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Abstract
The C/C++11 concurrency model balances two goals: it is
relaxed enough to be efficiently implementable and (leaving
aside the “thin-air” problem) it is strong enough to give use-
ful guarantees to programmers. It is mathematically precise
and has been used in verification research and compiler test-
ing. However, the model is expressed in an axiomatic style,
as predicates on complete candidate executions. This suf-
fices for computing the set of allowed executions of a small
litmus test, but it does not directly support the incremental
construction of executions of larger programs. It is also at
odds with conventional operational semantics, as used im-
plicitly in the rest of the C/C++ standards.

Our main contribution is the development of an opera-
tional model for C/C++11 concurrency. This covers all the
features of the previous formalised axiomatic model, and we
have a mechanised proof that the two are equivalent, in Is-
abelle/HOL. We also integrate this semantics with an opera-
tional semantics for sequential C (described elsewhere); the
combined semantics can incrementally execute programs in
a small fragment of C.

Doing this uncovered several new aspects of the C/C++11
model: we show that one cannot build an equivalent opera-
tional model that simply follows program order, SC order,
or the synchronises-with order. The first negative result is
forced by hardware-observable behaviour, but the latter two
are not, and so might be ameliorated by changing C/C++11.
More generally, we hope that this work, with its focus on in-
cremental construction of executions, will inform the future
design of new concurrency models.

1. Introduction
C and C++ have been used for concurrent programming
for decades, and concurrency became an official part of
the ISO language standards in C/C++11 [8, 28, 29]. Batty
et al. contributed to this standardisation process, resulting
in a mathematical model in close correspondence with the
standard prose [6].

Extensionally, the C/C++11 design is broadly satisfac-
tory, allowing the right observable behaviour for many pro-
grams. On the one hand, the semantics is relaxed enough to
allow efficient implementation on all major hardware plat-
forms [5, 6], and on the other hand, the design provides a

flexible range of synchronisation primitives, with semantics
strong enough to support both sequentially consistent (SC)
programming and fine-grained concurrency. It has been used
in research on compiler testing, optimisation, library abstrac-
tion, program logics, and model-checking [3, 17, 19, 23, 25,
26].

Intensionally, however, the C/C+11 model (in the ISO
text and the formalisation) is in an “axiomatic” style, quite
different from a conventional small-step operational seman-
tics. A conventional operational semantics builds executions
incrementally, starting from an initial state and following the
permitted transitions of a transition relation. This incremen-
tal structure broadly mirrors the way in which conventional
implementations produce executions. To calculate the se-
mantically allowed behaviours of a program, one can calcu-
late the set of all allowed behaviours by an exhaustive search
of all paths (up to some depth if necessary), and one can find
single paths (for testing) by making pseudorandom choices
of which transition to take from each state. The incremental
structure also supports proofs by induction on paths, as in
typical type preservation proofs, and dynamic analysis and
model-checking tools.

In contrast, an axiomatic concurrency model defines the
set of all allowed behaviours of a program in a quite differ-
ent and more global fashion: it defines a notion ofcandidate
execution, the set of memory actions in a putative complete
execution (together with various relations over them), anda
consistency predicatethat picks out the candidate executions
allowed by the concurrency model; the conjuncts of this are
the axioms of the axiomatic model. Executions must also
be permitted by the threadwise semantics of the program,
though this is often left implicit in the relaxed-memory liter-
ature (for C/C++11, one additionally needs to check whether
any consistent execution exhibits a race). With this structure,
to calculate the set of all allowed behaviours of a program,
in principle one first has to calculate the set of all its control-
flow unfoldings, then for each of these consider all the possi-
ble choices of arbitrary values for each memory read (using
the threadwise semantics to determine the resulting values
of memory writes), and then consider all the possible arbi-
trary choices of the relations (the reads-from relation, co-
herence order, etc.). This gives a set of candidate executions
which one can filter by the consistency predicate (and then

1 2016/6/3



apply a race check to each). This is viable for small litmus
tests, and it is essentially what is done by thecppmem [6]
andherd [1] tools. It intrinsically scales badly, however: the
number of candidate executions increases rapidly with pro-
gram size, and the fraction of consistent executions among
them becomes vanishingly small.

The fundamental problem The fundamental difficulty
with calculating behaviour in the axiomatic concurrency
model is that one has to construct candidates with no knowl-
edge of whether the choices of control-flow unfolding and
memory read values are actually compatible with the con-
currency model; the vast majority of them will not be.

Our approach To solve the above problem we construct
an equivalent operational concurrency model, and incremen-
tally generate executions by taking both this concurrency
model and the threadwise semantics into account at each
step.

First contribution: negative results Our first contribution
is a negative result: we show that one cannot build an equiva-
lent operational concurrency model for C/C++11 that simply
follows program order, SC order, or the synchronises-with
order (§3). The axiomatic model allows executions with cer-
tain cycles in the union of program order, the reads-from
relation, coherence order, SC order and synchronises-with
order (we recall these relations in §2). In a sequentially con-
sistent semantics, each of the latter relations are consistent
with program order: as one builds an execution path incre-
mentally, each read is from a write that is earlier in the path,
each write is a coherence-successor of a write that is earlier
in the path, and so on. For a relaxed-memory semantics, that
is not always the case, and so in order to be complete with
respect to the axiomatic model the transitions of our opera-
tional semantics must be able to generate those cycles and
can therefore not simply follow all the above relations.

The first negative result (one cannot build an equivalent
operational model that follows program order) is forced by
hardware-observable behaviour, but the latter two (about SC
order and synchronises-with order) are not, and so might be
ameliorated by changing C/C++11.

Main contribution: an equivalent operational concurrency
model We show that the axiomatic modeldoesbehave in-
crementally under a particular execution order, we develop
an operational concurrency model following that order, and
prove this model equivalent to the axiomatic model of Batty
et al. [6], with a mechanised Isabelle/HOL proof (§4– 6).
We do all this for the full C/C++11 model as formalised by
Batty et al. [6], including nonatomic accesses, all the atomic
memory orders (sequentially consistent, release/acquire, re-
lease/consume, and relaxed), read-modify-write operations,
locks, and fences.

Our operational semantics is not in an “abstract machine”
style, with an internal structure of buffers and suchlike that
has a very concrete operational intuition. That might be de-

sirable in principle, but the C/C++11 model is an abstraction
invented to be sound with respect to multiple quite different
implementations, covering compiler and hardware optimi-
sation; it is unclear whether an equivalent abstract-machine
model is feasible. Instead, the operational semantics is de-
fined using the axioms of the axiomatic model.

We are also deliberately not addressing the “thin-air”
problem: the C/C++11 model permits certain executions that
are widely agreed to be pathological, but which are hard to
characterise [4]. Here we are aiming to be provably equiv-
alent to that model, and those executions are therefore also
permitted by our operational model. Instead we are solving
an orthogonal problem: the cyclic executions presented in §3
that are the main reasons why developing an operational se-
mantics is difficult are not out-of-thin-air executions. There
may be scope for combining this work with proposals for
thin-air-free models for the relaxed and nonatomic fragment
of C/C++11 [21].

Third contribution: integration with a sequential seman-
tics We integrate our operational concurrency model with
a sequential operational semantics (§7). That sequential se-
mantics, covering a substantial fragment of C, will be de-
scribed in detail elsewhere [16]; it is not itself a contribution
of this paper.

