
Proving security properties of CHERI-MIPS

Kyndylan Nienhuis Alexandre Joannou Peter Sewell

Computer Laboratory, University of Cambridge

{first.last}@cl.cam.ac.uk

Abstract: CHERI-MIPS is an instruction set architecture that provides hardware support for secure encapsu-

lation and fine-grained memory protection. The guarantees it intends to offer are described in high-level prose,

which makes it difficult to understand what they precisely are, whether they are true, and whether they indeed

provide memory protection. We describe ongoing work on proposing formal definitions of these guarantees

and proving that they are true.

Introduction

CHERI [6, 1, 7] is an extension to instruction set architec-

tures (ISAs) that enables fine-grained memory protection

by adding hardware support for capabilities. A capability

contains a cursor, bounds information and permission bits.

Memory accesses that dereference a capability throw an ex-

ception if its cursor points outside its bounds or if the type

of access is not allowed according to its permission bits. To

prevent tampering with the bounds and permissions of in-

memory capabilities, each capability-sized region of mem-

ory has a tag associated with it. The tag is preserved if a

capability is changed through special instructions that the

CHERI ISA provides, but it is cleared if the in-memory

byte representation of the capability is directly overwritten,

which makes the capability invalid.

The memory protection CHERI offers is meant to enable

secure software compartmentalisation and to prevent a large

class of attacks that exploit memory safety bugs. Since the

smallest mistake has the potential to be an exploitable se-

curity flaw it is crucial that there are no errors in the capa-

bility mechanism. To have more confidence in the mecha-

nism the authors of CHERI have created a formal model [2]

of the most developed version of CHERI, namely CHERI-

MIPS. The formal model is written in the L3 specifica-

tion language [3], which exports to Isabelle/HOL [5] and

HOL4 [4]. The model is executable and is complete enough

to boot FreeBSD, totaling around 10K non-comment non-

blank lines of specification; it has been used as one of the

principal design tools during CHERI development.

The authors have also defined several prose security

properties. Unfortunately, these properties are not detailed

enough to actually validate the formal model. For exam-

ple, capability integrity states that invalid capabilities can-

not be “dereferenced” [6, §2.3.1], while the formal model

allows one to copy the cursor of an invalid capability to a

data register and then dereference it, if the cursor is within

the bounds of the Default Data Capability. Does that mean

the formal model violates the security property, or does

it mean that copying the cursor is not considered “deref-

erencing the capability”? Another example is capability

provenance which states that “valid capabilities can only

be constructed by deriving them from existing valid capa-

bilities” [6, §2.3.1]. The formal model allows one to cre-

ate a valid capability capnew equal to an old valid capa-

bility capold1 but with the bounds of an invalid capability

capold2 , if the bounds of capold2 are smaller than those of

capold1 . Does the formal model violate the security prop-

erty, or did the authors mean that capnew only derives from

capold1 and not from both capold1 and capold2 ?

To solve these ambiguities we define formal security

properties in Isabelle/HOL and we prove that these proper-

ties hold in the L3 model. While constructing these proofs

we uncovered several bugs in the L3 model which were

consequently patched. This is work in progress, though

much has been finished.

Capability derivations

Before we define our security properties we introduce a

type that describes capability derivations:

• Restricted r r′ means that the bounds and/or permis-

sions of the capability in register r have been restricted

(or remain equal) and the result has been copied to reg-

ister r′.

• Loaded auth a r means that under the authority of the

capability in register auth the capability at address a

has been loaded to register r.

• Stored auth r a is similar to the previous case.

• Sealed auth r r′ means that under the authority of the

capability in register auth the capability in register r

has been sealed and copied to register r′. A sealed ca-

pability is unusable until it is unsealed. Sealed capa-

bilities contain an object type, which allows multiple

sealed capabilities to be linked.

• Unsealed auth r r′ is similar to the previous case.

• Invoked r r′ means that the capabilities in registers r

and r′ have been invoked: they are unsealed and the

execution jumped to the cursor of the first. Mutually

untrusting compartments can use this mechanism to

communicate without exposing their own capabilities.

Then we define a function DerivationsOfStep that de-

scribes which derivations happen during an execution step.

Its definition is based on the instruction that is executed.

For example, if the CMOVZ instruction is executed with

parameters cd , cb and rt then DerivationsOfStep s equals

{Restricted cb cd} if rt = 0 and ∅ otherwise. As another



example, if the CSeal instruction is executed with param-

eters cd , cs and ct and does not throw an exception, then

DerivationsOfStep s equals {Sealed ct cs cd}.

