-before

— T A

hypothetical-release-sequence rf
z

— b))V

(is_atomic_action a A is_release a A

is_fence b A is_acquire b A

(Jz. same_location a z A is_atomic_action z A
sequenced-before

(3z. z

b A
| - f
(32' a release: sequencez r—>$)))))

9. Carries-a-dependency-to
carries-a-dependency-to

qQ ——> b =

rf sequenced-befonj U data—dependenc;3+ b

a((=n

10. Dependency-ordered-before

dependency-ordered-before
q——>

d =
a € actions AN d € actions A
(3b. is_release a A is_consume b A

2010/7/16

release-sequence rf
R S 1

oA
dV (b= d)))

(Fe. a

(b carries-a-dependency-to
atinidbohe aiinatint AN

11. Inter-thread-happens-before and
happens-before

inter-thread-happens-before

synchronizes-with
sty

let r=
dependency-ordered-befon—iJ
synchronizes-with sequenced-before .
(o 3 in
T sequenced-before r (4
(U (——————0 =)

consistent_inter_thread_happens_before =
inter—thread-happens-befors

irreflexive (

happens-before
—_— =

sequenced-beforeu inter-thread-happens-before

12. Consistent SC order

all_sc_actions =
{a. (is_seq_cst a Vis_lock a Vis_unlock a)}

consistent_sc_order =
happens-before, .
——]all_sc_actions N

let sc_happens_before =

modification-order .
let sc_mod_order = ————— |11 sc_actions N

strict_total_order_over all_sc_actions (=) A

sc_happens_before sc
i

C EA

sc_mod_order sC
c—

13. Consistent modification order
consistent_modification_order =

dification-ord:
(Va. Vb. a e » = same_location a b) A
(Yl € locations_of actions. case location-kind{ of
ATOMIC — (
let actions_at_l = {a. (location a = SOME [)} in
let writes_at_l = {a_at_l. (is_store a Vv
is_atomic_store a V is_atomic_rmw a)} in
strict_total_order_over writes_at_[
modification-order
(|act7)ons,at,l)_ A
(* happens-before at the writes bis a subset of mo fok *)

happens-before, modification-order
A—‘lerites_at_l g —_—

(* M o_seQ.csTfences impose modification order *)

(sequenced-before sequenced-befor
—_— —_—

o (Eghs_fence) o w’r‘ites_at_l)

C modlflcatlon-order)
== (_
let actions_at_l = {a. (location a = SOME [)} in
modification-order

(——ﬁl actians_at_l) = {}))

14. Visible side effects and visible sequences of
side effects

visible-side-effect

b=
happens-before
pp bA

is_write a Ais_read b A same_location a b A

—(3e. (c#a)A(c#Db)A
is_write ¢ A same_location ¢ b A
happens-before happens-before
a c b)

visible_sequence_of _side_effects_tail vsse_head b =
modification-order
{c. vsse_head ———— ¢ A
happens-before
=(b _1appens-betore |

(Va. vsse_head

= (b

modification-order
a

a))}

modification-order
C

happens-before
_

visible_sequences_of_side_effects =
A(vsse_head, b).
(b,if is_at_atomic_location b then
{vsse_head} U
visible_sequence_of_side_effects_tail vsse_head b
else

h

15. Well-formed reads-from mapping
well_formed_reads_from mapping =

relation_over actions (l) A

(Va. Va'. Vb. aSond Ly = (a=d")) A

(¥(a,0) € ©.
same_location a b A
(value_read b = value_written a) A
(a #b) A
(is_at_mutex_location a =
is_unlock a Ais_lock b) A
(is_at_non_atomic_location a =
is_store a Ais_load b) A
(is_at_atomic_location a =
(is_atomic_store a V is_atomic_rmw a V is_store a)
A (is_atomic_load b V is_atomic_rmw b V is_load b)))

16. Consistent reads-from mapping

consistent_reads_from_mapping =
(Vb. (is_read b A is_at_non_atomic_location b) =
. visible-side-effect
('f (Havse- QAuse ————— b)
isible-side-effect
then (Havse. Guse Visible-siae-etiec! b A

else—~(3a. a 5 b)) A

rf
Ayse — b)

(Vb. (is_read b A is_at_atomic_location b) =
(if (3(b’, vsse) € visible-sequences-of-side-effects’ = b))
then (3(b’, vsse) € visible-sequences-of-side-effects

(b =b)A(3c € wvsse. ¢ LA b))
else—~(3a. a 5 b)) A

(Y(z,a) € LN
V(y,b) € L.

happens-before
_—

b A

same_location a b A is_at_atomic_location b

modification-order
= (z=y)Vz y) A

rf
(V(a, b) € —. is_atomic_rmw b

modification-order
= a—— b) A

rf
(Y(a,b) € —. is_seq_cst b
—> —is_seq-cst a V

sc
@)¢, is_write cAsame_location b ¢ b) A
(* -Fence restrictions- *)

(*29.3:3 %)

(Va. V(z,b) € Yy.
(is_fence z Ais_seq_cst z A is_atomic_action b A

sequenced-before
_—,

2010/7/16

is_write a A same_location a b A

rf
oS zAy S b)

modification-order
= (y=a)Va T) A

(*29.3:4 %)
(V(% :E) c sequenced-before:‘ V(y, b) c i)

(is_atomic_action a Ais_fence z Ais seq cst z A
is_write a A same_location a b A

z =% b Ais_atomic_action b)

modification-order
- (y:a)\/a—>y)/\

(*29.3:5%)
(v(& x) c sequenced-befon—f V(y, b) c Yz

(is_atomic_action a Ais_fence z Ais seq cst z A
is_write a Ais_fence y A is_seq_cst y A
is_atomic_action b A

sequenced-before

rf
5 y Az b)

modification-order
= (z=a)Va—— 2)

17. All data dependency

all_data_dependency
—

rf carries-a-dependency-t
(5 u SRR

18. Consistent executions

consistent_execution =
well_formed_threads A
consistent_locks A
consistent_inter_thread_happens_before A
consistent_sc_order A
consistent_modification_order A
well_formed_reads_from_mapping A
consistent_reads_from _mapping

19. Sources of undefined behaviour
indeterminate_reads =
{b. isread b A —(Fa. a LR b)}

unsequenced_races = {(a, b).
is_load_or_store a A is_load_or_store b A
(a # b) A same_location a b A (is_write a V is_write b) A
same_thread a b A
sequenced-before sequenced-before

ﬁ(a bVb

a)}

data_races = {(a, b).
(a # b) A same_location a b A (is_write a V is_write b) A
—same_thread a b A
—(is_atomic_action a A is_atomic_action b) A
_‘(a happens-before bV b happens-before a)}

20. C++ memory model
The top-level definition of the memory model is:

cpp-memory_model opsem (p : program) =
let pre_executions = {(Xopsem, Xwitness)-
opsem p Xopsem N
consistent_execution (Xopsem, Xwitness) } iN
if 3X € pre_executions .
(indeterminate_reads X # {}) Vv
(unsequenced_races X # {}) vV
(data_races X # {})
then NONE
elseSOME pre_executions

5 2010/7/16