The integration supports integers (of any kind), atomics,
fences, conditional statements, loops, function calls, and par-
allel composition. Supporting non-scalar types such as ar-
rays and structs is outside the scope of this work: the ax-
iomatic concurrency model does not support them and the
intention of the standard is not clear.

The integration is executable and can be used to pseudo-
randomly explore single paths of programs . It is, however,
not intended to be an efficient tool: the size of the state and
the time to compute the next transition grow during execu-
tion. Rather, the integration solves the fundamental prob-
lem we described above: we can find out whether choices
of control-flow unfolding and memory read values are com-
patible with the concurrency modelduring the execution.

Mechanisation For such an intricate area, mechanisation
has major advantages over hand proofs, but it also comes
at a significant cost. The total development amounts to
7 305 lines of Isabelle/HOL script (excluding comments and
whitespace), together with 2 676 lines of Isabelle/HOL script
for the original axiomatic model. We use Lem [18] to gen-
erate the latter from its Lem source, which was previously
used for HOL4 proof. In the paper we only state the most
important theorems and definitions; the proofs and the rest
of the theorems and definitions are available as anonymous
supplemental material submitted with this paper.
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2. The C/C++11 axiomatic concurrency
model

We begin by recalling the C/C++11 concurrency primitives
and axiomatic model, referring to previous work [2, 6, 8] for
the full details.

2.1 The language: C/C++11 concurrency primitives

C/C++11 provide concurrency primitives supporting a range
of different programming idioms. First there are normalnon-
atomicaccesses. Races on these give rise to undefined be-
haviour (to allow compiler optimisation to assume there are
no races), and so concurrent use of them must be protected
by conventionallocksor other synchronisation. Then there
areatomicaccesses, which can be concurrently used without
constituting undefined behaviour. Atomic accesses include
memory reads, writes, and various read-modify-write oper-
ations, including atomic increments and compare-and-swap
operations. There are also explicit memory fences.

The program in Fig. 1 uses atomics and a fence to syn-
chronise two threads. The first thread non-atomically setsx
to a value and then signals the other thread by atomically
settingy to 1. The other threads readsy in a loop until it sees
1, and then usesx for some other computation.

Atomics can be annotated with differentmemory orders.
The example uses awrite-release, a read-acquireand are-
laxedmemory order.

• Sequentially consistent (SC) atomics are guaranteed to
appear in a global total order, but their implementation on
relaxed hardware requires relatively expensive synchro-
nisation.

• Write-release and read-acquire atomics are cheaper but
weaker: if a write-release is read from by a read-acquire,
then memory accesses program-order after the latter are
guaranteed to see those program-order-before the former.

• Read-consume is a still weaker variant of read-acquire,
implementable on some relaxed hardware simply using
the fact that those architectures guarantee that some de-
pendencies are preserved. The status of read-consume
is in flux, as McKenney et al. describe [15]: it is diffi-
cult to implement in full generality in existing compilers
(where standard optimisations may remove source-code
syntactic dependencies), but the basic facility it provides
is widely used, e.g. in the Linux kernel. All this notwith-
standing, our operational model captures its behaviour as
specified in the formal C/C++11 axiomatic concurrency
model.

• Relaxed atomics are the weakest of all, guaranteeing co-
herence but weak enough to require no hardware fences
in their implementation on common architectures [22].

Certain combinations of release/acquire, relaxed, and read-
modify-write atomics and fences also guarantee synchroni-
sation (exploiting the force of the memory barriers used in

write-release implementations). In the example in Fig. 1 the
write-release and the acquire fence synchronise.

2.2 The C/C++11 threadwise semantics

The semantics of C/C++11 is factored into athreadwise se-
manticsand aconcurrency semantics. Broadly speaking, the
concurrency semantics determines whether a program con-
tains a race and which values can be read from memory,
and the threadwise semantics determines everything else.
This factorisation works viapre-executions: the threadwise
semantics determines the set of pre-executions of a pro-
gram, and the concurrency model is defined in terms of pre-
executions.

Pre-executions A pre-execution corresponds to a particu-
lar complete control-flow unfolding of the program and an
arbitrary choice of the values read from memory. It is repre-
sented as a graph, whose nodes arememory actions. A node
label such asa:Wna x=0 consists of:

• a, the identifier of the action, unique within the pre-
execution.

• W, the type of the action, in this case a store. Other types
are loads (R), read-modify-writes (RMW), fences (F),
locks (L) and unlocks (U).

• na, specifying that this action is non-atomic. For atomic
actions, thememory order(the synchronisation strength
of the action, not an order relation) is specified here:
sequential consistent (sc), release (rel), acquire (acq),
acquire-release (a/r), consume (con) or relaxed (rlx).
Locks and unlocks do not have a memory order.

• x, the location of the action. Fences do not have a loca-
tion.

• 0, the value written for stores. Load actions similarly
contain the value read (recall that pre-execution contains
arbitrary values for the return values of loads). For read-
modify-writes a pair such as2/3 specifies that 2 has been
read, and 3 has been written.

The edges between the nodes denote various relations:
the sequenced-before relationsb captures program order,
and the additional synchronises-with relationasw captures
thread creation and termination, both from the syntactic
control-flow unfolding.

In Fig. 1 we see one of the pre-executions of the mes-
sage passing program. The program has infinitely many pre-
executions: each time the condition of the loop is executed
the value read is arbitrary, so the loop can be executed
an indefinite number of times. The program also has pre-
executions of infinite size where the loop is never exited.

2.3 The C/C++11 axiomatic concurrency semantics

To determine the behaviour of a program given its set of
pre-executions, we first extend each pre-execution with all
possibleexecution witnesses; a pre-execution combined with
one of its execution witnesses forms acandidate execution.
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#include <stdatomic.h>

int main(void) {

int x = 0;

_Atomic(int) y = 0;

int z;

{-{ { x = 1;

atomic_store_explicit(&y, 1, memory_order_release); }

||| { while(atomic_load_explicit(&y, memory_order_relaxed) != 1) {};

atomic_thread_fence(memory_order_acquire);

z = x; } }-};

return z;

}

On the left: the syntax{-{T1||| T2}-} is short for creating two threads that executeT1

andT2 and then joining them; it avoids the extra memory actions from pthread-style
thread creation.
On the right: one of the pre-executions of the program. The condition of the loop is
execute twice: actionsf andg both correspond to the same instruction. The values
α, β, γ andδ that are read from memory are arbitrary, but do agree with thechoice
of control flow in this pre-execution: since the condition ofthe loop was true the first
time and false the second time, we haveα 6= 1 andβ = 1. The values written to
memory are determined by the threadwise semantics (see §2.2).

a:Wna x=0

b:Wna y=0

sb

c:Rna z=delta

sb

d:Wna x=1
asw

f:Rrlx y=alpha
asw

e:Wrel y=1

sb

asw

g:Rrlx y=beta

sb

h:Facq

sb

i:Rna x=gamma

sb

j:Wna z=gamma

sb

asw

Figure 1: The message passing (MP) program and one of its pre-executions

Then we use the axiomatic model to determine which of
those candidate executions isconsistent. Finally, we check
whether any of the consistent executions contains a race.