Basic security properties

We define derivation correctness that describes the in-

tended results of each type of derivation. Below is an export

from Isabelle/HOL for derivations of type Sealed . It reads

as follows: for all states s and s′ and registers auth , r and

r′ (Line 1), if s′ is a successor state of s (Line 2) and if the

capability in register r has been sealed and copied to regis-

ter r′ under the authority of the capability in register auth

(Line 3), then the capability that is used as authority has the

permission to seal capabilities (Line 6), is valid (Line 7) and

not sealed (Line 8); the object type t (defined in Line 4-5)

is contained in the memory segment of the capability that

is used as the authority (Line 9); the original capability is

not sealed (Line 10); and the resulting capability is equal to

the original capability, except that the resulting capability is

sealed and has object type t (Line 11-12).

for all s s ′ auth r r ′
.(1)

if s ′∈ NextStates s(2)

and Sealed auth r r ′∈ DerivationsOfStep s(3)

then let t = Cast (Base (CapReg auth s)) +(4)

Cast (Offset (CapReg auth s)) in(5)

PermitSeal (CapReg auth s)(6)

and Tag (CapReg auth s)(7)

and not IsSealed (CapReg auth s)(8)

and Cast t ∈ Segment (CapReg auth s)(9)

and not IsSealed (CapReg r s)(10)

and CapReg r ′ s ′= CapReg r s with(11)

IsSealed ← True, ObjectType ← t(12)

Then we define capability nonforgeability that states that

DerivationsOfStep captures all derivations of capabilities.

The formal definition reads as follows: for all states s and

s′ and locations loc (which can be registers or memory ad-

dresses) (Line 1), if s′ is a successor state of s (Line 2), if

there has not been a derivation of which loc is the destina-

tion (Line 3-4) and if the capability at location loc in the

new state is valid (Line 5), then that capability remained

unchanged during the execution step (Line 6).

for all s s ′ loc.(1)

if s ′∈ NextStates s(2)

and not exists prov. prov ∈ DerivationsOfStep s(3)

and loc ∈ Destinations prov(4)

and Tag (Cap loc s ′)(5)

then Cap loc s ′= Cap loc s(6)

Theorem. The L3 model satisfies capability nonforgeabil-

ity and derivation correctness for all types of derivations.

Our proof in Isabelle/HOL consists of 20k non-comment

non-blank lines. A large part of this proof (9k) has been

generated, for example commutativity lemmas for all the

auxiliary functions defined in the L3 model and lemmas for

the ∼160 instructions that do not derive new capabilities.

Conclusion

The prose security properties described in the CHERI ISA

are not precise enough to be used as validation. To over-

come this we have formally defined two security properties

in terms of the L3 model of CHERI-MIPS, namely capa-

bility nonforgeability and derivation correctness. Further-

more, we proved that the L3 model satisfies these properties

increasing our confidence that the capability mechanism is

correct.

As future work we plan to formally define properties that

describe when data can be stored to and loaded from mem-

ory, when capability registers are accessible and when ad-

dress translation can be changed. Then we plan to formally

define the permissions of a compartment which is roughly

speaking the union of the permissions of all the capabilities

that are transitively reachable from that compartment. The

permissions of a compartment should be monotonic and we

believe we can prove this from our basic security properties.

We then plan to use compartment monotonicity to prove

memory isolation in specific examples.

Acknowledgements This work is part of the REMS and

CTSRD projects and was funded by a Gates studentship

(Nienhuis), EPSRC (EP/K008528/1), DARPA and AFRL

(FA8750-10-C-0237). The views, opinions, and/or findings

contained in this paper are those of the authors and should

not be interpreted as representing the official views or poli-

cies, either expressed or implied, of the Department of De-

fense or the U.S. Government. We thank the CHERI team

for extensive discussions.

References

[1] CHERI. https://www.cl.cam.ac.uk/research/security/

ctsrd/cheri/.

[2] The L3 model of CHERI/MIPS.

https://github.com/acjf3/l3mips.

[3] A. C. Fox. Directions in ISA specification. In ITP,

pages 338–344, 2012.

[4] M. Gordon and A. Pitts. The HOL logic and system.

In Real-Time Safety Critical Systems, volume 2, pages

49–70. Elsevier, 1994.

[5] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-

abelle/HOL: A Proof Assistant for Higher-Order Logic.

Springer, 2012.

[6] R. N. Watson, P. G. Neumann, J. Woodruff, M. Roe,

J. Anderson, J. Baldwin, D. Chisnall, B. Davis,

A. Joannou, B. Laurie, S. W. Moore, S. J. Murdoch,

R. Norton, S. Son, and H. Xia. Capability hardware

enhanced RISC instructions: CHERI instruction-set ar-

chitecture (version 6). Technical report, University of

Cambridge, Computer Laboratory, 2017.

[7] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W.

Moore, J. Anderson, B. Davis, B. Laurie, P. G. Neu-

mann, R. Norton, and M. Roe. The CHERI capa-

bility model: Revisiting RISC in an age of risk. In

Proc. ISCA, 2014.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://github.com/acjf3/l3mips

	Introduction
	Capability derivations
	Basic security properties
	Conclusion