Execution witnesses An execution witness consists of the
following relations over memory actions: the reads-from re-
lation rf , the coherence ordermo, the sequential consis-
tent ordersc, and the lock orderlo. In principle every pre-
execution can be extended by every execution witness to
form a candidate execution. It is the next step (determining
which candidate executions are consistent) that gives mean-
ing to the relations defined above.

Consistency The axiomatic concurrency model defines a
consistency predicatethat determines whether a candidate
execution is consistent or not. The consistency predicate
consists of several conjuncts, which are called the axioms
of the model. Some of those axioms give the relations of the
execution witness their intuitive meaning:

• well_formed_rfrequires (amongst other things) that for
each(w, r) ∈ rf we have thatw and r are actions of
the pre-executions,w is a write, andr a read to the same
location that reads the value written byw.

• consistent_morequires thatmo is a total order over all
atomic writes to the same location.

• consistent_screquires thatsc is a total order over all
actions with a sequential consistent memory order.

• consistent_lorequires thatlo is a total order over all locks
and unlocks to the same location.

Other axioms define the more subtle properties that are the
real substance of the C/C++11 model. These axioms typi-
cally use the following derived relations.

• The synchronises-with relationsw contains (among
other things) theasw relation, synchronising unlock-lock
pairs, and synchronising release-acquire pairs.

• The happens-before relationhb. In the absence of the
memory order consume, we have thathb = (sb ∪ sw)+

where·+ is the transitive closure.

In Fig. 2 we see a consistent execution of the message
passing program. There is only one choice for the arbitrary
valuesα, β, γ andδ of the pre-execution. The whole set of
consistent executions of the program consists of one execu-
tion where the loop executesn times for everyn, and one
infinite execution where the loop is never exited.

Races If one of the consistent executions contains arace,
the whole program is undefined; otherwise the program is
defined and the behaviour is the set of consistent executions.
An example of a race is adata race: two actions, at leat
one a write and at least one non-atomic, that are of different
threads, not happens-before related, but to the same location.

All the consistent executions of the message passing pro-
gram are race free. In particular, the actionsd andi in Fig. 2
do not race with each other becausee andh synchronise.
Without the acquire fence this would not be true, and the
program would be undefined.
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a:Wna x=0

b:Wna y=0

sb

c:Rna z=1

sb

d:Wna x=1
asw

e:Wrel y=1

mo
f:Rrlx y=0

asw, rf

sb

i:Rna x=1

rf

asw

g:Rrlx y=1rf

h:Facq

sw

sb

sb

sb

j:Wna z=1

sb

asw, rf

Figure 2: A consistent execution of the message passing
program (see Fig. 1). Note that actionse andh synchronise.

3. Incrementalising the axiomatic model: the
problems

In this section we consider the challenges of developing
an equivalent operational concurrency model that generates
executions one action at the time. Recall that the axiomatic
model takes complete pre-executions as input, so in order
to state the equivalence the operational concurrency model
also has to take complete pre-executions as input. In other
words, it would incrementally add execution witness data
(new rf -pairs, etc.) to a pre-execution given up-front. We
call adding execution witness data between an actiona and
actions previously consideredcommittingactiona.

Another notion that we use is that offollowingor respect-
ing a certain order. If we would commit the actions of Fig. 4
(left side) in the ordera, b, c, . . . , f then we would not re-
spectrf because the edge(f, c) ∈ rf goes against this or-
der. Or formally: letcom be the commitment order (that is,
(a, b) ∈ com if a has been committed beforeb) andr a rela-
tion, we say that we followr if for all (a, b) ∈ com we have
(b, a) /∈ r.

A requirement that follows from later sections is that we
should followrf . In a complete pre-execution all the reads
have a concrete value (that is arbitrarily chosen), but later
we want the concurrency model to determine which value
is read. Sincerf relates reads to the write they read from,
this means that the concurrency model has to establish an
rf -edge to the read when it commits the read; in other words
it has to followrf .

The first problem we face is thathb edges (happens-
before edges) between previously committed actions might
disappear when committing new actions. This is conceptu-
ally very strange and it has undesirable consequences, which

we discuss in §3.1. In the same section we show that if we
follow mo then this problem does not occur.

The other problems follow from the existence of con-
sistent executions with particular cycles. In §3.2 we show
that we cannot followsb (the program order), in §3.3 that
we cannot followsc (the sequential consistent order) and in
§3.4 that we cannot followsw (the synchronises-with order).
Each of these also suggests a possible change to future ver-
sions of the C/C++11 model.

3.1 Disappearing synchronisation

Most synchronisation is immune to new actions. For exam-
ple, a synchronising release-acquire pair will be synchro-
nised no matter which or how many new actions are added to
the execution, and similarly for a synchronising unlock-lock
pair. However, this is not true for types of synchronisations
that depend on release sequences, as can be seen in Fig. 3.

Recall that a release sequence is defined as follows [6,
§2.6]. It starts at a write-release, and extends to all stores of
the same thread and all RMWs (potentially by other threads)
that immediately follow in modification order, regardless of
their memory order annotation. The point of this is to pro-
vide at the C/C++11 level more of the force of the memory
barrier used on some architectures to implement the write-
release, just before the write.

Such a release sequence can be broken by executing a
new action, of which we give an example below. In the
execution on the left, the writesa andb are part of a release
sequence, and because the readc reads from a write in this
sequence, it synchronises with the first write in the sequence.
In the second execution, however, a new writed is inserted
in modification order between the existing writesa and b,
which breaks the release sequence. Therefore, there is no
synchronisation between the readc and writea anymore.

c:Racq x=2

a:Wrel x=1

hb

b:Wrlx x=2

sb

rf

c:Racq x=2

a:Wrel x=1

no hb

b:Wrlx x=2

sb

d:Wrlx x=3

mo

rf

mo

Figure 3: Disappearing synchronisation

Such disappearinghb edges make it difficult to construct
an operational concurrency model that generates all consis-
tent executions. Anhb edge restricts consistent executions
in many ways: for example, it restricts the set of writes that
a read can read from, and it forces modification order in
certain directions. If the concurrency model took those re-
strictions into consideration but at a later step thehb edge
disappeared, the concurrency model would have to recon-
sider all earlier steps. If on the other hand the concurrency
model already took into account that anhb edge might dis-
appear when it encounters anhb edge, the number of pos-
sibilities would blow up, and furthermore many executions
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would turn out to be inconsistent when thehb edge does not
disappear after all.

Our solution to prevent disappearing synchronisation is
to follow mo when committing actions. We prove that this
suffices in a later section, in Theorem 5.5. Another solution
would be to change the axiomatic model (and the C/C++
ISO standards) by allowing the release sequence to extend
to sb-later writes in the same thread irrespective of whether
the write is immediately following inmo order. We believe
that this matches hardware behaviour, so this change would
not invalidate current implementations of C/C++11.

3.2 Abandoning program order

There are two kinds of cycles that show that we cannot
follow program order. For the first, recall that the operational
concurrency model has to followrf to determine the return
values of reads. Then the cycle inrf ∪ sb in the execution
on the left of Fig. 4 shows that we cannot follow program
order (sb) at the same time. This execution has to be allowed
in C/C++ because it is allowed on POWER and ARM, and
observable on current ARM hardware.

a:Wna x=0

b:Wna y=0

sb

f:Wrlx x=42

mo

c:Rrlx x=42

asw

d:Wrlx y=42

mo
e:Rrlx y=42

asw

sb rf sbrf

a:Wrel y=1

b:Wrel x=2

sb

f:Racq y=1

rf

c:Racq x=1

sb

d:Wrel x=1
mo

rf

e:Wrel y=2

sb
mo

sb

Figure 4: On the left a consistent execution with a cycle in
rf ∪ sb and on the right one with a cycle inmo ∪ sb

For the second, observe that the execution on the right of
Fig. 4 has a cycle inmo ∪ sb. As described in the previ-
ous subsection, we followmo, so the existence of this cycle
also shows that we cannot follow program order. Here the
corresponding hardware examples, after applying the stan-
dard mapping, are not architecturally allowed or observed
on ARMv8 (2+2W+STLs) or POWER (2+2W+lwsyncs), so
one might conceivably strengthen C/C++11 to similarly for-
bid this behaviour.

3.3 Abandoning sequential-consistent order

Recall from §2 that C/C++11 introduces sequential consis-
tent atomics that are guaranteed to appear in a global total
order. When all accesses to atomics have this SC memory
order annotation, programs that have no non-atomic races
behave as if memory is sequentially consistent (Batty [2, 4]).
It is therefore surprising that the concurrency model cannot
follow thesc relation when other memory orders are present.

Our argument is as follows. The execution in Fig. 5 con-
tains a cycle inmo ∪ rf ∪ sc, so we cannot follow all three
relations together. We saw before that we have to follow
both rf andmo, hence we cannot followsc. To the best of
our knowledge, this execution is not observable on POW-
ER/ARM, so this suggests another possible strengthening of
C/C++11, which would allow an operational model to follow
sc by disallowing themo ∪ rf ∪ sc cycle.

a:Wsc x=1

b:Wrlx x=2

mo

c:Rsc x=2rf

sc

Figure 5: A consistent execution with a cycle inmo∪rf ∪sc

(omitting initialisation)

3.4 Abandoning synchronises-with order

Just as disappearing synchronisation makes it hard to de-
velop an operational semantics, new synchronisation to pre-
viously committed actions makes it equally hard.

To see this consider the situation where there was no
hb edge between a writew and a loadr when the load
was committed, but committing a new actiona creates ahb
edge betweenw and r. The consistency predicateconsis-
tent_non_atomic_rfrequires (in caser is non-atomic) that
r reads from a write that happens before it. When commit-
ting r we either have to considerw and discard the execution
when there never appears ahb edge, or we do not consider
it, but then we have to reconsider the execution ofr as soon
as there does appear ahb edge. Similarly, the consistency
predicatedet_readrequires thatr (regardless of whether it
is atomic or not) is indeterminate if and only if there does
not exists a write that happens before it, so the same prob-
lems applies here.

The hb relation is a superset of the synchronises-with
(sw ) relation, that arises from thread creation, synchronising
locks and synchronising release-acquire atomics or fences.
If we would have been able to followsw , it would have
been easier to prevent new synchronisation between previ-
ously committed actions. However, the execution in Fig. 6
has a cycle insw ∪ rf , and since we followrf we can
therefore not followsw . This execution is not observable on
POWER/ARM, so again one might conceivably forbid it in
C/C++11 to follow thesw order.

4. Constructing an operational model:
overview

In the rest of the paper we construct the operational seman-
tics in the following three stages.

Stage 1 The incremental concurrency model In §5 we
present an orderr that can be used to incrementally generate
all consistent executions, in constrast to the orders presented
in the previous section. The crucial property of the orderr is
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a:RMWrel y=2/3

b:Wrlx y=4

sb,mo

d:Fa/r

sw
c:Rrlx y=4rf

sb

e:Wrlx x=1

sb

f:RMWacq x=1/2

sw

rf,mo

k:RMWrel x=2/3

rf,mo

g:RMWacq y=1/2

rf,mo h:Rrlx x=4

i:Fa/r

sb

sw
j:Wrlx y=1

sb

rf,mo

sw
l:Wrlx x=4

sb,mo

rf

Figure 6: A consistent execution with a cycle insw ∪ rf (omitting initialisation)

the following:an r-prefix of a consistent execution is again
a consistent execution.

We use this order to define theincremental concurrency
modelin the following way. We assume for now that a com-
plete pre-execution is given (in a later stage we remove this
assumption). We define a notion of state that contains a par-
tially generated execution witness, and we allow a transition
from states1 to s2 if s2 extendss1 with one action, ands2
is consistent.

To prove completeness (for finite executions), we exploit
that consistency is closed underr-prefixes: letex be a con-
sistent execution withn actions, define the statess0, . . . , sn
wheresi is ther-prefix of ex with i actions. Then the incre-
mental model can transition fromsi to si+1 and therefore it
can incrementally generate the consistent executionex .

Limitations To actually compute a next states2 from a
states1 one would have to enumerate all possible execu-
tion witnesses and filter them according to the criteria “s2
extendss1 with one action, ands2 is consistent”. Comput-
ing behaviour this way is even less efficient than with the
axiomatic model itself, since there one would only need to
enumerate the witnesses once while here for every transition.
This limitation is precisely what we solve in the next stage.

Stage 2 The executable concurrency model In §6 we
present theexecutable concurrency model. This is similar
to the incremental model: it also assumes a complete pre-
execution, it has the same notion of states, and it can transi-
tion from a states1 to s2 if and only if the incremental model
can. The difference is that the executable model defines tran-
sitions using a function that given a states1 returns the set
of all states wheres1 can transition to. This makes it feasible
to compute transitions.

We develop this transition function by examining how the
relationsrf , mo, sc andlo (that together form the execution
witness) can change during a transition of the incremental
model.

Limitations The transition function internally still enu-
merates some candidates and filters them using some of the
conjuncts of the axiomatic consistency predicate. We believe
that the set of a priori possible candidates can be further re-

duced when we know exactly howhb changes during a tran-
sition (instead of the general results stated in Theorem 5.5
and Theorem 5.6); we leave this, which is an implementa-
tion optimisation, for future work. The point is that we have
to enumerate significantly fewer candidates than in the in-
cremental model: the executable model enumerates at most
n2 candidates wheren is the number of actions in the partial
witness, while the incremental model enumerates all possi-
bilities for four partial orders overn actions.

The remaining limitation is that the executable model still
assumes a complete pre-execution given up-front. This is
what we solve in the next stage.

Stage 3 The operational semantics In §7 we integrate
the executable concurrency model with an operational model
for the sequential aspects of a substantial fragment of C.
Here the latter incrementally builds a pre-execution while
the concurrency model incrementally builds a witness, syn-
chronising between the two as necessary.

The main obstacle we had to overcome was the fact that
the executable concurrency model cannot follow program
order (as explained in §3), but the sequential semantics does.
Our solution was to allow the sequential semantics and the
concurrency model to transition independently of each other:
the formergeneratesactions in program order, and at every
step the concurrency modelcommitszero, one or more of the
generated actions.

A consequence of the independent transitions is that when
the sequential semantics generates a read, the concurrency
semantics might not immediately commit that read and re-
turn the value. In that case the sequential semantics has to
be able to continue its execution without the return value.
Our solution is to make the sequential semantics symbolic:
for all reads we use fresh symbols for the return values, and
whenever the concurrency model commits a read we resolve
the symbol with the value actually read.

When a control operator with a symbolic condition is en-
countered the sequential semantics non-deterministically ex-
plores both branches, adding the corresponding constraints
to a constraint set. In some cases the semantics explores a
path that leads to an inconsistent constraint set, in which case
the execution is terminated. A production tool would need
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to backtrack or explore a different path at such points, and it
would be critical to resolve constraints as early as possible.

The semantics can detect C/C++11 races on the path it
explores, but, as for any non-exhaustive semantics, it cannot
detect races on other paths.

5. The incremental model
In the light of the non-approaches of §3, we now show
how one can, given a complete pre-execution (with concrete
values for all the reads), incrementally generate witnesses
in such a way that every consistent witness over the pre-
execution can be generated.

Let ex be a finite consistent execution whose witness
we want to incrementally generate. The first step is to find
an ordera1, . . . , an of the actions ofex in which we plan
the generate the witness; we define this order in §5.1 and
prove that it is acyclic, in contrast to the candidate orders
considered in §3.

Then we define the partial executionsex 1, . . . , exn we
plan to generate when committing the actionsa1, . . . , an,
see §5.2. In §5.3 we prove thathb edges do not disappear
during a transition fromex i to ex i+1, and neither do there
appear newhb edges between previously committed writes
and reads (in respectively §3.1 and §3.4 we discussed why
we need those properties).

Then in §5.4 we prove that the partial executions
ex 1, . . . , exn are all consistent ifex is consistent, and, based
on that, we define a transition relation in §5.5. Finally, we
define the incremental model in §5.6 and prove equivalence
with the axiomatic model for finite executions.

Notation Recall from §2 that an execution consists of a
pre-execution, an execution witness and derived relations.
The function that derives those relation isget_rel , soex =
(pre,wit , get_rel(pre,wit)).

We use the notationpre.sb andwit .rf to refer to parts
of pre-executions and execution witnesses. For brevity, we
abuse this notation by writingex .sb when we should actu-
ally write “let ex = (pre,wit , rel), considerpre.sb” and
likewise for the parts of the witness (such asex .rf ) and de-
rived relations (such asex .hb).

5.1 The commitment order

Recall that the operational concurrency model has to fol-
low rf to determine the return values of reads, and it has
to follow mo in order to preserve earlier synchronisation
(see §3.1). We cannot prevent new synchronisation appear-
ing between previously committed actions, but by following
{(a, b) ∈ hb | is_load(b)} we can prevent it between previ-
ously committedwritesandloads. This is enough to prevent
the situation described in §3.4 regarding the predicatescon-
sistent_non_atomic_rfanddet_read.

This order satisfies all the properties we would need to in-
crementalise the axiomatic model, but it leaves many actions
unordered, which means that the transition relation would be

very non-deterministic. To reduce this non-determinism as
much as possible, we include as much ofhb as we can. Be-
cause we cannot follow program order (see §3.2) we know
that we cannot include all ofhb.

We decided to leave outhb edges to atomic writes, and
include all hb edges to other types of actions. (For locks
and unlocks there is a choice whether to includehb edges
to locks and unlocks, or to follow the lock-orderlo, but one
cannot include both since there can be a cycle in their union.
We did not see any compelling argument in favour of either
of the two, and we chose to follow the former.) In other
words, this order allows us to speculate writes, and forces
us to commit all other actions inhb order.

Definition 5.1 (Commitment order). Let ex be a candi-
date execution. First defineex .almost_hb = {(a, b) ∈
ex .hb | ¬ (is_write(b) ∧ is_atomic(b))}. Then define
ex .com = (ex .rf ∪ ex .mo ∪ ex .almost_hb)+.

a:Wna x=0

b:Wna y=0

 

f:Wrlx x=42

 

c:Rrlx x=42

 

d:Wrlx y=42

 
e:Rrlx y=42

 

  

a:Wrel y=1

f:Racq y=1

 

b:Wrel x=2

c:Racq x=1

 

d:Wrel x=1

 
 

e:Wrel y=2

 

 

Figure 7: The commitment orders of the executions in Fig. 4

Theorem 5.2. Let ex be consistent. Then the relation
ex .com defined above is a strict partial order.

The proof, like all our work, has been mechanised in
Isabelle/HOL and is included in the supplementary material.

5.2 States

A states consists of a set of actionss.committed denoting
the actions that have been committed so far, and an execution
witnesss.wit denoting the execution witness built up so far.
Note that the pre-execution is not part of the state, since itis
given up-front.

Let ex be the execution that we want to incrementally
generate, anda1, . . . , an the actions of that execution in
some order that agrees withex .com defined in the previous
subsection. We want the statess1, . . . , sn to reflect the wit-
ness build up so far, and an obvious thing to do is to define
si.committed to be the actionsa1, . . . , ai that are commit-
ted so far, andsi.wit as the restriction ofex .wit to those
actions. The initial states0 is always the same (regardless
of the given pre-execution) becauses0.committed = ∅ and
s0.wit the empty witness.
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Definition 5.3. Let pre be a pre-execution, andS a set of
actions. ThenpreRestrict(pre, S) is defined by

preRestrict(pre, S).actions = pre.actions ∩ S

preRestrict(pre, S).sb = pre.sb ∩ S × S

preRestrict(pre, S).asw = pre.asw ∩ S × S

Similarly, with wit an execution witness,witRestrict is
defined by restrictingrf , mo, sc andlo to S × S, as in

witRestrict(wit , S).rf = wit .rf ∩ S × S

And finally, with ex = (pre,wit , rel) an execution,
exRestrict is defined by

pre ′ = preRestrict(pre, S)

wit ′ = witRestrict(wit , S)

exRestrict(ex , S) = (pre ′,wit ′, get_rel(pre ′,wit ′))

The partial executionsex i mentioned in the intro of
this section are then given byexRestrict(ex , Ai) where
Ai = {a1, . . . , ai}. Note that we have also restricted the
pre-execution to the set of actions committed, although the
complete pre-execution is fixed during the generation of the
witness. We have two reasons for that: one is that otherwise
the partial execution would be inconsistent (since the actions
in the pre-execution that have not been committed yet have
nomo, rf , etc. edges to and from them, while this is in some
cases required to be consistent). And the second reason is
that when we integrate with the operational threadwise se-
mantics, the pre-execution is no longer fixed.

a:Wna x=0

b:Wna y=0

sb

d:Wrlx y=42

mo e:Rrlx y=42
asw

rf

b:Wrel x=2

c:Racq x=1

sb

d:Wrel x=1

morf

e:Wrel y=2

sb

Figure 8: On the leftexRestrict(ex ℓ, {a, b, d, e}) and on
the rightexRestrict(ex r, {b, c, d, e}) whereex ℓ andex r are
respectively the executions on the left and right of Fig. 4

5.3 Properties of happens before

In §3.1 we explained that synchronisation could disappear
whenmo is not followed. Since we have includedmo in
the commitment order, the counterexample does not apply
anymore, and we can prove thathb grows monotonically.

Definition 5.4. Let r be a relation over actions, andA a set
of actions. Thendownclosed(A, r) holds if and only if for
all (a, b) ∈ r with b ∈ A we have thata ∈ A.

For exampledownclosed(A, ex .mo) means that there are
no mo edges from outsideA into A. Now the following
monotonicity theorem states that if that is true forA, then
the restriction ofex to A does not contain anyhb edges
that are not inex , or in other words none of thehb edges
disappeared.

Theorem 5.5. Let ex be an execution. LetA be
a set of actions with downclosed(A, ex .mo). Then
(exRestrict(ex , A)).hb ⊆ ex .hb.

Recall that in §3.4 we mentioned another desirable prop-
erty of how hb changes: there should not appear new
synchronisation between previously committed writes and
reads. We proved a slightly stronger result: there does not
appear new synchronisation between any type of action to
an action that is not an atomic write.

Theorem 5.6. Let ex be a consistent execution. LetA be a
set of actions such thatdownclosed(A, ex .com). Then for
all (a, b) ∈ ex .hb with b ∈ A andb not an atomic write, we
have that(a, b) ∈ (exRestrict(ex , A)).hb.

5.4 Consistency of prefixes

Now we know howhb changes during incremental genera-
tion of executions, we can prove that the partial executions
exRestrict(ex , Ai) (as defined in §5.2) are consistent, where
Ai is the set of actions committed so far. This means that
every consistent execution can be build incrementally while
being consistent at every step.

Theorem 5.7. Let A be a set of actions such that
downclosed(A, ex .com). If ex is a consistent execution,
thenexRestrict(ex , A) is a consistent execution.

5.5 Transition relation

Given a consistent executionex , an ordera1, . . . , an, and
the partial executionsex i = exRestrict(ex , {a1, . . . , ai}),
we now define a transition relation that allows the transition
betweenex i and ex i+1. This ensures completeness: if we
use this transition relation to follow paths from the initial
state (containing an empty witness) we know that we will
generate all consistent executions.

The transition relationincrementalStep(pre, s1, s2, a) is
intended to hold if committinga in states1 can result in state
s2, given the pre-executionpre (recall that we still assume to
be given a complete pre-execution). The transition relation
has several conjuncts, which we describe after giving the
definition.
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Definition 5.8. The relation
incrementalStep(pre, s1, s2, a) is defined as

a ∈ pre.actions ∧ (1)

a /∈ s1.committed ∧ (2)

s2.committed = s1.committed ∪ {a} ∧ (3)

witRestrict(s2.wit , s1.committed) = s1.wit ∧ (4)
[

∀b ∈ pre.actions .

(b ∈ s1.committed → (a, b) /∈ ex .com) ∧

((b, a) ∈ ex .com → b ∈ s1.committed)
]

∧ (5)

isConsistent(exprefix ) (6)

whereex andexprefix are defined by

ex = (pre, s2.wit , get_rel(pre, s2.wit))

preprefix = preRestrict(pre, s2.committed)

exprefix = (preprefix , s2.wit , get_rel(preprefix , s2.wit))

Conjunct (1) makes sure that an action of the pre-
execution is committed (and not an arbitrary action), Con-
junct (2) that the actiona has not been committed yet, and
Conjunct (3) that the set of committed actions is updated
correctly during the transition. Conjunct (4) ensure that all
the changes to the witness involve the new actiona; in other
words, the execution witness restricted to the old set of com-
mitted actions is still the same. Conjunct (5) ensures that ac-
tions are committed according to the commitment order, and
finally Conjunct (6) ensures that the generated partial execu-
tion is consistent (isConsistent is the axiomatic consistency
predicate).

We define thatincrementalTrace(pre, s) holds if s is
reachable from the initial state followingincrementalStep.
The following states that all consistent executions are reach-
able.

Theorem 5.9. Let ex be a consistent, finite execution.
Let A be a set of actions withA ⊆ ex .actions and
downclosed(A, ex .com).

Then there exists a state s, such that
incrementalTrace(pre, s), s.committed = A and
s.wit = witRestrict(ex .wit , A).

5.6 The incremental model

We now define a new notion of consistency that uses
incrementalTrace, which is equivalent to the axiomatic
consistency predicate for finite executions.

Definition 5.10. Let ex = (pre,wit , get_rel(pre,wit)) be
a candidate execution. We define

incrementalConsistent(ex ) =

∃s. incrementalTrace(pre, s) ∧

s.wit = wit ∧ s.committed = pre.actions

Theorem 5.11(Equivalence). Let ex be a finite candidate
execution withex = (pre,wit , get_rel(pre,wit)). Then
incrementalConsistent(ex ) holds if and only ifex is con-
sistent according to the axiomatic model.

6. An executable model
In the previous section we saw that all finite consistent wit-
nesses can be generated incrementally: starting from the ini-
tial s0 state we followincrementalStep(pre, si, si+1, ai)
to generate the statess1, . . . , sn until we have committed
all the actions of the pre-execution. The problem is that
incrementalStep is a relation, so to actually compute a state
si+1 from the statesi we have to enumerate states until one
of them satisfiesincrementalStep.

In this section we define a step functionexecutableStep
that given a state and a pre-execution, returns the set of
possible next states, which makes it feasible to compute
executions incrementally.

To find out how we should define the step func-
tion we investigate howsi+1 differs from si when
incrementalStep(pre, si, si+1, ai) holds. For the set of
committed actions this is clear:si+1.committed =
si.committed ∪ {a} since this is directly required by
incrementalStep. For the witness this is not immediately
obvious, so investigate this in the following sections: in §6.1
we consider themo relation, in §6.2 therf relation, and in
§6.3 thesc andlo relations. Then in §6.4 we define the step
function.

6.1 Modification order

We consider howmo can change fromsi to si+1 when
action a is committed. In consistent executions,mo is an
order over atomic writes that is total over the writes of the
same location. We therefore expectmo to remain the same
if a is not an atomic write, anda to be included inmo

otherwise. Since the modification order is included in the
commitment order, we expect thata can only be added to
the end of the existingmo order. To state that formally, we
define a function that adds an actiona at the end of the
modification order of a states.

Definition 6.1. Define sameLocWrites(A, a) as {b ∈
A | is_write(b) ∧ loc_of (b) = loc_of (a)}. Then
define addToMo(a, s) as s.wit .mo ∪ {(b, a) | b ∈
sameLocWrites(s.committed , a)}.

We now formally state our expectations of howmo

changes. We explain the requirements afterwards.
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Lemma 6.2. Let s be a state,ex an execution anda an
action, for which the following holds.

a /∈ s.committed (7)

ex .actions = s.committed ∪ a (8)

witRestrict(ex .wit , s.committed) = s.wit (9)

downclosed(s.committed , ex .mo) (10)

isConsistent(ex ) (11)

If a is an atomic write, we haveex .mo = addToMo(a, s)
and otherwise we haveex .mo = s.wit .mo.

The states should be thought of as the current state, and
ex as the execution we try to transition to. The requirements
say that we should be able to transition toex : requirements
(7) and (8) together state that there is one new action inex .
Then (9) states that the witnesses ofex ands agree on the
part that is already committed ins; requirement (10) states
that so far, the execution has followedmo; and finally, (11)
states thatex is consistent.

The conclusion of the lemma then says that ifa is an
atomic write, the modification order ofs changes according
to addToMo, and otherwise it does not change.

6.2 Reads-from relation

We consider howrf can change fromsi to si+1 when ac-
tion a is committed. In consistent executions,rf is a relation
from writes to reads. Becauserf is included in the commit-
ment order, we only expect newrf edgesto the new actiona
and not froma. Hence, howrf changes depends on whether
a is a load, an RMW, or neither.

In the first case, the consistency predicatedet_readde-
scribes when there should be a newrf edge: if there exists
a write that happens beforea there should, otherwise there
should not. This could be self-satisfying: if there is no write
that happens beforea, creating arf edge might createhb
edge from a write toa which would then makedet_readtrue.
Hence, we non-deterministically choose to create arf edge
or not, and when the newhb relation is known, we check
whether there should have been an edge or not.

Definition 6.3. Define addToRfLoad(a, s) as follows.
First, non-deterministically choose between return-
ing s.wit .rf (meaning no new edge is added), or
non-deterministically picking a writew from the set
sameLocWrites(s.committed , a) for which we have
value_written_by(w) = value_read_by(a) and returning
s.wit .rf ∪ {(w, a)}.

In the second case (wherea is an RMW), the consistency
predicatermw_atomcityrequires thata reads from its imme-
diatemo-predecessor if there is one, and otherwise it should
be indeterminate (not reading from any write).

Definition 6.4. Define addToRfRmw(a, s) as follows. If
the setsameLocWrites(s.committed , a) is empty, return
s.wit .rf . Otherwise, there is amo-maximal elementw

of that set. We check whethervalue_written_by(w) =
value_read_by(a) holds, and if so, we returns.wit .rf ∪
{(w, a)}.

We can now formally state our expectations about how
rf changes during a transition. For the explanation of
the assumptions we refer to the explanation given after
Lemma 6.2. Note that the functionsaddToRfLoad and
addToRfRmw are non-deterministic, so they return a set of
possible newrf relations.

Lemma 6.5. Let s be a state,ex an execution anda
an action for whicha /∈ s.committed , ex .actions =
s.committed ∪ a, witRestrict(ex .wit , s.committed) =
s.wit , downclosed(s.committed , ex .mo),
downclosed(s.committed , ex .rf ), andisConsistent(ex ).
(1) If a is a load, thenex .rf ∈ addToRfLoad(a, s).
(2) If a is a RMW, thenex .rf ∈ addToRfRmw(a, s).
(3) Otherwise we haveex .rf = s.wit .rf .

6.3 SC and lock order

In consistent executions,sc is a total order over all actions
with a SC memory order, andlo is an order over locks and
unlocks that is total per location. Because there exist cycles
in sc∪com and inlo∪com, we have to allow the new action
a to be inserted before already committed actions in either
order. Our approach is to define the functionsaddToSc and
addToLo that non-deterministically inserta anywhere in
respectivelysc or lo, and later filter the possibilities that
became inconsistent.

Then we prove a lemma similar to Lemma 6.2 and
Lemma 6.5 that shows that this construction suffices: ifa
has a sequential consistent memory order, we haveex .sc ∈
addToSc(a, s) and otherwise we haveex .sc = s.wit .sc; if
a is a lock or an unlock, we haveex .lo ∈ addToLo(a, s)
and otherwise we haveex .lo = s.wit .lo.

6.4 The transition function

With the results of §6.1, 6.2 and 6.3 it is now straightforward
to define a non-deterministic functionperformAction(s, a)
that returns an execution witness based on the type ofa.

• Loads: we changerf with addToRfLoad . If the memory
order ofa is SC, we change thesc relation withaddToSc.

• Stores: ifa is atomic we changemo with addToMo. If
the memory order is SC we changesc with addToSc.

• RMWs: we changerf with addToRfRmw , mo with
addToMo, and if the memory order is SC thensc with
addToSc.

• Locks and unlocks: we changelo with addToLo.
• Fences: if the memory order is SC we changesc with
addToSc.

Definition 6.6. Define executableStep(pre, s) as follows.
First non-deterministically pick an actiona ∈ pre.actions
with a /∈ s.committed . Then, non-deterministically gen-
erate a witnesswit usingperformAction(s, a). Define the
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new states2 with s2.committed = s.committed ∪ {a} and
s2.wit = wit . Finally, check whether our choice followed
the commitment order and resulted in an consistent execu-
tion by discarding states that do not satisfy Requirement (5)
or Requirement (6) of Definition 5.8. For each of the non-
discarded options, the function returns the pair(s2, a).

Theorem 6.7. We have(s2, a) ∈ executableStep(pre, s1)
if and only ifincrementalStep(pre, s1, s2, a).

Define executableTrace and executableConsistent in
the same way as in the incremental model (Definition 5.10),
but then usingexecutableStep instead ofincrementalStep.
From the previous theorem and from Theorem 5.11 it then
follows that the executable model is equivalent to the ax-
iomatic model for finite executions:

Corollary 6.8. Let ex be a finite candidate execu-
tion with ex = (pre,wit , get_rel(pre,wit)). Then
executableConsistent(ex ) holds if and only ifex is con-
sistent according to the axiomatic model.

7. Integration with the threadwise model
In the previous section we defined an executable transition
function, but we still assumed that we are given a complete
pre-execution with concrete values for all the reads. We now
integrate that executable model with an operational thread-
wise semantics that builds pre-executions incrementally.

As the front-end language, we use a small functional pro-
gramming language with explicit memory operations (Core).
This is developed as an intermediate language in a broader
project [16] to give semantics of C; as such, any C program
can be elaborated to a Core program.

The challenge here is that the operational semantics of
Core follows program order, while the executable concur-
rency model does not. Our solution is to let the two models
take transitions independently of each other, so the former
can follow program order, while the latter follows the com-
mitment order. A consequence of this is that the concurrency
model does not always immediately commit a read when the
threadwise semantics has generated it, which means that the
threadwise semantics does not know the return value, but at
the same time it has to be able to continue the execution. Our
solution is to continue the execution symbolically.

We describe the interaction between the operational se-
mantics of Core and the executable concurrency model in
§7.1 and the validation in §7.2. The symbolic execution has
significant drawbacks and one might hope that it is only
needed for atomics, but in §7.3 we show that it is also neces-
sary for non-atomics. Then in §7.4 we discuss what remains
necessary to produce a more generally usable tool.

7.1 The interaction with the threadwise model

The integrated semantics starts with an empty pre-execution,
and then goes on to alternate between performing one step of

the Core dynamics and zero or more steps of the concurrency
model.

The Core dynamics is a step function: from a given Core
program state it returns the set of memory actions (and the
resulting Core program state should that operation be per-
formed) that can be performed at this point by the program.
These actions are communicated to the concurrency model
by adding them to the pre-execution. For load operations,
the resulting Core program state needs a read value. Since
the concurrency model may choose not to provide a value
immediately, we introduce a symbolic name for the value
read, and use it to build the resulting Core state.

As a result all values in Core programs must be sym-
bolic. This means in particular that the execution of con-
trol operators is done symbolically. When a control point
is reached, the threadwise semantics non-deterministically
explores both branches, under corresponding symbolic con-
straints for each branch.

When the concurrency model does give an answer for a
read, at some later point in the execution, the set of con-
straints is updated by asserting an equality between the
symbolic name created earlier for the read and the actual
value. In the case of execution branches that should not have
been taken, the constraint therefore becomes unsatisfiable
and the execution path is killed. Our C semantics elabo-
rates the many C integral numeric types into Core operations
on mathematical integers, so all constraints are simply over
those.

This solves the fundamental problem we stated in the
introduction : although the concurrency model does not need
to immediately determine the value of a read, it does so
during the generation of the pre-execution which avoids
exploring many incompatible control-flow unfoldings.

7.2 Validation

The correctness of the concurrency model is guaranteed
by the equivalence theorem. To validate the integration we
have run the semantics on the following classic litmus test
programs (these tests are available in the supplementary
material):

• Message passing: a version with a write-release, a relaxed
read in a loop, and an acquire fence (see Fig. 1)

• Load buffering: a version with relaxed atomics (that al-
lows the cycle given on the left of Fig. 4), a version with
release/acquire atomics, and a version with SC atomics.

• Store buffering: a version with relaxed atomics, a ver-
sion with release/acquire atomics, and a version with SC
atomics.

• A program that allows a cycle inmo ∪ sb (see Fig. 4).
• WRC: a version with a write-releases, load-acquires in

loops, and a relaxed read.

For each test, pseudo-random exploration revealed all the
allowed outcomes (and only allowed outcomes). For the
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relaxed version of LB and for the mo-sb-cycle program the
outcomes with cycles in respectivelyrf ∪ sb and mo ∪
sb happened rarely: only approximately 1 out of a 1000
executions exhibited them. For all the other tests all the
allowed outcomes where generated in the order of 10 runs.

7.3 Symbolic execution unavoidable for non-atomics

One drawback of the symbolic execution is that we lose
completeness if the constraint generation and solver cannot
handle the full generality of constraints (e.g. for memory
accesses from pointers computed in complex ways). One
might hope to only need symbolic execution for atomics, and
that one could always immediately return a concrete value
for non-atomics, but unfortunately the following shows that
this is not the case.

Consider the execution in Fig. 6 and imagine a non-
atomic writew1 to a new location (sayz1) that issb-before
actiona, and similarly a new writew2 that issb-before ac-
tion k; and imagine a non-atomic readr1 of z1 that issb-
between actionsd ande, and similarly a readr2 that issb-
between actionsi and j. Suppose without loss of general-
ity that whenr1 is generated by the threadwise semantics,
r2 has not yet been generated. The latter means thatj can-
not have been generated (since the threadwise semantics fol-
lows program order), and therefore thatg, a, b andc have
not been committed by the concurrency model (because the
concurrency model followsrf andmo). Hence, thehb edge
betweenw1 andr1 does not exist yet, and therefore we do
not know wherer1 can read from at this time (see also §3.4)
and the threadwise semantics has to use a symbol as its re-
turn value.

7.4 Outstanding issues

Extending the operational semantics to support random-
mode execution of more realistic C programs requires at
least three significant advances. First, the C/C++11 concur-
rency model, in both axiomatic and operational forms, must
be extended to support aspects of C neglected by Batty et
al. [6], including general array, struct, and mixed-size ac-
cesses, object lifetime, and dynamic errors. Second, the im-
plementation of constraints must support those that arise
from realistic pointer arithmetic (ideally including bitwise
operations). Third, there will need to be performance opti-
misation, as at present the state size (and transition compute
time) grows with trace length, but in principle “sufficiently
old” information can be garbage-collected.

8. Related work
There is a long history of equivalence or inclusion results
between operational and axiomatic relaxed memory models,
e.g. Higham et al. [12], Owens et al. [20], Alglave et al. [1],
and Cenciarelli et al. [9], but very little that relates to the
C/C++11 model issues that we address here (the first three of
those address hardware models, where concrete operational

models provide a usable order; the last is in the rather differ-
ent JMM context).

The most closely related work that we are aware of is the
work by Lahav et al. [13]. The authors study the fragment of
C/C++11 in which all read, write, and read-modify-write ac-
cesses have release/acquire memory orders, without relaxed,
consume, SC, or nonatomic accesses, and with just a single
kind of fence. They also identify that the execution presented
in §3.2 is not observable in implementations, and go on to
prove that the existing compilation schemes to POWER and
x86-TSO can still be used when forbidding hb-mo-cycles.
For this stronger release/acquire semantics (where those cy-
cles are forbidden) they give a concrete operational seman-
tics in terms of ordered message buffers and memory local to
processors, and their results are largely also mechanised (in
Coq). However, the release/acquire fragment of C/C++11 is
considerably simpler than the full model we deal with here.
For example, in that fragment the sb-rf and sc-mo-rf cycles
that we address do not occur. They also work with a small
calculus rather than integrating their model with a larger C
semantics.

The operational semantics by Turon et al. [25] covers
non-atomics, SC-atomics and release/acquire atomics, but
not relaxed or consume atomics. It is precisely these memory
orders that make developing an equivalent operational se-
mantics hard. Furthermore, their semantics simplifies some
of the concepts of the axiomatic model to give a cleaner se-
mantics, at the expense of completeness. For their purposes
this is not a problem, since they are developing a sound pro-
gram logic, but our goal is to develop an equivalent model.

The other most closely related work we are aware of is the
model-checker of Norris and Demsky [19]. This is focussed
on efficiency, but attempts neither to be sound nor complete
with respect to the C/C++11 model. Our operational model
may inform future work on C/C++11 model-checking.

More peripherally, two lines of work have integrated
a TSO memory model with a semantics for significant
fragments of C: the CompCertTSO verified compiler of
Šev̌cík et al. [27], and the K semantics of Ellison [11,
§4.2.6]. TSO is much stronger and simpler than C/C++11,
and there cannot be cycles inhb ∪ rf , so the concurrency
impacts much less on the sequential semantics. Moreover,
mainstream C compilers do not implement TSO, so the sig-
nificance of such a semantics for concurrent C/C++11 pro-
grams is unclear.

Then there is work using SAT solvers for axiomatic mod-
els, for C/C++11 by Blanchette et al. [7] and for the JMM
by Torlak et al. [24]. For litmus tests these offer perfor-
mance improvements w.r.t. naive enumeration of candidate
executions, but finding single paths of larger programs seems
likely to be challenging, as does integration with a more sub-
stantial C semantics.

Finally, there are also a number of less closely related
proposals for other language-level memory models [10, 14].
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9. Conclusion
We have presented an operational concurrency model that
covers the full formalisation [6] of C/C++11 concurrency in-
cluding locks, fences, read-modify-writes, non-atomics and
atomics with all memory orders, including consume. We
have proved the equivalence of our model with that formal-
isation and mechanised the proof in Isabelle/HOL. We have
also integrated the operational concurrency model with a se-
quential operational semantics [16] (the sequential seman-
tics is not our contribution); the combined semantics can in-
crementally execute programs in a small fragment of C.

The challenge in defining the operational model was the
fact that many obvious approaches such as following pro-
gram order or the sequential consistency order do not work,
because C/C++11 allows cycles in various orders. These cy-
cles are not always observed on current hardware, and in
these cases we suggested strengthening the C/C++11 model:
we suggested to forbid coherence shapes that involvesc

(§3.3), cycles insw ∪ rf (§3.4) and we suggested changing
the definition of release-sequences (§3.1).

More generally, we highlight two so-far underappreciated
qualities that a programming language concurrency seman-
tics should have. It should be incrementally executable, and
it should be integrable (better yet, integrated) with the se-
mantics for the rest of the language, not just a memory model
in isolation. Leaving such integration for future work may
lead to a memory model that makes it remarkably involved.
Since the sequential part of most languages are defined in
an operational style (including C/C++) these requirements
can be best satisfied by developing an equivalent operational
concurrency semantics early in the process.
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